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Abstract

We consider absorbing chemical reactions in a fluid flow modelled by the cou-

pled advection–reaction–diffusion equations. In these systems, the interplay

between chemical diffusion and fluid transportation causes the enhanced dissi-

pation phenomenon.We show that the enhanced dissipation time scale, together

with the reaction coupling strength, determines the characteristic time scale of

the reaction.
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1. Introduction

Consider the advection–reaction–diffusion systems involving two types of chemicals on T2

⎧
⎪⎪⎨
⎪⎪⎩

∂tn1+u · ∇n1 = ν1∆n1 − εn1n2,

∂tn2+u · ∇n2 = ν2∆n2 − εn2n1, ∇ · u = 0,

nα(0, x,y) = nα;0(x, y), α ∈ {1, 2}.

(1.1)

Here n1, n2 denote the chemical densities/biological substances and the vector field u models

the underlying fluid flow. The parameters να, ε ∈ (0, 1] represent the diffusion coefficients

and reaction coefficient, respectively. If the units are non-dimensionalised, then ν1, ν2 are the
inverse of the Péclet numbers and ε is the quotient between the Damköhler number and the

Péclet number (see, e.g., [30]). The domain is normalised so that T2 = [−1/2, 1/2]2.
The influence of the fluid flow on reaction rates is of high importance in many applica-

tions. Rigorous mathematical analysis of this question to date has been mostly focused on

front propagation phenomena and bulk reaction rates in the single-species setting, mostly in

the context of a single equation with KPP-type, combustion or bistable nonlinearities.We refer

to papers [4, 18, 19, 23–25, 33, 37, 40, 45, 56, 57] where further references can also be found.
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It has been established that the flow can have a strong influence on reaction rates, and the

extent of the effect depends strongly on the structure and properties of the flow. Here we will

work with the system (1.1) which, in contrast, models two reacting densities that are not pre-

mixed and disappear in reaction process (forming a new compound not tracked by the model).

We are not aware of earlier results on the influence of fluid flows and diffusion on multi-

species reaction speed (in the context of models where more than one reacting density function

is involved).

One motivation for studying the system (1.1) is to gain insight into the marine animals’ fer-

tilisation processes explored in the experimental papers [48, 49, 55]. The fertilisation cannot

proceed unless the sperms and eggs meet. To alleviate the unpredictability of the underlying

fluid stream, many marine animals’ eggs (e.g., abalones) emit chemical signals to guide their

sperms. Thus the chemotactic attraction between gametes and passive transport by fluid play

significant roles in the process. In the experiments carried out in [48, 49, 55], the scientists

put the gametes of the abalone in a Taylor–Couette tank and studied the relation between

the fertilisation success rate and the magnitude of the fluid flow. As a result, a non-trivial

connection is discovered between the two quantities. Furthermore, the scientists observe that

there exists an optimal shear strength that optimises the fertilisation rate. However, the math-

ematical understanding of these experiments is lacking. Rigorous analysis of the impact of

chemotactic attraction was initiated in [41–43]. The authors proved that chemotactic attrac-

tion can significantly decrease the half-life of biological substances in the framework of their

models. On the other hand, the role played by the passive fluid transport was investigated

in [30, 42, 43].

This paper aims to quantify the relationship between the half-life of the chemical/biological

substances and the coefficients να, ε involved in (1.1). In this paper, we do not consider the

chemotactic attraction effects. Instead, we focus on strongly mixing flows modelling turbulent

regime and shear flows.Marine scientists believe that these flows play essential roles in various

fertilisation processes in the ocean (see, e.g., [31] (turbulent regime) and [48, 49, 55] (shear

regime)). We leave the analysis of the complete advection–reaction–diffusion systems subject

to chemotactic attraction for future work.

If the ambient fluid flow u vanishes, the system (1.1) has two natural time scales, i.e., the

diffusion time scaleO(minα ν
−1
α ) and the reaction time scaleO(ε−1). The largest of these scales

determines the typical time scale of the chemicals/biological substances. To see this, one can

consider the initial configurationwhere the densities n1;0 and n2;0 are supported away from each

other. Then it takesO(minα ν
−1
α ) time for the two types of gametes/chemicals to encounter one

another. Once the densities are mixed, significant reaction occurs on a time scale O(ε−1). To

conclude, we come to the heuristic that the net reaction time scale is the sum of the diffusion

time scale and the reaction time scale.

The system (1.1) possesses another time scale associated with the non-trivial fluid flow u.

It is commonly referred to as the ‘enhanced dissipation time scale’ in the fluid mechanics com-

munity. The enhanced dissipation phenomena naturally arise in the passive scalar equations

∂t f + u · ∇ f = ν∆ f , f (t = 0, x, y) = f0(x, y). (1.2)

Let us consider (1.2) in the periodic setting. Suppose the diffusion coefficient ν is small enough

and suitable zero average constraints are enforced. In that case, the L2 norm of the solutions to

(1.2) decays to half of its initial value on a time scale that is much shorter than the diffusion

time scaleO(ν−1). This fast scale is the enhanced dissipation (time) scale associated with u. In

the two-species reaction model (1.1), one expects the two chemical densities to be well-mixed

after the enhanced dissipation scale. As a result, introducing ambient fluid flow advection can
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improve the net reaction time to the sum of the enhanced dissipation scale and the reaction

time scale.

We consider two types of vector fields u which possess enhanced dissipation, i.e., the

relaxation enhancing (R.E.) flows and the shear flows.

Constantin et al [25] introduced the notion of R.E. flows. Under the zero average constraint,

∫

T2

f0 dx dy = 0, (1.3)

the flow u is R.E. if the solutions to (1.2) have enhanced dissipation phenomenon. In [25],

explicit criterion for the flow to be R.E. is provided. Some examples of R.E. flows are well-

known. For instance, the weakly mixing flows are R.E., see e.g., [34, 35, 46, 51, 52], and the

references therein. In works [26, 36], an explicit connection between themixing property of the

fluid flows and the R.E. property is developed. It is worth noting that explicit constructions of

flows with mixing property have attracted much attention, and we refer the interested readers

to the works [1, 2, 8, 32, 54], and the references therein. Recently, Bedrossian et al [7] showed

that certain randomly forced solutions to the Navier–Stokes equations are R.E.. The result was

further applied to derive the Batchelor spectrum in the turbulence theory [9].

If the vector field u is the shear u(x, y) = (u(y), 0), the enhanced dissipation phenomenon is

observed for solutions of (1.2) subject to zero average constraint

∫

T

f0(x, y)dx = 0, ∀ y ∈ T. (1.4)

In the work [10], the authors studied general shear flows’ enhanced dissipation effect with the

techniques of hypocoercivity [50]. In the paper [53], the author combined a Gearhart–Prüss

type lemma and resolvent estimate to derive the enhanced dissipation of shear flows. Recently,

the authors of [3] applied the Hörmander hypoellipticity method to derive the enhanced

dissipation estimates in the bounded channel and T2.

The enhanced dissipation phenomena are relevant in other contexts. For example, strong

R.E. flows or shear flows suppress singularity formation in the advective chemotaxis models,

see, e.g., [14, 38, 44]. Moreover, the enhanced dissipation effect is crucial in understanding

the transition threshold in hydrodynamic stability, see, e.g., [11–13, 16, 17, 21]. Last but not

least, it was proven in [5] that a general version of the enhanced dissipation effect suppresses

the echo chain instability appeared in nonlinear Landau damping [6, 15, 47].

Now, we exploit the enhanced dissipation in our analysis of the advective–reaction–

diffusion system (1.1). Before diving into the details, we introduce some notational

conventions.

Notations: throughout the paper, the constants C,Ci � 1, c ∈ (0, 1) are independent of the

solutions and the coefficients ν, ε. The explicit values of C’s change from line to line. The

notations B(...),B(...) represent specific bounds/thresholds, whose dependence will be specified.

We use dV to denote the volume element, i.e., dV = dx dy. The average of the function f on the

torus is f =
∫
T2 f dV . Functions with subscript (·)∼, (·) �= satisfy the zero average constraints

(1.3) and (1.4), respectively.

We organise the main results by distinguishing between the R.E. flow regime and the shear

flow regime.
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(A) R.E. flow regime: we consider the passive scalar equation (1.2) subject to the zero

average constraint (1.3) which is preserved by the dynamics. Here we provide a quantitative

definition of R.E. flows.

Definition 1.1 (d(ν)-R.E. flows). The vector field u(t, x, y) is d(ν)-R.E. if there exists

a threshold ν0(u) > 0 such that for ∀ ν ∈ (0, ν0], the solution f∼ to the passive scalar

equation (1.2) subject to the zero average constraint (1.3) decays as follows:

‖ f∼(s+ t)‖2 � C‖ f∼(s)‖2e
−δd(ν)t, ∀ t, s ∈ [0,∞),

∫

T2

f0;∼ dx dy = 0.

The constants δ ∈ (0, 1) and C � 1 depend only on the vector field u and are independent

of ν. The enhanced dissipation rate d(ν) satisfies the relation limν→0+
ν
d(ν) = 0.

We present two examples of R.E. flows.

Example 1.1 (Stochastic Navier–Stokes flow). Consider the solutions to the following

stochastic Navier–Stokes equations in dimension two:

∂tu+(u · ∇)u+∇p= ∆u+ F(t,ω);

∇ · u = 0, u(t = 0, x) = u0(x). (1.5)

It was shown in the paper [7] that under specific constraints on the noise, the solutions u to the

equation (1.5) are almost surely |log ν|−1-R.E.. To be precise, there exist constants C(u0,ω), δ,
which may only depend on the initial data u0 and the random realisation ω, such that the

solutions to the passive scalar equation (1.2) subject to the flow u undergo enhanced dissipation

as follows:

‖ f∼(t)‖L2 � C(u0,ω)‖ f0;∼‖L2e
−δ| log ν|−1t,

∫

T2

f0;∼ dx dy = 0.

We refer the interested readers to theorem 1.3 and remark 1.4 in the paper [7] for details of the

statement.

Example 1.2 (Alternating shear flow). Here we introduce another time dependent

ν1/2-R.E. flow. We consider the following alternating shear flow:

u(t, x, y) =

∞∑

k=0

ϕ2k(t)(sin(2πy), 0)+

∞∑

k=0

ϕ2k+1(t)(0, sin(2πx)),

ϕ
(t) =

⎧
⎨
⎩

1, t∈[(
+1/3)Kν−1/2,(
+2/3)Kν−1/2],

smooth, [
Kν−1/2,(
+1/3)Kν−1/2]∪[(
+2/3)Kν−1/2 ,(
+1)Kν−1/2),

0, others,

ϕ
 ∈ C∞
c , support(ϕ
) ∩ support(ϕ
+1) = ∅, ∀ 
 ∈ N.

Here K is a universal constant greater than 1. In the appendix A, we show that if ν−1,K is large

enough, the solutions f∼ to the passive scalar equation (1.2) associated with the alternating

shear flow decay as follows:

‖ f∼(s+ t)‖2 � 4‖ f∼(s)‖2e
− log 2

2K
ν1/2t,

∫

T2

f0;∼ dx dy = 0, ∀ s, t ∈ [0,∞). (1.6)
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To conclude, the alternating shear is ν1/2-R.E. Moreover, the flow is C∞ in space and time.

There are several different generalisations. The same construction with alternating shear flows

in three coordinate directions provides ν1/2-R.E. flows in T
3. One can also combine the alter-

nating construction with the rough shear flows in [22, 53] to obtain |log ν|−γ-R.E. flows on T2

for some γ > 1. We believe that introducing some delicate time-dependent ‘phase shifts’ in

the construction yields a smooth ν1/3-R.E. flow. In a recent preprint [20], the authors created

a smooth |log ν|−2-R.E. flow by introducing a randomised phase shift into this construction.

With these preparations, we are ready to state the first main theorem.

Theorem 1.1. Consider solutions n1, n2 to the system (1.1) subject to initial condition

n1;0, n2;0 ∈ C2(T2). Assume that the fluid flow is d(ν)-R.E. Further assume that n1(0) � n2(0).

If the total mass of the density n1 is bounded from below on the time interval [0, T], i.e.,

inf
∀ t∈[0,T]

‖n1(t)‖L1(T2) �
1

B
> 0, (1.7)

then the following estimate holds on the same time interval:

‖n1(t)‖L1(T2) �
4

3
‖n1;0‖L1(T2) exp

×

⎧
⎨
⎩−

1

C(u)B

⎛
⎝ ∑

α∈{1,2}

d(να)
−1| log να|+ ε−1

⎞
⎠

−1

t

⎫
⎬
⎭. (1.8)

Remark 1. The estimates obtained in this paper do not require that the diffusion coefficients

να are chosen small depending on the initial data, which was always assumed in the other work

of enhanced dissipation in nonlinear systems, see, e.g., [14, 29]. This is due to the fact that the

system we consider is dissipative in nature.

Remark 2 (Extra logarithmic factor). The extra |log να| factor is introduced to com-

pensate for various constants appearing during the proof. In particular, when one derives the

enhanced dissipation of the solutions in the L1 space, our argument requires a loss in |log να|.

Remark 3. If we set B−1 = 1
2
‖n1(0)‖L1(T2) in theorem 1.1, then the maximal time interval

[0, T], on which the lower bound (1.7) holds, is commonly referred to as the half-life of the

chemical n1. In this case, we can state the decay estimate (1.8) purely in terms of the initial

data.

The result above can be generalised to multi-species absorbing reactions. We consider the

systems on T2:

∂tnα = να∆nα − u · ∇nα −
∑

β∈I

εαβnαnβ , nα(t = 0, ·) = nα;0(·), α, β ∈ I. (1.9)

Here να > 0 are the diffusion coefficients of the chemicals and εαβ � 0 are the reaction coef-

ficients. The total number of chemical species is finite, i.e., |I| < ∞. We make the following

assumptions

min
α∈I

‖nα(t)‖L1 �
1

B1

; (1.10)

4603



Nonlinearity 35 (2022) 4599 S He and A Kiselev

and

1 �

∑
α∈I‖nα(t)‖1

minα∈I‖nα(t)‖1
� B2. (1.11)

Here we note that the second assumption can be derived from the first one, i.e.,

1 �

∑
α‖nα(t)‖1

minα‖nα(t)‖1
� B1

∑

α

‖nα(0)‖1.

Theorem 1.2. Consider solutions {nα}α∈I to the system (1.9) subject to initial condi-

tion {nα;0}α∈I ∈ C2(T2). Assume that the fluid flow is d(ν)-R.E.. If the assumptions (1.10)
and (1.11) hold on the time interval [0, T], then for all t ∈ [0, T], there exist constants

C(B2),C(B1,B2, u) such that

∑

α∈I

‖nα(t)‖1 � C1(B2)
∑

α∈I

‖nα;0‖1 exp

{
−

1

C2(B1,B2,u)

×

(
max
α∈I

| log να|

d(να)
+ (min

α∈I
max
β∈I

εαβ)
−1

)−1

t

}
. (1.12)

(B) Shear flow regime: we consider the equation (1.1) subject to shear flow and diffusion

coefficients ν = ν1 = ν2,

⎧
⎪⎪⎨
⎪⎪⎩

∂tn1+u(y)∂xn1 = ν∆n1 − εn1n2,

∂tn2+u(y)∂xn2 = ν∆n2 − εn2n1,

nα(0, x,y) = nα;0(x, y), α ∈ {1, 2}.

(1.13)

The enhanced dissipation time scale naturally arises in the passive scalar equations subject to

shear flow:

∂t f �= + u(y)∂x f �= = ν∆ f �=,

f �=(t = 0, ·) = f0; �=(·),
∫

T

f0; �=(x, y)dx = 0 for ∀ y ∈ T.

(1.14)

Here the subscript (·) �= emphasises that the zero average constraint in (1.14) is enforced. The

zero average condition rules out the x-independent solutions to (1.14), for which it turns into

heat equation with diffusion coefficient ν.
Now we abuse notation a bit and provide a quantitative definition of shear flows with

enhanced dissipation.

Definition 1.2 (d(ν)-R.E. shear flows). The shear flow u(x, y) = (u(y), 0) is d(ν)-R.E. if
there exists a threshold ν0(u) > 0, such that for ∀ ν ∈ (0, ν0], all solutions to the passive scalar
equation f �= (1.14) decay as follows:

‖ f �=(t)‖2 � C‖ f0; �=‖2e
−δd(ν)t, ∀ t ∈ [0,∞),

∫

T

f0; �=(x, y)dx dy ≡ 0, ∀ y ∈ T. (1.15)
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Here the constants δ ∈ (0, 1) and C depend only on the shear profile. The enhanced dissipation

rate d(ν) satisfies the relation limν→0+
ν
d(ν)

= 0.

It is well-known that the enhanced dissipation rate d(ν) is closely related to the maximal

vanishing order of the shear flow profile u(y), see, e.g., [3, 10, 26, 28, 39, 53]. Let us consider

the shear flow u(x, y) = (u(y), 0) with profile u(y) that has finitely many critical points {yk}Nk=1.

We define the vanishing order j(k) associated with the critical point yk as the smallest integer

such that

d
u

dy

(yk) = 0,

d j(k)+1u

dy j(k)+1
(yk) �= 0, ∀ 1 � 
 � j(k).

We further define the maximal vanishing order jm of the shear flow profile u(y) to be

jm :=maxNk=1{ j(k)}. Note that any smooth shear flow profile on the torus T must have at least

one critical point and hence the maximal vanishing orders jm associated with them are greater

than or equal to 1.

If the shear flow profile has maximal vanishing order jm, the above-mentioned works

[3, 10, 39, 53] provide the following enhanced dissipation estimates for the solutions to (1.14)

‖ f �=(t)‖L2 � C‖ f0; �=‖L2e
−δν

jm+1
jm+3 t, ∀ ν ∈ (0, ν0(u)], ∀ t � 0. (1.16)

As a result, we see that the shear flow is ν
jm+1
jm+3 -R.E. In the paper [28], Coti-Zelati and Drivas

showed that this d(ν)-enhanced dissipation rate is sharp.
To present the main theorem, we introduce the notions of the x-average and the remainder:

〈 f 〉(y) =

∫

T

f (x, y)dx, f �=(x, y) = f (x, y)− 〈 f 〉(y). (1.17)

Our main result in the shear flow regime is as follows.

Theorem 1.3. Consider the solutions n1, n2 to (1.1) subject to initial condition n1;0, n2;0 ∈
C2(T2). Assume that the shear flow is d(ν)-R.E. with decay rate δd(ν) and threshold ν0. More-
over, suppose that ‖n1;0‖L1 � ‖n2;0‖L1 . Then for 0 < ν � ν0, there exist two characteristic
times

T0 =
1

δd(ν)
log

(
C

(
ε

δd(ν)

∑

α

‖nα;0‖L2x,y + 1

) ∑
α‖nα;0‖L2x,y

‖minα〈nα;0〉‖L1y

)
. (1.18)

and

T1 = ε−1C max

{
1,

∥∥∥∥ min
α∈{1,2}

〈nα;0〉

∥∥∥∥
−1

L1y

}
= :ε−1B1 (1.19)

such that significant mass is consumed by the time T0 + T1:

‖n1;0‖L1(T2) − ‖n1(T0 + T1)‖L1(T2) �
1

12

∥∥∥∥ min
α∈{1,2}

〈nα;0〉

∥∥∥∥
L1y

. (1.20)

Remark 4. Modulo logarithmic factors, the time T0 is of order O(d(ν)−1), which is the

enhanced dissipation time scale. If the ‘overlapping mass’
∥∥minα∈{1,2}〈nα〉(0)

∥∥
L1y

is not too

small, the time T1 is of order O(ε−1). As a result, we observe that the total reaction time is

determined by the larger one of the reaction time scale and the enhanced dissipation time scale.
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Remark 5. The main difficulty in extending the above result to systems with different dif-

fusion coefficients is that one of the key lemmas, i.e., lemma 4.2, does not hold in general. As

a result, keeping track of the time evolution of the minα〈nα〉 becomes challenging.

Remark 6. We believe the theorem can be extended to include chemical reactions on the

plane subject to the two-dimensional vortices, as in [30]. Here, one can apply the R.E. estimates

for vortices in [27]. We will leave this problem to future work.

The paper is organised as follows: in section 2, we prove theorem 1.1; in section 3, we

prove theorem 1.2; in section 4, we prove theorem 1.3; in appendix A, we prove the enhanced

dissipation of the alternating flows.

2. Proof of theorem 1.1

First of all, we apply the Nash inequality to prove the following lemma which provides

L1-estimates for the passive scalar solutions.

Lemma 2.1 (L1-decay of the passive scalar solution). Consider solutions η∼ to the
passive scalar equation (1.2) subject to zero average constraint, i.e.,

∫
T2η∼(x, y)dV = 0.

Assume that the flow u is d(ν)-R.E. with decay rate δd(ν). Then if ν is small enough, there
exist constants c ∈ (0, 1),C such that the following estimate holds

‖η∼(s+ t)‖1 � C‖η∼(s)‖1e
−cδd(ν)| log ν|−1t, ∀ s, t ∈ [0,∞). (2.1)

Proof. We begin with the derivation of L1–L2-estimate of the passive scalar semigroup.

Consider the time interval [s, s+ 4δ−1d(ν)−1| log ν|]. We estimate the time evolution of the

L2-norm using Nash inequality as follows:

d

dt

1

2
‖η∼(s+ t)‖22 � −ν‖∇η∼(s+ t)‖22

� −
ν‖η∼(s+ t)‖42
CN‖η∼(s+ t)‖21

� −
ν‖η∼(s+ t)‖42
CN‖η∼(s)‖21

.

Here the L1-norm of η∼ is non-increasing because we can consider the solutions to

(1.2) evolving from the positive and negative part of the initial data, i.e., η±∼(s, x, y) =
max{±η∼(s, x, y), 0}. Since both of them are positive and have conserved L1-norms and η∼
is the sum of these two solutions, we have that the L1-norm of η∼(s+ t) does not exceed the

L1-normof η∼(s). Next we directly solve the ordinary differential inequality subject to arbitrary
positive initial data and obtain that there exists a universal constant C such that the following

estimate holds

‖η∼(s+ t)‖2 �
C

(νt)1/2
‖η∼(s)‖1.

Nowwe decompose the interval [s, s+ 4δ−1d(ν)−1|log ν|] into two sub-intervals and apply the
following estimate:

‖η∼(s+ 4δ−1d(ν)−1| log ν|)‖1 � ‖η∼(s+ 4δ−1d(ν)−1| log ν‖)‖2

� C‖η∼(s+ δ−1d(ν)−1| log ν|)‖2

× e−δd(ν)3δ−1d(ν)−1| log ν|

� C e−| log ν3|‖η∼(s+ δ−1d(ν)−1| log ν|)‖2
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�
Cν3

(νδ−1d(ν)−1| log ν|)1/2
‖η∼(s)‖1

�
1

2
‖η∼(s)‖1.

In the last line, we choose ν small enough compared to universal constants so that the coeffi-

cient is small. We further note that the L1-norm of η∼ is non-increasing along the dynamics.

To conclude, we iterate the argument on consecutive intervals to derive the estimate (2.1). �

Proof of theorem 1.1. We organise the proof in three steps.

Step # 1: preparations. In this step, we translate the continuous-in-time decay estimate

(1.8) into a discrete-in-time one and properly decompose the time horizon.

We recall that the average density n1 is bounded from below by 1/B on the maximal

time interval [0, T]. Fix an arbitrary instance t0 in [0, T] and define the net reaction time as

T� :=C(B)(
∑

α∈{1,2}δ
−1d(να)

−1| log να|+ ε−1). The constantC(B), which will be chosen later

in the proof, depends on the mass threshold 1/B and the constants C, c in lemma 2.1. The esti-

mate (1.8) is ensured if we can show that the total mass ‖n1‖L1 decays by a fixed proportion

by the time t0 + T�, i.e.,

‖n1(t0 + T�)‖L1 �
3

4
‖n1(t0)‖L1 , [t0, t0 + T�] ⊂ [0, T]. (2.2)

To see this implication, we pick a time t ∈ [0, T] and determine the largest integer m ∈ N

such that mT� � t. The choice of m guarantees the relation t � (m+ 1)T�. Then invoking the

estimate (2.2) yields that

‖n1(t)‖L1 = ‖n1(t − mT� + mT�)‖L1 � ‖n1(t− mT�)‖L1

(
3

4

)m

� ‖n1(t − mT�)‖L1e
−
(

t
T�

−1
)
log 4

3 .

Direct calculation yields that the L1-norm ‖n1(t)‖1 is decreasing in time. Hence,

‖n1(t)‖L1 �
4

3
‖n1;0‖L1e

− t
T�

log 4
3 =

4

3
‖n1;0‖L1 exp

×

{
−

C−1(B) log 4
3∑2

α=1δ
−1d(να)−1| log να|+ ε−1

t

}
.

Modulo small adjustment to constants, this is the result (1.8).

Next we introduce the partition of time interval [t0, t0 + T�]. One of the obstacles to proving

(2.2) is that two distinct phenomena occur on the interval [t0, t0 + T�], with enhanced dissipa-

tion and chemical reaction involved. Hence our strategy is to decompose the time interval into

two parts and focus on deriving the enhanced dissipation estimates on the first part and the

reaction estimates on the second. To be precise, we define

[t0, t0 + T�] =[t0, t0 + T1) ∪ [t0 + T1, t0 + T1 + T2],

T1 :=C1

2∑

α=1

δ−1d(να)
−1| log να|, T2 := 16Bε−1 log 2. (2.3)

4607



Nonlinearity 35 (2022) 4599 S He and A Kiselev

Here the universal constant C1 depends only on the constants c,C appeared in (2.1) and will

be chosen in (2.5). Since |T| = 1, the estimate (2.2) is equivalent to

n1(t0 + T1 + T2) �
3

4
n1(t0).

This concludes step # 1.

Step # 2: nonlinear enhanced dissipation estimates. To derive (2.2), the first main esti-

mate we require is the nonlinear enhanced dissipation estimate at time instance t0 + T1. The

challenge is that the reaction coefficient ε can bemuch larger than d(να), and the nonlinear term
cannot be treated perturbatively in general. Our idea is that on the time interval [t0, t0 + T1),

one considers the super solutions

∂tñα + u · ∇ñα = να∆ñα, ñα(t0, ·) = nα(t0, ·), α ∈ {1, 2},

and uses the total reacted mass

Q(t) := ε

∫ t

0

∫

T2

n1n2 dV ds

to control the deviation between the super solutions and the real solutions. The same quantity

Q is considered in the paper [30]. Direct calculations yield the following relation

Q(t0 + t) − Q(t0) = ε

∫ t0+t

t0

∫

T2

n1n2 dV ds = ‖nα(t0)‖1 − ‖nα(t0 + t)‖1

= ‖ñα − nα‖1(t0 + t). (2.4)

Explicit justification of (2.4) is as follows. First of all, by integrating the equation (1.1) in

space and time, one obtains the relation ‖nα(t0)‖L1 − ‖nα(t0 + t)‖L1 = Q(t0 + t)− Q(t0). Next

we observe that since ñα are super-solutions, the differences ñα − nα are greater than zero.

Hence integrating the equations of ñα − nα yields the last equality in (2.4).

With the total reacted mass Q introduced, we are ready to derive the nonlinear enhanced

dissipation estimate. By the linear enhanced dissipation estimate (2.1) and the fact that ñα;∼
solves the passive scalar equation subject to zero average constraint (1.3), we can choose the

C1 in (2.3) large enough such that for all s � 0

‖ñα;∼(t0 + T1 + s)‖1 �
1

16
‖ñα;∼(t0)‖1 �

1

8
‖nα(t0)‖1 =

1

8
nα(t0), α ∈ {1, 2}. (2.5)

Hence, the L1-norm of the remainder nα;∼ is bounded, i.e.,

‖nα;∼(t0 + T1 + s)‖1 � ‖ñα;∼(t0 + T1 + s)‖1 + ‖ñα;∼(t0 + T1 + s)

− nα;∼(t0 + T1 + s)‖1

� ‖ñα;∼(t0 + T1 + s)‖1 + ‖ñα(t0 + T1 + s)

− nα(t0 + T1 + s)‖1 + |ñα(t0 + T1 + s)

− nα(t0 + T1 + s)|

�
1

8
nα(t0)+ 2Q(t0 + T1 + s) − 2Q(t0),

∀ s � 0, α ∈ {1, 2}. (2.6)
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This concludes the proof of the nonlinear enhanced dissipation estimates and step # 2.

Step # 3: proof of estimate (2.2). We focus on the second time component [t0 + T1, t0 +

T1 + T2] and distinguish between two possible cases.

Case (a). If Q(t0 + T1 + s) − Q(t0) = ‖n1(t0)‖1 − ‖n1(t0 + T1 + s)‖1 �
1
4
n1(t0) for some

0 � s < T2, then positivity and the fact that n1(t) is decreasing in time yields that

n1(t0 + T1 + T2) �
3

4
n1(t0).

Thus we have the estimate (2.2).

Case (b). The negation to the condition in case (a) is that

Q(t0 + T1 + s) − Q(t0) <
1

4
n1(t0), ∀ s ∈ [0, T2). (2.7)

To establish (2.2), we make three preparations and estimate the time evolution of n1.

Combining (2.7) and the relation (2.4) yields that

1

4
n1(t0) > ‖nα(t0)‖1 − ‖nα(t0 + T1 + s)‖1

= nα(t0)− nα(t0 + T1 + s), ∀ s ∈ [0, T2), α = 1, 2. (2.8)

Hence,

n2(t0 + T1 + s) � n1(t0 + T1 + s) >
3

4
n1(t0), ∀ s ∈ [0, T2). (2.9)

Next, we apply positivity of nα(x, y) = nα − n−α;∼(x, y) � 0, ∀ (x, y) ∈ {n−α;∼ > 0} to derive

that

‖n−α;∼‖∞ � nα, α ∈ {1, 2}. (2.10)

For the positive part of the remainder, we apply relation (2.6) and assumption (2.7) to obtain

‖n+α;∼(t0 + T1 + s)‖1 =
1

2
‖nα;∼(t0 + T1 + s)‖1

�
1

16
nα(t0)+ Q(t0 + T1 + s) − Q(t0)

�
1

16
nα(t0)+

1

4
n1(t0), α = 1, 2, ∀ s ∈ [0, T2).

(2.11)

Now we consider the time evolution of n1

d

dt
n1(t) = −εn1(t)n2(t)− εn1;∼n2;∼(t) � −εn1(t)n2(t)

+ εn+1;∼n
−
2;∼(t)+ εn−1;∼n

+

2;∼(t).

For t = t0 + T1 + s, we first apply (2.10) to obtain
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d

ds
n1(t0 + T1 + s) � −εn1(t0 + T1 + s)n2(t0 + T1 + s)

+ ε‖n+1;∼(t0 + T1 + s)‖1n2(t0 + T1 + s)

+ ε‖n+2;∼(t0 + T1 + s)‖1n1(t0 + T1 + s).

Then by (2.9) and (2.11),

d

ds
n1(t0 + T1 + s) � −εn1(t0 + T1 + s)n2(t0 + T1 + s)+ ε

3

8
n1(t0)

× n2(t0 + T1 + s)+ ε

(
1

4
n1(t0)+

1

16
n2(t0)

)

× n1(t0 + T1 + s)

� −εn2(t0 + T1 + s)

(
1

2
n1(t0 + T1 + s)−

3

8
n1(t0)

)

− εn1(t0 + T1 + s)

(
1

2
n2(t0 + T1 + s)−

1

4
n1(t0)

−
1

16
n2(t0)

)
= :P1 + P2.

The relations (2.8) and (2.9) yield that the first part P1 is negative and the second term is

bounded above:

P2 � −εn1(t0 + T1 + s)

((
3

4

7

16
−

1

4

)
n1(t0)−

1

16
(n2(t0)− n2(t0 + T1 + s))

)

� −
1

16
εn1(t0)n1(t0 + T1 + s).

We apply the assumption n1(t0) � 1/B to obtain,

d

ds
n1(t0 + T1 + s) � −ε

1

16B
n1(t0 + T1 + s).

Now we see that after time T2 = 16Bε−1 log 2, the n1 decays to
3
4
of its starting value. Hence

we prove the estimate (2.2) in case (b) and conclude the proof of theorem 1.1. �

3. Proof of theorem 1.2

Since the proof is similar to the one in theorem 1.1, we only highlight the main differences.

We consider the total massMall

Mall(t) :=
∑

α∈I

‖nα(t)‖1.
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The positivity of the reaction coefficients εαβ � 0 yields that Mall(t) is monotonically

decreasing. Furthermore, we consider the characteristic reaction time

T� = log(32CB2)(cδ)
−1max

α∈I
d(να)

−1| log να|+ 2B1

(
min
α∈I

max
β∈I

εαβ

)−1

× log

(
1−

1

8B2

)−1

= :T1 + T2.

Here C, c, δ are the constants appearing in lemma 2.1. Recall that [0, T] is the maximal interval

on which (1.10) and (1.11) hold. By the argument in step # 1 within the proof of theorem 1.1,

the estimate (1.12) is a consequence of the following statement:

Mall(t0 + T�) �

(
1−

1

8B2

)
Mall(t0), (3.1)

where [t0, t0 + T�] is an arbitrary interval embedded in [0, T].

To acquire the nonlinear enhanced dissipation estimate, we consider the total reacted

mass Qall,

Qall(t) :=
∑

α,β∈I

∫ t

0

∫

T2

εαβnαnβ dV ds.

Since εαβ � 0, Qall(t) is non-negative and increasing. Direct time integration yields that for

∀ t0, t ∈ [0,∞)

Qall(t0 + t)− Qall(t0) = Mall(t0)−Mall(t0 + t) =
∑

α∈I

‖ñα(t0 + t) − nα(t0 + t)‖L1 , (3.2)

where {ñα}α∈I are super solutions to {nα}α∈I defined by

∂tñα = να∆ñα − u · ∇ñα, ñα(t0) = nα(t0).

Note that the lower bound on Q,

Qall(t0 + T�)− Qall(t0) �
1

8B2

Mall(t0),

when combined with (3.2), yields the final result (3.1). Hence we make the following

assumption throughout the remaining part of the proof

Qall(t0 + t) − Qall(t0) <
1

8B2

Mall(t0), ∀ t ∈ [0, T�). (3.3)

To obtain the nonlinear enhanced dissipation estimate, we invoke (2.1) to derive the

following

∑

α

‖ñα;∼(t0 + T1 + s)‖L1 �
1

32B2

∑

α

‖nα;∼(t0)‖L1

�
1

16B2

∑

α

‖nα(t0)‖L1 , ∀ s ∈ [0, T2]. (3.4)
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Application of the relations (3.2)–(3.4) then yields that

‖nα;∼(t0 + T1 + s)‖L1 � ‖ñα;∼(t0 + T1 + s)‖L1 + ‖nα;∼(t0 + T1 + s)

− ñα;∼(t0 + T1 + s)‖L1

�
3

8B2

Mall(t0), ∀ s ∈ [0, T2]. (3.5)

This is the enhanced dissipation we use in the sequel.

Next we invoke the relations (3.2) and (3.3), the assumption (1.11)t=t0 and the enhanced

dissipation estimate (3.5) to obtain that

nα(t0 + T1 + s) � nα(t0)− |nα(t0)− nα(t0 + T1 + s)|

�
1

B2

Mall(t0)−
Mall(t0)

8B2

�

(
1

B2

−
1

8B2

)

×
8B2

3
‖nα;∼(t0 + T1 + s)‖1, ∀ s ∈ [0, T2].

Hence,

nα(t0 + T1 + s) � 2‖nα;∼(t0 + T1 + s)‖L1 , ∀α ∈ I, ∀ s ∈ [0, T2].

Nowwe can use the above information to estimate the time evolution ofMall(t0 + T1 + s), ∀ s ∈
[0, T2]

d

ds
Mall(t0 + T1 + s) = −

∑

α∈I

∑

β∈I

εαβ

∫
nαnβ dV

= −
∑

α∈I

∑

β∈I

εαβ(nαnβ − nα;∼nβ;∼)

� −
∑

α∈I

∑

β∈I

εαβ

(
nα(t0 + T1 + s)nβ(t0 + T1 + s)

− ‖n+α;∼(t0 + T1 + s)‖1‖n
−
β;∼(t0 + T1 + s)‖∞

−‖n+β;∼(t0 + T1 + s)‖1‖n
−
α;∼(t0 + T1 + s)‖∞

)
.

Since ‖n−α;∼‖∞ � nα, we have

d

dt
Mall(t0 + T1 + s) � −

∑

α∈I

∑

β∈I

εαβ

(
nα(t0 + T1 + s)nβ(t0 + T1 + s)

− nα(t0 + T1 + s)
1

2
‖nβ;∼(t0 + T1 + s)‖1

− nβ(t0 + T1 + s)
1

2
‖nα;∼(t0 + T1 + s)‖1

)

� −
∑

α∈I

∑

β∈I

εαβ(nα(t0 + T1 + s)nβ(t0 + T1 + s)/2).
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Recalling that the assumption (1.10) holds on the time horizon [t0, t0 + T�] ⊂ [0, T], we have

d

ds
Mall(t0 + T1 + s) � −

1

2B1

min
α

max
β

εαβ
∑

α

nα(t0 + T1 + s)

= −
1

2B1

(
min
α

max
β

εαβ

)
Mall(t0 + T + s).

Now in time T2 = 2B1(minα maxβ εαβ)
−1 log

(
1− 1

8B2

)−1

, sufficient mass is consumed, i.e.,

Mall(t0 + T�) = Mall(t0 + T1 + T2) �

(
1−

1

8B2

)
Mall(t0).

This concludes the proof of (3.1). Hence the estimate (1.12) follows.

4. Proof of theorem 1.3

In this section we prove theorem 1.3. The goal is to keep track of the total mass ‖n1(t)‖1. To this
end, we consider dynamics of the x-averages 〈nα〉 defined in (1.17) and design a 1D-system to

approximate their behaviours. By taking the x-average of the equation (1.13), we obtain

∂t〈nα〉 = ν∂yy〈nα〉 − ε〈nα〉〈nβ〉 − ε〈nα; �=nβ; �=〉, β �= α, ∀α ∈ {1, 2}.

(4.1)

To analyse the evolution of the system (4.1), we consider an intermediate one-dimensional

periodic in space dynamics

∂tñ1 = ν∂yyñ1 − εñ1ñ2, ∂tñ2 = ν∂yyñ2 − εñ1ñ2, (4.2)
(
ñ1(t0),̃n2(t0)

)
= (〈n1〉(t0), 〈n2〉(t0)).

Before proving theorem 1.3, we present two lemmas. The first one provides an estimate of

the L1-distance between 〈nα〉 and ñα. The other describes the evolution of the L
1-norms of the

solutions ñα.

Lemma 4.1. Consider the solutions 〈nα〉,α ∈ {1, 2} to (4.1) and the solutions ñα, α ∈
{1, 2} to the one-dimensional dynamics (4.2).
The L1 distance between the two solutions are bounded in terms of the initial data as

follows:

‖〈nα〉 − ñα‖L1y (t0 + t) − ‖〈nα〉 − ñα‖L1y (t0)

� ε

∫ t0+t

t0

∫
|〈n1; �=n2; �=〉|dy ds, α = 1, 2.

Proof. The proof is based on the observation that the density differences 〈n1〉 − 〈n2〉 and
ñ1 − ñ2 solve the same equation, i.e.,

∂t(ñ1 − ñ2) =ν∆(ñ1 − ñ2),

∂t(〈n1〉 − 〈n2〉) =ν∆(〈n1〉 − 〈n2〉)
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and the two density differences share the same initial data. As a result, by uniqueness of heat

equation, we have obtained the relation

ñ1(t, y)− ñ2(t, y) = 〈n1〉(t, y)− 〈n2〉(t, y), ∀ t ∈ [0,∞), ∀ y ∈ T. (4.3)

Due to this relation (4.3), we only need to estimate the L1-distance between one component of

the density difference. Without loss of generality, we consider 〈n1〉 − ñ1

∂t(〈n1〉 − ñ1) = ν∆(〈n1〉 − ñ1)− ε(〈n1〉〈n2〉+ 〈n1; �=n2; �=〉 − ñ1ñ2)

= ν∆(〈n1〉 − ñ1)− ε〈n1〉(〈n2〉 − 〈n1〉)+ εñ1(ñ2 − ñ1)

− ε〈n1〉
2
+ εñ21 − ε〈n1,�=n2,�=〉.

Now we apply the relation (4.3) and rearrange the terms to obtain that

∂t(〈n1〉 − ñ1) = ν∆(〈n1〉 − ñ1)− ε
(
〈n2〉 − 〈n1〉

+ 〈n1〉+ ñ1
)
(〈n1〉 − ñ1)− ε〈n1; �=n2; �=〉

= ν∆(〈n1〉 − ñ1)− ε(〈n2〉+ ñ1)(〈n1〉 − ñ1)− ε〈n1; �=n2; �=〉.

We decompose the solution 〈n1〉 − ñ1 as f1 − f2, where the f i’s solve the equations

∂t f1 =ν∆ f1 − ε(〈n2〉+ ñ1) f1 + ε〈n1; �=n2; �=〉
−, f1(t0) = (〈n1〉 − ñ1)

+(t0);

∂t f2 =ν∆ f2 − ε(〈n2〉+ ñ1) f2 + ε〈n1; �=n2; �=〉
+, f2(t0) = (〈n1〉 − ñ1)

−(t0).

By comparison principle, the f i’s are non-negative. Hence ‖〈n1〉 − ñ1‖1 � ‖ f1‖1 + ‖ f2‖1.
Then integration of the f i-equations in space and time yields the result. �

Lemma 4.2. The solutions ñα to (4.2) have the following decay for all t0 > 0, t � 0:

‖min{ñ1(t0 + t, ·), ñ2(t0 + t, ·)}‖L1y

= ‖min{ñ1(t0, ·), ñ2(t0, ·)}‖L1y − ε

∫ t0+t

t0

∫
ñ1(s, y)ñ2(s, y)dy ds

+ ν

∫ t0+t

t0

∑

yi(s)

|∂y(ñ1 − ñ2)(s, yi(s))|ds.

Here the set {yi(s)} is the collection of points such that ñ1(s, yi(s)) = ñ2(s, yi(s)) and

∂yn1(s, yi(s)) �= ∂yn2(s, yi(s)).

Proof. Recall that

min{ñ1, ñ2} =
ñ1 + ñ2

2
−

|ñ1 − ñ2|

2
.

Now we take the time derivative of the L1-norm, and apply the observation that ñ1 − ñ2 solves

the heat equation to get
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d

dt
‖min
α=1,2

{nα}(t0 + t, ·)‖1

=

∫
∂

∂t

(
ñ1 + ñ2

2
−

|ñ1 − ñ2|

2

)
dy

=

∫ (
ν∂yy

(
ñ1 + ñ2

2

)
− εñ1ñ2 −

(ñ1 − ñ2)∂t(ñ1 − ñ2)

2|ñ1 − ñ2|

)
dy

= −ε

∫
ñ1ñ2 dy−

∫
ν
(ñ1 − ñ2)∂yy(ñ1 − ñ2)

2|ñ1 − ñ2|
dy. (4.4)

The remaining part of the proof is to understand the last term in (4.4).

For the sake of notational simplicity, we use q̃ to denote the difference q̃ := ñ1 − ñ2. The

behaviour of the last term in (4.4) is related to the zero points of q̃. Note that at the ini-

tial time t0, ñ1(t0)− ñ2(t0) = 〈n1 − n2〉(t0), t0 > 0 and 〈n1 − n2〉(t, y) as well as ñ1 − ñ2 solve

the heat equation on R+ × T. As a result, due to analyticity of solutions to heat equation,

q̃(t0 + t) can only have finitely many zero points for t0 > 0, t � 0. At any fixed instance, we

label these finitely many zero points as {yi(t0 + t)}N(t0+t)i=1 (zeros with multiplicities are labelled

only once). We further partition the torus [−1/2, 1/2] into − 1
2
= y0 < y1 < y2 < y3 < . . . <

yN < yN+1 =
1
2
and define Ii :=

[
yi, yi+1

)
. Note that y0 = − 1

2
and yN+1 =

1
2
are identified and

are not the zero points. Since the solution q̃ is smooth, the expression q̃
|̃q|∂yyq̃ is smooth away

from the points {yi}Ni=1. Moreover, the function q̃/|q̃| is constant in the interior of Ii, i.e.,

Ioi := (yi, yi+1), so we denote it as
(

q̃
|̃q|

)
(Ioi ). Also, since y0 = yN+1 are not zeros in our set-

up,
(

q̃
|̃q|

)
(Io0 ) =

(
q̃
|̃q|

)
(IoN). Combining the observations above, and the continuity of q̃

|̃q|∂yq̃ at

y0 = yN+1 yields that

∫ 1/2

−1/2

q̃

|q̃|
∂yyq̃ dy =

N∑

i=0

∫

Ii

q̃

|q̃|
∂yyq̃ dy =

N∑

i=0

(
q̃

|q̃|

)
(Ioi )

∫ yi+1

yi

∂yyq̃ dy

=

N∑

i=0

(
q̃

|q̃|

)
(Ioi )

(
∂yq̃(t0 + t, y)|y=yi+1

y=yi

)

=

(
q̃

|q̃|

)
(Io0) lim

η→0+

(
∂yq̃

(
1

2
− η

)
− ∂yq̃

(
−
1

2
+ η

))

−
N∑

i=1

lim
η→0+

(
q̃(yi + η)

|q̃(yi + η)|
∂yq̃(yi + η)

−
q̃(yi − η)

|q̃(yi − η)|
∂yq̃(yi − η)

)

= −
N∑

i=1

∂yq̃(yi) lim
η→0+

(
q̃(yi + η)

|q̃(yi + η)|
−

q̃(yi − η)

|q̃(yi − η)|

)

= −

N(t0+t)∑

i=1

2|∂yq̃(t0 + t, yi(t0 + t))|.
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Combining this calculation with (4.4), we have that

d

dt
‖min
α=1,2

{nα}(t0 + t, ·)‖1 = −ε

∫
ñ1(t0 + t, y)ñ2(t0 + t, y)dy+

N(t0+t)∑

i=1

ν|∂yq̃(t0 + t, yi(t0 + t))|.

Integration in time yields the result. �

Proof of theorem 1.3. We organise the proof in three steps.

Step #1: battle plan. First we define

G :=
1

12

∥∥∥∥ min
α∈{1,2}

〈nα;0〉

∥∥∥∥
L1y

.

Hence the goal (1.20) can be interpreted as

‖〈n1;0〉‖L1y − ‖〈n1〉(T0 + T1)‖L1y � G. (4.5)

The strategy is similar to the one in theorem 1.1. Namely, we decompose the time horizon

[0, T0 + T1] into two parts, i.e., [0, T0) and [T0, T0 + T1]. The enhanced dissipation estimates

will be derived on the first interval and the reaction will be exploited on the second.

Next we make one further simplification. Same as before, we define the total reacted mass

Q(t), which is increasing in time,

Q(t) := ε

∫ t

0

∫
n1n2 dx dy ds = ‖n1;0‖1 − ‖n1(t)‖1.

Note that if there exists t ∈ [0, T0 + T1] such that Q(t) � G, then

G � Q(t) � Q(T0 + T1) = ‖n1;0‖1 − ‖n1(T0 + T1)‖1,

which is the result (4.5). Therefore, it is enough to prove (4.5) under the assumption

G � Q(t), ∀ t ∈ [0, T0 + T1]. (4.6)

This concludes step # 1.

Step # 2: rnhanced dissipation estimates on [0, T0]. Consider the solutions n̂1, n̂2 to the

passive scalar equations

∂tn̂α + u(y)∂xn̂α = ν∆n̂α, n̂α(t = 0, ·) = nα;0(·), α ∈ {1, 2}.

The same argument as in the proof of (2.4) yields that

‖nα;0‖1 − ‖nα(t)‖1 = ‖n̂α − nα‖1(t) = Q(t), α ∈ {1, 2}. (4.7)

Since the difference q�= and the approximation n̂α; �= solve the passive scalar equations, the

enhanced dissipation estimate (1.15) applies, i.e., ‖q�=(t)‖2 � C‖q�=(0)‖2e
−δd(ν)t, ‖n̂α; �=(t)‖2 �

C‖n̂α; �=(0)‖2e−δd(ν)t. By choosing the universal constant C in the definition of T0 (1.18) large
enough, we have the following estimates at time T0,

‖q �=(T0)‖2 �
δd(ν)G

121ε
∑

α‖nα;0‖2
;

∑

α

‖n̂α; �=(T0)‖2 �
1

121
G. (4.8)
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Moreover, on the time interval [0, T0], we use lemma 4.2 with ñα = 〈n̂α〉, ε = 0 and t0 = T0 to
obtain that

‖min{〈n̂1〉, 〈n̂2〉}(T0)‖L1y � ‖min{〈n1;0〉, 〈n2;0〉}‖L1y = 12G.

By recalling the relations

min{〈n1〉, 〈n2〉} =
〈n1〉+ 〈n2〉

2
−

|〈n1〉 − 〈n2〉|

2
, 〈n1〉 − 〈n2〉 = 〈n̂1〉 − 〈n̂2〉,

and combining them with (4.7) and (4.6), we end up with

‖min{〈n1〉, 〈n2〉}(T0)‖L1y �
11

12
‖min{〈n1;0〉, 〈n2;0〉}‖L1y . (4.9)

This concludes step # 2.

Step # 3: reaction estimates on [T0, T0 + T1]. On the second time interval, we compare

〈n1〉 to the solution ñ1 of the 1D-system (4.2)t0=T0 . To estimate their deviation, we first invoke

the enhanced dissipation of q�= (1.15) and the estimate (4.8) to obtain

Q(T0 + T1)− Q(T0) = ε

∫ T0+T1

T0

∫
〈n1n2〉dy dt

= ε

∫ T0+T1

T0

∫
〈n1〉〈n2〉dy dt + ε

∫ T0+T1

T0

∫
〈q �=n2; �=〉

× dy dt + ε

∫ T0+T1

T0

∫
〈n22; �=〉dy dt

� ε

∫ T0+T1

T0

∫
〈n1〉〈n2〉dy dt + ε

∫ T0+T1

T0

×

∫
〈n22; �=〉dy dt − G/120.

This estimate, when combined with lemma 4.1, yields the L1-deviation control

‖〈n1〉 − ñ1‖1(T0 + t) � 2ε

∫ T0+t

T0

∫
|〈n1; �=n2; �=〉|dy ds

�2ε

∫ T0+t

T0

∫
|〈n2; �=q �=〉|dy ds+ 2ε

∫ T0+t

T0

∫
〈n22; �=〉dy ds

�2Q(T0 + t) − 2Q(T0)+ 4G/120, ∀ t ∈ [0, T1 = B1ε
−1]. (4.10)

Now we consider the total reacted mass associated with 1D-system (4.2),

I(t) = ε

∫ T0+t

T0

∫
ñ1(s, y)ñ2(s, y)dy ds.

Recalling the one-dimensional equation (4.2) and direct L1-estimate yield the following

relation

4617



Nonlinearity 35 (2022) 4599 S He and A Kiselev

‖ñ1(T0)‖L1y − ‖ñ1(T0 + t)‖L1y = ‖ñ2(T0)‖L1y

− ‖ñ2(T0 + t)‖L1y = I(t), ∀ t ∈ [0,∞). (4.11)

Therefore, given (4.10), to estimate the chemical consumed along the dynamics, it is enough

to consider the time evolution of I(t). By lemma 4.2, we have that

∫
min{ñ1, ñ2}(T0 + t, y)dy+ I(t) =

∫
min{ñ1, ñ2}(T0, y)dy+

∫ T0+t

T0

ν

×
∑

yi

|∂y(ñ1(s, yi)− ñ2(s, yi))|ds.

Here the yi’s are specified in lemma 4.2.

We recall the definition of B1 in theorem 1.3 and distinguish between two cases on the time

interval [T0, T0 + B1ε
−1].

Case (a): if there exists a constant B2 ∈ (0,B1] such that at time B2ε
−1, the following

estimate holds
∫

min{ñ1, ñ2}(T0 + B2ε
−1, y)dy �

1

2

∫
min{ñ1, ñ2}(T0, y)dy.

Then using (4.11) and (4.9), we obtain that

I(B1ε
−1) � I(B2ε

−1) �
1

2

∫
min{ñ1, ñ2}(T0, y)dy �

11

2
G.

Hence by (4.11), we have a bound for the reacted total mass

‖ñ1(T0)‖L1y − ‖ñ1(T0 + B1ε
−1)‖1 �

1

2

∫
min{ñ1, ñ2}(T0, y)dy �

11

2
G.

Assumption (4.6) and L1-control (4.10) yields that ‖〈n1〉(T0 + t) − ñ1(T0 + t)‖L1y �
61
30
G, ∀ t ∈ [0, T1]. Hence, we have that

‖〈n1;0〉‖L1y − ‖〈n1〉(T0 + T1)‖L1y � ‖〈n1〉(T0)‖L1y − ‖〈n1〉(T0 + B1ε
−1)‖L1y � G.

This concludes the proof in case (a).

Case (b): on the other hand, if on the time interval [0,B1ε
−1] the following estimate holds

∫
min{ñ1, ñ2}(T0 + t, y)dy �

1

2

∫
min{ñ1, ñ2}(T0, y)dy, ∀ t ∈ [0,B1ε

−1],

then we can estimate I(B1ε
−1) with Hölder’s inequality as follows:

I(B1ε
−1) � ε

∫ B1ε
−1

0

∫

T

min {ñ1, ñ2}
2(T0 + s, y)dy ds

� ε

∫ B1ε
−1

0

(∫

T

min{ñ1, ñ2}(T0 + s, y)dy

)2

ds

�
B1

4

(∫

T

min{ñ1, ñ2}(T0, y)dy

)2

. (4.12)
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By (4.9), we choose the universal constant C in the definition of B1 (1.19) large enough so that

B1 � max{5, 4‖min{〈n1〉, 〈n2〉}(T0)‖
−1

L1y
} = max

× {5, 4‖min{ñ1, ñ2}(T0)‖
−1

L1y
}.

Now if ‖min{ñ1, ñ2}(T0)‖L1y � 1, then because B1 � 5, the right-hand side of (4.12) is greater

than 1
2
‖min{ñ1, ñ2}(T0)‖L1y . If 0 < ‖min{ñ1, ñ2}(T0)‖L1y � 1, the choiceB1 �

4
‖min{ñ1 ,̃n2}(T0)‖L1y

yields the same lower bound as in the first case. To conclude, we have obtained the following

estimate

I(B1ε
−1) �

1

2

∫

T

min{ñ1, ñ2}(T0, y)dy.

Now an application of the argument in case (a) yields the result. �
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Appendix A

A.1. Proof of the enhanced dissipation estimate for alternating shear flow

In this section, we prove the enhanced dissipation estimate (1.6).

We first consider the case s, t ∈ 2Kν−1/2
N and comment on the general case at the end. In

this special case, the estimate (1.6) is guaranteed by the following

‖ f∼(s+ t)‖2 � 2
− t

2Kν−1/2 ‖ f∼(s)‖2, ∀ s, t ∈ 2Kν−1/2
N. (A.1)

For the sake of notation simplicity, we drop the (·)∼ notation in the appendix A. Without loss

of generality, we set s = 0. Since the flow is time-periodic with period 2Kν−1/2, it is enough

to prove

‖ f (2Kν−1/2) �
1

2
‖ f (0)‖2, (A.2)

given that K, ν−1 are chosen large enough. We decompose the interval [0, 2Kν−1/2] into

two parts

[0, 2Kν−1/2] =
[
0,Kν−1/2

)
∪ [Kν−1/2, 2Kν−1/2]. (A.3)

On the interval
[
0,Kν−1/2

)
, the shear flow is given by

u(τ , x, y) = ϕ0(τ )(sin(2πy), 0),
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where ϕ0 is the C∞ time cut-off. We decompose the solution into the x-average and the

x-remainder:

f (τ , x, y) = 〈 f 〉x(τ , y)+ f �=x (τ , x, y),

〈 f 〉x(τ , y) =

∫ 1/2

−1/2

f (τ , x, y)dx,

∫∫
f (τ , x, y)dx dy = 0.

Note that these two parts solve the decoupled equations:

∂τ 〈 f 〉x =ν∂yy〈 f 〉x , 〈 f 〉x(0, y) = 〈 f0〉x(y);

∂τ f �=x + ϕ0(τ ) sin(2πy)∂x f �=x =ν∆ f �=x , f �=x (τ = 0, x, y) = ( f0) �=x (x, y).

We focus on the remainder part. Recalling the enhanced dissipation estimate for shear flows

(1.16) jm=1, the non-expansive nature of the L2-norm along the dynamics, and the fact that

ϕ0(τ ) = 1 for ∀ τ ∈ [ 1
3
Kν−1/2, 2

3
Kν−1/2], we have that for ν ∈ (0, ν0] and K chosen large

enough,

‖ f �=x (Kν
−1/2)‖L2 �

∥∥∥∥ f �=x

(
2

3
Kν−1/2

)∥∥∥∥
L2

� C e−δν1/2(Kν−1/2/3)

∥∥∥∥ f �=x

(
1

3
Kν−1/2

)∥∥∥∥
L2

�
1

16
‖ f �=x (0)‖L2 �

1

8
‖ f (0)‖L2. (A.4)

Here we take 0 < ν � ν0 and K � 3δ−1 log(16C).

Now on the time interval [Kν−1/2, 2Kν−1/2] in the decomposition (A.3), similarly to the

previous argument, we decompose the solution into the following two parts

〈 f 〉y(τ , x) =

∫ 1/2

−1/2

f (τ , x, y)dy, f �=y(τ , x, y) = f (τ , x, y)− 〈 f 〉y(τ , y).

Now the two quantities solve separate equations:

∂τ 〈 f 〉y = ν∂xx〈 f 〉y; ∂τ f �=y + ϕ1(τ ) sin(2πx)∂y f �=y = ν∆ f �=y ,

which initiate at time Kν−1/2. Note that due to the zero average constraint∫∫
f (τ , x, y)dx dy ≡ 0, we have the relation 〈〈 f 〉x〉y = 0. Then as a consequence of (A.4), the

non-increasing of the L2-norm for solutions of the heat equation, and Hölder inequality we

obtain that

‖〈 f 〉y(τ )‖L2x � ‖〈 f 〉y(Kν
−1/2)‖L2x = ‖〈〈 f 〉x + f �=x〉y(Kν

−1/2)‖L2x

=‖〈 f �=x〉y(Kν
−1/2)‖L2x � ‖ f �=x (Kν

−1/2)‖L2x,y

�
1

8
‖ f (0)‖L2x,y, ∀ τ ∈ [Kν−1/2, 2Kν−1/2]. (A.5)
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Now for the remainder f �=y , we use the enhanced dissipation estimate (1.16) jm=1, the

non-expansive nature of the L2 norm of solution, and the fact that ϕ1(τ ) = 1, ∀ τ ∈
[4Kν−1/2/3, 5Kν−1/2/3] to obtain the following for ν ∈ (0, ν0], and K � 3δ−1 log(16C):

‖ f �=y(2Kν
−1/2)‖L2x,y � C e−δν1/2(Kν−1/2/3)‖ f �=y(Kν

−1/2)‖L2x,y

�
1

8
‖ f (0)‖L2x,y.

Now combining the estimate with (A.5), we obtain that

‖ f (2Kν−1/2)‖L2x,y � ‖〈 f 〉y(2Kν
−1/2)‖L2x,y + ‖ f �=y(2Kν

−1/2)‖L2x,y

�
1

2
‖ f (0)‖L2x,y.

This concludes the proof of (A.2).

For general s, t � 0, we find the smallest integer N and largest integerM so that

2KNν−1/2
� s, 2KMν−1/2

� s+ t, M,N ∈ N.

Here K is the same constant in the above analysis. Note that if t � 4Kν−1/2, then the estimate

(1.6) is direct:

‖ f (s+ t)‖2 � ‖ f (s)‖2 � 4‖ f (s)‖2e
− log 2

2K
ν1/2t, 0 � t � 4Kν−1/2.

Hence we assume t > 4Kν−1/2 and observe that 2Kν−1/2(M− N) � t− 4Kν−1/2. Now we

apply the estimate (A.1) with s, t ∈ 2Kν−1/2
N, and the non-increasing nature of L2-norm of

the solutions to derive that

‖ f (s+ t)‖2 � ‖ f (2KMν−1/2)‖2 � ‖ f (2KNν−1/2)‖22
−(M−N)

� ‖ f (s)‖2e
− log 2

2K ν1/22Kν−1/2(M−N)

� ‖ f (s)‖2e
− log 2

2K
ν1/2(t−4Kν−1/2)

= 4‖ f (s)‖2e
− log 2

2K ν1/2t, ∀ s, t � 0.

This concludes the proof of (1.6) in the general case.
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