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Abstract

We consider absorbing chemical reactions in a fluid flow modelled by the cou-
pled advection-reaction—diffusion equations. In these systems, the interplay
between chemical diffusion and fluid transportation causes the enhanced dissi-
pation phenomenon. We show that the enhanced dissipation time scale, together
with the reaction coupling strength, determines the characteristic time scale of
the reaction.

Keywords: reaction—diffusion equations, enhanced dissipation, relaxation-
enhancing flows, multi-species reactions
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1. Introduction

Consider the advection—reaction—diffusion systems involving two types of chemicals on T?
omi+u-Vn, = v Any — eniny,
Omy+u - Vny = hAny, —enpny, V-u=0, (1.1)
n,(Qx,y) = nao(x,y), «€{1,2}.

Here n;, n, denote the chemical densities/biological substances and the vector field u models
the underlying fluid flow. The parameters v,, ¢ € (0, 1] represent the diffusion coefficients
and reaction coefficient, respectively. If the units are non-dimensionalised, then v, v/, are the
inverse of the Péclet numbers and ¢ is the quotient between the Damkdohler number and the
Péclet number (see, e.g., [30]). The domain is normalised so that T? = [—1/2,1/2]%

The influence of the fluid flow on reaction rates is of high importance in many applica-
tions. Rigorous mathematical analysis of this question to date has been mostly focused on
front propagation phenomena and bulk reaction rates in the single-species setting, mostly in
the context of a single equation with KPP-type, combustion or bistable nonlinearities. We refer
to papers [4, 18, 19, 23-25, 33, 37, 40, 45, 56, 57] where further references can also be found.
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It has been established that the flow can have a strong influence on reaction rates, and the
extent of the effect depends strongly on the structure and properties of the flow. Here we will
work with the system (1.1) which, in contrast, models two reacting densities that are not pre-
mixed and disappear in reaction process (forming a new compound not tracked by the model).
We are not aware of earlier results on the influence of fluid flows and diffusion on multi-
species reaction speed (in the context of models where more than one reacting density function
is involved).

One motivation for studying the system (1.1) is to gain insight into the marine animals’ fer-
tilisation processes explored in the experimental papers [48, 49, 55]. The fertilisation cannot
proceed unless the sperms and eggs meet. To alleviate the unpredictability of the underlying
fluid stream, many marine animals’ eggs (e.g., abalones) emit chemical signals to guide their
sperms. Thus the chemotactic attraction between gametes and passive transport by fluid play
significant roles in the process. In the experiments carried out in [48, 49, 55], the scientists
put the gametes of the abalone in a Taylor—Couette tank and studied the relation between
the fertilisation success rate and the magnitude of the fluid flow. As a result, a non-trivial
connection is discovered between the two quantities. Furthermore, the scientists observe that
there exists an optimal shear strength that optimises the fertilisation rate. However, the math-
ematical understanding of these experiments is lacking. Rigorous analysis of the impact of
chemotactic attraction was initiated in [41-43]. The authors proved that chemotactic attrac-
tion can significantly decrease the half-life of biological substances in the framework of their
models. On the other hand, the role played by the passive fluid transport was investigated
in [30, 42, 43].

This paper aims to quantify the relationship between the half-life of the chemical/biological
substances and the coefficients v,, € involved in (1.1). In this paper, we do not consider the
chemotactic attraction effects. Instead, we focus on strongly mixing flows modelling turbulent
regime and shear flows. Marine scientists believe that these flows play essential roles in various
fertilisation processes in the ocean (see, e.g., [31] (turbulent regime) and [48, 49, 55] (shear
regime)). We leave the analysis of the complete advection—reaction—diffusion systems subject
to chemotactic attraction for future work.

If the ambient fluid flow u vanishes, the system (1.1) has two natural time scales, i.e., the
diffusion time scale O(min, v ') and the reaction time scale O(¢~'). The largest of these scales
determines the typical time scale of the chemicals/biological substances. To see this, one can
consider the initial configuration where the densities 7.9 and n,.g are supported away from each
other. Then it takes O(min,, v/, ') time for the two types of gametes/chemicals to encounter one
another. Once the densities are mixed, significant reaction occurs on a time scale O(¢~!). To
conclude, we come to the heuristic that the net reaction time scale is the sum of the diffusion
time scale and the reaction time scale.

The system (1.1) possesses another time scale associated with the non-trivial fluid flow u.
It is commonly referred to as the ‘enhanced dissipation time scale’ in the fluid mechanics com-
munity. The enhanced dissipation phenomena naturally arise in the passive scalar equations

a;f+U'Vf:VAf, f(fZO,X’Y)ZfO(X,y)- (12)

Let us consider (1.2) in the periodic setting. Suppose the diffusion coefficient v is small enough
and suitable zero average constraints are enforced. In that case, the 1% norm of the solutions to
(1.2) decays to half of its initial value on a time scale that is much shorter than the diffusion
time scale O(v~"). This fast scale is the enhanced dissipation (time) scale associated with u. In
the two-species reaction model (1.1), one expects the two chemical densities to be well-mixed
after the enhanced dissipation scale. As a result, introducing ambient fluid flow advection can
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improve the net reaction time to the sum of the enhanced dissipation scale and the reaction
time scale.

We consider two types of vector fields u which possess enhanced dissipation, i.e., the
relaxation enhancing (R.E.) flows and the shear flows.

Constantin et al [25] introduced the notion of R.E. flows. Under the zero average constraint,

/ fodxdy =0, (1.3)
T2

the flow u is R.E. if the solutions to (1.2) have enhanced dissipation phenomenon. In [25],
explicit criterion for the flow to be R.E. is provided. Some examples of R.E. flows are well-
known. For instance, the weakly mixing flows are R.E., see e.g., [34, 35, 46, 51, 52], and the
references therein. In works [26, 36], an explicit connection between the mixing property of the
fluid flows and the R.E. property is developed. It is worth noting that explicit constructions of
flows with mixing property have attracted much attention, and we refer the interested readers
to the works [1, 2, 8, 32, 54], and the references therein. Recently, Bedrossian et al [7] showed
that certain randomly forced solutions to the Navier—Stokes equations are R.E.. The result was
further applied to derive the Batchelor spectrum in the turbulence theory [9].

If the vector field u is the shear u(x, y) = (u(y), 0), the enhanced dissipation phenomenon is
observed for solutions of (1.2) subject to zero average constraint

/fo(x,y)dx =0, VyeT. (1.4)
T

In the work [10], the authors studied general shear flows’ enhanced dissipation effect with the
techniques of hypocoercivity [50]. In the paper [53], the author combined a Gearhart—Priiss
type lemma and resolvent estimate to derive the enhanced dissipation of shear flows. Recently,
the authors of [3] applied the Hormander hypoellipticity method to derive the enhanced
dissipation estimates in the bounded channel and T?.

The enhanced dissipation phenomena are relevant in other contexts. For example, strong
R.E. flows or shear flows suppress singularity formation in the advective chemotaxis models,
see, e.g., [14, 38, 44]. Moreover, the enhanced dissipation effect is crucial in understanding
the transition threshold in hydrodynamic stability, see, e.g., [11-13, 16, 17, 21]. Last but not
least, it was proven in [5] that a general version of the enhanced dissipation effect suppresses
the echo chain instability appeared in nonlinear Landau damping [6, 15, 47].

Now, we exploit the enhanced dissipation in our analysis of the advective—reaction—
diffusion system (1.1). Before diving into the details, we introduce some notational
conventions.

Notations: throughout the paper, the constants C, C; > 1, ¢ € (0, 1) are independent of the
solutions and the coefficients v, . The explicit values of C’s change from line to line. The
notations B, B represent specific bounds/thresholds, whose dependence will be specified.
We use dV to denote the volume element, i.e., dV = dx dy. The average of the function f on the
torus is f = sz fdV. Functions with subscript (-), ()« satisfy the zero average constraints
(1.3) and (1.4), respectively.

We organise the main results by distinguishing between the R.E. flow regime and the shear
flow regime.
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(A) R.E. flow regime: we consider the passive scalar equation (1.2) subject to the zero
average constraint (1.3) which is preserved by the dynamics. Here we provide a quantitative
definition of R.E. flows.

Definition 1.1 (d(v)-R.E. flows). The vector field u(t, x,y) is d(v)-R.E. if there exists
a threshold v((u) > 0 such that for Vv € (0,1], the solution f. to the passive scalar
equation (1.2) subject to the zero average constraint (1.3) decays as follows:

| fus + D2 < C||f~ ()], V1,5 € [0, 00), / fordxdy =0.
T2
The constants § € (0,1) and C > 1 depend only on the vector field u and are independent
of v. The enhanced dissipation rate d(v) satisfies the relation lim,_y+ 755 = 0.
We present two examples of R.E. flows.

Example 1.1 (Stochastic Navier—Stokes flow). Consider the solutions to the following
stochastic Navier—Stokes equations in dimension two:

ou+(u-Vyu+ Vp= Au+ F(t,w);

V-u=0, u(t=0,x)=uyx). (1.5)
It was shown in the paper [7] that under specific constraints on the noise, the solutions u to the
equation (1.5) are almost surely |log v|~!-R.E.. To be precise, there exist constants C(ug, w), J,
which may only depend on the initial data uy and the random realisation w, such that the

solutions to the passive scalar equation (1.2) subject to the flow u undergo enhanced dissipation
as follows:

vy Y1/71
[£-Ollzz < Cluo, )| fo 28, / fodxdy =0.
T

We refer the interested readers to theorem 1.3 and remark 1.4 in the paper [7] for details of the
statement.

Example 1.2 (Alternating shear flow). Here we introduce another time dependent
v'/2.R.E. flow. We consider the following alternating shear flow:

u(t, x,y) = > oud(sin27y), 0) + > a1 (50, sin(2mx)),
k=0 k=0

—_

. tE[(41/3)Kv V2 (04+2/3) K12,
We(t) = ¢ smooth,  [¢Kv 2 (0+1/3)Kv=P1U[(+2/3)Kv 2, (t+1)Kv /),
0, others,

@r € C,  support() Nsupport(pyyi) =0, VLN,

Here K is a universal constant greater than 1. In the appendix A, we show that if »~!, K is large
enough, the solutions f.. to the passive scalar equation (1.2) associated with the alternating
shear flow decay as follows:

_log2 1/
1f s+ 0)ll2 < 4] £o(s) e 20, /zfo;~dxdy=0, Vs, t € [0,00). (1.6)
T
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To conclude, the alternating shear is ©'/2-R.E. Moreover, the flow is C* in space and time.
There are several different generalisations. The same construction with alternating shear flows
in three coordinate directions provides '/>-R.E. flows in T?. One can also combine the alter-
nating construction with the rough shear flows in [22, 53] to obtain |log #|~7-R.E. flows on T?
for some v > 1. We believe that introducing some delicate time-dependent ‘phase shifts’ in
the construction yields a smooth v/'/3-R.E. flow. In a recent preprint [20], the authors created
a smooth [log v|~2-R.E. flow by introducing a randomised phase shift into this construction.

With these preparations, we are ready to state the first main theorem.

Theorem 1.1. Consider solutions ny,n, to the system (1.1) subject to initial condition
1.0, N2 € C*(T?). Assume that the fluid flow is d(v)-R.E. Further assume that ir7(0) < 713(0).
If the total mass of the density ny is bounded from below on the time interval [0, T, i.e.,

1
i f 2 — s 1'
VIIEIEO,T]”nl(t)HLI(TZ) B >0 (L.7)

then the following estimate holds on the same time interval:

4
1@ 112y < anl;OHLl(’]l‘z) exp
-1

Z d(vy) | log v + ¢! ty. (1.8)
ae{1,2}

1
~ C(u)B

Remark 1. The estimates obtained in this paper do not require that the diffusion coefficients
v, are chosen small depending on the initial data, which was always assumed in the other work
of enhanced dissipation in nonlinear systems, see, e.g., [14, 29]. This is due to the fact that the
system we consider is dissipative in nature.

Remark 2 (Extra logarithmic factor). The extra [logv,| factor is introduced to com-
pensate for various constants appearing during the proof. In particular, when one derives the
enhanced dissipation of the solutions in the L' space, our argument requires a loss in [log v,,|.

Remark 3. If we set B~' = 1{|n1(0)|| 12, in theorem 1.1, then the maximal time interval
[0, TT, on which the lower bound (1.7) holds, is commonly referred to as the half-life of the
chemical n;. In this case, we can state the decay estimate (1.8) purely in terms of the initial
data.

The result above can be generalised to multi-species absorbing reactions. We consider the
systems on T?:

atna - VaAn(y —u- Vn(y - Zeaﬂnanﬁ; na(t - 0, ) - n(k;O('), «, ﬁ S T. (19)
peT

Here v, > 0 are the diffusion coefficients of the chemicals and €, > 0 are the reaction coef-
ficients. The total number of chemical species is finite, i.e., |Z| < oo. We make the following
assumptions

1
inf|na (01 > —; 1.10
minfina (s > 5 (1.10)
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and

_ Suelna®l _

- Sl (1.11)
min,ez||n.(0)|1

Here we note that the second assumption can be derived from the first one, i.e.,

2ol BZHna(O)Hl

S min,, ||, (0|

Theorem 1.2. Consider solutions {n,}acr to the system (1.9) subject to initial condi-
tion {nu0}acr € C2(T?). Assume that the fluid flow is d(v)-R.E.. If the assumptions (1.10)
and (1.11) hold on the time interval [0,T], then for all t € [0,T], there exist constants
C(B»), C(By, By,u) such that

1
|1 < Ci(B o " Cy(By.By.u)
ZH” Ol 1( 2)2Hn oll exp{ Cy(B1, By, 1)

ael ael
X max“og Yol + (minmax e,5) ' _lt (1.12)
acl  d(vy) atl peg Cob ' '

(B) Shear flow regime: we consider the equation (1.1) subject to shear flow and diffusion
coefficients v = v = v,

omy+u(y)on; = vAny — enyny,
Omy+u(y)ony, = vAny — enpny, (1.13)
no(Qx,y) = nao(x,y), ac{1,2}.

The enhanced dissipation time scale naturally arises in the passive scalar equations subject to
shear flow:

Of# +u()oifz = vAfy,
f#(t=0,) = fox(), (1.14)

/fo;;e(X,y)dx =0 forVyeT.
T

Here the subscript (-). emphasises that the zero average constraint in (1.14) is enforced. The
zero average condition rules out the x-independent solutions to (1.14), for which it turns into
heat equation with diffusion coefficient v.

Now we abuse notation a bit and provide a quantitative definition of shear flows with
enhanced dissipation.

Definition 1.2 (d(v)-R.E. shear flows). The shear flow u(x,y) = (u(y),0) is d(v)-R.E. if
there exists a threshold v((«) > 0, such that for Vv € (0, 1], all solutions to the passive scalar
equation f. (1.14) decay as follows:

| f£Dll2 < C|l fo.zllae 2", Vi€ [0,00), /fo;;ﬁ(x,y)dxdy =0, VyeT. (1.15)
T
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Here the constants 6 € (0, 1) and C depend only on the shear profile. The enhanced dissipation
rate d(v) satisfies the relation lim,, o+ 775 =0

It is well-known that the enhanced dissipation rate d(v) is closely related to the maximal
vanishing order of the shear flow profile u(y), see, e.g., [3, 10, 26, 28, 39, 53]. Let us consider
the shear flow u(x, y) = (u(y), 0) with profile u(y) that has finitely many critical points {y; }_,.
We define the vanishing order j(k) associated with the critical point y, as the smallest integer
such that

¢ Ji+1
j—y”,f(yk) =0 RO A0 VIS b,

We further define the maximal vanishing order j, of the shear flow profile u(y) to be
Jjm:=max}_, {,ji(k)}. Note that any smooth shear flow profile on the torus T must have at least
one critical point and hence the maximal vanishing orders j,, associated with them are greater
than or equal to 1.
If the shear flow profile has maximal vanishing order j,, the above-mentioned works
[3, 10, 39, 53] provide the following enhanced dissipation estimates for the solutions to (1.14)
mtl

1f£ll 2 < Cllforellze™™ 7 Yv € O], Vi 0. (1.16)

. dmAl . . .
As aresult, we see that the shear flow is v/»+3-R.E. In the paper [28], Coti-Zelati and Drivas
showed that this d(v)-enhanced dissipation rate is sharp.
To present the main theorem, we introduce the notions of the x-average and the remainder:

F)0) = /T Foandr,  f2(6y) = Fay) — (1)), (117)

Our main result in the shear flow regime is as follows.

Theorem 1.3. Consider the solutions ny, ny to (1.1) subject to initial condition ny.g, ny €
C?(T?). Assume that the shear flow is d(v)-R.E. with decay rate 6d(v) and threshold vy. More-
over, suppose that ||nio|l;1 < ||n2ol|pi- Then for 0 < v < vy, there exist two characteristic
times

1 € ZaHnQQOHL2 !
_ 1 o 1| —2 . 1.1
7= 5307 0g<C< sy ool + )Hmmmmm (1.18)

and

min ;
ae{1,2}<n”’0>

T =¢'C max{l,

-1
}: 1By (1.19)

1

such that significant mass is consumed by the time Ty + T,

1
1ol — 171 (To + Tl iy =

12‘ (1.20)

agllg}<na;o>

L
Remark 4. Modulo logarithmic factors, the time 7y is of order O(d(v)~"), which is the
enhanced dissipation time scale. If the ‘overlapping mass’ ||minae{1,2}<n(l>(0)|| 1 is not too

small, the time 77 is of order O(¢~'). As a result, we observe that the total reaction time is
determined by the larger one of the reaction time scale and the enhanced dissipation time scale.
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Remark 5. The main difficulty in extending the above result to systems with different dif-
fusion coefficients is that one of the key lemmas, i.e., lemma 4.2, does not hold in general. As
a result, keeping track of the time evolution of the min, (n,) becomes challenging.

Remark 6. We believe the theorem can be extended to include chemical reactions on the
plane subject to the two-dimensional vortices, as in [30]. Here, one can apply the R.E. estimates
for vortices in [27]. We will leave this problem to future work.

The paper is organised as follows: in section 2, we prove theorem 1.1; in section 3, we
prove theorem 1.2; in section 4, we prove theorem 1.3; in appendix A, we prove the enhanced
dissipation of the alternating flows.

2. Proof of theorem 1.1
First of all, we apply the Nash inequality to prove the following lemma which provides
L'-estimates for the passive scalar solutions.

Lemma 2.1 (L'-decay of the passive scalar solution). Consider solutions .. to the
passive scalar equation (1.2) subject to zero average constraint, i.e., f,[r2n~(x, y)dv = 0.
Assume that the flow u is d(v)-R.E. with decay rate §d(v). Then if v is small enough, there
exist constants ¢ € (0, 1), C such that the following estimate holds

(s + Dl < Clln(s)|lie= M@ I g1 € 10, 00). 2.1

Proof. We begin with the derivation of L'-L?-estimate of the passive scalar semigroup.
Consider the time interval [s, s + 46~ 'd(v)™! |log v|]. We estimate the time evolution of the
L?-norm using Nash inequality as follows:

dl1

35 m-G I3 < V[ VnGs+ 0l

_ G0l viins+0l5
S GylnG+olF T Cylne@Ii

Here the L!'-norm of 7_ is non-increasing because we can consider the solutions to
(1.2) evolving from the positive and negative part of the initial data, i.e., n(s,x,y) =
max{=+n.(s, x,y),0}. Since both of them are positive and have conserved L'-norms and M.
is the sum of these two solutions, we have that the L'-norm of 7..(s + t) does not exceed the
L'-norm of n__(s). Next we directly solve the ordinary differential inequality subject to arbitrary
positive initial data and obtain that there exists a universal constant C such that the following
estimate holds

C
[17~(s + D)2 < WW%(S)HI-

Now we decompose the interval [s, s + 46 'd(v) ™! [log v|] into two sub-intervals and apply the
following estimate:

[n~(s + 46~ dw) " log vl < [|n~(s + 45 'dw)~"|log v ||
< ClIn(s+ 0 'dw) "|log v])|»

« e—dd(z/)Sé’ld(V)’l |log v|

—|log 13 - -
< Cce e l|n (s + 67 'dw) Y log v
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< ol I
S wo ldw) log o2

(S)||1

1
<3 In-®lh-

In the last line, we choose v small enough compared to universal constants so that the coeffi-
cient is small. We further note that the L'-norm of 7)_ is non-increasing along the dynamics.
To conclude, we iterate the argument on consecutive intervals to derive the estimate (2.1). [

Proof of theorem 1.1. We organise the proof in three steps.

Step # 1: preparations. In this step, we translate the continuous-in-time decay estimate
(1.8) into a discrete-in-time one and properly decompose the time horizon.

We recall that the average density 77y is bounded from below by 1/B on the maximal
time interval [0, T]. Fix an arbitrary instance fy in [0, 7] and define the net reaction time as
T, = C(B)(Zae{lyz}éfld(ua)’l\ log v,| + € !). The constant C(B), which will be chosen later
in the proof, depends on the mass threshold 1/B and the constants C, ¢ in lemma 2.1. The esti-
mate (1.8) is ensured if we can show that the total mass ||n;||,1 decays by a fixed proportion
by the time 7y + T, i.e.,

3
lni(to + Tl < ZHnl(tO)”Ll’ [to,t0 + T, ] C [0, T7]. (2.2)

To see this implication, we pick a time ¢ € [0, 7] and determine the largest integer m € N
such that mT, < t. The choice of m guarantees the relation # < (m + 1)T,. Then invoking the
estimate (2.2) yields that

3 m
Il = (e - mT, +mTl < I —mTolly (z)

(1) 10g ¢
< ||t — mT))|| e (-1 e 3.

Direct calculation yields that the L!'-norm ||n;(#)||; is decreasing in time. Hence,

I3

4 _ 4 4
I @l < g llnvollre™™ o83 = 3 lmollr exp

{ C'(B)log § t}
X < — .

S 67l d(v) Y og ve| + €
Modulo small adjustment to constants, this is the result (1.8).

Next we introduce the partition of time interval [y, o + T]. One of the obstacles to proving
(2.2) is that two distinct phenomena occur on the interval [#y, fy + 7], with enhanced dissipa-
tion and chemical reaction involved. Hence our strategy is to decompose the time interval into

two parts and focus on deriving the enhanced dissipation estimates on the first part and the
reaction estimates on the second. To be precise, we define

[t0. 0 + Ti] =lto, to + T1) U [to + T1, 10 + T + T3],

2
Ti:=C) 6 'dwy) '|log va|, Ty:=16Be " log 2. (2.3)

a=1
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Here the universal constant C; depends only on the constants ¢, C appeared in (2.1) and will
be chosen in (2.5). Since |T| = 1, the estimate (2.2) is equivalent to

3
ni(to + 711 +T2) < Zn_1(l0)-

This concludes step # 1.

Step # 2: nonlinear enhanced dissipation estimates. To derive (2.2), the first main esti-
mate we require is the nonlinear enhanced dissipation estimate at time instance 7y + 7. The
challenge is that the reaction coefficient e can be much larger than d(v,,), and the nonlinear term
cannot be treated perturbatively in general. Our idea is that on the time interval [z, tp + T}),
one considers the super solutions

at;ia +u- v;ia = VaAﬁaa ﬁa(IOa ) = na(IOa ')a oS {la 2}’

and uses the total reacted mass

Q(t):ze//nlndeds
0 JT2

to control the deviation between the super solutions and the real solutions. The same quantity
Q is considered in the paper [30]. Direct calculations yield the following relation

1o+t
Oty + 1) — Qi) = ¢ / / AV ds = gl — llnatio + )
) T

= [0 — na 120 + 1). (2.4)

Explicit justification of (2.4) is as follows. First of all, by integrating the equation (1.1) in
space and time, one obtains the relation ||n,(to)||1 — ||na(to + 0|1 = Ot + 1) — O(1p). Next
we observe that since 7, are super-solutions, the differences n, — n,, are greater than zero.
Hence integrating the equations of 1, — n,, yields the last equality in (2.4).

With the total reacted mass Q introduced, we are ready to derive the nonlinear enhanced
dissipation estimate. By the linear enhanced dissipation estimate (2.1) and the fact that 7.,
solves the passive scalar equation subject to zero average constraint (1.3), we can choose the
Cj in (2.3) large enough such that for all s > 0

~ | 1 1_
[[Ma:n(to + T1 + 9|1 < T6||na;~(l0)||1 < §||na(t0)Hl = gna(lo), a € {1,2}. (2.5)
Hence, the L'-norm of the remainder N~ 1s bounded, i.e.,
o (to + T1 + 9|1 < |[Flan(to + T + 9|1 + |10~ (to + T1 + 5)

— N (to + T1 + 5)|1

< [Aa(to + Ty + )1 + |[7a(to + T1 + 5)
- n(y(tO + Tl + s)”l + |;i(y(t0 + Tl + S)
- na(to + Tl + S)‘

1

< g%(lo) +20(t0 + T1 + 5) — 20(1p),

Vs>0, ac{l,2}. (2.6)
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This concludes the proof of the nonlinear enhanced dissipation estimates and step # 2.

Step # 3: proof of estimate (2.2). We focus on the second time component [fy + T}, %y +
T| + T»] and distinguish between two possible cases.

Case (a). If Q(1p + T1 + ) — Q(tp) = ||n1(to)|[1 — ||mi(to + Th + 8)||1 = %n_l(to) for some
0 < s < T», then positivity and the fact that 721 (¢) is decreasing in time yields that

_ 3_
ni(to+ T +T>) < an(fo)-

Thus we have the estimate (2.2).
Case (b). The negation to the condition in case (a) is that

1
O(to + T1 +5) — O(fp) < Zn_l(lo), Vs € [0,T). 2.7)

To establish (2.2), we make three preparations and estimate the time evolution of 7.
Combining (2.7) and the relation (2.4) yields that

%n_l(to) > [[na(to)l[1 = [[na(to + T1 + 5)||1
) ~ T+ Ty +5), ¥s€[0.T), a=1.2. 28)
Hence,
Moty + Ty +) > Tillo + Ty +5) > SAito), Vs € [0,T5) 2.9)

Next, we apply positivity of n,(x,y) = 7iq — n,. (x,y) =0, V(x,y) € {n,,.. > 0} to derive
that

Inplloe <, o€ {1,2}. (2.10)

For the positive part of the remainder, we apply relation (2.6) and assumption (2.7) to obtain

1
Hn(Jxrw(tO +T +S)H1 = EHnaw(tO + T +S)H1

N

1
T (o) + Qlto + T1 + 5) — Qlto)

N

1 1
E%(IO) + Zn_1(to), a=12 Vsel0,T).

@2.11)

Now we consider the time evolution of 777

d
G0 = — ) — () < — ()

+ enthz_;N(t) + enl_;NnZN(t).

Fort =ty + T\ + s, we first apply (2.10) to obtain
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d
an_1(lo + T+ ) < —eny(to + T + )y (to + Ty + )

+ €l|nf _(to + Ty + 9)|[1m2t0 + T1 + 5)
+ €l|ns, _(to + Ty + 9)|[1721(t0 + T1 + 5).

Then by (2.9) and (2.11),
d__ . o 3__
$n1(l‘o + T +5) < —en(to + Ty + )ny(to + Ty +5) + €§nl(t0)

1 1
X oty + Ty +5) + ¢ (Zn_l(t()) + En_z(l‘o)>
X m(to + Ty +5)
_ 1_ 3
< —emp(ty +T1 +5) <2n1(t0 +Ti+s) — 8”1@0))

1 1
—en(to + Ty +5) <§n_2(lo + T +5)— Zn_l(lo)

1
— El’Tz(l‘o)) =P, + P,.

The relations (2.8) and (2.9) yield that the first part PP; is negative and the second term is
bounded above:

37 1 1
P, < —en(t T —— — — |n(ty) — —(n2(ty) — (1 T
2 eny(fo + 1+S)<<416 4>n1(0) 16(”2(0) na(to + 1+S))>
1
< _an_l(to)n_l(to +T1+s).

We apply the assumption 727(7p) > 1/B to obtain,

d_(t+T+)< 1_(t+T+)

dsnl 0 178X 6163711 0 1T 5).

Now we see that after time 7, = 16B¢ ' log 2, the 7y decays to 3 of its starting value. Hence
we prove the estimate (2.2) in case (b) and conclude the proof of theorem 1.1. O

3. Proof of theorem 1.2

Since the proof is similar to the one in theorem 1.1, we only highlight the main differences.
‘We consider the total mass M

Man(t):=>_[na(®)]1.

ael
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The positivity of the reaction coefficients e,3 > 0 yields that My;(f) is monotonically
decreasing. Furthermore, we consider the characteristic reaction time

-1
= 10g(32CB,)(c6) 'max d(v,) " '|log v.| + 2B, (min max 6(15>
ael acl BeT

1!
1 1 — — =T, +T>.
xog( 832> 1+ 12

Here C, ¢, § are the constants appearing in lemma 2.1. Recall that [0, 7] is the maximal interval
on which (1.10) and (1.11) hold. By the argument in step # 1 within the proof of theorem 1.1,
the estimate (1.12) is a consequence of the following statement:

1
Ma(to +T,) < (1 — —— | Ma(to), 3.1
8B,

where [7y, o + T,] is an arbitrary interval embedded in [0, 7].
To acquire the nonlinear enhanced dissipation estimate, we consider the total reacted
mass Qa]],

Qan(®) = Z// €agiangdV ds.

a,BeT

Since €,5 = 0, Q,(f) is non-negative and increasing. Direct time integration yields that for
Vi, t € [0,00)

Qui(to + 1) = Qu(to) = Man(to) = Man(to + 1) = Y _|[ialto + ) — nalto + Ollp1,  (3:2)

ael

where {71, }acz are super solutions to {n, },cz defined by
at;i(y - V(MA;i(M —u- Vﬁ(w ;i(y(to) = n(l(tO)-
Note that the lower bound on Q,

l
Qailty + T.) — Qanlty) = B, M(t),

when combined with (3.2), yields the final result (3.1). Hence we make the following
assumption throughout the remaining part of the proof

1
Qanlto + 1) — Quu(ty) < ST%Man(lo), vVt e [0,T,). (3.3)

To obtain the nonlinear enhanced dissipation estimate, we invoke (2.1) to derive the
following

Z\Ina ~to+ T+ 9| < 323 lena ~(10)]| 1
16B Znna(zo)uy, Vs e [0, Ty). (3.4)
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Application of the relations (3.2)—(3.4) then yields that

Hna;N(tO + Tl + S)HLI < ‘|ﬁa;~(t0 + Tl + S)HLI + ||noz;~(t0 + Tl + S)
— ﬁa;N(IO + T + S)HLI

< S5, aito), Vs e[0,Ty]. (3.5)

This is the enhanced dissipation we use in the sequel.
Next we invoke the relations (3.2) and (3.3), the assumption (1.11),—,, and the enhanced
dissipation estimate (3.5) to obtain that

o (to + T + 8) = Tia(to) — |fia(to) — 7ia(to + T1 + 5)|

1 M (1 1 1
> —Mau(to) — u(fo) 2| =55
B, 8B, B, 8B,

8B
x TZHna;N(to +Ti+ 9|, Vsel0,T).
Hence,
fa(to + T1 + ) 2 2|na(to + T1 + 9|, YVa€Z, Vse[0,T].

Now we can use the above information to estimate the time evolution of My (tg + T + 5),Vs €
[0, T»]

d
aMan(fo +T)+5) = —ZZeag/nang dv

o€l Bel

= eas(Maiy — Mgtz

o€l Bel

< _Zzﬁwﬂ (m(to + Ty +s)ng(to + 11 +5)

a€l feT

= [Ing (o + T1 + 91 ln5, (0 + Ti + 5)]
— lIng., (1o + T1 + 5)|[1 |y (0 + T1 + s)lloo).

Since ||n,. ||~ < 7., we have

d
GMato+Ti+9) <= > eop (m(m + 1 + 5t + T1 + 9)
a€l Bel

1
—ng(to + Ty + S)E HI’lQ;N(IO + T+ S)H]
_ 1
—ngto + 11 + s)illna;w(to +T1 + 9|1

< =YY easalio + Ty + $A5(to + Ty + 5)/2).
a€l BeT
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Recalling that the assumption (1.10) holds on the time horizon [#, tp + T,] C [0, T], we have

d 1 . _
s aito + 711 +5) < “28, 1in H?X Gaﬁzna(to + T +5)
«

1
=—— (mi o |Ma(to +T .
35, (rrgn l’nélX € ,3) ai(to + T + )

~1
Now in time 7> = 2B;(min, maxg em@»)*1 log (l — ﬁ) , sufficient mass is consumed, i.e.,

1
Ma(to +T,) = Ma(to + T +T2) < (1 — )Mall(f0)~

8B,

This concludes the proof of (3.1). Hence the estimate (1.12) follows.

4. Proof of theorem 1.3

In this section we prove theorem 1.3. The goal is to keep track of the total mass ||n;(7)||;. To this
end, we consider dynamics of the x-averages (n,) defined in (1.17) and design a 1D-system to
approximate their behaviours. By taking the x-average of the equation (1.13), we obtain

Oi(na) = v0yy(na) — €na)(ng) — €(nazngz), B#a, Vae{l,2}
(4.1)

To analyse the evolution of the system (4.1), we consider an intermediate one-dimensional
periodic in space dynamics

8,%1 = Va)vyﬁl - Eﬁlﬁz, 8;%2 = 1/8”,%2 - Eﬁlﬁg, (42)
(m1(10)712(t0)) = ({n1)(t0), (n2)(10))-

Before proving theorem 1.3, we present two lemmas. The first one provides an estimate of
the L!-distance between (n,,) and 71,. The other describes the evolution of the L!-norms of the
solutions 7,,.

Lemma 4.1. Consider the solutions (n,), o € {1,2} to (4.1) and the solutions n,, o €
{1,2} to the one-dimensional dynamics (4.2).

The L' distance between the two solutions are bounded in terms of the initial data as
follows:

[{r0) = 7all 1 (o + 1) = [[(na) = 70 1 (50)

to+t
< e/ /|<n1;¢n2;¢>|dyds, a=1,2.
fo

Proof. The proof is based on the observation that the density differences (n;) — (n,) and
n; — ny solve the same equation, i.e.,

0(ny —np) =vAn —n),
0i((n1) — (n2)) =vA((n1) — (n2))
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and the two density differences share the same initial data. As a result, by uniqueness of heat
equation, we have obtained the relation

n(t,y) — m(t,y) = (ny)(t,y) — (m)(t,y), Vite[0,00), VyeT. 4.3)

Due to this relation (4.3), we only need to estimate the L'-distance between one component of
the density difference. Without loss of generality, we consider (n;) — 7

0i((n1) —ny) = vA(ny) —ny) — e((n)(n2) + (ni,2no.2) — nino)
= vA(n1) —ny) — e(n)((n2) — (n1)) + eny(ny — ny)

—e(n1)? + ent — e(ny znaz).
Now we apply the relation (4.3) and rearrange the terms to obtain that
O ((n1) —my) = vA((n1) — ny) — €((n2) — (m1)

+ (my) + ﬁ1)(<n1> — 1) — €(niLno.£)
= vA{n1) —ny) — e((nz) +n)((n1) —ny) — €(nyzny).

We decompose the solution (n;) — 71y as f; — fa, where the f;’s solve the equations

ofi =vAfi — e((ma) + ) fi + e(niznaz) ™, filto) = ((n1) — 1) (t);
Ofr =vAfr — e((ma) + ) fa + e(nizno )t folte) = ((n1) — 1)~ (ko).

By comparison principle, the f;’s are non-negative. Hence |[(n;) — || < || filli + [|£2]l1-
Then integration of the f;-equations in space and time yields the result. |

Lemma 4.2. The solutions n, to (4.2) have the following decay for all ty > 0,t > 0:

[ min{7y(fo + 1, ), ma(to + £, )}l 1

to+t
= || min{7, (1o, -), m2(to, .)}Hd — e/ /ﬁl(s,y)ﬁz(s,y)dy ds
) o

to+t
v / S8y — ), yis)ds.

0 yil®

Here the set {y/(s)} is the collection of points such that 7;(s,yi(s)) = (s, yi(s)) and
Oyni(s,y;(s)) # Oyna(s, yi(s)).

Proof. Recall that

n +n B |ﬁ1 —ﬁg‘

min{ﬁl . ﬁz} = 3 3

Now we take the time derivative of the L'-norm, and apply the observation that 7z; — 72, solves
the heat equation to get
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d, .

g min {na (o + 2, )]s
_/Q n+n i —ml d
— ]\ 2 2 Y

_/ 9 ny +ny g (= m)0i(ny —m) d
- »\ T2 e 2y — o] Y

- —e/ﬁlﬁz dy — /u(ﬁl = 12)0y (1 = 12) dy. 4.4)

2|n1 — n2|

The remaining part of the proof is to understand the last term in (4.4).

For the sake of notational simplicity, we use ¢ to denote the difference g :=n; — n,. The
behaviour of the last term in (4.4) is related to the zero points of g. Note that at the ini-
tial time 1q, 721 (tg) — na(tp) = <}’11 — n2>(t0), to > 0 and <n1 — n2>(t, y) as well as n, — ny solve
the heat equation on Ry x T. As a result, due to analyticity of solutions to heat equation,
q(to + 1) can only have finitely many zero points for 7o > 0,7 > 0. At any fixed instance, we
label these finitely many zero points as {y;(fo + £) >0+ (zeros with multiplicities are labelled
only once). We further partition the torus [—1/2, 1 /2] into —% =y <y <y<y3<...<
yv < Yn41 = 5 and define /;:= [y;, yi11). Note that yo = —1 and yy1| = 1 are identified and
are not the zero points. Since the solution g is smooth, the expression %Byy’c] is smooth away
from the points {y;}Y_,. Moreover, the function g/|g| is constant in the interior of I, i.e.,

I? .= (y:,yi+1), so we denote it as (‘—Z’—‘)(I?). Also, since y, = yy,; are not zeros in our set-

up (\q\)(lo) (‘q‘)(lg,) Combining the observations above, and the continuity of ia)q at
Yo = Yyu1 yields that

1/2 ~
qdy = / qdy = ( ) I”)/ Oyyq dy
/1/26] v Z g %y 4] .

N
—Z( |)<1” ) (Bt + 1R

-(§mam(oa(s-)-o(-£1)

N

: qyi+n)
_ 1 LTV 5 Fy
21 ( G+ A0

qyi —n) )
- ~76 i
lq(yi — n)| 40i =)
qyi+mn  qi—mn)
oy tim 4 )
Z q(y (Iq(ymw) 1q(yi — )
Nit-+1)
== > 200t + t,yilto + D).

i=1
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Combining this calculation with (4.4), we have that

N(to+1)
d, ~ . .
g | min {na}(to + 1.9l = —6/111(1‘0+f,y)n2(f0+l‘,y)dy+ > vldyg(to + 1 yilto + 1)].
’ i=1

Integration in time yields the result. |

Proof of theorem 1.3. 'We organise the proof in three steps.
Step #1: battle plan. First we define

1

12

(na0)

min
ae{l1,2} Ll

Hence the goal (1.20) can be interpreted as
)y — 1 m)(To + Ty > G. @5)

The strategy is similar to the one in theorem 1.1. Namely, we decompose the time horizon
[0, To 4+ 711 into two parts, i.e., [0, To) and [Ty, To + 7T1]. The enhanced dissipation estimates
will be derived on the first interval and the reaction will be exploited on the second.

Next we make one further simplification. Same as before, we define the total reacted mass
Q(t), which is increasing in time,

o) = 6/o[/n1n2d16dyds = [[nolli = [ @1
Note that if there exists ¢ € [0, Ty + 7T1] such that Q(f) > G, then
G <O < QT+ T = |lniolly = [|m(To + Tol1,
which is the result (4.5). Therefore, it is enough to prove (4.5) under the assumption
G> 0@, Yrel0, T+ Tl (4.6)

This concludes step # 1.
Step # 2: rnhanced dissipation estimates on [0, 7;]. Consider the solutions 721, 72, to the
passive scalar equations

at;l\a + u(y)axﬁa = VA;Z\&, ;l\a(t =0,)= na;O(')’ (OBS {la 2}
The same argument as in the proof of (2.4) yields that

a0l = [Ra®lr = M0 — nal[1() = Q). o € {1,2}. 4.7

Since the difference g and the approximation Tia: solve the passive scalar equations, the
enhanced dissipation estimate (1.15) applies, i.¢.. [|g(1)]|2 < Cllg.(0)|l2e™ ", ||[g.2 (0|2 <
C|[720,2(0)|| 6 ~°¥¥". By choosing the universal constant C in the definition of 7 (1.18) large
enough, we have the following estimates at time 7y,

0d(v)G

< e
Il S 3765 Tinaola

- 1
D N (To)ll2 < 157G (4.8)
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Moreover, on the time interval [0, 7g], we use lemma 4.2 with 7z, = (n,), ¢ = 0 and 1o = T to
obtain that

[ min{ (1), (m2) }(To)l[ 1 = || min{{nr0), (n20)} 1y = 12G.

By recalling the relations

(m) + (m) _ [(m1) = (m)|

min{(n,), {n2)} = ————— ~ 5 (m) = (m) = () — (ma),
and combining them with (4.7) and (4.6), we end up with

 min m), ()} > 13 min{ (o), (m20)) oy 4.9)
This concludes step # 2.

Step # 3: reaction estimates on [7j, 7o + 71]. On the second time interval, we compare
(n1) to the solution 71, of the 1D-system (4.2),,=7;. To estimate their deviation, we first invoke
the enhanced dissipation of g (1.15) and the estimate (4.8) to obtain

To+Th
OTs +Th) — O(Ts) = ¢ / (muma)dy di
To
To+T1 To+Th
-y / (1) (ma)dydr + € / / (gyns)
To To
T+ T,
x dydr + € /(n%.#dy dr
: ,
To+T, To+Ti
> € /<n1><n2>dydt+ e/
To To

X /(ni;gdydt — G/120.

This estimate, when combined with lemma 4.1, yields the L'-deviation control

To+t
lm) =7l Tty < 26 [ [ fmiamslayds
To
To+t To+t
e[ [lmsgnivas 2 [ [0 4
To To
<L20(To + 1) —20(To) +4G/120, Vi€ [0, 7 = Bie']. (4.10)

Now we consider the total reacted mass associated with 1D-system (4.2),
To+t

I =¢ /ﬁl(s,y)ﬁz(s, y)dy ds.
To

Recalling the one-dimensional equation (4.2) and direct L'-estimate yield the following
relation
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Hﬁl(’ﬁ))”@ — |7 (To + t)HL;. = H%(%)HL}.
— ||72(To + t)||L)1_ =1I(t), Vtel0,00). 4.11)

Therefore, given (4.10), to estimate the chemical consumed along the dynamics, it is enough
to consider the time evolution of I(¢). By lemma 4.2, we have that

To+t

/min{ﬁl,ﬁz}(% +t,y)dy +1(t) = /min{'ﬁl,ﬁz}(%,y)dy + / v

To

X Z\ay(ﬁl(s,yi) — (s, yi))|ds.

Yi

Here the y,’s are specified in lemma 4.2.

We recall the definition of 3; in theorem 1.3 and distinguish between two cases on the time
interval [ 7o, To + Bie '].

Case (a): if there exists a constant B, € (0, 3;] such that at time B,e!, the following
estimate holds

s~ ~ _ 1 e~
/mln{nl,ng}(% + Boe !, y)dy < 3 /mm{nl,nz}(ﬁ),y)dy.
Then using (4.11) and (4.9), we obtain that
1 1 1 e - 11
I(Bie ) 2 1(Bye ) = 3 min{7y, 7, }(To, y)dy > 7G.
Hence by (4.11), we have a bound for the reacted total mass
1

. - 1 e~ 1
Hn1(76)HL}1, — 1 (To + Bie |1 = 3 /mln{nl,nz}(%,y)dy > 7(}.

Assumption (4.6) and L'-control (4.10) yields that |(n)(To+ 8 — 1 (To + Dl <
%G, V1t € [0, 71]. Hence, we have that

Km0l = 1) (To + ol = )Ty = 621)(To + Bie DIy > G-

This concludes the proof in case (a).
Case (b): on the other hand, if on the time interval [0, Bie~!] the following estimate holds

1
/min{'ﬁl,'ﬁz}(% +t,y)dy > 3 /min{'ﬁl,ﬁz}(%,y)dy, Vi€ [0,Bie '],

then we can estimate (B¢ ') with Holder’s inequality as follows:

61671
I(Bie™H > e/ /min {1, }2(To + s, y)dy ds
0 T

81671 2
> 6/ (/ min{7;,7, (7o + s, y)dy) ds
0 T

2
>0 ( / min{ﬁl,'ﬁz}ma,y)dy) . @.12)
T
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By (4.9), we choose the universal constant C in the definition of B (1.19) large enough so that
By > max{5, 4| min{(n,), <n2>}(76)\|;1v1} = max
x {5, 4] min{ﬁl,ﬁz}(%)ﬂz}l}.

Now if || min{7;, 7, } (7o) || 1) = 1, then because By > 5, the right-hand side of (4.12) is greater

than %” mll’l{;lll,;llz}(%)”l“l If0 < || mln{%l,ﬁz}(%)”L)l < l,the choice Bl > m

yields the same lower bound as in the first case. To conclude, we have obtained the following
estimate

1By > % / min{71, 72} (75, y)dy.
T

Now an application of the argument in case (a) yields the result. (]
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Appendix A
A.1. Proof of the enhanced dissipation estimate for alternating shear flow
In this section, we prove the enhanced dissipation estimate (1.6).

We first consider the case s, € 2Kv~'/?N and comment on the general case at the end. In
this special case, the estimate (1.6) is guaranteed by the following

|fu(s + D)2 <2 2 2| f(s)|2n Vs, £ € 2K~ V/2N, (A.1)
For the sake of notation simplicity, we drop the (-).. notation in the appendix A. Without loss

of generality, we set s = 0. Since the flow is time-periodic with period 2K~ /2, it is enough
to prove

1
IfQKv) < SIF O, (A2)

given that K, are chosen large enough. We decompose the interval [0,2Kv~'/?] into
two parts

[0,2K~/?] = [o, KI/_I/Z) UKy~ "2, 2K~ 17, (A3)
On the interval [0, Kv~!/?), the shear flow is given by

u(7, x,y) = @o(T)(sin(27y), 0),
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where ¢, is the C* time cut-off. We decompose the solution into the x-average and the
x-remainder:

fr,x,9) = (f)x(T.9) + fr (T, x,¥),
1/2

(f)x(T,y) = f(r,x,y)dx,

~1/2
/ f(r,x,y)dxdy = 0.
Note that these two parts solve the decoupled equations:
0y <f>x :Vayy <f>x’ <f>x(0a)’) = <f0>xo’);
O-f#. + po(m)sin2my)0sfe, =VAf£,, [T =0,x) = (fo)£.(x,y).

We focus on the remainder part. Recalling the enhanced dissipation estimate for shear flows
(1.16),—1, the non-expansive nature of the L?>-norm along the dynamics, and the fact that
@o(1) =1 for V7 € [1Kv /%, 2K1v~"/?], we have that for v € (0,14] and K chosen large
enough,

- 2., _
| f K]0 < Hf#;(gKV 1/2)

L2
|
fr\ 3KV

1 1
< gl F2 Ol < gl O] (A4)

s 1/2,~1/2
<Ce v/ =(Kv /3)

12

Here we take 0 < v < vpand K > 36! log(16C).
Now on the time interval [Kv~'/%,2Kv~'/?] in the decomposition (A.3), similarly to the
previous argument, we decompose the solution into the following two parts
1/2
(f)y(1,%) = frxndy,  fe (T.x,9) = f(7,x,5) — () (7, ).
/2

-1

Now the two quantities solve separate equations:
a‘r <f>» = l/a.xx <f>y; a‘rf#y + @1 (7) sin(27rx)8yf¢y = VAf#y’

which initiate at time Kv /2. Note that due to the zero average constraint
[[ f(r,x,y)dxdy = 0, we have the relation ((f),), = 0. Then as a consequence of (A.4), the
non-increasing of the L?>-norm for solutions of the heat equation, and Holder inequality we
obtain that

KDl < K Pl = I )s + fey &Pz

= fe K P2 < e v P2,
1
< §\|f(0)||L%_v, V7 e [Kv 22k, (A.5)
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Now for the remainder f , we use the enhanced dissipation estimate (1.16);,=1, the

non-expansive nature of the L? norm of solution, and the fact that o,(1) = 1,V7 €
[4Kv~'/2/3,5Kv~1/? /3] to obtain the following for v € (0, 1], and K > 35" log(16C):

_ sl /2 (k12 _
12, @K P)|2 < Cem TR (R )2

1
<5z,
Now combining the estimate with (A.5), we obtain that

IF @Ky )2, <KVl + [ £, @K )] 2,

1
< 31FO)l2,-

This concludes the proof of (A.2).
For general s, > 0, we find the smallest integer N and largest integer M so that

2KNv % >, 2KkMv'?<s+1t, M,NeN.
Here K is the same constant in the above analysis. Note that if # < 4Kv~'/2, then the estimate

(1.6) is direct:
g2 1,
[fCs+ D2 < [If @2 < 4l f ()26 27,
Hence we assume 7 > 4Kv~'/2 and observe that 2Kv—'/>(M — N) > 1 — 4Kv~—"/%. Now we
apply the estimate (A.1) with 5,7 € 2Kv~'/2N, and the non-increasing nature of L>-norm of
the solutions to derive that

0<t<4Kv 2

1£Gs + Dl < |FQEMy )|, < || F@KNY /)| ,2- M)

< () [e~ B 2 200

_log 2 1720, -1/2
<[ f ()] 2r v TR

_log 2172,

= 4| f(s)|l.e” X", Vs, 12> 0.

This concludes the proof of (1.6) in the general case.
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