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Abstract

In this paper, we consider patch solutions to the «-SQG equation and derive new
criteria for the absence of splash singularity where different patches or parts of the
same patch collide in finite time. Our criterion refines a result due to Gancedo and
Strain Gancedo and Strain (2014), providing a condition on the growth of curvature
of the patch necessary for the splash and an exponential in time lower bound on the
distance between patches with bounded curvature.
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1 Introduction

Recall that the family of «-SQG equations is given by

(1.1)

orw+u-Vo =0,

u=Vt(—=A)~Hoy,
where V4 = (0x,, —0x, ) denotes the perpendicular gradient. The value @« = 0 in (1.1)
corresponds to the Euler equation, and ¢ = 1/2 to the SQG equation. In general,
models with « in the range (0, 1) have been considered (Constantin et al. 2008; Chae
et al. 2012). The «-SQG equations appear in atmospheric and ocean science (see
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Constantin et al. 1994; Held et al. 1995), and model evolution of temperature near the
surface of a planet. Mathematically, the SQG equation has some similarities with the
3D Euler equation (Constantin et al. 1994) and has been a focus of much attention in
recent years. The global regularity vs finite time blowup question for smooth initial
data remains open for any 1 > « > 0. A singular scenario, closing front, has been
presented in Constantin et al. (1994). However, later rigorous work (Cordoba 1998;
Cordoba and Fefferman 2002; Cordoba et al. 2004) has shown that finite time blowup
cannot happen in this scenario.

The SQG equation is in particular used to model frontogenesis: an interface with a
sharp jump of temperature across it. In this context, patch solutions are natural. These
are weak solutions of the equation that have form

n
o, 1) =Y 0ixe;0 ),

j=1

where 60 are constants, x5 denotes the characteristic function of the set S, and 2 (¥)
are disjoint, regular regions evolving in time according to the Biot—Savart law (1.1)
(this will be made more precise later). In the context of patches, the global regularity
question is whether the patch solution conserves the initial regularity class of the
boundaries 9€2(0), and whether different patches can collide or self-intersect. The
existence and uniqueness of patch solutions for the 2D Euler equation is a consequence
of Yudovich theory (see (Yudovich 1963; Marchioro and Pulvirenti 1994)), and global
regularity has been proved by Chemin (Chemin 1993). For « > 0, even the existence
of patch solutions is not trivial. Local existence and uniqueness results of «-SQG
patch solutions have been proved in Rodrigo (2005); Gancedo (2008); Cordoba et al.
(2018); Chae et al. (2012). Numerical simulation in Cordoba et al. (2005) indicated
a possible splash singularity where two patches touch each other with simultaneous
formation of corners at the touch point, yet rigorous understanding of the phenomenon
remained missing. For small @ > 0, finite time singularity formation has been proved
for patches in the half-plane setting (Kiselev et al. 2016). This singularity formation
happens near the hyperbolic point of the flow on the boundary, and in a scenario
similar to very fast small-scale growth in solutions to 2D Euler equation (Kiselev
and Sverak 2014; Kiselev and Li 2019) and conjectured singularity formation in the
3D Euler Hou-Luo scenario (Luo and Hou 2014). On the other hand, there are also
recent numerical simulations by Scott and Dritschel (2014, 2019) which suggests a
different pathway towards a singularity. In Scott and Dritschel (2014), an intricate
self-similar cascade of filament instabilities is explored, where the picture roughly
repeats in different locations at a geometric sequence of decreasing length scales and
time intervals. In Scott and Dritschel (2019), itis suggested that filament pinching may
happen in a simpler fashion, at one of the stages of the previous instability cascade.
This filament pinching might be of the type of splash singularity, where different parts
of the patch boundary touch each other. The formation of a splash singularity has
been rigorously established for water waves (Castro et al. 2013; Coutand and Shkoller
2014), but the difference with «-patch case is that the wave interfaces can remain
regular near the intersection. This cannot happen for the SQG patches, at least not in a
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simple way, as the parts of the patch(es) with bounded curvature will never collide as
shown by Gancedo and Strain (Gancedo and Strain 2014). Thus a simple «-SQG splash
singularity can only happen along with the loss of regularity of the patch boundary,
and rigorous examples of it remain missing possibly apart from (Kiselev et al. 2016)
for0 < a < ﬁ and the extension (Gancedo and Patel 2021)t0o 0 < a < % (where a
fixed boundary is present and the precise picture of singularity is not established).

In this note, our goal is to sharpen the criterion of ruling out splash singularity for
the @-SQG models, in order to understand what kind of phenomena—specifically, the
rate of growth of certain norms associated with patch regularity—must appear for the
splash to occur. We also prove a sharper separation result for patches with bounded
curvature, improving the double exponential bound of Gancedo and Strain (2014) to
just exponential in time. The key observation for these results is an additional folding
odd symmetry in the Biot-Savart law.

1.1 Criteria of No Splash Singularities

In the context of this paper, we will interpret the splash singularity as in the following
definition; we will recall the notion of patch solution more precisely in Sect.2.1.

Definition 1.1 Let k € N and y € [0, 1]. We say that a C*¥ -patch solution Q(¢) =
U?’:lQ j () on [0, T) develops a splash singularity as t — T~ if there exists ¢ > 0
and a fixed ball B,(xo), p > O such that on [T — ¢, T') all of the following holds.

e There are only two disjoint branches C;(¢) and C,(¢) of the interface in the ball
B, (xp) that are simple curves, and C;(¢) and C>(¢) touch at a single point xo as
t—T7.

e In the complement of the ball B, (xo), the patch solution remains regular in the
whole time interval [0, T]: the C*¥ norms of the patches remain bounded, different
patches do not touch and individual patches do not self-intersect.

e The C*7 regularity may be lost at time 7' as interfaces develop singular structures,
but the singularity is localized at x.

For the sake of simplicity, we can think of all norms defined in terms of intrinsic arc
length parametrization, with

k

19Q (1) | cry = max; (Z 1923 (1) oo + sups
=0

18520 (5) — 3x; (1)
ls —r|” ’

where x; is the arc length parametrization of the ith patch 2; (¢) and s, r are arc length

parameters. The lack of self-intersection outside B, (xp) can be rigorously defined as

a positive lower bound for the arc chord ratio:

() = x; ()] _

minj,xj(s),xj(r)ﬁBp > 0.

ls —r|
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Theorem 1.2 Let0 <a < 1, k:= [2a]and 1 > y > 20 — [2a] + 1. Suppose that w
is a C*Y -patch solution to (1.1) on [0, T) that forms a splash singularity at time T .
Then we must have

T k+20—1
/ Il 57 di = co. (1.2)
0

In particular, the curvature of 9€2 controls splash singularity for all @ < 1/2 (as was
shown in Gancedo and Strain (2014) for « = 1/2).

1.2 Exponential Bound of Minimal Distance

In the case where we have a priori control on growth of the appropriate norms of patch
solution, we can derive a lower bound on separation distance between different parts
of the patch boundary provided that at any time the minimal distance is achieved at two
points with certain properties. In particular, we need to make an assumption limiting
the nature of how the patch boundary can approach itself.

Assumption 1.3 Assume that the C* patch solution Q(r) satisfies the following
property: there exists 7 > O and ¢ > Osuchthatforalls € [0, T)andalli =1, ...,n,
|xi(s) — x;(r)| = c|r — s| for all s,r with |s — r| < 5. Here x; is the arc length
parametrization of the ith patch ;.

We explain all the details later in the paper, but let us state here the main result
(referring to forthcoming definitions).

Theorem 1.4 LetO <o < 1, k := [2a], and 1 > y > 2a — [2a] + 1. Suppose that
wisa Ck’V-patch solution to (1.1) on [0, T) satisfying Assumption 1.3. Let d(t) be the
separation distance defined in (3.14). Assume in addition that for a.e. time t € [0, T],
all points p, q such as |p — q| = d(t) are admissible in the sense of Definition 3.1.
Then for all t € [0, T], we have

t k+2a—1
d(r) = d(0) exp (—C / 19 e dt/) :
0

C=Cla,k,y,m.

Note that if the curvature of 9€2(¢) is bounded uniformly in time, we obtain an
exponential in time lower bound on how quickly the patch boundaries can approach
for0 <o <1/2.

We remark that simultaneously and independently of this paper, Jeon and Zlato$
(2021) were able to show the absence of patch singularities for «-patches with bounded
C12% norm without additional assumptions on the geometry of the solution for 0 <
a < 1/4.
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2 Preliminaries
2.1 Definition of a Patch Solution

The explicit form of the Biot-Savart law for the «-SQG equation (1.1) that is valid for
smooth w is given by

oL
u(x,t) = P.V.A‘Q2 %w(y, t)dy 2.1

(we omit the constant c(«) in front of the integral). For patch solutions and o > 1/2,
the tangential to patch component of the velocity is infinite even for smooth patches,
so we will only deal with normal component defining the patch evolution, i.e., (2.3).
We adapt the definition of patch solution similar to Kiselev et al. (2016). Recall that
the Hausdorff distance between any two sets A and B is given by

dy (A, B) = max(sup, ¢ sdist(a, B), sup,.pgdist(A, b)).

Definition 2.1 Let 7 > 0, N < oo be an integer, and §; € R for 1 <i < N. Suppose
that ©; (#) C R? are bounded open sets whose boundaries 9€2; () are pairwise disjoint
closed C! curves for everyt € [0,7). Let Q = UlsisN Q; and

o 0= Y Oixaw.
1<i<N

We say w (or just €2) is a patch solution for the @-SQG equation on [0, T') if the
followings are satisfied.

(1) Each 0€2; is continuous in ¢ with respect to the Hausdorff distance dy.
(2) Denote 0<2(¢) := U;02;(¢). Then for every ¢ while patch solution exists

du (020 +m, X!, [920)])
lim

=0 2.2
h—0+ h 22)
where Xi’[E] = {x + hv(x) : x € E}and u, = (u - n)n is the normal to the
boundary d€2(-, ) component of the velocity field given by

. _ 1
Mn(x,t)zn(x)P,V,/ n(x) - (x —y)

) mw(y, t) dy forx € 02, (2.3)
R _

where n(x) is the unit normal vector of 2.

The tangential component of the velocity (2.1) is infinite for any regularity of the
boundary starting from o = 1/2, and this explains our difference with the definition
of Kiselev et al. (2016) where only small values of @ were considered.

The following elementary lemma shows that u, = (u - n)n is well defined for
patches with even less regularity than our case; in the above formula (2.3), we first
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take the inner product with the normal at x € 9€2 and then integrate according to (2.1).
In the next lemma, we abuse notation and denote by Q a single fixed C'¥ domain
(not necessarily a patch solution).

Lemma2.2 Let0 < « < 1, and suppose that Q is a compact, connected CV domain
with y > max(0, 2a — 1). Then u, = (u - n)n, the normal to 9L component of the
velocity u, computed according to (2.3) with w(x) = xq(x) is well defined and finite
at all points on 02, and is continuous on <2 with

lunllcon) = C(82). 2.4

Proof Fix a point on 92, and choose a system of coordinates with this point at its
origin such that x| axis is along the tangent to 9<2. Then

V1

Consider a square Sg = [—R, R]> with R = 0.1||8$2||Ell.y centered at the origin,
with one of its sides parallel to y; axis. Let f(y;) be a function such that the graph
y2 = f(y1) within Sg coincides with the part of 92 containing the origin. If Sg
contains more than the curve of <2 passing through the origin, make R smaller so
that there is only one curve of d€2 in it. The part in (2.5) coming from integration over
S% can be estimated from above by

[| L Iy "2 xq(y) dy < C()max(1, R'~*) (2.6)
yi=

due to the compactness of 2. To exploit the odd in y; symmetry, for any y; > 0 we
introduce

FO) i=max{f(y), f(=y)} and  f(y) :=min{f(y), f(=y)}.  (2.7)

Then, with (2.7) we have

/‘ ‘ / /f(yl)
dy2dy;. (2.8)
QNSk |Y|2+2”‘ FOD |Y|2+2”‘

To facilitate the estimates let us note that since f is C LY and f(0) = f'(0) =0, we
have

IF D) = fODI = 102l ¢y Iy foralllyi| < R.

Also, in the region of integration on the right of (2.8) y» < y; due to the regularity of
d€2 and choice of R. Then we can continue the estimate (2.8) and obtain upper bound
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by
R 2
C(Q) /0 yi Uy dy < C(QRMY (2.9)

Given that R only depends on €2, the bounds (2.6) and (2.9) imply (2.4) for the L™
norm of u,,. The continuity of u, on 92 follows by Vitali convergence theorem. Indeed,
let us perform an odd reflection like above in the integrals defining u,, (x) and u, (x").
Then the regions of integration and integrands converge pointwise as x’ — x along
0%2. Also, the integrands are uniformly integrable due to elementary estimates using
the structure of integration regions similarly to (2.8), (2.9). O

In this note, we do not discuss questions of the existence and uniqueness of patch
solutions. Existence of patch solutions with C*° or Sobolev regularity follows from
the contour equation analysis in Gancedo (2008); Rodrigo (2005) for 0 < o < 1/2,
and in Chae et al. (2012) for « > 1/2. The uniqueness of patch solutions in the whole
space setting is known for ¢ < 1/2 (Gancedo 2008; Cordoba et al. 2018) and is open
to the best of our knowledge in the case o > 1/2.

3 Absence of Splash Singularities
3.1 Geometric Configuration

Given our definition of splash singularity, starting from time ¢t = T — ¢ there exists a
fixed ball B, (xo) and a pair of points p(t), g(¢) € B, such that | p — g| is the minimal
distance between any two patches (or the maximum of the arc-chord condition if it is
different parts of the same patch that form splash singularity). Furthermore, for each
te[T —¢,T),002(t) N B, consists of two disjoint simple Ck7 curves one of which
contains p and the other ¢g. Since there is only one touching point x¢ at time 7" and
the motion of 9€2; is continuous in time, we can freely assume that any such pair
P, q € Bya(xo) : This will be true starting from some time t > T — &.

3.2 Estimates for the Velocity Difference

We now prove a result on relative velocity of the points p and ¢ inspired by the above
discussion. Given k and y, define

1 I
(1) = gmin(p, Q011920 cx) ), 3.1

Without loss of generality, we will assume that p < 1 and sor < 1.

Definition3.1 Let0 < « < 1,k := [2a], and | > y > 2a — [2a] 4 1. Suppose that
wisa Ck’?’—patch solution of (1.1) and €2(#) is the union of the patches.
We say p, g € 9Q2(¢) is a pair of admissible points at time ¢ if
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( : 0,7+ 0)
0,746
~w)  g=(0,9)
|
|
—— 4= (0.9) |
|
= & |
w |
f(y1) —r T
Fwy P

Fig.1 Illustration of a pair of admissible points p, g. Thelefthas |p—¢q| < r while therighthas |p—q| > r

e 9Q(1)N(B2(p)UBy,(g)) consists of two disjoint curves C; and C, one containing
p and the other ¢; here r is given by (3.1).
e the distance between p and g forms a local minimum distance, i.e.

lp — gl = dist(Cy, C2).

Note that in general, there could be other patches between C; and C; for example if
|p — q| > r - the definition of admissible points does not preclude that.

Proposition3.2 Let 0 < o < 1, k := [2a], and 1 > y > 2a — [2a] + 1. Suppose
that w is a C*Y -patch solution and there is a pair of admissible points p, q € 992 at
some time t.

Then the difference of the normal to patch components u,, of the velocity u defined
by (2.3) satisfies

k+2a—1

lun(p, 1) —unlg, D] < CIIQO o) 1P =gl (3:2)
where the constant C depends on «, y, p, and the couplings 0; of different patches.

Proof For simplicity, we drop the time variable ¢ in the proof. Let us set up the coor-
dinate system center at the point p such that the segment of minimum distance is on
the x»-axis and ¢ = (0, 8), § := |p — ¢|. Parametrize the two patch interfaces by
(x1, f(x1)) for the bottom piece and (x, g(x1)) for the top piece. It is not difficult
to check that with our regularity assumptions on d€2 and the choice of r (3.1), such a
representation is valid for x; € [—r, r]. See Fig. 1 for an illustration. Note that when
lg — p| > r, there might be other branches of the patches between p — ¢, but this
does not affect our argument.

Denote the coupling constants of the top and bottom patches by 6; and 65, respec-
tively. The vertical velocity at the points p and ¢ coincides with the normal component
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of u and is given by

Y1 Y1 Y1
M(P)=91/ —dy+92/ —d)/-i-/ — @ () dy
" E, |y[*T E, ly1Fr2 R2\E |y[2T2

and

Y1 Y1
un ( )=91/ d +92/ d
i g, 1y — .82 T [ Ty sy

Y1
+/Rz\g =, sy

where £ = E, U E, and

E, :={x€R2:—r§x1§r, —r <x < f(x1)}
while
E;o={xeR*:—r<x;<r, glx))<xa<r+8}

The difference of normal velocities reads

1 1
— =0 — d
@)= () lepyl(|y|2+2a —oarE) ®

1 1
[2) —
" 2[5 . (Iylzﬂ" ly = (0, 3)|2+2"‘>

q

1 1
+/ yl( - )w(y)dy
R2\E ly[F2« |y — (0, 8)>+2
=1+ L+ .

Estimates of I;
We first split the integral by y, axis

1 1
Iy =6, / / yi ( - ) dy
0<y1<r J—r<y<f(y) |y|2+2a ly — (0, 8|7+

1 1
R B S (X
0<y1<r J—r<y2<f(—y1) |}’|2+2a ly — (0, 5)|2+2a

where in the second integral we have applied a change of variable y; +— —y;.
To exploit the odd-in-y; symmetry, for any y; > 0 we introduce

(3.3)

FO) i=max{f(y), f(=y)} and f(y) :=min{f(y), f(=y)}.
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With these, due to the opposite signs in (3.3), we have

1
I| < 91/ / Vi ‘ -
| | 0<yi<r Jfy=<ym<f0n) |y|2H2e ly = (0, 8)>H2

dy. (3.4

To facilitate the estimates let us note that since f(0) = f/(0) = 0, when f is C7,
we have

Lf (1) - fODIS 180821 1.y Iy 117
and when f is c?v, by the Fundamental Theorem of Calculus we have
- I / /
IfO) = fOol= '/0 (f )+ fi(=x))dx

i x
= ‘/ / (f"(@) = f"(=2)) dzdx
o Jo

2+
S 1022y Iyl 7.

We may write these two as one estimate with k = 1,2 :

70 = £ODI S 1R e [y 177 (3.5

By the Mean Value theorem, for some z» lying between y, and y, — § we have

1
P2 Iy — (0. 82

|22] cad(8 + |y21)
= cyb < . (3.6
T4 By |yp 4422

To bound /1, we consider two separate integral regions in (3.4) where § < y; <r
and where y; < min{$, r}. A direct computation using (3.4) and (3.6) shows that

(8 + [y2)dy
I ’S 1+2a T 3%2a
yi<min{s,r} J f(y)<n<fO1) Y s<yi<r J f=n<fon 1

Here in the first integral we use a simple direct estimate on the integrand in (3.4). Note
that the set 6 < y; < r may be empty, in which case we do not need to bound the
latter integral. Then, applying (3.5), we have

k+y —2a—1 k4y—3-2
1 < 19 ckr / T 199y 8 / Wy,
0<yi<min{3.r} S<yi<r a7

+5/ / by dy.
d=yi=r JfyD=y=fG1

Since 3 > k+ y > 1 4+ 2«, the first two integrals in (3.7) are bounded by
10€2]| ck.v Srkty—1=2¢ For the last integral in (3.7), we use (3.5) together with a non-
optimal bound (only optimal when k = 1)

£+ LoD = 109 e Iy ] (3.8)
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to obtain that

—3-2
/ / by “dyS/
s=yi=r JfyD=n=fO1) S=<yi=r

+ f(y1) ‘yﬁ’z“ dyi

k+2y—2-2
5||89||2Ck,y/ v T dy.

S<yi=r

o0 = Fonl[£o0

Since k +2y —2 —2a > y — 1 > —1, combining the terms in (3.7) we obtain
I S 18R ey P 2211+ 19 ey 7). (3.9)

Estimates of 1,
Similarly to the estimation of 1, for any y > 0 we introduce

g(y) == max{g(y), g(—y))} and g(y) :=min{g(y), g(=y)}.

to obtain

1 1
ey ” ' - ar.
O=y1=r Jg(y)=y2=g(y1)| | |22 ly = (0, 8)22

Since g(0) = § and g’(0) = 0, by the same reasoning for (3.5), we have for
k=12,

g1 — gD < 18Qcr Iy 117,
and

8O + gD < 28 + 8L crr Iy1 117
A similar argument shows that I shares the same estimate as /;:

L S 1992 ey P57 7271+ 10920 iy 7). (3.10)

Estimates of I5:
For the last term I3, we consider two cases: 26 < r and 2§ > r and will show that
in both cases

Iy < 8r2,
Case 1: 28 <r:
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By the Mean Value theorem,

1 1 |z2]

<cyd max -
|y|2+2a |y _ (0’ 5)|2+2a — ta 22€ly2—68,y21] (y12 + Z%)2+a

3.11)

For y € (R?\ E) N supp(w) we have, due to the definition of admissible points, that
|y| > r. Since § < r/2, it follows that

1
|Z2| < 23+2(¥|y|—3—20{-(3'12)

. 2 2\2+a — ax 2 PN
2€ly2=8.y21 (y + 23) weln=dnl (y2 4 2)3+
It follows from (3.11), (3.12) and the definition of I3 that

I; <

~

lo ()] )
6/V|>rmdy58r “«. (313)

Case2:28 >r:
In this case, we split the integral:

1 1
Iz = — d
. /gcyl<|y|2+2a |y—<0,6)|2+2“>w(y) Y
1 1

+/ i < -
Iy—(0,8/2)|>48 [y|>H2¢ |y — (0, §)]>+%

)w()’) dy :=I31 + I

where E¢ is defined by
EC:={yeQ():|y—(0,8/2)] <48} NEC,

with (0, %) being the mid-point between p and gq.
For 131, we use the triangle inequality and the bound

1 1

Y1
=< +
y[HH2e |y — (0, 8)[ 1+

|y |2+2a

Y1
- ’ Iy — (0, )22

to obtain

1 1
Iz < —d - d
3 /g |y T2 ”/gc ly — (0, 8+ &Y

1
< / — dy S8 e
r<lyl<ss |y[1T2

For I3;, similarly to (3.11) and (3.12), for y € R? \ E¢ we have

1 1
‘ [V[2F2 |y — (0, 8)[+2

2 1
< cud max <8 .
2 (yf+ )it T ypre
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Inserting this bound into the integral I3, gives

1
I S 5/ —5-dy
ly|=26 |y[>T2«

< §l-2a < 5,2
Putting together /31 and I3, yields
I < or%.
Combined estimates:

Now observe that with our choice of r (3.1), r¥7=1 < ||3Q||
the estimates of I, I», and I3, we arrive at (3.2):

Z"k]#’ and combining

lun(q) — un(p)| < 5<r—2“ + P2 a0 L (14 ||asz||ck.yry))

< 8(’,—20: + r_za(l + ||3S2||Ck,yr7’))

20 k4+2a—1
k+y—1 k+y—1
S8R o, (1 18Rl cryr?) S NI, TP =gl
Here the constants in the last two inequalities may depend on p. O

3.3 Estimates on the Distance and Proof of Main Results

Now fix I > o > 0 and suppose that we have a ckv patch solution Q(7) = ijzl Q)
with k = [2a], and 1 > y > 2« — [2«] + 1 that forms a splash singularity described
in Definition 1.1 at some point xo at time 7 (it is not hard to generalize the argument to
the case where splash happens simultaneously at a finite number of different points).

For any i # j, let us define d;;(t) = dist(2;(¢), 2;(¢)). To control patch self-
intersections, fix a small parameter n > 0, and define

dii(t) = mins,r:|s7r|2n|xi (s) —x; ()],

where x; (s) is the arc length parametrization of €2;(¢). Given any splash singularity,
one can choose sufficiently small > 0 so that we must have d;;(t) - Oast — T;
indeed, it suffices to choose n = p, the radius of the ball from Definition 1.1.

Finally, define the minimal distance d(¢) between different patches (or different
branches of the same patch if itself-intersects) by

d(1) = minj<; j<pd;j(1). (3.14)

Due to our definition of splash singularity, there exists ¢ > 0 such that for every
T —¢ <t < T,allpoints such thatd(t) = | p —q| must lie in B 4(x). Note that due
to our definition of patch solution and boundedness of the normal component of the
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velocity u, at 92 for our patch regularity assured by Lemma 2.2, all functions dj ()
are Lipschitz in time, and therefore d(¢) retains this property.
Now we are ready to prove

Proposition3.3 Let0 < o < 1, k := [2a], and 1 > y > 2a — [2a] + 1. Suppose
that @ is a C*Y -patch solution that forms a splash singularity as in Definition 1.1 at
time T. Then the minimal distance d(t) defined in (3.14) is a Lipschitz function of time
and there exists € > 0 such that for almost every timet € [T — ¢, T)

k4201
d') > —Cd(t)||8£2||ckk+_§_' . (3.15)

Proof Sinced(¢)is Lipschitz, itis almost everywhere differentiable by the Rademacher

theorem, and moreover d(fy) — d(t;) = ;12 d’'(t)dt (see e.g. (Evans and Gariepy

1992)). Fix atime ¢t € [T — ¢, T'); according to our definition of splash singularity,

92N B, (xp) consists of two disjoint simple curves that we will denote C; (¢) and Ca(¢)

and we can assume that d(¢) = dist(C(t) N B, 2(x0), C2(t) N B, 2(x0)).

Due to our definition of patch solution, we have that for small 7 > 0

d(t 4 h) = dist(C(t + h), Ca(t + h))
= dist(X], ., (C1()). X} (Ca(1))) + o(h), (3.16)

where o(h) means a quantity that goes to zero as h — 07

Our aim will be to derive a lower bound on d (¢ 4+ /) using (3.16). Let S € C;(r) x
C (1) be the set of all pairs of points (p, g) € C;(t) x C2(t) such thatd(t) = |p — q|.
Due to our definition of admissible points and (3.1), any pair p, g is admissible and
so the estimates of Proposition 3.2 apply.

To bound the first term on the right-hand side of (3.16), let us fix a small number
€1 > 0. Define a distance ¢ on C(t) x Ca(t) by

¢((x, ), (p,q@)) = |x = pl+ 1y —ql| for(x,y), (g, p) € C1 xC.

Let us denote S, the set of pairs of points (x, y) such that ¢((x,y), S) < e;. This
admits a decomposition of C;(t) x Cp(¢):

C1(t) x Ca(t) = S, U S, (3.17)

where the compact set S;, = C1(t) x C2(t)\ S, consists of pairs (x, y) that are away
from the admissible ones.

Suppose first that (x, y) € Sgl, that is, £ ((x, y), S) > €1 > 0. Then there exists
n(e1) > O such that |x — y| > d(¢) + n(e1). Indeed, |[x — y| — d(¢) is a continuous
function on the compact set Sg,, and so it has a minimum that is clearly positive.
Therefore, for all (x, y) € Sgl, we have
lx +up(X)h —y —un(Y)h| = |x = y[ = 2|unllca)h
>d(t) +n(e1) — C(Q)h = d(t) (3.18)
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for all & > O sufficiently smaller than n(eq). Thus, the points that are not in Sg, are
not important in derivation of the lower bound on d’(z).

Now consider (x,y) € Sg. Find (p,q) € § such that {((x, y), (p,q)) < e1.
Note that by Lemma 2.2 and compactness of 92, u, is uniformly continuous on
0%2. Therefore, since |[x — p| < e; and |y — g| < €1, there exists o (¢1) such that
1 () — un(p)] < o and | (y) — ()] < 0, and o' (e1) — Oas e — 0. Applying
these considerations along with the bound (3.2), we find that for (x, y) € Sg,, the
following bound holds:

dx Fup(h —y —un(y)h| = |x — y| = hlup(x) — un(y)|
> |p—ql—¢x,y), (p,q)
— hlup(x) — up(p)| — hlup(p) — up(@)| — hluy(q) — uy(y)|

k+2a—1

> d(1) — &1 — 2ho(e1) — Chd()[|0| 57, (3.19)

It follows from (3.16), (3.18), and (3.19) that given any €1 > 0, for any sufficiently
small 2 > 0, we have

k+2a—1

d(t+h) = d(t) — 1 — 2ho (1) — Chd (D191 5" — E(h),

where E(h) = o(h). Since this inequality holds for every ¢; > 0, (3.15) follows for
ae.te|[T —e¢,T). O

Proof of Theorems 1.2 and 1.4 We only proof Theorem 1.2, since given the Assump-
tion 1.3, the proof of Theorem 1.4 follows along the same lines.

According to Proposition 3.3, for a.e. t € [T — ¢, T') before the splash singularity
(3.15) holds. By Gronwall lemma, we must have that

T k+2a—1
/ 19 5" dr = oo,
0
completing the proof of Theorem 1.2.
O
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