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Chromosome-scale genome assemblies of wild tomato
relatives Solanum habrochaites and Solanum galapagense
reveal structural variants associated with stress
tolerance and terpene biosynthesis
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TEqual contribution

Dear Editor,

Introducing beneficial genes/alleles from wild relatives
into the cultivated tomato has been an important
approach for tomato breeding. Solanum habrochaites and
S. galapagense have been widely used as germplasm
donors in modern breeding to improve biotic and abiotic
stress tolerance of tomato. S. habrochaites grows in the
Peruvian Andes at altitudes up to 3300 m and is notable
for its tolerance of chilling and drought and resistance to
many diseases and pests. S. galapagense is endemic to the
Galapagos Islands, has extraordinary salt tolerance and
insect resistance, and appears even more closely related
to the cultivated tomato (Solanum lycopersicum) than
Solanum pimpinellifolium, the wild progenitor of cultivated
tomato [1]. Due to their importance, draft genomes of
these two species have been assembled using Illumina
short-read sequencing [2] or PacBio long-read sequencing
[3]. However, high levels of fragmentation and/or the
lack of chromosome-scale assemblies have limited their
applications in tomato breeding and research.

In this study, chromosome-scale assemblies of S.
habrochaites (accession LA0407) and S. galapagense (acces-
sion LA0317) were developed using PacBio HiFi reads
and chromatin interaction maps generated with Hi-C
technology. The final assemblies of S. habrochaites and S.
galapagense had total contig sizes of 950.7 and 859.9 Mb,
respectively, and contig N50 sizes of 6.74 and 12.32 Mb,

with 95.4 and 94.4% of the contigs anchored and ordered
on the 12 chromosomes (Fig. 1A, Supplementary Data
Fig. S1). The S. habrochaites and S. galapagense assemblies
captured 97.6 and 98.5% of the 1614 Embryophyta
conserved genes, respectively, and had LTR (long terminal
repeat) assembly index (LAI) scores of 13.50 and 13.35.
Moreover, the consensus quality values (QVs) of S.
habrochaites and S. galapagense assemblies were 42.91 and
44.28, respectively, corresponding to a base accuracy of
99.995 and 99.996%. Taken together, the results indicated
the high degree of contiguity, completeness, and base
accuracy of these two genome assemblies.

The S. habrochaites and S. galapagense genomes har-
bored 74.2% (705.2 Mb) and 73.2% (632.2 Mb) repetitive
sequences, respectively, of which LTR retrotransposons
accounted for 58.8 and 59.0% (Fig. 1B, Supplementary
Data Table S1). A total of 33567 and 33 108 protein-coding
genes were predicted from the S. habrochaites and S. gala-
pagense genome assemblies, respectively, and around 98%
of the predicted genes could be annotated in public
databases.

The phylogenetic tree constructed for S. habrochaites, S.
galapagense, and eight other Solanaceae species using
3011 single-copy orthologous genes revealed that S.
habrochaites was close to Solanum pennellii and that S.
galapagense appeared close to S. lycopersicum (Fig. 1C),
consistent with the previous phylogenomic study [4].
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Figure 1. Solanum habrochaites and Solanum galapagense genomes. (A) Genomic landscape of S. habrochaites and S. galapagense. Densities of repeat
sequences (1), genes (II), and SVs compared with Solanum lycopersicum (III) in 1-Mb windows, and syntenic blocks between S. habrochaites and S.
galapagense (IV) are shown. (B) Statistics of the S. habrochaites and S. galapagense genome assemblies and annotations. (C) Phylogeny of 10 Solanaceae
species with estimated divergence times. Red dots on the tree node indicate divergence times obtained from the TimeTree database (http://www.
timetree.org/) that were used for calibration. (D) Gene Ontogeny (GO) terms enriched in genes overlapping with insertions and expansions in S.
habrochaites. (E) Expression heat map of significantly up- or downregulated genes (q <.05) under cold stress in S. habrochaites with coding regions
overlapping with insertions and expansions. (F) Expression of four tandemly duplicated ShRCI3s under cold stress. Error bars represent the standard
deviation of three independent replicates. (G) Number of different TPS subfamily genes detected in five tomato species. (H, I) Expression of TPS genes
(H) and zFPS (SHch08g004680) and SBS (ShTPS45, SHch08g004730) (I) in stem/petiole trichomes of seven different S. habrochaites accessions. (J) UpSet plot
of RGA gene families among five tomato species. SH, S. habrochaites; SG, S. galapagense; SL, S. lycopersicum; SPI, S. pimpinellifolium; SPE, S. pennellii.
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Molecular dating suggested that S. habrochaites diverged
from S. pennellii around 1.82 million years ago (Mya),
and S. galapagense and S. lycopersicum diverged around
0.62 Mya. A total of 16666 gene families were shared
among S. habrochaites, S. galapagense, S. lycopersicum, S.
pimpinellifolium, and S. pennellii, and 366 and 190 were
unique to S. habrochaites and S. galapagense, respectively
(Supplementary Data Fig. S2). KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway enrichment analysis
suggested that these S. habrochaites-specific genes were
significantly enriched with those involved in plant-
pathogen interaction and in the MAPK signaling pathway,
while the S. galapagense-specific genes were significantly
enriched with those involved in zeatin and terpenoid
biosynthesis.

To identify structure variants (SVs) relative to culti-
vated tomato, genome sequences of S. habrochaites and
S. galapagense were compared with the S. Iycopersicum
genome (version SL4.0), according to the pipeline
described in our previous study [5]. A total of 336319 SVs
with a total length of 257.9 Mb between S. habrochaites
and S. lycopersicum and 98443 SVs with a total length of
62.2 Mb between S. galapagense and S. lycopersicum were
identified (Supplementary Data Fig. S3, Supplementary
Data Table S2). The insertion and expansion regions in
S. habrochaites, representing the S. habrochaites-specific
sequences, overlapped with the coding regions of
5250 genes, which were significantly enriched with
those involved in response to stress, defense response,
terpenoid biosynthetic, and metabolic processes etc.
(Fig. 1D). Coding regions of 1336 genes were found
overlapping with the insertion and expansion regions
of S. galapagense, and these genes were significantly
enriched with those associated with defense response,
pyrimidine nucleotide metabolism, and lipid metabolism
etc. (Supplementary Data Fig. S4). These results sug-
gested that the inserted and expanded genome regions
in S. habrochaites and S. galapagense might contribute
to the higher stress tolerance of the two wild tomato
species. We found that the expression of 122 of these
genes in S. habrochaites was significantly changed after
cold treatment (Fig. 1E), including two of four tandem
duplicates (Shch07g019350-Shch07g019380) homologous
to Arabidopsis rare cold-inducible protein 3 (RIC3) [6], which
corresponded to only one copy (Solyc07g049240) in SL4.0
(Fig. 1F, Supplementary Data Fig. S5). The upregulation of
ShRIC3 genes by cold treatment suggested their potential
roles in cold stress responses.

As mentioned above, the inserted/expanded genesin S.
habrochaites were enriched in the terpenoid biosynthetic
process. Terpenoids play roles in plant defense against
pathogens and pests. Terpene synthases (TPSs) are key
enzymes in generating terpenoids. A total of 59, 50, 43,
36, and 41 TPS genes were identified in genomes of S.
habrochaites, S. galapagense, S. lycopersicum, S. pimpinel-
lifolium (LA2093), and S. pennellii (LA0716), respectively
(Fig. 1G, Supplementary Data Tables S3 and S4). Five
TPS subfamilies, including TPS-a, -b, -c, -e/f and -g,
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were identified, and TPS-a was the most abundant
(Supplementary Data Fig. S6). Since TPS-a members
mainly encode sesquiterpene synthases, a remarkable
expansion of this subfamily in S. habrochaites suggested
potentially diverse or unique sesquiterpene synthesis in
this species. Eighteen ShTPSs were not expressed in any of
the investigated tissues, including leaf, stem, root, flower,
and fruit, while the remainder were mainly expressed in
a tissue-specific manner (Supplementary Data Fig. S7).
Trichomes play roles in plant defense by providing
specialized metabolites, including terpenes. Nearly half
of the ShTPSs were expressed in stem/petiole trichomes
of seven S. habrochaites accessions, and these ShTPSs
were further divided into three groups based on their
expression patterns (Fig. 1H). The various TPS expression
patterns probably contributed to the diversity of terpene
composition in these accessions [7]. A novel sesquiter-
pene biosynthesis pathway involving SBS (santalene
and bergamotene synthase, a TPS-e/f member) and
zFPS (Z-isoprenyl pyrophosphate synthase) has been
proposed in S. habrochaites [8]. Our results showed that
SBS and zFPS had similar expression levels in the seven S.
habrochaites accessions, except LA1352, suggesting both
conserved and diverged sesquiterpene biosynthesis in
these accessions (Fig. 11).

The wild relatives of tomato are the main gene
source for tomato resistance breeding [9]. To explore
the reservoir of resistance genes in tomato species,
resistance gene analogs (RGAs) were identified in
genomes of S. habrochaites, S. galapagense, S. lycopersicum,
S. pimpinellifolium, and S. pennellii. In total, 4668 RGAs
were detected in these five species, including 2482
receptor-like protein kinases (RLKs), 831 nucleotide
binding site (NBS)-encoding proteins and 391 receptor-
like proteins (RLPs) (Supplementary Data Table S5). Gene
family analysis indicated that 401 gene families (2685
genes) were shared in all five tomato species, while 187
gene families (919 genes) were not found in S. lycopersicum
(Fig. 1]). In addition, 163 and 36 RGAs were found in
the insertion/expansion regions of S. habrochaites and
S. galapagense, respectively. These extra RGAs might
contribute to the high disease resistance of the two
species.

In summary, the high-quality genome assemblies of S.
habrochaites and S. galapagense provide robust references,
in particular, new gene sources of stress tolerance and
terpene biosynthesis for functional genomic research
and genetic improvement in tomato.
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