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Abstract
Inland waters have an important role in the global carbon cycle, contributing significantly to terrestrial car-

bon fluxes through downstream export and exchange of CO2 with the atmosphere. However, large uncertainties
in freshwater inorganic carbon fluxes remain. One contributing factor is uncertainty in carbonate system calcu-
lations for estimating the partial pressure of CO2 (pCO2) from pH and alkalinity in freshwater systems. The
uncertainty stems largely from inaccurate pH values caused by glass pH electrode measurements in low ionic
strength systems. This study compares indicator-based spectrophotometric and electrochemical pH measure-
ments and their application for calculating freshwater pCO2. Our study found that, compared to a pCO2 refer-
ence method, pH electrode-based estimates of pCO2 were overestimated by 230 ! 200 μatm (n = 54) where
indicator-based spectrophotometric pH estimates of pCO2 were 58 ! 33 μatm (n = 34) over the range of 100–
1600 μatm. Furthermore, we found that when ionic strength was assumed to be zero, calculated pCO2 error was
" 20% of the reference pCO2. A 19-d field study using autonomous spectrophotometric pH and pCO2 sensors
found an average error in calculated pCO2 of #70 ! 57 μatm (n = 1685). Although, our focus is on riverine CO2,
these findings and subsequent conclusions apply to all freshwater systems. Spectrophotometric pH measure-
ments will improve future freshwater pCO2 calculations and better quantify inland waters’ role in the global car-
bon budget.

Inland waters process and transport substantial amounts of
terrestrially derived carbon (Hotchkiss et al. 2015). Most
streams and rivers are sources of carbon dioxide (CO2) to the
atmosphere (Raymond et al. 2000; Wang and Cai 2004; Chen
et al. 2012), where they represent a substantial component in
the global carbon cycle (Cole et al. 2007; Raymond et al. 2013;
Hotchkiss et al. 2015). A common way of evaluating the mag-
nitude of these CO2 sources is by calculating the CO2

exchange over a given area of freshwater (i.e., flux). Current
challenges in quantifying air–water CO2 fluxes include
obtaining accurate gas transfer velocities and accurately quan-
tifying dissolved CO2, usually reported as the partial pressure
of CO2 (pCO2) (Raymond et al. 2012; Duvert et al. 2018;
Rocher-Ros et al. 2019; Ulseth et al. 2019). Recent studies have
outlined techniques to increase the accuracy of gas transfer

velocities (Appling et al. 2018a,b; Rocher-Ros et al. 2021);
however, debates continue about the best practices for
obtaining accurate freshwater pCO2 (Hunt et al. 2011; Abril
et al. 2014; Liu et al. 2020).

Currently, freshwater pCO2 is either measured directly or
calculated. Researchers measure pCO2 directly using in situ
sensors (Parker et al. 2007; Lynch et al. 2010; Rocher-Ros
et al. 2020) or headspace equilibrium techniques coupled to
nondispersive infrared (NDIR) analysis or gas chromatography
(Cole and Caraco 2001; Johnson et al. 2009; Åberg and Wal-
lin 2014; Abril et al. 2015; Rocher-Ros et al. 2019; Aho
et al. 2021). However, most freshwater studies rely on analysis
of collected samples. The pCO2 is then calculated from any
two quantifiable inorganic carbon parameters, that is, total
alkalinity (AT), pH, or dissolved inorganic carbon (DIC). The
two measured parameters are input into an equilibrium model
that uses proton (i.e., AT) and mass (i.e., DIC) balances and
the thermodynamic equilibria for carbonic acid (H2CO3)
(e.g., CO2SYS or PHREEQC) (Choi et al. 1998; Lewis and Wal-
lace 1998; Butman and Raymond 2011; Parkhurst and
Appelo 2013; Abril et al. 2014, 2015).

Both AT and pH are commonly monitored by government
and research agencies around the world (Raymond et al. 2013;

*Correspondence: michael.degrandpre@umontana.edu

Additional Supporting Information may be found in the online version of
this article.

This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

1



Stets et al. 2017; Wen et al. 2017; Coles et al. 2019; Liu
et al. 2020) and these long-term datasets have been used to cal-
culate pCO2 and estimate global CO2 emissions (Cole
et al. 2007; Aufdenkampe et al. 2011). Studies have shown,
however, that using AT and electrochemical pH can result in
overestimation of calculated pCO2 leading to inflated estimates
of global freshwater CO2 emissions (Herczeg and Hesslein 1984;
Hunt et al. 2011; Abril et al. 2015; Liu et al. 2020). Freshwater
pCO2 can be overestimated by 10% to > 100% when calculated
from pH and AT (Hunt et al. 2011; Abril et al. 2015; Liu
et al. 2020). These erroneously high pCO2 values are thought to
be caused by systematically low electrode pH and the presence
of non-carbonate species (e.g., organic acid anions) that can
contribute to higher AT values. This “excess AT” overestimates
pCO2 because carbonate equilibrium models assume that fresh-
water AT is all carbonate alkalinity. Other chemical species, like
phosphate, could also contribute to AT but are typically at neg-
ligible concentrations in freshwater compared to carbonate
concentrations. Findings from Liu et al. (2020) revealed that
organic acids can be a significant portion of AT when AT is less
than " 1000 μmol L#1 with errors in calculated pCO2 of > 40%.
This error is significantly reduced (< 8%), however, at higher AT

(e.g., > 2000 μmol L#1; Liu et al. 2020). In addition, Liu et al.
(2020) suggested empirical relationships based on ionic
strength (μ) and dissolved organic carbon (DOC) to correct past
electrochemical pH and AT measurements, respectively. Even
with the pH measurement correction, pCO2 error was only
reduced by " 40% (Liu et al. 2020), so there remains a need for
more accurate pH measurements and more rigorous thermody-
namic calculations of pCO2.

The inaccuracy of pH electrodes in freshwater is primarily
due to changes in the liquid junction potential (Illing-
worth 1981; Herczeg and Hesslein 1984; Davison and Woof
1985; Stauffer 1990; Raymond et al. 1997). Calibration of an
electrode in standard buffer solutions (i.e., National Institute of
Standards and Technology [NIST]) that have higher μ than fresh-
water (i.e., μ > 0.01 M) commonly leads to systematically low
pH in low μ conditions (Herczeg and Hesslein 1984; Byrne
et al. 1988; French et al. 2002; Liu et al. 2020). Spectrophotomet-
ric pH, which uses a colorimetric indicator to determine pH, has
demonstrated improved accuracy compared with glass electrodes
(Byrne et al. 1988; Yao and Byrne 2001; French et al. 2002; Yuan
and DeGrandpre 2008; DeGrandpre et al. 2014; Lai et al. 2016;
Minor et al. 2019). The accuracy has been reported to be < 0.008
pH units for freshwater applications (Yuan and DeGran-
dpre 2008; Lai et al. 2016). Although spectrophotometric pH is
commonly used for calculation of pCO2 in seawater where its
utility has been extensively characterized (Byrne et al. 1988;
Zhang and Byrne 1996; Lueker et al. 2000; Byrne et al. 2010;
DeGrandpre et al. 2014; Bockmon and Dickson 2015; Takeshita
et al. 2020), it has not been significantly used for calculation of
freshwater pCO2 or for that matter, calculation of other freshwa-
ter equilibria (e.g., solubility). Freshwater measurements of spec-
trophotometric pH pose unique challenges, however, because of

the uncertainty of μ effects and the potential perturbation of pH
of poorly buffered freshwater by addition of indicator (Yuan and
DeGrandpre 2008). Therefore, it is important to evaluate the
utility of spectrophotometric pH measurements more thor-
oughly for freshwater applications, especially for its use in calcu-
lating pCO2.

The recent availability of purified meta-cresol purple
(pmCP) and characterization of its equilibrium constant at low
μ has made this evaluation more opportune (Lai et al. 2016)
where pH accuracy might vary due to different mCP impuri-
ties in commercial products (Liu et al. 2011). Over a decade
ago, marine chemists discovered that dye impurities degrade
the accuracy of seawater pH measurements and demonstrated
improved accuracy by purifying the indicator (Yao et al. 2007;
Liu et al. 2011). The effects of dye impurities on freshwater
measurements have never been determined and so the uncer-
tainty created by this problem has likely compromised the
appeal of indicator-based pH measurements for freshwater. In
addition, μ is integral to this assessment because it can alter
the inorganic carbon equilibria, that is, the apparent dissocia-
tion constants increase with increasing μ (Stumm and Mor-
gan 2008). The effect of μ on freshwater CO2 calculations has
not been rigorously evaluated, however. In addition, μ encom-
passes a range from " 0.1 mM to > 10 mM in freshwater sys-
tems (Cormier et al. 2013), a range that significantly changes
the apparent Henry’s Law constant (K0

H ), apparent dissociation
constants (K0

1, K
0
2, and K0

W) and, as a result, calculated pCO2.
Therefore, rigorously accounting for freshwater μ could impr-
ove carbonate equilibrium models and, accordingly, calculated
pCO2 values.

To evaluate the freshwater applicability of spectrophoto-
metric pH measurements, a laboratory study was conducted
to compare spectrophotometric and electrochemical pH
measurements for calculating freshwater pCO2 over a wide
range of conditions (i.e., μ, AT, and temperature). The
experiments used a test tank where the pCO2 could be
monitored while samples were simultaneously obtained for
pH and AT. Furthermore, high-frequency in situ spectro-
photometric pH measurements were made in a local river
to evaluate the accuracy of calculating pCO2 through a
real-world application.

Materials and procedures
Laboratory tank study

Overview
A 130-L, temperature-controlled, well-mixed tank of a

mixture of tap water and deionized (DI) water was sampled
with pCO2 ranging from " 100 to 1600 μatm. The pCO2

levels were varied by (1) introducing air that was passed
through a column of soda lime (Fisher Scientific, CAS #
8006-28-8) to drive the pCO2 below atmospheric levels
(" 100–400 μatm) or (2) introducing small volumes of high
CO2 into the test tank headspace to increase the pCO2. A
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range of AT from " 1800 to 3200 μmol L#1 and μ from " 5 to
9 mmol L#1 were created by dilution of tap water (undiluted
tap water AT = " 3200 μmol L#1) in the tank with DI water.
The tank temperature was set to 10$C, 15$C, or 20$C. Most
data were collected at 15$C with a limited number of mea-
surements made at 10$C and 20$C to determine perfor-
mance over a broader temperature range. These conditions
are like those found in a nearby river, the Clark Fork River
(CFR), where we have worked extensively (Parker et al. 2007;
Lynch et al. 2010; Shangguan et al. 2021), and other temper-
ate and tropical freshwater rivers (Abril et al. 2015).

The tank pCO2 was quantified using a membrane equili-
brator (Membrana, Liqui-Cel SP Series) attached to a pump
and a CO2/H2O infrared gas analyzer (LI-COR, LI-840A). The
gas analyzer was zeroed with CO2-free air and then calibrated
with two CO2 standards (359 and 1774 ppm) (Dickson
et al. 2007). Sample collection began at the lowest pCO2 con-
centration in the test tank (" 100 μatm) and continued
sequentially in " 150–200 μatm steps until " 1600 μatm. The
pCO2 was recorded on a 1-min interval and the measured
mole fraction of CO2 was converted to pCO2 following
Dickson et al. (2007). The overall tank pCO2 accuracy is esti-
mated to be " ! 5 μatm.

Samples for analysis of AT and pH were collected to coin-
cide with the equilibrator-infrared measurements. Triplicate
samples were dispensed via a pump from the closed test tank
to maintain pCO2 levels. Samples were collected in borosilicate
glass bottles secured with greased hollow glass stoppers. The
samples were kept on ice for " 5–15 min until spectrophoto-
metric pH and AT analysis. For the pH electrode measure-
ments, two additional samples (one for each pH electrode
measurement) were collected immediately after the previously
mentioned triplicate samples and analyzed within 1–2 min of
sample collection.

Spectrophotometric pH
Spectrophotometric pH measurements were made using a

double beam spectrophotometer (Agilent, Cary 300) with
10 cm borosilicate glass cuvettes and temperature regulated
cuvette holders (Lai et al. 2016). Each bottle was analyzed
only once to prevent an increase in headspace that could
allow gas exchange and alter the pH and pCO2. Triplicate
spectrophotometric pH measurements were averaged for fur-
ther analysis.

For freshwater pH analysis, pmCP was used because the
negative logarithm of its acid dissociation constant (pKa) is
equal to 8.6607 at 25$C at infinite dilution (μ = 0 mM) (Lai
et al. 2016) and overlaps with the pH range observed in the
CFR (e.g., 7.9–9.1) (Parker et al. 2007) and many other alkaline
freshwater systems (Peter et al. 2014). The pKa for purified
phenol red has also been quantified at low μ and would be
suitable for a lower pH range (pKa = 8.0625 at 25$C at infinite
dilution) (Lai et al. 2016). Automated diagnostic checks were
performed monthly on the spectrophotometer that included

validation of wavelength accuracy, wavelength reproducibil-
ity, photometric noise, and baseline flatness, some of which
have been shown to affect spectrophotometric pH measure-
ment accuracy (DeGrandpre et al. 2014).

Spectrophotometric pH measurements were calculated on
the free hydrogen ion scale (pHfree = #log[H+], where [H+] is
the hydrogen ion concentration) using the following equation
(Yao and Byrne 2001; Lai et al. 2016):

pHfree ¼pKaþ log
R# e1
e2#Re3

! "
#4A

ffiffiffi
μ

p

1þ ffiffiffi
μ

p #0:3μ
! "

ð1Þ

where pKa is the temperature-dependent negative logarithm of
the 2nd dissociation constant of pmCP at infinite dilution. The
indicator (I) pmCP exists in two forms in natural waters, the
protonated (acid) form, HI#, and the deprotonated (base)
form, I2#. Thus, R is the ratio of indicator absorbances (A578/
A434) at the absorbance maxima of I2# (578 nm) and HI#

(434 nm), e1, e2, and e3 refer to the molar absorption coeffi-
cient ratios corresponding to HI# and I2# at 434 and
578 nm, and

A¼0:5092þ T#298:15ð Þ)8:5)10#4 ð2Þ

where T is the temperature in Kelvin. Due to minor changes
in pH of the sample caused by the addition of indicator
(Seidel et al. 2008; Yuan and DeGrandpre 2008; Li et al. 2020),
pH was calculated using a linear regression of the pH values
recorded with addition of three 80 μL indicator aliquots. The
magnitude of this perturbation correction was #0.005 ! 0.004
pH units (n = 84), similar to previously reported perturbation
corrections (Yuan and DeGrandpre 2008). This procedure gave
absorbances within a range of 0.0930–1.4740. Example pH
values with relevant parameters (i.e., molar absorptivity, absor-
bance, temperature, and pKa) are summarized in Supporting
Information Table S1. All sample measurements were tempera-
ture corrected to the tank water temperature using the equilib-
rium model CO2SYS (Lewis and Wallace 1998) at infinite
dilution (Millero 1979). This program uses an input (measure-
ment) and output (tank) temperature, alkalinity, and input
pH. Temperature corrections averaged #0.005 ! 0.004 pH
units. The resulting temperature corrected pH was used for
subsequent pCO2 calculations and pH comparisons (see
below). In addition, pH values from the spectrophotometer
were compared bimonthly to an NIST traceable phosphate
buffer (pH 8.00 ! 0.02 at 25.1 ! 0.3$C, μ = " 0.2 M) (Micro
Essential Laboratory, Inc., Hydrion). The spectrophotometric
pH measurements were converted to the National Bureau of
Standards (NBS) scale (pHNBS) (see below), and temperature
corrected to 25.0$C. Measurements showed good agreement
with the pH buffer (average error of #0.006 ! 0.02 pH units,
n = 12, at 25.1 ! 0.3$C).

All spectrophotometric pHfree measurements were
converted to pHNBS using Eq. 3 (Stumm and Morgan 2008) to
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make them directly comparable with the electrochemical
pHNBS data. Note that in Eq. 3, z is equal to 1 (i.e., charge of
the hydrogen ion).

pHNBS ¼pHfreeþAz2
ffiffiffi
μ

p

1þ ffiffiffi
μ

p #0:3μ
! "

ð3Þ

Equation 3 indicates that pHfree and pHNBS are related by the

Davies term (i.e., Az2
ffiffi
μ

p

1þ ffiffi
μ

p #0:3μ
$ %

). At zero ionic strength

both pH values are equal; however, as ionic strength increases,
the Davies term also increases, and consequently, pHNBS

becomes greater than pHfree.
Tap water ionic strength was determined assuming the

reported average ion concentrations from the Missoula aquifer
(AWQR 2020; Supporting Information Table S2) and using the
following equation (Stumm and Morgan 2008):

μ¼1
2

X
cizi2
& '

ð4Þ

where ci and zi are the concentration and charge of an ionic
species, respectively. To determine the diluted tap water μ,
we used a dilution factor derived from the undiluted and
diluted specific conductivity and μ. Conductivity was mea-
sured using an in situ conductivity data logger (HOBO,
Onset U24 Freshwater). The conductivity logger was cali-
brated with a 1000 μS cm#1 conductivity standard (Bicca,
Catalog # 2237). Discrete measurements of conductivity
were also taken for quality control using a handheld water
quality meter (YSI Inc., Pro1030), hereafter referred to as the
YSI that was calibrated in the same way as the in situ con-
ductivity sensor. The undiluted and diluted calculated μ
were used for all pH (Eqs. 1 and 3) and pCO2 calculations as
described below.

Electrochemical pH
Glass pH electrode measurements were made with two differ-

ent electrodes: (1) an electrode commonly used for pH measure-
ments in the field (YSI Inc., Pro1030) and (2) a laboratory grade
pH electrode (Metrohm AG, Ecotrode Plus), hereafter referred to
as Metrohm. Both electrodes were calibrated with 4.00, 7.00,
and 10.00 NIST traceable pH buffers (Micro Essential Laboratory,
Inc., Hydrion) to align with literature methods (Hunt
et al. 2011; Abril et al. 2014) and the U.S. Geological Survey
(USGS) recommended method for calibration (Barnes 1964). All
water samples and calibration buffers were stirred and both pH
electrode measurements were made immediately upon collec-
tion after a 1-min stabilization period. Sample temperature was
measured at the same time as pH measurements to a precision
of ! 0.1$C. To test their accuracy and precision after calibration,
results of replicate (n = 10) buffer pH (8.00 ! 0.02 at 25$C) mea-
surements were 7.99 ! 0.02 and 8.012 ! 0.009, for the YSI and
Metrohm pH electrodes, respectively. During the study, the YSI
and Metrohm pH electrodes had average response slopes of

98.1 %! 0.1% (n = 6) and 100.1% ! 0.7% (n = 18), respec-
tively, of the theoretical response.

Electrochemical pH measurements were temperature
corrected to the in situ tank temperature using the same
approach as outlined above for spectrophotometric pH. YSI
pH measurements were only evaluated at " 15$C in the test
tank because it was not available when tank measurements
were being done at 10$C and 20$C.

Total alkalinity
Unfiltered samples were analyzed for AT using an open cell

titration system consisting of a syringe pump (Kloehn Co
LTD), pH electrode (Metrohm AG, Ecotrode Plus), and pH
meter (Fisher Scientific, AR 25). The electrode was conditioned
for low ionic strength solutions by immersion in tap water for
1 h prior to use. Titration data were processed using the non-
modified Gran Plot titration method (Gran 1952) from pH 3.5
to 3.1. The HCl acid titrant ranged from 0.0997 to 0.1002 N
(Fisher Scientific) and the factory certified value was used in
the analysis. AT was analyzed on the bottle samples after spec-
trophotometric pH to minimize pH error from CO2 exchange.

The automated titration system was tested monthly prior
to sample analysis using an in-house alkalinity standard made
from dried sodium carbonate (Na2CO3). The average differ-
ence between the standard and measured values was
#1.0 ! 4.3 μmol L#1 (n = 13) (Supporting Information
Fig. S1). Consequently, very good “calibration-free” accuracy
was achieved, and no offsets were added to the standard AT

values.
DOC was measured on tank samples to assess whether non-

carbonate alkalinity (i.e., organic acid anions) could be signifi-
cant. DOC was analyzed with an Aurora 1030W Total Organic
Carbon Analyzer (Xylem Inc., OI Analytical) that uses heated
persulfate wet chemical oxidation coupled with an NDIR
detector (U.S. EPA 2005).

Carbonate system equilibrium programs
Two commonly used equilibrium programs (CO2SYS and

PHREEQC) (Lewis and Wallace 1998; Parkhurst and
Appelo 2013) and an in-house MATLAB script (Supporting
Information Appendix A) (hereafter referred to as Cal-
cCO2_frompH) were used to assess the influence of μ on fresh-
water pCO2 calculations. CO2SYS’s freshwater option sets μ = 0
(infinite dilution) (Lewis and Wallace 1998) while PHREEQC
(Parkhurst and Appelo 2013) and CalcCO2_frompH can incor-
porate μ values. Carbonic acid thermodynamic equilibrium
constants (K1 and K2) from Millero (1979) and Henry’s law con-
stant (KH) from Weiss (1974) are used in CO2SYS and Cal-
cCO2_frompH. CalcCO2_frompH accounts for changes in
dissociation constants due to μ using the Davies equation (right
side of Eq. 3) (i.e., apparent dissociation constants K0

1, K
0
2, and

K0
H; Supporting Information Appendix A). PHREEQC (version

3.4.0, database used: wateq4f; Ball and Nordstrom 1991), on
the other hand, uses equilibrium constants from Plummer and
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Busenberg (1982). Over a temperature range of 0–30$C, aver-
age percent differences between Millero (1979) and Plummer
and Busenberg (1982) equilibrium constants (K1 and K2) were
0.15%!0.08% and 0.25%!0.09%, respectively. Furthermore,
the average percent difference between Weiss (1974) and
Plummer and Busenberg (1982) Henry’s law constant over the
same temperature range was 0.18%!0.12%. These differences
have a negligible effect on calculated pCO2 so the pCO2 from
each equilibrium program can be directly compared. Input
parameters for CO2SYS include in situ temperature, AT, and in
situ pHNBS. PHREEQC uses the same input parameters as
CO2SYS with the addition of μ that it estimates from AT. To
minimize the charge balance equation within PHREEQC, a
counterion (sodium, Na+, in this case) is used. Lastly, Cal-
cCO2_frompH uses temperature, AT, in situ pHfree, and the
estimated μ explained above. pHfree is used instead of pHNBS in
CalcCO2_frompH to be consistent with the program’s appar-
ent dissociation constants.

Field application

Overview
In situ spectrophotometric pH measurements were made

in the CFR to evaluate the accuracy of calculating pCO2

through a real-world application. Submersible Autonomous
Moored Instruments (DeGrandpre et al. 1995; Martz
et al. 2003; Lynch et al. 2010) were deployed to measure
spectrophotometric pH (SAMI-pH) and pCO2 (SAMI-CO2)
directly in the CFR. A conductivity sensor for estimating μ
was also deployed as described below. A conductivity-derived
AT was calculated from a linear relationship between specific
conductivity and AT obtained from data collected from 2017
to 2020 (discussed below). The calculated AT was used with
in situ pHfree, temperature, and μ to calculate pCO2 using the
CalcCO2_frompH program. This pCO2 was then compared to
the in situ pCO2 measurements. A similar strategy is com-
monly used to compute seawater pCO2, that is, AT is derived
from a linear relationship with salinity and used with pH
measurements to compute pCO2 (Gray et al. 2012;
DeGrandpre et al. 2019). In situ temperature was measured
directly from the SAMI-CO2 and SAMI-pH. Temperature
between the two sensors showed good agreement
(#0.5 ! 0.4$C), so in situ temperature from the SAMI-pH was
used for all sensor-related equilibrium calculations. Discrete
bottle samples for AT and spectrophotometric pHfree along
with specific conductivity, pHNBS, and temperature (YSI) were
also collected four times during the deployment. This study
took place from August 21, 2019 to September 9, 2019 during
base flow river conditions on the CFR at Gold Creek
(GC) (46$3502400N, 112$5504200W).

Autonomous in situ pH and pCO2 instruments
The in situ pH system is based upon spectrophotometric

pH measurements of sample and colorimetric indicator
(e.g., purified meta-cresol purple), where a pump and valve

draw in samples and mix with indicator (Seidel et al. 2008).
The weak-acid indicator can perturb the sample pH and so the
SAMI-pH employs an automated indicator pH perturbation
correction (Seidel et al. 2008; Yuan and DeGrandpre 2008) like
what was described above for discrete spectrophotometric pH
measurements (Li et al. 2020). The in situ pCO2 sensor also
uses a colorimetric pH indicator (bromothymol blue) for spec-
trophotometric detection and operates by equilibration of
ambient freshwater (or seawater) pCO2 with the indicator con-
tained in a gas-permeable membrane (DeGrandpre
et al. 1995). Prior to the field deployment, both the pH and
pCO2 instruments were validated or calibrated in house,
respectively. An NIST traceable pH 8.00 ! 0.02 at 25.0 ! 0.1$C
(μ = " 0.2 M) phosphate buffer was used to check the SAMI-
pH accuracy. The SAMI-pH values were converted to pHNBS

(Eq. 3) and showed good agreement with the phosphate buffer
(average error of #0.007 ! 0.001 pH units, n = 12, at
25.05 ! 0.05$C). The CO2 sensor was calibrated over a range
of 100–2000 μatm at 20.0 ! 0.1$C for 10 d in the same test
tank described above, using the LI-COR for pCO2 validation
(DeGrandpre et al. 1995). The SAMI-CO2 has a response time
of " 5 min and an estimated uncertainty of " 10 ! 1 μatm
based on the standard deviation of residuals from the calibra-
tion fit (n = 956).

Conductivity and conductivity-derived alkalinity
The conductivity sensor (HOBO, Onset U24 Freshwater)

was calibrated before deployment and assessed for sensor
drift after deployment using the same method described
above for the laboratory tests. Discrete measurements of con-
ductivity were also taken using the YSI calibrated the same
way as the in situ conductivity sensor. No sensor drift was
evident but the entire in situ time series was corrected with a
constant offset of #12.9 μS cm#1 based on the average differ-
ence between the in situ and discrete conductivity
measurements.

The linear relationship using data collected from 2017 to
2020 at the deployment site (n = 33) between conductivity
and AT is shown in Fig. 1. AT correlates with conductivity
because it is primarily bicarbonate (HCO#

3 ) at this location
and is relatively conservative with a single source
(i.e., groundwater) that is also diluted or concentrated propor-
tionally from precipitation and evaporation, respectively. The
residual error from this relationship ranged from #303 to
262 μmol L#1 with a standard deviation of !130 μmol L#1

("5% uncertainty relative to the mean AT). The contribution
of AT uncertainty to the calculated pCO2 used for the field
application is assessed below.

Estimating riverine μ
In situ μ was estimated using a relationship between AT and

μ at Bearmouth on the CFR from Nagorski (2001):

μ¼ 2:63)10#6)AT
& '

þ7:01)10#4 ð5Þ
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The Bearmouth sampling site is located on the CFR
(46$4201600N, 113$2004100W) " 55 km downstream of the
deployment site and has similar chemical composition
(i.e., pH and AT; Nagorski 2001). To obtain Eq. 5, ionic
strength was calculated from Eq. 4 from measured total ion
concentrations (HCO#

3 , Ca
2+, K+, Mg2+, Na+, SO2#

4 , SiO2#
3 ) in

surface water samples and linearly correlated with AT

(Nagorski 2001). Equation 5 was then used to estimate μ dur-
ing the deployment using the conductivity-derived AT

from Fig. 1.

Data analysis
The primary statistical analyses used for this study were lin-

ear regression analysis and Student’s T-test (α = 0.05). These
tools allowed us to examine the significance of direct compari-
sons between pH measurements as well as calculated pCO2

values. Graphical visualization techniques, which include
error and 1 : 1 plots, were also used to explore dataset-wide
trends as they related to differences in pH measurements and
pCO2 values.

Assessment
Laboratory study

Electrochemical and spectrophotometric pH comparisons
The tank experiment took place over a 7-month period

where 35 tank samples were analyzed for pH and AT. The
overall measured pHNBS in the test tank ranged from 7.91 to
9.11 with an average pH of 8.40 ! 0.29. The standard devia-
tion of the spectrophotometric pH replicates ranged from
! 0.0001 to ! 0.02 pH units (n = 3) over the range of pCO2

in the test tank (" 100–1600 μatm). During the study, no

replicate samples were taken for electrochemical pH measure-
ments (i.e., Metrohm and YSI). However, an independent
assessment of the precision of each electrode found the Met-
rohm (n = 6) and YSI (n = 6) pH precisions to be ! 0.005 and
! 0.05 pH units, respectively. Note that the digital resolution
of the Metrohm and YSI pH meters are ! 0.001 and 0.01,
respectively.

Fig. 2 shows that spectrophotometric pHNBS and electro-
chemical pHNBS data fall below the 1 : 1 line indicating that

Fig. 1. The relationship between AT and specific conductivity obtained
on the CFR at GC used to calculate AT for pCO2 computation. The red line
is the linear best fit (n = 33). The average residual AT is 0 ! 130 μmol L#1.

Fig. 2. A comparison of in situ electrochemical and spectrophotometric
pHNBS measured in the test tank (15.2 ! 2.2$C). The pH was varied by
changing the pCO2 and AT (see “Methods” section). (a) YSI pH electrode
vs. spectrophotometric pH data. (b) YSI pH electrode vs. the Metrohm pH
electrode data. (c) Metrohm pH electrode vs. spectrophotometric pH
data. Data points are colored by measured AT in the test tank and range
from 1841 to 3195 μmol L#1. The 1 : 1 line (black dashed line) and linear
regression (red line) are also shown with the equation and the R2 in the
upper left of each plot. The symbols * and ** indicate that the x- and y-
axis variables are statistically different (p < 0.05) or not (p > 0.05), respec-
tively. Error bars for the spectrophotometric pH values have been omitted
because the range of the error is too small to be seen on the x-axis range
(0.00017–0.016 pH units).

Table 1. The average (! SD) differences for each regression
analysis and R2 values for the three pH techniques of spectropho-
tometric (Spec), Metrohm, and YSI found in Fig. 2. The symbols *
or ** indicate that the comparison is either statistically different
or not, respectively, with an α = 0.05.

Average differences
(! SD)

Spec—Metrohm*
(n = 35)

0.084 ! 0.050 R2 = 0.97

Spec—YSI*
(n = 21)

0.13 ! 0.12 R2 = 0.86

Metrohm—YSI**
(n = 21)

0.036 ! 0.11 R2 = 0.89
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both electrode pH data are lower than the corresponding
spectrophotometric pH measurements (p < 0.001; Table 1).
The pH electrode data are uniformly scattered around the
1 : 1 line (Fig. 2b) and there is no statistical difference
between the two electrochemical pH datasets (p > 0.05;
Table 1; Fig. 2b). In addition, the slopes derived from the lin-
ear regressions between spectrophotometric and electro-
chemical pH are statistically different from 1.0 (Fig. 2a,c;
p < 0.001). The slopes < 1.0 appear to arise from systemati-
cally larger pH differences at higher pH (i.e., pH > 8.7;
Fig. 2a,c).

The coefficients of determination (R2) for each pH compar-
ison were found to be 0.86, 0.89, and 0.97 for Fig. 2a–c,
respectively (Table 1). These values further illustrate differ-
ences in random errors between the electrochemical and

spectrophotometric pH measurements. The lower R2 values
appear to be due to larger random errors from the YSI pH
electrode (Table 1; Fig. 2a,b) reflecting the replicate precision
discussed above. The standard deviation of the residuals for
each regression analysis was ! 0.12, ! 0.11, and ! 0.05 pH
units (Fig. 2a–c, respectively), with the larger residual stan-
dard deviations corresponding to the regressions involving
the YSI pH electrode.

Calculated pCO2

The pCO2 errors calculated from the pHNBS data in Fig. 2
were assessed over a pCO2 range of 101–1593 μatm. The pCO2

was calculated using CO2SYS at infinite dilution, discussed
above, to be able to focus solely on how pH measurements
affect calculated pCO2. Later, a thermodynamically rigorous

Table 2. The average (! SD) and range of calculated pCO2 and pCO2 error (compared to the measured pCO2) between the three pH
techniques calculated from CO2SYS at infinite dilution. The average percent error of each pH technique relative to the measured pCO2

is also reported.

Spectrophotometric Metrohm YSI
(n = 34) (n = 34) (n = 20)

Calculated pCO2 (μatm) Average (! SD) 683 ! 417 825 ! 522 826 ! 643
Range 130–1660 203–2065 172–2240

pCO2 error (μatm) Average (! SD) 58 ! 33 203 ! 125 277 ! 284
Range #30 to 110 65–553 25–973

Percent error (%) Average (! SD) 14 ! 9 40 ! 21 62 ! 51

Fig. 3. The pCO2 error (calculated # measured) vs. measured pCO2. Spectrophotometric (n = 34), Metrohm (n = 34), and YSI (n = 20) pHNBS data are
used to calculate pCO2 using the equilibrium program CO2SYS at infinite dilution. The dashed black line represents zero error. Measured AT values ranged
from 1841 to 3195 μmol L#1. Different symbols represent different in situ tank temperatures. Calculated pCO2 from the (b) Metrohm and (c) spectropho-
tometric pH measurements were analyzed at 10$C (n = 4), 15$C (n = 26), and 20$C (n = 4), whereas calculated pCO2 from the (a) YSI pH electrode was
only analyzed at 15$C (n = 20).
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comparison is made to illustrate deviations in calculated pCO2

due to μ. The pCO2 error dependence on pCO2 levels is shown
in Fig. 3. The error in calculated pCO2 using the Metrohm and
YSI pH electrodes generally increased with increasing pCO2

(Fig. 3a,b), whereas the error in calculated pCO2 from spectro-
photometric pH appears relatively consistent with increasing
pCO2 (Fig. 3c). Spectrophotometric, Metrohm, and YSI pH had

average pCO2 errors (calculated – measured) of 58 ! 33,
203 ! 125, and 277 ! 284 μatm, respectively (Table 2). In
addition, the average percent errors from spectrophotometric,
Metrohm, and YSI pH are 14% ! 9%, 40% ! 21%, and
62% ! 51%, respectively (Table 2). Metrohm and YSI calcu-
lated pCO2 also displayed the largest absolute errors of
553 and 973 μatm, respectively (Table 2). Furthermore, tem-
perature did not appear to affect pCO2 error regardless of the
pH used (Fig. 3b,c). The systematically high pCO2 values from
the electrode measurements (Fig. 3a,b; Table 2) supports that
the pH bias shown in Fig. 2 is due to errors in the electrode
pH. The precision of calculated pCO2 among the three pH
techniques was also assessed. The pCO2 precision from the
two pH electrodes was ! 125 and ! 284 for Metrohm and YSI
pH, respectively; compared to ! 33 μatm for spectrophotomet-
ric pH (Table 2; SD of pCO2 errors). From Fig. 3 data, it is evi-
dent that pCO2 calculated using spectrophotometric pH is
both more accurate and precise compared to pCO2 calculated
from electrochemical pH (Fig. 3c; Table 2), especially at higher
pCO2 levels.

It is important to mention, here, that the tank DOC ranged
from " 8 to 42 μmol L#1 (n = 6) during the study. Following
the conclusions in Liu et al. (2020), that states that in more
alkaline waters (e.g., pH = 7–8.5 and AT > 1000 μmol L#1) low
in DOC (e.g., < 350 μmol L#1) the contribution of “excess AT”
from organic acid anions is negligible. Therefore, the tank
water DOC was assumed to be too low to significantly contrib-
ute to the measured AT, and consequently, the calcu-
lated pCO2.

Assessment of μ and associated pCO2 error
The importance of μ was initially underestimated in our

pCO2 accuracy evaluations as μ in freshwater systems is typi-
cally assumed to be zero (Hunt et al. 2011; Stets et al. 2017).
We noticed that the calculated pCO2 error would change
depending on (1) the μ used to calculate in situ pH (Eqs. 1, 3)
and (2) if μ was used to calculate apparent equilibrium con-
stants (i.e., K0

1, K
0
2, and K0

H ). This led to the μ sensitivity tests
using four different programs, CO2SYS at infinite dilution,
PHREEQC, CalcCO2_frompH_1, and CalcCO2_frompH_2,
which illustrate different approaches for using μ (Fig. 4;

Fig. 4. (a) The comparison of pCO2 calculated from spectrophotometric
pH and AT using different equilibrium models to measured pCO2. The
dashed black line represents the 1 : 1 line. pHfree and pHNBS were used to
be consistent with the pH scales in each program. (b) The pCO2 error
(calculated # measured) vs. measured pCO2 (n = 136). The black dashed
line represents zero error.

Table 3. The average (! SD) pCO2 error (jcalculated # measured pCO2j) and range using different μ in CO2SYS (infinite dilution),
PHREEQC, and CalcCO2_frompH. CalcCO2_frompH_1 and CalcCO2_frompH_2 use μ calculated from AWQR (2020) and Griffin and
Jurinak (1973), respectively. μ averages (! SD) are included in the header and represent the μ used to calculate the apparent dissociation
constants. Averages were taken from absolute values to avoid biases from large positive and negative values. The range is not reported
in absolute values to illustrate the true range of pCO2 error.

CO2SYS
(n = 34) μ = 0 mM

PHREEQC (n = 34)
μ = 2.8 ! 0.4 mM

CalcCO2_frompH_1 (n = 34)
μ = 7.4 ! 1.2 mM

CalcCO2_frompH_2 (n = 34)
μ = 4.2 ! 0.7 mM

Average
(! SD)

58 ! 29 38 ! 24 35 ! 19 37 ! 42

Range #30 to 110 #130 to 67 #97 to 67 #176 to 34
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Table 3). CalcCO2_frompH_1 and CalcCO2_frompH_2 pCO2

values were calculated using spectrophotometric pH and AT

with calculated μ from the Missoula Aquifer (AWQR 2020)
and from the Griffin and Jurinak (1973) relationship, respec-
tively. The relationship from Griffin and Jurinak (1973) corre-
lates μ with conductivity, but it is derived from soil water and
river samples, making its comparison to CalcCO2_frompH_1
useful for broadscale applicability in other systems. Spectro-
photometric pHfree measurements were used in Cal-
cCO2_frompH_1 and CalcCO2_frompH_2. To be consistent
with the pH scales, spectrophotometric pHNBS values were
used in both CO2SYS (infinite dilution) and PHREEQC. pCO2

values calculated with CO2SYS were included to be able to
compare to how pCO2 is conventionally calculated in the liter-
ature and are the same values presented in Fig. 3c. In addition,
PHREEQC calculates μ within its program from the input AT (i.
e., [HCO#

3 ]) and counterion used to achieve charge balance
(e.g., [Na+]), neglecting other ions potentially present in
waters. Thus, the μ used for the apparent dissociation con-
stants are lower in PHREEQC compared to
CalcCO2_frompH_1 and CalcCO2_frompH_2 (Table 3). Fur-
thermore, the average and standard deviation of μ presented
in Table 3 reflect the differences in the approaches used for
estimating μ. Different approaches explicitly assume different
ionic species concentration.

The different calculated pCO2 values are compared to the
measured pCO2 using a 1 : 1 plot (Fig. 4a) where most values
appear to follow the 1 : 1 line with minimal spread. However,
when looking at the pCO2 error, a “fanning-out” pattern
becomes clear as you go from low to high pCO2 levels (Fig. 4b).
The pCO2 calculated from CO2SYS at infinite dilution generally

overestimated pCO2 while the pCO2 calculated using apparent
dissociation constants (CalcCO2_frompH and PHREEQC) gener-
ally underestimated pCO2 at higher levels (Fig. 4b). Compared
to the average error from PHREEQC, CalcCO2_frompH_1, and
CalcCO2_frompH_2, the average error calculated from CO2SYS
is significantly larger (p < 0.01; Table 3). The average error from
PHREEQC, CalcCO2_frompH_1, and CalcCO2_frompH_2 is not
significantly different from each other (p > 0.05; Table 3). Recall
that CO2SYS and CalcCO2_frompH use the same equilibrium
constants; thus, at infinite dilution these two programs calculate
the same pCO2 values when using the same pH scale. The differ-
ences in calculated pCO2 between CO2SYS and Cal-
cCO2_frompH arise in part because of the differences between
pHNBS and pHfree (Eq. 3). The error in calculated pCO2 gets fur-
ther compounded by differences in infinite dilution dissociation
constants (i.e., CO2SYS) and apparent dissociation constants
(i.e., CalcCO2_frompH). Moreover, we see an increase in calcu-
lated pCO2 with increasing μ using pHfree and CalcCO2_frompH
as noted by the decreasing error from CalcCO2_frompH_2 to
CalcCO2_frompH_1 (Fig. 4b). The increase in calculated pCO2

from higher μ is a result of the covariation between pHfree and
the apparent dissociation constants within CalcCO2_frompH.
Conversely, we see a decrease in calculated pCO2 with higher μ
using pHNBS (CO2SYS compared to PHREEQC; Fig. 4b; Table 3).

To further evaluate μ effects on calculated pCO2 error, the
pCO2 error was modeled as a function of μ percent error. The
pCO2 calculated from spectrophotometric pHfree and its associ-
ated μ (calculated from AWQR 2020) were used as the reference
dataset (dataset in Fig. 4; CalcCO2_frompH_1). The reference
spectrophotometric pHfree values were adjusted by using the
Davies term (right side of Eq. 3) to account for the modeled μ
percent error. Fig. 5 illustrates the range for calculated pCO2 error
from zero ionic strength (e.g., #100% ionic strength error) to
double the reference ionic strength (e.g., +100% ionic strength
error; μ = 14.8 mM) over the range of pCO2 found during the
tank study. The relative error is also a function of pCO2 where
high pCO2 error is associated with high pCO2 levels and large μ
error (Fig. 5). Furthermore, if μ is assumed to be zero
(i.e., #100% ionic strength error) as is commonly done in fresh-
water CO2 studies (Stets et al. 2017), the uncertainty in calcu-
lated pCO2 error is " 20%. Moreover, at a # 50% μ error relative
to CalcCO2_frompH_1 (i.e., CalcCO2_frompH_2; Table 3), the
average modeled pCO2 error (from absolute values) was not sta-
tistically different from the CalcCO2_frompH_2 error
(Table 3; p > 0.05).

Field application
The time series from the field study are shown in Fig. 6.

Riverine pHfree and temperature measured from the SAMI-pH
during the deployment ranged from 8.11 to 8.83 (average of
8.41 ! 0.21) and 1.7$C to 21.3$C (average of 12.7$C ! 4.6$C),
respectively (Fig. 6a,b). Conductivity-derived AT (Fig. 6c), spe-
cific conductivity (Supporting Information Fig. S2a), and μ

Fig. 5. Modeled relative pCO2 error for percent error in μ where individ-
ual lines are colored by calculated pCO2 (μatm). Only the spectrophoto-
metric pHfree dataset was used for this model, thus, the pCO2 calculated
from spectrophotometric pHfree lies at 0% ionic strength error and zero
pCO2 error. The black dashed line represents zero calculated pCO2 error.
All model calculations of pCO2 were done using the CalcCO2_frompH
script at in situ tank temperatures.
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(Supporting Information Fig. S2b) ranged from 2490 to
3440 μmol L#1 (average = 3050 ! 113 μmol L#1), 394.4 to
465.4 μS cm#1 (average = 424.4 ! 8.7 μS cm#1), and 7.3 to
9.7 mM (average = 8.7 ! 0.3 mM), respectively. The average
diel range of pH was " 0.6 pH units and the average diel range
of pCO2 was " 900 μatm (Fig. 6a,d). The average difference
between discrete pH and SAMI-pH measurements was
#0.003 ! 0.028 pH units for spectrophotometric pH and
# 0.09 ! 0.06 pH units for YSI pH. The average difference
between discrete AT and conductivity-derived AT was
#14 ! 11 μmol L#1. Furthermore, the pCO2 calculated from
spectrophotometric and YSI pH discrete samples had average
differences of #66 ! 39 and 35 ! 71 μatm, respectively, when
compared to SAMI-CO2 measurements (Fig. 6d).

The in situ pHfree (Fig. 6a; Eq. 1) data was used with
conductivity-derived AT (Fig. 1 and Fig. 6c), μ (Supporting
Information Fig. S2b; Eq. 5) and temperature (Fig. 6b) to calcu-
late pCO2 (Fig. 6d). The average difference between the calcu-
lated and measured pCO2 is #70 ! 57 μatm with an average

percent error of 10% ! 7% (Fig. 7). We found that the error in
calculated pCO2 during the field application was pCO2 depen-
dent, for example, the average error was #55 ! 52 μatm at
pCO2 < 1000 μatm and # 102 ! 55 μatm at pCO2 > 1000 μatm
(Fig. 7b). This error can be partially explained by uncertainty
in the conductivity-derived AT where the residual uncertainty
from the Fig. 1 linear fit is ! 130 μmol L#1. It is important to
note that the uncertainty of the AT (Supporting Information
Fig. S1) and specific conductivity (< 5 μS cm#1) measurements
are much less than the uncertainty reported by the linear
least-squares regression (Fig. 1). This suggests that the scatter
of this relationship is caused by biogeochemical factors and
not measurement error. Instead, this relatively large uncer-
tainty could be driven by evapotranspiration (ET) which cre-
ates diel inputs of groundwater (Dodds et al. 2017; Shangguan
et al. 2021). In addition, there appears to be a repeating clock-
wise pattern in pCO2 error (i.e., hysteresis) (Fig. 7b). Further
discussion of potential mechanisms that may explain this pat-
tern are provided below.

Fig. 6. A 19-d in situ time series from the CFR of (a) spectrophotometric pHfree, (b) temperature, (c) conductivity-derived AT, and (d) measured pCO2

(SAMI-CO2; solid black line) and calculated pCO2 (SAMI-pH and conductivity-derived AT; red dashed line). Discrete samples of measured pH and calcu-
lated pCO2 using spectrophotometric pH (green circles) and YSI pH (green squares) are also shown in (a) and (d), respectively. Discrete AT samples are
represented by green triangles in (c). The date and time displayed is UTC during the year 2019.

10

Young et al. Comparing pH for calculating pCO2



Discussion
It is evident in Figs. 2, 3, Tables 1, 2, and the statistics

stated in the Assessment that spectrophotometric pH has sig-
nificantly better replicate precision than electrochemical pH
and, based on its application for calculation of pCO2, signifi-
cantly better accuracy. Spectrophotometric pH is based on
highly reproducible and accurate optical absorbances in con-
trast to the pH electrode potential that is affected by many
environmental and instrumental factors (e.g., ionic strength
gradient, buffer composition, reference potential, etc.). The
conclusions presented here support findings of past studies
that electrode pH is systematically low in low ionic strength
solutions (Illingworth 1981; Herczeg and Hesslein 1984;
Davison and Woof 1985) stemming from the liquid junction
of the reference electrode.

The spectrophotometric pH accuracy and precision trans-
lates into greatly improved estimation of pCO2 from pH and
AT. The large differences in pCO2 calculated from the two pH
electrodes show that, while electrode performance might be

adequate under some circumstances, it is difficult to control
and predict even in a controlled laboratory study with care-
fully calibrated electrodes.

This study also found that accounting for μ in the equilib-
rium constants and pHfree can improve calculated pCO2 accu-
racy (Fig. 4). The pCO2 error is reduced using the best available
μ (Table 3, CalcCO2_frompH_1) compared to the common
practice of using CO2SYS at infinite dilution (Table 3). Fur-
thermore, theoretical calculations indicate that changes in μ
can alter equilibrium constants and impact calculated pCO2

(Fig. 5). Moreover, theoretical calculations (Fig. 5) were also
able to predict a similar average error that was observed for
CalcCO2_frompH_2.

The average percent error in calculated pCO2 from spectro-
photometric pHfree (using CalcCO2_frompH) from the tank
study and field application is 8% ! 6% and 10% ! 7%, respec-
tively. The field application using in situ sensors demonstrated
that spectrophotometric pH can be employed in a real-world
application and produce similar results found in a controlled
laboratory setting. As discussed above, the error in calculated
pCO2 during the field application was pCO2 dependent
(Figs. 6, 7). Errors were largest at high pCO2 levels which
occurred at night due to respiration (Figs. 6d, 7). Furthermore,
error in the conductivity-derived AT relationship likely con-
tributed significantly to the observed pCO2 error from the field
application. As discussed above, the residual uncertainty in
the relationship between specific conductivity and AT (Fig. 1)
ranged from #303 to 262 μmol L#1 with a standard deviation
of residuals of ! 130 μmol L#1. The large residuals are mostly
driven by the data with high specific conductivity and high
AT (Fig. 1), measurements that are common during base flow
conditions. Because the field study took place during base flow
conditions, uncertainties in the conductivity-derived AT time
series could contribute to the observed differences between
calculated and measured pCO2 (Figs. 6d; Supporting Informa-
tion Fig. S3). To examine this idea, the standard deviation of
residuals (! 130 μmol L#1) was added to and subtracted from
the entire conductivity-derived AT time series (Fig. 6c) to cre-
ate upper and lower bounds (Supporting Information Fig. S3).
These limits were then used to calculate pCO2, as described
previously. Supporting Information Fig. S3 reveals that for
most of the diel cycles, error in the conductivity-derived AT

can explain a significant part of the difference between calcu-
lated and measured pCO2, where the original calculated pCO2

error (Fig. 6d) is significantly different from the uncertainty
corrected pCO2 error (Supporting Information Fig. S3, upper
orange ribbon boundary) (p < 0.001). The average pCO2 error
and percent error were reduced to #34 ! 54 μatm (n = 1685)
and 7% ! 6%, respectively, a 51% improvement in calculated
pCO2 error. As discussed above, ET can drive AT and conduc-
tivity diel cycles (Wilcock and Chapra 2005; Shangguan
et al. 2021) and is likely controlling the diel AT in the CFR
(Shangguan et al. 2021), with lower groundwater signals dur-
ing the day (lower AT) due to riparian groundwater uptake.

Fig. 7. (a) The comparison of measured pCO2 and pCO2 calculated from
SAMI-pH and conductivity-derived AT during the in situ deployment in
the CFR. The dashed black line represents the 1 : 1 line. (b) The pCO2

error (calculated # measured) vs. measured pCO2 (n = 1685). The dashed
black line represents zero error. See Fig. 6c for the conductivity-derived AT
value range during the deployment. The CalcCO2_frompH script with μ
estimated from Eq. 5 was used to calculated pCO2.
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Thus, ET accounts for the major uncertainty of the AT–

conductivity relationship during base flow (Fig. 1). This pro-
posed mechanism seems to explain most of the difference
between the calculated and measured pCO2 during the field
application portion of this study (Fig. 6; Supporting Informa-
tion Fig. S3). In addition, the error in calculated pCO2 may be
further attributed to photo-contamination and/or temperature
effects within the pH and pCO2 sensors. Figure 7b indicates a
cyclic pattern between pCO2 error and measured pCO2. Upon
further exploration, we found that this hysteresis pattern is
driven by a diel signal (i.e., solar radiation, temperature) in the
river that causes the sensor’s blank intensities to change. We
believe, however, that this error is minor compared to the
conductivity-derived AT uncertainty.

Lastly, accurate pCO2 is critical for constraining air–water
fluxes. Therefore, the observed percent uncertainty in com-
puted pCO2 (8% ! 6%) from spectrophotometric pHfree, AT,
and μ (see dataset in Fig. 4; CalcCO2_frompH_1) presented in
this study would translate to a similar percent uncertainty
when estimating CO2 gas fluxes. Thus, more accurate CO2 gas
flux estimates could be obtained from spectrophotometric pH
than from electrochemical pH, which had an observed percent
uncertainty in computed pCO2 of > 40% (Table 2).

Comments and recommendations
The study clearly demonstrates the advantages of using

spectrophotometric pH for freshwater pCO2 calculations. pH is
of course a master variable in aquatic systems and a wide array
of freshwater research could potentially benefit from higher
quality pH measurements. Spectrophotometric pH data might
improve model calculations of metal speciation/complexation
and toxicity modeling (Wang et al. 2016; Huang et al. 2017),
calcium carbonate saturation (Müller et al. 2015; Khan
et al. 2021), and net ecosystem production (Oren et al. 2006;
Lynch et al. 2010; Kanuri et al. 2017). Highly reproducible pH
measurements will also be valuable for monitoring long-term
changes in pH due to CO2 acidification or other long-term
anthropogenic impacts in rivers and lakes (Butman and
Raymond 2011; Phillips et al. 2015; Arroita et al. 2019; Minor
et al. 2019). Moreover, a “do-it-yourself” portable photometer
developed for seawater (Yang et al. 2014; Wang et al. 2019),
could make discrete freshwater measurements of spectropho-
tometric pH for the computation of pCO2 easier in the field. It
remains, however, that measuring freshwater pCO2 directly
rather than computing it from inorganic carbon parameters is
preferred, as is true for seawater. Although, our focus is on riv-
erine CO2, these findings and subsequent conclusions apply
to all freshwater systems.

Future experiments should expand the pCO2 range to
include much higher levels (e.g., 2000–10,000 μatm), vary
the temperature over a larger range (0–30$C), and evaluate
at lower AT (e.g., < 1000 μmol L#1; Liu et al. 2020). Organic
acid concentrations could further increase pCO2 error and
should also be considered in future studies with

spectrophotometric pH and AT. An additional complicating
factor with spectrophotometric pH is that colored dissolved
organic matter could cause inaccurate absorbance readings
at high concentrations and could therefore lead to inaccu-
rate pH values (i.e., tenths of pH units too low in strongly
colored waters, Müller et al. 2017). This might mostly be
corrected by the blank but needs to be tested, nonetheless.
Thus, at high DOC concentrations both AT and spectropho-
tometric pH measurements could be biased. The findings
from this study also indicate that inaccurate μ contributes
significantly to calculated pCO2 uncertainty and must be
accounted for to minimize pCO2 error. In addition, a caveat
to our conclusions regarding field measurements of spectro-
photometric pH is that the CFR is a well buffered system
and so the indicator pH perturbation is relatively small
(as discussed in “Methods” section). This perturbation effect
could be larger in other, less buffered systems
(<1000 μmol L#1) even if they are corrected using
established methods (Yuan and DeGrandpre 2008; Lai
et al. 2016).
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Fig. S1. The AT quality control chart representing the differences between known AT 
standard values and measured AT values. ΔAT represents the average error between the 
known and measured AT values (measured – known). The average ΔAT is -1.0 ± 4.3 
µmol L-1 (n = 13). The UCL and LCL represent the upper and lower 99% control 
limits, respectively, calculated from three times the average measurement standard 
deviation. Error bars represent the standard deviation of replicates. A total of 13 
measurements were made covering the duration of the tank study experiment as 
outlined in the main text. 
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Fig. S2. A 19-day time series from the CFR of (a) measured specific conductivity and (b) 
calculated ionic strength. Ionic strength was calculated using the conductivity-derived AT 
obtained from Figure 1 in the main text along with eq. 5 (Nagorski 2020). The date and 
time are UTC during the year 2019. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. S3. Measured (solid black line) pCO2 time series compared to calculated pCO2 using 
conductivity-derived AT with ±130 µmol L-1 uncertainty limits (orange ribbon) and 
calculated pCO2 using a constant AT (3050 µmol L-1) (green line). This plot examines the 
uncertainty in the conductivity derived AT relationship and how it can help explain the 
observed difference between measured and calculated pCO2 in Figure 6d of the main text. 
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Appendix A 
 
Below is the code used in the main text for calculating freshwater pCO2 from pHfree, AT, 
temperature, and ionic strength. In the main text this program is referred to as 
“CalcCO2_frompH”. Commented throughout the code are references and descriptions for how to 
use the code.    
 
% ****************pCO2_Equilibrium_Model_TA_pH_freshwater.M******************* 
% **********ORIGINALLY WRITTEN BY T.MARTZ FOR SEAWATER*************** 
% *******************MODIFIED FOR FRESHWATER BY C.LAI******************* 
% ****************MODIFIED FOR READING DATASETS BY F. YOUNG************ 
% *******PROGRAM FOR CALCULATING pCO2 from pH and TA for freshwater******** 
% ******** Copyright 2022 - Martz, Lai, Young, and DeGrandpre.  MIT License *********** 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Brief Description of Program 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% This program is used to calculate the partial pressure of carbon dioxide 
% (pCO2) from pH and total alkalinity (TA). Ionic strength (I) is used for 
% both the pH measurement and apparent equilibrium constants (K1a, K2a, KWa, 
% and KHa). pH measurements are made on the Free Hydrogen Ion Scale and the  
% hydrogen ion activity is determined using the Davies equation. 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Example of how to use Program 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Upload input parameters ('Temp','spCond' or 'IS, 'TA', and 'pH') as column  
% vectors. Note: make sure that the units are correct as described below in 
% 'INPUT VALUES'. Once input parameters are loaded and labeled properly, 'RUN' 
% the script. The program will automatically generate the calculated pCO2 
% under the column vector labeled 'pCO2_correction'. This will be the final  
% pCO2 value. Note that this program also generates calculated values for  
% dissolved inorganic carbon (DIC), bicarbonate ion (HCO3), carbonate ion (CO3), 
% and dissolved CO2 (CO2). 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% START SCRIPT 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Global Environment 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
global CT TA KWa K1a K2a KHa alpha1 alpha2 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Input Values 



%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
TC = Temp; %temperature in degrees celsius 
TK = TC + 273.15; %temperature in Kelvin 
EC = spCond ./ 1000; %electrical conductivity. EC must is in mS/cm so use uS/cm with the  
%'./1000' 
TA = TA ./ 1000000; %measured total alkalinity in mol/kg so make sure input TA is in umol/kg  
pH = pH; %determined pH on the Free Hydrogen Ion Scale 
I = 0.0127 .* EC; %ionic strength calculated from electrical conductivity in mol/L using Griffin  
%and Jurinak 1973 relationship 
%I = IS; %if ionic strength is known comment out 'EC' and 'I' calculation to use ionic strength  
%estimates directly and uncomment this line. 
 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating activity coefficients 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculations of concentrations for different ions are based on the equilibrium 
%with the inclusion of activity coefficients and Davies equation      
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
A = 0.5092 + (TC - 25) .* 0.00085; % temperature-related coefficient in Davies equation 
gamma = -A.*(I .^ 0.5 ./ (1 + I .^ 0.5) - 0.3 .* I); % part of Davies equation  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
% Therefore, the activity coefficient to different ions are relevant to gamma*(charge of ion)^2 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
ACH = 10 .^ gamma; % activity coefficient for H+ 
ACOH = 10 .^ gamma; % activity coefficient for OH- 
ACHCO3 = 10 .^ gamma; % activity coefficient for HCO3- 
ACCO3 = 10 .^ (4 .* gamma); % activity coefficient for CO32- 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
%Calculating freshwater apparent equilibrium constants K1K2 (Source: Millero et al. 1979) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
K1 = exp(290.9097 - 14554.21./TK - 45.0575.*log(TK)); 
K1a = K1 ./ (ACH .* ACHCO3); % apparent dissociation coefficient  
 
K2 = exp(207.6548 - 11843.79./TK - 33.6485.*log(TK)); 
K2a = K2./(ACH .* ACCO3./ACHCO3); % apparent dissociation coefficient  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating freshwater apparent equilibrium constants KW (Source: Millero 1995) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
KW = exp(-13847.26 ./ TK + 148.9802 - 23.6521 .* log(TK)); 
KWa = KW./(ACH .* ACOH); % apparent dissociation coefficient  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculating freshwater apparent equilibrium constants KH (Source: Weiss 1974) 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
KH = exp(93.4517 .* 100 ./ TK - 60.2409 + 23.3585 .* log(TK ./ 100)); 
 
 % Convert ionic strength to salinity 



  S = 53.974*I; 
   
KHa = KH + (0.023517 - 0.023656 * TK./100 + 0.0047036 .* TK./100 .* TK./100).*S; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%Calculation of each ion concentration 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    H = 10.^(-pH); 
    OH = KWa ./ H; 
    alpha1 = (H .* K1a)./(H.^2 + K1a .* H + K1a .* K2a);  
    alpha2 = (K1a .* K2a) ./ (H.^2 + K1a .* H + K1a .* K2a); 
    CT  = (TA- OH + H) ./ (alpha1 + 2.*alpha2); 
    CO2 = CT .* (H .^ 2) ./ (H .^ 2 + K1a .* H + K1a .* K2a); 
    HCO3 = CO2 .* K1a ./ H; 
    CO3 = HCO3 .* K2a ./ H; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%DIC calculation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
DIC = CT .* 1000000; 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%pCO2 calculation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
CO2 = (CT .* (H.^2) .* 10.^ (6.*gamma)) ./ ((H.^2 .* 10.^(6.*gamma))+ (K1 .* H .* 
10.^(4.*gamma))+ (K1 .* K2)); 
  
  %Uses Henry's Law constant and converts from atm to uatm (KH in fugacity (mol-atm / kg- 
  %soln)) 
    pCO2 = (CO2 ./ KH) .* 1000000; 
  %Uses the apparent Henry's Law constant and converts from atm to uatm (KHa in fugacity  
  %(mol-atm / kg-soln)) 
    pCO2_correction = (CO2 ./ KHa) .* 1000000; 
  
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
%END SCRIPT 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


