
SIAM J. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 51, No. 5, pp. 1626-1691

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS
WITH DEADLINES⇤

PAVEL VESELÝ†, MAREK CHROBAK‡, LUKASZ JEŻ§, AND JIŘÍ SGALL†

Abstract. In the online packet scheduling problem with deadlines (PacketSchD, for short), the
goal is to schedule transmissions of packets that arrive over time in a network switch and need to be
sent across a link. Each packet has a deadline, representing its urgency, and a nonnegative weight,
which represents its priority. Only one packet can be transmitted in any time slot, so if the system
is overloaded, some packets will inevitably miss their deadlines and be dropped. In this scenario, the
natural objective is to compute a transmission schedule that maximizes the total weight of packets
that are successfully transmitted. The problem is inherently online, with the scheduling decisions
made without the knowledge of future packet arrivals. The central problem concerning PacketSchD
that has been a subject of intensive study since 2001 is to determine the optimal competitive ratio
of online algorithms, namely the worst-case ratio between the optimum total weight of a schedule
(computed by an o✏ine algorithm) and the weight of a schedule computed by a (deterministic)
online algorithm. We solve this open problem by presenting a �-competitive online algorithm for
PacketSchD (where � ⇡ 1.618 is the golden ratio), matching the previously established lower bound.

Key words. online algorithms, packet scheduling, bu↵er management

MSC code. 68W27

DOI. 10.1137/21M1469753

1. Introduction. In the online packet scheduling problem with deadlines (ab-
breviated PacketSchD), the goal is to schedule transmissions of packets that arrive
over time in a network switch and need to be sent across a link. The switch stores
incoming packets in a bu↵er that is assumed to have unlimited capacity. Besides its
release time rp, each arriving packet p has two other attributes: a deadline dp, which is
the last time slot when p can be transmitted, and a nonnegative weight wp. The dead-
line of p represents its urgency, while its weight represents its importance or priority.
(These priorities can be used to implement various levels of service in networks with
Quality of Service (QoS) guarantees.) Only one packet can be transmitted in any time
slot, so if the system is overloaded, some packets will inevitably miss their deadlines
and be dropped. In this scenario, the natural objective is to compute a transmission
schedule that maximizes the total weight of packets that are successfully transmitted.
In the literature, this problem is also occasionally referred to as bounded-delay bu↵er

⇤
Received by the editors January 7, 2022; accepted for publication (in revised form) July 8, 2022;

published electronically October 31, 2022. A preliminary version has appeared in Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’19).

https://doi.org/10.1137/21M1469753
Funding: The first author was partially supported by European Research Council grant ERC-

2014-CoG 647557 and by Charles University project UNCE/SCI/004. The second author was par-
tially supported by NSF grant CCF-1536026 and CCF-2153723. The third author was partially sup-
ported by NCN grants 2016/21/D/ST6/02402, 2016/22/E/ST6/00499, and 2020/39/B/ST6/01679.
The first and fourth authors were partially supported by GA ČR project 19-27871X.

†
Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Prague,

Czech Republic (vesely@iuuk.m↵.cuni.cz, sgall@iuuk.m↵.cuni.cz).
‡
Department of Computer Science, University of California at Riverside, Riverside CA 92521 USA

(marek@cs.ucr.edu).
§
Institute of Computer Science, University of Wroc law, Wroc law, Poland (lje@cs.uni.wroc.pl).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1626

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1469753
mailto:vesely@iuuk.mff.cuni.cz
mailto:sgall@iuuk.mff.cuni.cz
mailto:marek@cs.ucr.edu
mailto:lje@cs.uni.wroc.pl

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1627

management , QoS bu↵ering , or as a job scheduling problem for unit-length jobs with
release times, deadlines, and weights, where the objective is to maximize the weighted
throughput. In the o✏ine setting, where the information about all packets is available
in advance, it is easy to find an optimal schedule by representing the set of packets as
a bipartite graph, with each packet p connected to all slots in its interval [rp, dp] by
an edge of weight wp, and applying any algorithm for the maximum-weight bipartite
matching to this graph.

In practice, however, scheduling of packets must be accomplished online, with
the scheduling decisions made without the knowledge of future packet arrivals. The
central problem concerning PacketSchD that has been a subject of intensive study
since 2001 is to determine the optimal competitive ratio of online algorithms, namely
the worst-case ratio between the optimum total weight of a schedule (computed by an
o✏ine algorithm) and the weight of a schedule computed by a (deterministic) online
algorithm.

This paper provides the solution of this open problem by establishing an upper
bound of � on the competitive ratio for PacketSchD (where � = (1 +

p
5)/2 ⇡ 1.618

is the golden ratio), matching the previously known lower bound [16, 3, 23, 10]. Our
�-competitive algorithm PlanM is presented in section 4. The basic idea underlying
our algorithm is relatively simple. It is based on the concept of the optimal plan,
which, at any given time t, is the maximum-weight subset of pending packets that
can be feasibly scheduled in the future (if no other packets arrive); we describe it in
section 3. When some packet p from the plan is chosen to be transmitted at time
t, it will be replaced in the plan by some other packet %. The algorithm chooses
p to maximize an appropriate linear combination of wp and w%. Furthermore, the
algorithm makes additional changes in the plan, adjusting deadlines and weights of
some packets. These changes are necessary to achieve the competitive ratio � and can
be viewed as a subtle way to remember necessary information about the past. While
the algorithm itself is not complicated, its competitive analysis, given in section 5, is
quite intricate. It relies on showing a bound on amortized profit at each step, using a
potential function, which quantifies the advantage of the algorithm over the adversary
in future steps, and on maintaining an invariant that allows us to control decreases of
the potential function. The ideas leading to the development of algorithm PlanM and
its analysis are also outlined in the SIGACT News “Online Algorithms” column [22].

Past work. The PacketSchD problem was first introduced independently by
Hajek [16] and Kesselman et al. [18], who both gave a proof that the greedy al-
gorithm (which always transmits the heaviest packet) is 2-competitive. Hajek’s paper
also contains a proof of a lower bound of � ⇡ 1.618 on the competitive ratio. The
same lower bound was later discovered independently by Andelman et al. [3, 23] and
also by Chin et al. [10] in a di↵erent, but equivalent, setting. Improving over the
greedy algorithm, Chrobak et al. [11, 12] gave an online algorithm with competitive
ratio 1.939. This ratio was subsequently improved to 1.854 by Li et al. [20], and to
1.828 by Englert and Westermann [14]. This value of 1.828, prior to our work, has re-
mained the best upper bound on the competitive ratio of PacketSchD in the published
literature.

Algorithms with ratio � have been developed for several restricted variants of
PacketSchD. Li et al. [19] (see also [17]) gave a �-competitive algorithm for the case
of agreeable deadlines, which consists of instances where the deadline ordering is the
same as the ordering of release times, i.e., rp < rq implies dp  dq for any packets p
and q. Another well-studied case is that of s-bounded instances, where each packet
can be scheduled in at most s slots, that is dp  rp + s � 1 for each packet p. A

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1628 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

�-competitive algorithm for 2-bounded instances was given by Kesselman et al. [18].
This bound was later extended to 3-bounded instances by Chin et al. [9] and to
4-bounded instances by Böhm et al. [5]. The work of Bienkowski et al. [6] provides
an upper bound of � (in a somewhat more general setting) for the case where packet
weights increase with respect to deadlines. All these results are tight, as the proof of
the lower bound of � in [16, 3, 23, 10] is based on an adversary strategy that uses
only 2-bounded instances with increasing weights, and 2-bounded instances have the
agreeable-deadline property.

In s-uniform instances , each packet has exactly s consecutive slots where it can be
scheduled. (Obviously, such instances also satisfy the agreeable deadlines property.)
The lower bound of � in [16, 3, 23, 10] does not apply to s-uniform instances; in fact,
as shown by Chrobak et al. [12], for 2-uniform instances, competitive ratio ⇡ 1.377
is optimal.

Randomized online algorithms for PacketSchD have been studied as well, although
the gap between the upper and lower bounds for the competitive ratio in the random-
ized case remains quite large. The best upper bound is ⇡ 1.582 [4, 9, 8, 21], and it
applies even to the adaptive adversary model. For the adaptive adversary, the best
lower bound is ⇡ 1.33 [8], while for the oblivious adversary it is 1.25 [10].

Kesselman et al. [18] originally proposed the problem in the setting with integer
bandwidth m � 1, which means that m packets are sent in each step. For an arbi-
trary m, they proved that the greedy algorithm is 2-competitive and that there is a
�-competitive algorithm for 2-bounded instances [18]. Later, Chin et al. [9] gave an
algorithm with ratio that tends to e

e�1 ⇡ 1.582 for m!1. The best lower bound for
any m, also due to Chin et al. [9], equals 1.25 and holds even for randomized algo-
rithms against the oblivious adversary. Observe that any upper bound for bandwidth
1 implies the same upper bound for an arbitrary m, by simulating an online algorithm
for bandwidth 1 on an instance where each step is subdivided into m smaller steps.
Hence, our algorithm in section 4 is �-competitive for any m, which improves the
current state-of-the-art for any m < 13.

There is a variety of other packet scheduling problems related to PacketSchD.
The semi-online setting with lookahead was proposed in [5]. A relaxed variant of
PacketSchD in which only the ordering of deadlines is known but not their exact
values, was studied in [7], where a lower bound higher than � was shown. In the
FIFO model (see, for example, [2, 18]), packets do not have deadlines, but the switch
has a bu↵er that can only hold a bounded number of packets, and packets must be
transmitted in the first-in-first-out order. More information about PacketSchD and
related scheduling problems can be found in a survey paper by Goldwasser [15].

2. Preliminaries. This section provides a formal definition of the PacketSchD

problem, along with some useful assumptions used throughout the paper.
The online PacketSchD problem. The instance of PacketSchD is specified by a set

of packets, with each packet p represented by a triple (rp, dp, wp), where integers rp and
dp � rp denote the release time and deadline (or expiration time) of p, and wp � 0 is
the weight of p. (To avoid double indexing, we sometimes use notation w(p) to denote
wp and d(p) for dp.) The time is discrete, with time units represented by consecutive
integers that we refer to as time slots or steps. In a feasible transmission schedule,
a subset of packets is transmitted. Only one packet can be transmitted in each time
step, and each packet p can only be transmitted in a slot from the interval [rp, dp].
(Note that this interval includes slot dp.) The objective is to compute a schedule
whose total weight of transmitted packets (also called its profit) is maximized.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1629

In the online variant of PacketSchD, which is the focus of our work, the algorithm
needs to compute the solution incrementally over time. At any time step t, packets
with release times equal to t are revealed and added to the set of pending packets
(that is, those that are already released, but not yet expired or transmitted). Then the
algorithm needs to choose one pending packet to transmit in slot t. As this decision
is made without the knowledge of packets to be released in future time steps, such an
online algorithm cannot, in general, be guaranteed to compute an optimal solution.
The quality of the schedules it computes can be quantified using competitive analysis.
We say that an online algorithm is c-competitive if, for each instance, the optimal
profit (computed o✏ine) is at most c times the profit of the schedule computed by
the online algorithm.

Useful assumptions. The range of integers used as release times and deadlines
is not important, as the whole instance can be shifted in time without a↵ecting the
competitive ratio. However, for the sake of concreteness we can assume that the whole
instance fits in the interval [0, T], where T is some large time horizon, and that the
first step of the computation takes place at time 0. Throughout the paper, all time
slots are tacitly assumed to be from this finite range. (For notational reasons, we will
occasionally also use slot �1.)

Without loss of generality, we make two simplifying assumptions:
(A1) We assume that at each step t and for each ⌧ 2 [t, T], there is a pending packet

with deadline ⌧ (or more such packets, if needed). This can be achieved
by releasing, at time t, virtual 0-weight packets with deadline ⌧ , for each
⌧ 2 [t, T].

(A2) We also assume that all packets have di↵erent weights. Any instance can
be transformed into an instance with distinct weights through infinitesimal
perturbation of the weights, without a↵ecting the competitive ratio. Thus
the virtual packets from the previous assumption have, in fact, infinitesimal
positive weights, although in the calculations we treat these values as being
equal 0. The only purpose of this assumption is to facilitate consistent tie-
breaking, in particular uniqueness of plans (to be defined shortly).

A careful reader may notice that assumption (A1) as written reveals the value of
T to the online algorithm. This does not a↵ect our analysis because, for any instance,
if the maximum packet deadline in this instance is dmax, then the computation of our
algorithm is independent of the choice of the time horizon T � dmax, provided that the
ties between weights of virtual 0-weight packets are broken in favor of earlier-deadline
packets, in the sense that those with larger deadlines are considered “lighter”.1

The golden ratio. The competitive ratio of our algorithm is � = 1
2 (
p
5+1) ⇡ 1.618,

the famous number known as the golden ratio. Its most important property is that it
satisfies the equation �2 = �+1. This identity will be frequently used in calculations,
usually in the form 1

�2 + 1
� = 1. Another useful property is that

P1
i=0 �

�2i = �,
which follows easily from the formula for summing a geometric sequence and the
earlier-mentioned properties of �.

1An alternative and equivalent approach would be to change the time horizon dynamically, so
that it is always equal to the maximum deadline of already released packets. This, however, creates
some minor but distracting technical di�culties in the analysis. As yet another option, one can
show that, in fact, modifying the definition of PacketSchD by having the time horizon revealed when
the computation starts does not a↵ect the optimal competitive ratio. We don’t need such a strong
statement, however, for our analysis.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1630 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

3. Plans and their properties. Consider an execution of some online algo-
rithm. At any time t, the algorithm will have a set of pending packets. We now
discuss properties of these pending packets and introduce the concept of plans that
will play a crucial role in our algorithm.

The set of packets pending at a time t has a natural ordering, called the canonical
ordering and denoted �, which orders packets in nondecreasing order of deadlines,
breaking ties in favor of heavier packets. (By assumption (A2) the weights are dis-
tinct.) Formally, for two pending packets p and q, define p � q i↵ dp < dq or dp = dq
and wp > wq. The earliest-deadline packet in some subset X of pending packets is
the packet that is first in the canonical ordering of X. Similarly, the latest-deadline
packet in X is the last packet in the canonical ordering of X.

Plans. Consider a set X of packets pending at a time step t. X is called a plan
if the packets in X can be feasibly scheduled in future time slots t, t + 1, . . ., where
“feasibly” means that all packets in X meet their deadlines. We will typically use
symbols P,Q, . . . to denote plans. We emphasize that in a plan we do not assign
packets to time slots; that is, a plan is not a schedule. A plan has at least one
schedule, but in general it may have many. (In the literature, such scheduled plans
are sometimes called provisional schedules .) Using a standard exchange argument,
if P is a plan then any schedule of P can be converted into its canonical schedule,
in which the packets from P are assigned to the slots t, t + 1, . . . in the canonical
order.

For any two time slots � � ⌧ � t, by X[⌧,�] = {j 2 X : dj 2 [⌧,�]} we denote
the subset of X consisting of packets whose deadlines are in [⌧,�]. In particular,
X[t, ⌧] contains packets with deadlines at most ⌧ . In a similar way, we define X[⌧,�),
X(⌧,�], and X(⌧,�). We also define

pslack(X, ⌧) = (⌧ � t+ 1)� |X[t, ⌧]|.

Note that ⌧ � t + 1 is the number of slots in interval [t, ⌧]. For convenience, we also
allow ⌧ = t � 1, in which case the above formula gives us that pslack(X, t � 1) = 0.
We stress that the formula for pslack(X, ⌧) also depends on the value of t. This t will
always be the “current step” under consideration and it will be uniquely determined
from context, so we do not include it as a parameter of this function, to reduce clutter.

The values of pslack(X, ⌧) are useful for determining feasibility of X.

Observation 3.1. Let X be a subset of packets pending at some step t. X is a
plan if and only if pslack(X, ⌧) � 0 for each ⌧ � t.

This observation is quite straightforward: If X is a plan, then, in any (feasible)
schedule of X, for each ⌧ � t all packets in X[t, ⌧] are scheduled in di↵erent slots of
the interval [t, ⌧]; thus |X[t, ⌧]|  ⌧ � t+ 1. This shows the necessity of the condition
in the observation. To show su�ciency, assume that pslack(X, ⌧) � 0 for each ⌧ � t.
This implies, by simple induction, that assigning the packets in X to slots t, t+1, . . .
in the canonical order will produce a schedule (the canonical schedule of X, in fact)
in which all packets will meet their deadlines.

Throughout the paper, we will tacitly assume that any plan P we consider is full ,
in the sense that it contains enough packets to fill all slots between the current time
t and the time horizon T ; that is, |P [t, T]| = T � t+1. This assumption can be made
without loss of generality because there are always su�ciently many infinitesimal-
weight packets pending, by assumption (A1). With this assumption, the concepts of
tight slots, segments, etc., to be introduced below will be always well defined.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1631

a b c e g h i

2 3 4 5 61 7

a : 10
b : 16
c : 5
e : 6
f : 4
g : 25
h : 26
i : 1

Fig. 3.1. An example of an instance with optimal plan P = {a, b, c, e, g, h, i} and its canonical
schedule in time slots 1, 2, . . . , 7. Each packet is represented by one row that shows this packet’s
identifier and weight (separated by colon), followed by a line segment stretching from the current
time slot t (assumed to be 1 here) to this packet’s deadline. Note that packet f is not in P , even
though it is heavier than i. The segments of P are (0, 3], (3, 4], (4, 7]. (Alternatively, in terms of
packets from P , these segments are {a, b, c}, {e}, {g, h, i}.) The values of minwt(P, ⌧) are 5 for
⌧ 2 {1, 2, 3, 4} and 1 for ⌧ 2 {5, 6, 7}.

Let P be a plan for the set of packets pending at some time t. We now discuss
the structure of P . (See Figure 3.1 for an illustration.) Slot ⌧ � t is called tight in P
if pslack(P, ⌧) = 0. In particular, according to our conventions above, slots t� 1 and
T are tight. If the tight slots of P are t0 = t � 1 < t1 < t2 < · · · < tc = T , then for
each i = 1, 2, . . . , c the time interval (ti�1, ti] = {ti�1 + 1, ti�1 + 2, . . . , ti} is called a
segment of P . In other words, the tight slots divide the time range into segments,
each starting right after a tight slot and ending at (and including) the next tight
slot. The significance of a segment (ti�1, ti] is that in any schedule of P all packets in
P (ti�1, ti] must be scheduled in this segment. Thus, slightly abusing terminology, we
occasionally think of each segment as a set of packets to be scheduled in this segment,
namely the set P (ti�1, ti]. Within a segment, packets from P can be permuted,
although only in some restricted ways. In particular, the first slot of a segment may
contain any packet from that segment (see Observation A.1). Let ↵ = t1 be the first
tight slot of plan P (we regard tight slot t0 = t � 1 as the “0th tight slot”). The
first tight slot ↵ will play a special role in our algorithm, together with the segment
[t,↵] = (t0, t1] of P , called the initial segment . Whenever we consider several plans
at a time t and some ambiguity arises, we will write ↵ = ↵P , to indicate that ↵ is the
first tight slot for this specific plan P .

For a plan P and a slot ⌧ � t, let nextts(P, ⌧) be the earliest tight slot ⌧ 0 � ⌧
and let prevts(P, ⌧) be the latest tight slot ⌧ 0 < ⌧ . Both notations are well defined:
that nextts(P, ⌧) is well defined follows from slot T being tight, and prevts(P, ⌧) is
well defined because t�1 is a tight slot, according to our convention. (Both functions
also depend on t, but t is implied, since t is the time for which P is defined. This
convention will apply to other notations involving plans.)

The notion that will be crucial in the design of our �-competitive algorithm is
the minimum weight of a packet that can appear in a schedule of the plan in some
slot between the current time t and a given slot ⌧ . Naturally, the packets that are
candidates for this minimum include all packets in segments ending before ⌧ , but
also we need to include all packets in the segment of ⌧ , even those with deadlines
larger than ⌧ . (This is because, as explained earlier, each packet in a segment can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1632 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Algorithm 3.1 Algorithm ComputePlan(U , t)
Input: U is a set of packets pending at time t
1: X ;
2: for each packet j 2 U in order of decreasing weights do
3: if pslack(X [{j} , ⌧) � 0 for all ⌧ � t then
4: X X [{j}
5: P X . P is the optimal plan for U

scheduled at the beginning of that segment.) Formally, for a plan P at time t and a
slot ⌧ � t, define

minwt(P, ⌧) = min {wj : j 2 P [t, nextts(P, ⌧)] } .

We will occasionally omit P in this notation if it is understood from context. By
definition, if we fix t and P and think of minwt(P, ⌧) as a function of ⌧ , then this
function is monotonically nonincreasing over the whole range of ⌧ = t, t + 1, . . . , T ,
and is constant in each segment (that is, all slots ⌧ in any given segment have the
same value of minwt(P, ⌧)).

Optimal plans. Given a set of packets U pending at a given time t, their plan P is
called optimal if it has the maximum weight among all plans of these packets. Since
the collection of such plans forms a matroid (which is easy to verify using Observation
3.1; see also, e.g., [18]), the optimal plan at step t can be computed by the following
greedy algorithm:

Assumption (A2) about di↵erent weights implies that the optimal plan P com-
puted above is unique. See Figure 3.1 for an example of an optimal plan for a given
set of pending packets.

During a computation, the set of pending packets can change. There are two
types of events that can cause this change: an arrival of a new packet and a transmis-
sion of a packet, which also involves incrementing the current time and dropping all
newly expired packets. This will also cause the optimal plan to change. The matroid
property implies that at most one packet in the optimal plan changes after each event
(not counting the transmitted packet in a transmission event). These changes are
fairly intuitive and we outline them briefly below; for a formal description of these
changes, correctness proofs, and figures with examples, see Appendix A.

In the discussion below, we assume that t is the current time step and P is the
current optimal plan, right before an arrival or transmission event. By Q we will
denote the optimal plan right after the event. For a slot ⌧ � t, whenever we refer to
the change of pslack(⌧) (that it increases, decreases, or remains the same), without
specifying the plan, we mean the change from pslack(P, ⌧) to pslack(Q, ⌧). We use the
same convention for function minwt(⌧).

Packet arrivals. We first consider the event of a new packet s arriving at time t.
As s is added to the set of pending packets, the optimal plan needs to be updated
accordingly. Define f 2 P to be the packet with wf = minwt(P, ds), which is the
lightest packet in P with df  nextts(P, ds). If ws < wf , then s is not added to
the optimal plan, which thus stays the same. On the other hand, if ws > wf , then
s is added to the optimal plan and f is forced out, i.e., the new optimal plan is
Q = P [{s} \ {f}. In the latter case, it is interesting to see how the values of
pslack(⌧) and the segments change:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1633

• If ds � df , then pslack(Q, ⌧) = pslack(P, ⌧)+1 for ⌧ 2 [df , ds). Therefore, all
tight slots in [df , ds) in P are no longer tight in Q and the segments containing
df and ds and all segments in between get merged into one segment of Q.

• If ds < df , then df and ds must be in the same segment of P (because
df  nextts(P, ds)) and pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [ds, df). Thus,
there may be new tight slots in [ds, df), resulting in new segments.

In both cases, the values of pslack(⌧) remain the same for other slots ⌧ � t; thus
other tight slots and segments do not change. Moreover, minwt(Q, ⌧) � minwt(P, ⌧)
holds for any slot ⌧ � t; this property will play a significant role in our algorithm.

Transmitting a packet. Next, we discuss the changes of the optimal plan resulting
from a transmission event. Throughout the paper, only packets in the optimal plan
will be considered for transmission. The scenario is this: We consider the set U of
all packets pending at time t, and the optimal plan P for U . We choose some packet
p 2 P , transmit it at time t, and increment the current time to t + 1. The new set
U 0 of pending packets (now at time t + 1) is obtained from U by removing p and all
packets with deadline t. As before, we will use Q to denote the new optimal plan
after this change, namely the optimal plan for U 0 with respect to time t+ 1.

If p is from the initial segment [t,↵] of P , then Q = P \ {p}. In this case
pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [t+1, dp) and pslack(⌧) remains unchanged for
t � dp. This implies that new tight slots may appear before dp, i.e., the initial segment
may get divided into more segments. Furthermore, minwt(⌧) does not decrease for
any ⌧ � t+ 1.

The more interesting case is when p is from a later segment. Let ` be the lightest
packet in P [t,↵], i.e., in the initial segment, and let % be the heaviest pending packet
not in P that satisfies d% > prevts(P, dp) (such a packet % exists by Assumption
(A1)). Using the matroid property of the feasible sets of packets at time t+1 and the
structure of the plan, in Appendix A we prove that Q = P \{p, `}[{%}. Furthermore,
in this case we have:

• pslack(Q, ⌧) = pslack(P, ⌧) � 1 for ⌧ 2 [t + 1, d`). There may be new tight
slots in the interval [t+ 1, d`), resulting in new segments.

• If d% � dp, then pslack(Q, ⌧) = pslack(P, ⌧) + 1 for ⌧ 2 [dp, d%). Here, all
segments that overlap [dp, d%] are merged into one segment of Q.

• If d% < dp, then pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [d%, dp). (In this case,
dp and d% must be in the same segment of P , because d% > prevts(P, dp).) As
a result of decreasing some pslack(⌧) values, new tight slots may appear in
[d%, dp), creating new segments.

For slots ⌧ � t + 1 not covered by the cases above, the value of pslack(⌧) does
not change. Unlike for packet arrivals, after a packet transmission event some values
of minwt(⌧) may decrease, either due to % being included in Q or as a side-e↵ect of
segments being merged.

Substitute packets. The aforementioned updates of the plan motivate the following
definition: Let U be the set of all packets pending at time t and P ✓ U be the optimal
plan at time t. For each j 2 P we define the substitute packet of j , denoted sub(P, j),
as follows. If j 2 P [t,↵], then sub(P, j) = `, where ` is the lightest packet in P [t,↵].
If j /2 P [t,↵], then sub(P, j) is the heaviest pending packet % 2 U \ P that satisfies
d% > prevts(P, dj), which exists by assumption (A1).

By definition, all packets in a segment of P have the same substitute packet.
Also, for any j 2 P it holds that wj � w(sub(P, j)). This is because for j 2 P [t,↵]
we have sub(P, j) = ` and wj � w` (the equality will hold only when ` = j), while for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1634 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

j 2 P (↵, T] we have d(sub(P, j)) > prevts(P, dj); thus in this case the set P � {j} [
{sub(P, j)} is feasible, and the optimality of P implies that wj > w(sub(P, j)).

4. Online algorithm. This section presents our online algorithm PlanM for
PacketSchD, starting with some intuitions and additional notation, and followed by
two examples where its competitive ratio is exactly �.

Intuitions. Similar to other online profit maximization problems, the main chal-
lenge in achieving a small competitive ratio for PacketSchD is in finding the right
balance between the immediate profit and future profits. Let P be the optimal plan
at a step t. Consider the greedy algorithm for PacketSchD, which at time t transmits
the heaviest pending packet h, which is always in P . We focus on the case when h
is not in the initial segment. (The case when h is in the initial segment is di↵erent,
but similar intuitions apply to it as well.) In the next step, after transmitting h but
before new packets are released, h will be replaced in the optimal plan by its sub-
stitute packet %h = sub(P, h). This packet could be very light, possibly w(%h) ⇡ 0.
Suppose that there is another packet g in P with dg < dh and wg ⇡ wh whose sub-
stitute packet %g = sub(P, g) is quite heavy, say w(%g) ⇡ wg. Thus, instead of h we
can transmit g at time t, achieving roughly the same immediate profit as from trans-
mitting h, but with essentially no decrease in the weight of the optimal plan (which
serves as a rough estimate of future profits). This example indicates that a reasonable
strategy would be to choose a packet p based both on its weight and the weight of its
substitute packet. Following this intuition, our algorithm chooses p that maximizes
wp + � · w(sub(P, p)), breaking ties arbitrarily. The choice of the coe�cients in the
objective function follows the intuition from analyzing the 2-bounded case; see the
discussion of examples in Figure 4.2.

As it turns out, the above strategy for choosing p does not, by itself, guarantee
�-competitiveness. The analysis of special cases and an example where this simple
approach fails lead to the second idea behind our algorithm.2 The di�culty is related
to how the values of minwt(⌧), for a fixed ⌧ , vary while the current time t increases.
We were able to show �-competitiveness of the above strategy for certain instances
where minwt(⌧) monotonely increases as t grows from 0 to ⌧ . We call this property
slot-monotonicity . To extend slot-monotonicity to instances where it does not hold,
the idea is then to simply force it to hold by decreasing deadlines and increasing
weights of some packets in the new optimal plan. (To avoid unfairly benefiting the
algorithm from these increased weights, we will need to account for them appropri-
ately in the analysis.) From this point on, the algorithm proceeds using these new
weights and deadlines when computing the optimal plan and choosing a packet for
transmission.

Notation. To avoid ambiguity, we will index various quantities used by the algo-
rithm with the superscript t that represents the current time. This includes weights
and deadlines of some packets, since these might change over time.

• We use notations wt
j and dtj for the weight and the deadline of a packet j in

step t, before the transmission of this step is implemented. (Our algorithm
only changes weights and deadlines when transmitting a packet, so they are
not a↵ected by packet arrivals.) To avoid double subscripts, we occasionally
write wt(j) and dt(j) instead of wt

j and dtj . We will sometimes use notation
w0

j for the original weight of packet j, when notation wj may lead to some

2This example is described in Appendix C of the preprint version of our paper, which can be
found at https://arxiv.org/abs/1807.07177. This appendix also contains examples demonstrating
that certain simpler variants of algorithm PlanM are not �-competitive.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/1807.07177

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1635

Algorithm 4.1 Algorithm PlanM(t)
1: transmit packet p 2 P t that maximizes wt

p + � · wt(subt(p))
2: if dtp > ↵ then . “leap step”
3: % sub

t(p)
4: wt+1

% minwt
t(dt%) . increase w%

5: � nextts
t(dt%) and ⌧0 nextts

t(dtp)
6: i 0 and h0 p
7: while ⌧i < � do
8: i i+ 1
9: hi heaviest packet in P t(⌧i�1, �]

10: ⌧i nextts
t(dthi

)
11: dt+1

hi
 ⌧i�1 and wt+1

hi
 max(wt

hi
,minwt

t(⌧i�1)) . adjusting packet hi

12: k i . final value of i

ambiguity. We will also omit t in these notations whenever t is unambiguously
implied from context.

• P t is the optimal plan at time t after all packets j with rj = t arrive and
before a packet is transmitted.

• We write sub
t(p) to denote sub(P t, p) and we adopt similar conventions for

minwt
t(⌧), nexttst(⌧), and prevts

t(⌧).
• ↵ = nextts

t(t) is the first tight slot of P t, so [t,↵] is the initial segment.
• ` is the lightest packet in P t[t,↵].
• %, hi, �, ⌧i, and k will refer to the packets and values chosen in Algorithm

PlanM(t).
The pseudo-code of our algorithm, called PlanM(t), is given in Algorithm 4.1. For

a pending packet j, if wt+1
j (resp., dt+1

j) is not explicitly set in the algorithm, then
its value remains the same by default, that is wt+1

j wt
j (resp., dt+1

j dtj).
Let p be the packet sent by PlanM in step t. If p is in the initial segment [t,↵] of

P t, the step is called an ordinary step. Otherwise (if dtp > ↵), the step is called a leap
step, and then % = sub

t(p) is the heaviest pending packet % 62 P t with dt% > prevts
t(dtp).

We will further consider two types of leap steps. If dp and d% are in the same segment,
then this step is called a simple leap step; in that case � = ⌧0, the while loop is not
executed, and k = 0. If d% is in a later segment than dp, then this step is called an
iterated leap step; in that case � > ⌧0, the while loop is executed at least once, and
k > 0.

As all packets in the segment of P t that contains p have the same substitute
packet sub

t(p), p must be the heaviest packet in its segment. Furthermore, p is
not too light compared to the heaviest pending packet h; specifically, we have that
wp � wh/�2. Indeed, as mentioned earlier, we have wp � w(subt(p)). It follows that
�2wp = wp+�wp � wp+� ·w(subt(p)) � wh+� ·w(subt(h)) � wh, where the second
inequality follows by the choice of p in line 1 of Algorithm PlanM(t).

Slot-monotonicity. Our goal is to maintain the slot-monotonicity property , i.e.,
to ensure that for any fixed slot ⌧ the value of minwt

t(⌧) does not decrease as the
current time t progresses from 0 to ⌧ . For this reason, we need to increase the weight
of the substitute packet % in each leap step (as wt

% < minwt
t(dt%)), which is done in

line 4. (To maintain Assumption (A2), we add an infinitesimal to the new weight
of %.) For the same reason, in the iterated leap step, we also need to adjust the
deadlines and weights of the packets hi, which is done in line 11. The deadlines of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1636 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Q h1 h2 h3 h4 ρp

α τ0 τ1 τ2 τ3 τ4 = γβ
p h1 h2 h3 h4Pt

Fig. 4.1. An illustration of the shift of packets h1, . . . , hk (for k = 4) in lines 6–11 in an iterated
leap step. In this figure, � = prevtst(dtp) and Q is the plan right after p is transmitted and the current
time is incremented to t+1 (but before packets released at time t+1 are taken into account). Both
plans are represented by their canonical schedules. Vertical dark-red lines separate the segments of
the plans.

hi’s are decreased to make sure that the segments between � = prevts
t(dtp) and � do

not merge (as merging could cause a decrease of some values of minwt
t(⌧)). These

deadline changes can be thought of as a sequence of substitutions, where h1 replaces
p in the segment of P ending at ⌧0, h2 replaces h1, etc., and finally, % replaces hk in
the segment ending at �. We sometimes refer to this process as a “shift” of the hi’s.
See Figure 4.1 for an illustration. Then, if the weight of some hi is too low for its
new segment, it is increased to match the earlier minimum of that segment, that is,
minwt

t(⌧i�1). (Again, to maintain Assumption (A2), we add an infinitesimal to the
new weight of hi.)

In ordinary steps, the algorithm does not make any weight or deadline changes.
Thus, in such steps the optimal plan changes as described earlier in section 3 and the
slot monotonicity property is preserved. (See Appendix A for formal proofs.)

In leap steps, the algorithm modifies weights and deadlines of some packets, and
thus the discussion from section 3 does not apply directly. The changes in the optimal
plan after a leap step are elaborated in detail in Lemma B.1 in Appendix B. We briefly
summarize them here. Recall that in a leap step the packet p is in some noninitial
segment. Let P = P t and let Q be the optimal plan after p is transmitted, the time is
incremented to t+ 1, and weights and deadlines are changed (according to lines 3–11
in the algorithm). Let also Q be the intermediate optimal plan after p is transmitted
and the time is incremented, but before the algorithm adjusts weights and deadlines.
As discussed in section 3, this plan is Q = P \ {p, `} [{%}, where % = sub

t(p).
In a simple leap step, only the weight of % is modified. Increasing the weight of a

packet in the optimal plan does not a↵ect its optimality and thusQ = Q. Furthermore,
no segments are merged, i.e., any tight slot of P is tight in Q as well.

In an iterated leap step, by the choice of p, the definition of hi’s in line 9, and the
while loop condition in line 7, we have that wt

p = wt
h0

> wt
h1

> wt
h2

> · · · > wt
hk

> wt
%

and that hk is in the segment of P ending at �, that is prevtst(dt%) < dthk
 �. As in

the simple leap step, increasing the weight of a packet does not a↵ect the optimality
of a plan. Moreover, a careful analysis of the changes of pslack() values yields that
decreasing the deadlines of h1, h2, . . . , hk (in line 11) does not change the optimal plan,
so we can conclude that Q = Q holds in an iterated leap step as well. The decrease
of the deadlines of hi’s also ensures that no segments are merged. (See Appendix B
for complete proofs.)

The property that no segments are merged, together with the increase of the
weights, allows us to prove that minwt

t(⌧) does not decrease for any ⌧ even in a leap
step. This slot monotonicity property is summarized in the lemma below, whose proof
follows directly from Lemma A.2(c), Lemma A.4(c), and Lemma B.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1637

. . .
. . .

. . .
�-2i

�-2i+2

�-6

�-2

1
�-2

�-2i … … �-8 �-6 �-4 �-2……

. . .
. . .

. . .
�-2i

�-2i+2

�-6
�-4

�-2
1

1

1

10-1-2-3-i -i+1

�-4

�-2i … … �-8 �-6 �-4 1……
10-1-2-3-i -i+1

Fig. 4.2. Two examples where the competitive ratio of Algorithm PlanM is �. Packets are
identified by their weight. We show the schedules of PlanM at the bottom and time slot indices below
the schedules.

Lemma 4.1. Let P be the current optimal plan in step t just before an event of
either arrival of a new packet or transmitting a packet (and incrementing the current
time), and let Q be the plan after the event. Then minwt(Q, ⌧) � minwt(P, ⌧) for any
⌧ > t, and also for ⌧ = t in case of a packet arrival. Hence, in the computation of
Algorithm PlanM, for any fixed ⌧ , the function minwt

t(⌧) is nondecreasing in t 2 [0, ⌧].

Tight examples. To illustrate the computation of Algorithm PlanM, we now give
two examples of 2-bounded instances where the competitive ratio is exactly �. They
also give some intuition for the choice of coe�cients in line 1 of Algorithm PlanM, as
the chosen coe�cients exactly balance the competitive ratio for these two examples.
We note that, interestingly, there is another combination of the coe�cients that gives
ratio � for the 2-bounded case, namely � ·wp +w(sub(P, p)); we do not know if these
coe�cients can yield an optimal algorithm for the general case.

Before we examine these examples, consider the instance where we have two
packets pending at some step t, one tight packet q with dq = t and wq = c, and one
packet r with dr = t+1 and wr = �2c. The optimal plan is P t = {q, r} and ↵ = t. In
this case we have a tie in line 1 of Algorithm PlanM: For p = q the substitute packet is
` = q and the objective value is wq + �wq = �2 c, and for p = r the substitute packet
has weight 0 and the objective value is wr+� 0 = �2 c as well. In the examples below,
we will assume that we can break this tie either way. This can be accomplished by
infinitesimally perturbing the weights, without a↵ecting the competitive ratio.

The two examples are shown in Figure 4.2. For simplicity, in these examples
packets are identified by their weight and we allow negative-valued time steps. In
both examples, the instance involves a sequence of packets, where at time �i, for
i � 0, a packet of weight ��2i and deadline �i+ 1 is released. For simplicity, we will
think of this sequence as starting at �1.

In the instance on the left, we have one additional tight packet of weight 1 released
at time 1. In this instance we break the ties so that the algorithm schedules each packet
��2i at time �i+1 (thus, at each step �i  0, we transmit the tight pending packet).
As a result, the algorithm will be able to transmit only one packet of weight 1, and
its profit will be

P1
i=0 �

�2i = 1/(1 � ��2) = �. The optimum solution schedules all
packets, so its profit is 1 +

P1
i=0 �

�2i = �2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1638 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

In the instance on the right, we have one additional tight packet of weight ��2

released at time 0. Here, we also break the ties in favor of the tight pending packet
until time �1, but at time 0 the algorithm transmits the packet of weight 1. The
algorithm’s profit will be

P1
i=0 �

�2i � ��2 = � � ��2 = 1 + ��1 � ��2 = 2/�. The
optimum solution schedules all packets, so its profit is

P1
i=0 �

�2i + ��2 = 2.
Comparison to previous algorithms. Our algorithm shares some broad features

with known algorithms in the literature. In fact, any online algorithm (with compet-
itive ratio below 2) needs to capture the tradeo↵ between weight and urgency when
transmitting a packet, so some similarities between these algorithms are inevitable.
As we found in our earlier attempts, however, the exact mechanism of formalizing this
tradeo↵ is critical, and minor tweaks can dramatically a↵ect the competitive ratio.

Some prior algorithms used the notion of the optimal provisional schedule, which
coincides with our concept of canonically ordered optimal plan; recall that in our
paper a plan is defined as a feasible set of pending packets rather than their particular
schedule. For example, the �-competitive algorithm MG for instances with agreeable
deadlines by Li et al. [19] (see also [17]) transmits packets from the optimal plan
only, either the heaviest packet h or the earliest-deadline packet e. (Strictly speaking,
this is true for the simplified variant of MG [17], whereas the original version of MG

transmitted either e or another su�ciently heavy packet from the optimal plan [19].)
The same authors [20] later designed a modified algorithm called DP that achieves
competitive ratio 3/� ⇡ 1.854 for arbitrary instances.

Our approach is more similar to that of Englert and Westermann [14], who de-
signed a 1.893-competitive memoryless algorithm and an improved 1.828-competitive
variant with memory. Both their algorithms are based on the notion of suppressed
packet supp(P, p), for a packet p in the plan P , which, in our terminology, is the same
as the substitute packet sub(P, p) if p is not in the initial segment. However, the two
concepts di↵er for packets p in the initial segment. The memoryless algorithm in [14]
identifies a packet m of maximum “benefit,” which is measured by an appropriate
linear combination of wm and w(supp(P,m)), and sends either m or e (the earliest-
deadline packet in the optimal plan), based on the relation between we and the benefit
of m. The algorithm with memory in [14] extends this approach by comparing m’s
benefit to e’s “boosted weight” max(we, �(t)), where t is the current step and �(⌧)

is the maximum value of minwt(P t0 , ⌧) over t0 < t. We remark that considering this
value of �(⌧) takes into account the previous maximal value of minwt(⌧); however, it
does not prevent actual decreases of minwt(⌧).

Our algorithm involves several new ingredients that are critical to establishing
the competitive ratio of �. First, our analysis relies on full characterization of the
evolution of the optimal plan over time, in response to packet arrivals and transmission
events. This characterization is sketched in section 3 and formally treated in Appendix
A. Second, we introduce a new objective function wt

p + � · wt(subt(p)) for selecting
a packet p for transmission. This function is based on a definition of substitute
packets, sub(P, p), that accurately reflects the changes in the optimal plan following
transmission events, including the case when p is in the initial segment. Third, we
introduce the concept of slot monotonicity and devise a way for the algorithm to
maintain it over time, using adjustments of weights and deadlines of the packets
in the optimal plan. This property is very helpful in keeping track of the optimal
profit. Last but not least, we develop several tools used in the amortized analysis of
Algorithm PlanM(t), including the concepts of a backup plan, an adversary’s stash,
and a novel potential function that captures the relative “advantage” of the algorithm
over the adversary in terms of procuring future profits.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1639

P̃ t P̃ t+1P t
packet
arrivals

 packet
transmission

Fig. 5.1. Notation for snapshots of the optimal plan P.

5. Competitive analysis. Let ALG be the schedule computed by PlanM for the
instance of PacketSchD under consideration, and let OPT be a fixed optimal schedule
for this instance. (Actually, OPT can be any schedule for this instance.) For any
time step t, by ALG[t] and OPT[t] we will denote packets scheduled by ALG and
OPT, respectively, in slot t. (By assumption (A1), we can assume that ALG[t] and
OPT[t] are defined for all steps t.) Our overall goal is to show that � · w0(ALG) �
w0(OPT), where, as defined earlier, we use the notation w0

j for the original weight of
packet j.

Notational convention. The optimal plan changes in the course of the algorithm’s
run, as a result of new packets arriving or of packets being transmitted. In some
contexts, it is convenient to think of the current optimal plan as a dynamic set, which
we will denote by P. When more formal treatment is needed, we will use letters
P,Q, . . ., often with appropriate subscripts or superscripts, to denote the “snapshot,”
i.e., the current contents, of the optimal plan before or after a particular change.
Namely, as already defined in section 4, P t is the snapshot of the optimal plan after
all packets arrive and before a packet is transmitted in step t. Furthermore, by eP t

we denote the optimal plan before any packet arrives in step t. Thus, as a result
of transmitting a packet in step t, the optimal plan changes from P t to eP t+1. (See
Figure 5.1.) We define more snapshots in the analysis of a transmission event, which
will be split into more substeps. For clarity, the superscript of a particular snapshot
contains the time index with respect to which the optimal plan is computed (unless
it is clear from the context).

The same conventions apply to other subsets of pending packets used in the
analysis: A and B, which we will define shortly. In general, we think of such sets of
packets as dynamic sets that change over time as new packets arrive, the algorithm
transmits packets, and as we adjust the contents of the sets in the analysis. As such,
the dynamic sets are denoted with calligraphic letters. Formal analysis requires that
we refer to appropriate snapshots of these sets before and after the change under
consideration; such snapshots are denoted with italic letters, typically with subscripts
or superscripts.

Amortized analysis. We bound the competitive ratio via amortized analysis, using
a combination of three accounting mechanisms:

• We use a potential function, which quantifies the advantage of the algorithm
over the adversary in future steps. This potential function is defined in
section 5.2.

• In leap steps, when the algorithm increases weights of some packets (the sub-
stitute packet and possibly some hi’s), we charge it a “penalty” by subtracting
the total weight increase from its credit for the step.

• The optimal profit of w0(OPT) is amortized over all steps using two account-
ing tools: an “adversary stash” A and values of the minwt() function. These
techniques are introduced in section 5.1.

See section 5.3 for an overview of our analysis, showing how these three techniques
can be combined into a formal proof of �-competitiveness of Algorithm PlanM. Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1640 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

we give the analysis of packet arrival events in section 5.4 and of packet transmission
events in section 5.5.

5.1. Adversary stash. In our analysis, we need a mechanism for keeping track
of the adversary’s future profit associated with the packets that have already been
released. A natural candidate for such a mechanism would be the set of packets that
are “pending” for OPT, namely the packets scheduled in OPT that have already been
released but not yet transmitted by OPT. This simple definition, however, does not
quite work for our purpose, in part because Algorithm PlanM modifies the weights
and deadlines of packets that are pending for the adversary.

Instead of OPT, we will use two other concepts which can be defined in terms
of packets that are pending for the algorithm. The first one, called the adversary
stash and denoted A, is used to keep track of the adversary’s packets that are in the
current optimal plan P; that is, A is a subset of P (see invariant (InvA) below). A
is a dynamic set of packets scheduled in some slots in {t, t+ 1, . . .}, where t is the
current time step. For ⌧ � t, by A[⌧] we denote the packet scheduled in A in slot ⌧ ;
if there is no packet, A[⌧] is undefined. (Abusing notation, we will use A to denote
both the set of packets in the adversary stash and their schedule.)

The adversary stash evolves over time, partly in response to new events and
partly as a result of modifications performed in the course of our analysis. We very
briefly outline this process now; a more comprehensive summary is presented later
in this section, with all details given during the analysis of packet arrival events in
section 5.4 and packet transmission events in section 5.5. Initially, A is empty, and
whenever a packet j such that j 2 OPT arrives, we add j to A at the same slot
that j occupies in OPT provided that j is added to P. Sometimes in our analysis
of packet arrival and transmission events, as P changes, we may have to modify
A by removing or replacing packets, in which case the adversary is appropriately
compensated. (As a result of such changes, for some ⌧ � t, A[⌧] may di↵er from
OPT[⌧]; i.e., the former may be empty or contain a di↵erent packet than the latter,
even if the latter contains a packet released at or before time t.) Finally, when we
analyze the transmission event at a time step t and A[t] is defined (i.e., nonempty), we
will remove packet A[t] from A and credit the adversary with the (current) weight of
A[t].

The second accounting mechanism deals with the packets in OPT that are not in
P. It turns out that this can be done without explicitly keeping track of such packets.
Consider a pending packet q that is scheduled in OPT in a future step ⌧ > t. If q is
not in P, then its weight is upper bounded by minwt(P, ⌧). Since minwt(P, ⌧) for a
fixed ⌧ does not decrease (by Lemma 4.1), its weight will be bounded by minwt(P ⌧ , ⌧)
when the time reaches ⌧ . When it happens, we will allow the adversary to obtain
a profit of minwt(P ⌧ , ⌧) � w⌧

q . While this may seem generous, it does not a↵ect
the competitive ratio. The intuition is that in each step ⌧ the adversary can always
issue a tight packet of weight just below minwt(P ⌧ , ⌧), and this does not change
the behavior of the algorithm as such a packet is not in P ⌧ and cannot be used
as a substitute packet due to having deadline at ⌧ . (Section 5.5.1 gives a complete
analysis.)

Overall, at any time t, the adversary can receive amortized profit, also called her
credit , in three ways. Her credit for transmitting a packet is either w(A[t]), if A[t] is
defined, or minwt(P t, t) otherwise. In addition, the adversary receives an appropriate
compensation when we decrease the total weight of packets in A. We describe the
adversary profit amortization more precisely at the end of this section.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1641

A

B
packets pending

for PlanM

P

Fig. 5.2. The sets of packets in the competitive analysis. The backup plan B is introduced in
section 5.2. It has the property that P \ B = P \ A.

Adversary stash invariant. The following invariant, maintained throughout the
analysis, captures properties of the adversary stash A that will be crucial for our
argument (see also Figure 5.2):
(InvA) For any time t and any snapshot A of the adversary stash A at time t, A

contains only packets from the current optimal plan P , i.e., A ✓ P , and each
packet g 2 A is scheduled in A in a slot in interval [t, dtg].

For A we adopt the same notation of snapshots as for P, namely, eAt is the
adversary stash before any packet arrives in step t and At is the adversary stash
after all packet arrivals and before a packet is transmitted in step t. We ensure that
invariant (InvA) is preserved after each packet arrival and after each transmission
event, possibly by changing the adversary stash.

Modifications of the adversary stash. We now overview the principles guiding the
maintenance of the adversary stash A. These principles are important in understand-
ing the details of the analysis given in sections 5.3–5.5. Let us fix some slot ⌧ of A. We
describe all possible changes that the packet in slot ⌧ of A can undergo in the course
of the analysis and explain how we compensate the adversary for any such change, so
that the total adversary credit from slot ⌧ is at least w0(OPT[⌧]), as needed.

Adding packet OPT[⌧] to A. When packet j = OPT[⌧] arrives at a time t, if j is
added to the optimal plan P, then we also add it to A in slot ⌧ . Otherwise, the slot ⌧
remains empty in A all the time. In either case, the adversary does not get any credit
for this packet at this time. (The credit of at least w0

j from slot ⌧ will be awarded
to the adversary later in the course of computation, possibly in smaller chunks. The
strategy for amortizing this credit will be described shortly.)

Replacing packet A[⌧]. Replacement of packets in A may occur in an iterated leap
step when, under some circumstances, we replace a packet hi 2 A by hi+1, which is
always lighter than hi (see Lemma B.1(b)). To compensate her for this replacement,
the adversary obtains credit equal to wt

hi
� wt+1

hi+1
, which is always nonnegative.

To preserve invariant (InvA), when we make packet replacements, we need to
make sure that no packet in A is scheduled after its current deadline, which requires
some care for those packets whose deadlines were decreased. We also need to avoid
adding into A a packet that is already in A. Thus, before a packet hi 2 A gets
replaced by hi+1, we remove hi+1 from its slot in A if it already belongs to this set.

Removing packet A[⌧] before step ⌧ . As mentioned above, in some cases we remove
a packet q = A[⌧] from A even though the current time has not reached ⌧ yet. This
is done in particular if q is no longer in P, due to being ousted or transmitted by the
algorithm. However, in order to preserve certain invariants, we may also remove q

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1642 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

from A even if it remains in P. If we remove packet q = A[⌧] from A before step ⌧ ,
to compensate the adversary for this change, we give her the credit whose value is at
least the di↵erence (if positive) between the current weight of q and the current value
of minwt(P, ⌧); the precise formula for this credit will be given below. Importantly,
once we remove A[⌧] from A, A[⌧] will remain empty forever.

Removing packet A[⌧] at time ⌧ . When processing the transmission event at time
⌧ , if there is a packet j = A⌧ [⌧] in slot ⌧ , we remove j from A and the adversary
gains its current weight; i.e., it obtains credit of w⌧

j . It follows that A is empty after
the last (transmission) event.

Weight and deadline changes. Increasing the weight of the substitute packet %
in a leap step (line 4 of Algorithm PlanM) does not a↵ect A, as % is not in P and
thus not in A, by invariant (InvA). However, the algorithm also changes the weights
and/or deadlines of some packets hi in an iterated leap step (line 11 of Algorithm
PlanM), and these packets are in P, so A might be a↵ected too. To address this, in
the analysis of an iterated leap step, we remove or replace all packets hi that are in A
and the adversary gets credit based on their old weights. Some of the packets hi may
be reinserted later in the analysis of the same step, but they are always reinserted
with their new weights and deadlines. It follows that the weights of all packets in A
are always current.

Amortization of the adversary profit. We now describe how the adversary profit
of w0(OPT) is amortized. As mentioned earlier, when a packet j = OPT[⌧] arrives
at a time t0, the adversary credit for j may be awarded in smaller payments in steps
t0, t0 + 1, . . . , ⌧ . All the payments except the last one are called adjustment credits
and the last one, in step ⌧ , is called the transmission credit . The formulas for these
credits are given below.

We note that the adversary credit when processing the arrival of a packet j is
always 0. This follows from two properties of the changes in A: First, as explained
above, the adversary does not receive credit for the arrival of j, whether it is added to
A or not. Second, the only other change of A associated with the arrival of j and the
resulting modification of P may be a removal from A of some packet A[⌧] of weight
at most minwt(P, ⌧), for which the adversary does not get any credit (see below and
section 5.4).

In each step t, we define the adversary credit for step t , denoted advcredit
t, as

the sum of the following two values:
• Transmission credit: This is the credit given to the adversary for her packet

in slot t. More precisely, it is defined by

advcredit
t
t =

⇢
wt(At[t]) if At[t] is defined (not empty),
minwt(P t, t) otherwise.

Recall that wt(At[t]) represents the weight of At[t] at time t if At[t] is defined.
• Adjustment credit: This is the credit that the adversary receives as compen-

sation for modifications in A. Namely, it is the sum of the following credits,
one for each adjustment of A performed in the analysis of step t:

– Adjustment credit for weight decreases: The di↵erence between previous
and new weight of A[⌧], for each slot ⌧ � t where packet A[⌧] is replaced
by a lighter packet.

– Adjustment credit for packet removal: The value of wt
q �minwt(P t, dtq) for

each packet q = A[⌧] removed from A.
Before proceeding, we make two simple but important observations. First, all
adjustment credits are nonnegative. This is obvious for adjustment credits

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1643

for weight decreases. As for the second type of adjustments, consider a packet
q = A[⌧] getting removed from A at time t. By invariant (InvA), we have
that q 2 P t. Then the definition of function minwt() implies that wt

q �
minwt(P t, dtq); in other words the adjustment credits for packet removals are
also nonnegative.
Second, observe that the formula above for the adjustment credit for packet
removals is an upper bound on the actual loss of adversary’s future profit due
to the removal of q = A[⌧] from A, which equals max{wt

q �minwt(P ⌧ , ⌧), 0}
(as the transmission credit in step ⌧ is minwt(P ⌧ , ⌧)). Indeed, we have
minwt(P t, dtq)  wt

q and, since ⌧  dtq, also minwt(P t, dtq)  minwt(P t, ⌧) 
minwt(P ⌧ , ⌧) by the slot-monotonicity property (Lemma 4.1). Therefore
wt

q � minwt(P t, dtq) � max{wt
q � minwt(P ⌧ , ⌧), 0}. We use the value of

wt
q � minwt(P t, dtq) here because it is su�cient for the analysis and easier

to work with.
At each step t, these credit adjustments (if any) may be performed in multiple
substeps, with each substep involving processing some time interval (⇣, ⌘].
We will use notation advcredit

t
(⇣,⌘] for the adjustment credit resulting from

modifications in the substep corresponding to time interval (⇣, ⌘].

Claim 5.1. The total adversary credit for all steps covers w0(OPT), that is,

w0(OPT) 
X

t

advcredit
t ,(5.1)

where the sum is over all steps t.

Proof. To prove (5.1), consider again a packet j = OPT[⌧] that arrived at some
step t0. It is su�cient to show that the sum of all adversary credits associated with
slot ⌧ for steps t = t0, t0 + 1, . . . , ⌧, is at least w0

j = wj .
At time t0, if j is added to P, then j is also added to A; otherwise A[⌧] remains

undefined. To streamline the proof, we think of the second case as adding j to A in
slot ⌧ and then removing it immediately in the same step.

At any step t when A[⌧] is defined, if the weight of A[⌧] is decreased, then, ac-
cording to the definitions above, this decrease of weight contributes to the adjustment
credit at step t. Consider the last step t00 when A[⌧] is defined, and let q = A[⌧] be
the packet in slot ⌧ of A at that time. (It could be that q 6= j, as the packet in A[⌧]
may change over time.) Then the total adjustment credit in steps t0, t0 +1, . . . , t00� 1

for changing A[⌧] equals w0
j � wt00

q .
There are two cases. If t00 = ⌧ , then the adversary will receive transmission credit

of advcredit⌧⌧ = w⌧
q in step ⌧ , and the right-hand side of (5.1) associated with slot ⌧ (the

sum of adjustment credits and the transmission credit for slot ⌧) is w0
j�w⌧

q +w⌧
q = w0

j .
If t00 < ⌧ , then q is removed from A in the analysis of step t00. The adjustment credits
for steps t = t0, t0 + 1, . . . , t00 � 1, add up to w0

j � wt00
q , and the adjustment credit in

step t00 for removing q from A is wt00
q � minwt(P 00, dt

00
q), where P 00 is the snapshot

of P when this removal of q is taking place. Then later at step ⌧ the adversary will
receive transmission credit minwt(P ⌧ , ⌧), by the definition above. Thus the total of
adjustment and transmission credits associated with slot ⌧ is at least

(w0
j � wt00

q) + (wt00
q �minwt(P 00, dt

00
q)) +minwt(P ⌧ , ⌧)

� w0
j � wt00

q + (wt00
q �minwt(P 00, ⌧)) +minwt(P 00, ⌧)(5.2)

= w0
j ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1644 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

where inequality (5.2) holds because minwt(P 00, dt
00
q)  minwt(P 00, ⌧), by the definition

of function minwt() (see also the comments on adjustments credits for packet removals
before Claim 5.1) and because minwt(P ⌧ , ⌧) � minwt(P 00, ⌧), which follows from the
slot monotonicity property, as summarized in Lemma 4.1. This concludes the proof
of (5.1).

5.2. Backup plan and the potential function. In our analysis, we will main-
tain a set B of pending packets called a backup plan. B contains two types of packets:
all packets in P \A, and some pending packets not in P. (The relation between P, B
and A is illustrated in Figure 5.2.) The packets in B\P will typically be packets that
were earlier ousted from P, either as a result of arrivals of other packets or in a leap
step. These packets can also be thought of as candidates for the substitute packet
sub

t(p) when the algorithm chooses a packet p for transmission.
The following invariant summarizes the essential properties of B, and it will be

maintained throughout the analysis:
(InvB) For any snapshot B of B at any time t, (i) B is a plan, i.e., a feasible set of

packets pending in step t, and (ii) B \ P = P \ A, where P and A are the
current snapshots of P and A, respectively.

By Observation 3.1, invariant (InvB)(i) is equivalent to the condition that for
any slot ⌧ � t, we have pslack(B, ⌧) � 0. Invariant (InvB)(ii) and invariant (InvA)
together imply that B \ A = ; and P = (P \ B) [A, i.e., that any packet in P is
either in A or in B, but not in both. Similarly as for invariant (InvA), preserving
invariant (InvB) in the course of the analysis will require making suitable changes in
the adversary stash A and the backup plan B.

The following observation is quite straightforward, but we state it explicitly here,
as it is useful later in some proofs.

Observation 5.2. Consider the current optimal plan P , the backup plan B, and
the adversary stash A at time t. Assume that invariants (InvA) and (InvB) hold. Let
⌘ be a tight slot of P . Then

(a) A(⌘, T] 6= ; implies that B(⌘, T] \ P 6= ;, and
(b) B[t, ⌘] \ P 6= ; implies that A[t, ⌘] 6= ;.
Proof. (a) From the property that all plans are full and that ⌘ is a tight slot of

P , we have |P (⌘, T]| = T � ⌘  |B(⌘, T]|, where T is the time horizon (see section 3).
Then, using invariants (InvA) and (InvB), we obtain that |A(⌘, T]| = |P (⌘, T] \B| 
|B(⌘, T] \ P |.

(b) Since ⌘ is a tight slot of P and B is feasible, we have |P [t, ⌘]| = ⌘ � t + 1 �
|B[t, ⌘]|. Therefore, if B[t, ⌘] \ P 6= ;, then P [t, ⌘] \ B 6= ;, which implies that
A[t, ⌘] 6= ;, by invariant (InvB).

The definitions of tight slots and segments apply to B (as well as to any plan), and
they will be helpful in our proofs. We remark that B may have a di↵erent segment
structure than the current optimal plan P.

Before defining our potential function, we introduce a few lemmas that will be
useful in showing that invariant (InvB) is preserved after each step.

Lemma 5.3. Consider the current optimal plan P , the backup plan B, and the
adversary stash A at time t. Assume that invariants (InvA) and (InvB) hold, and let
⌘, ⌘0 be two time slots such that t  ⌘  ⌘0. Then

pslack(P, ⌘0)� pslack(P, ⌘) + |A(⌘, ⌘0]| = pslack(B, ⌘0)� pslack(B, ⌘) + |B(⌘, ⌘0] \ P | .(5.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1645

Equation (5.3) may appear complicated, but it’s actually quite straightforward.
It compares the contributions of the interval (⌘, ⌘0] to pslack() values of P and B.
These contributions di↵er by �|P (⌘, ⌘0]| + |B(⌘, ⌘0]|, and canceling out the common
contribution |P (⌘, ⌘0] \B| yields (5.3). A formal proof follows.

Proof. (InvB) implies that A(⌘, ⌘0] = P (⌘, ⌘0]\B. Using the definition of pslack(),
and canceling out the contributions of packets with deadline at most ⌘, we get

pslack(P, ⌘0)� pslack(P, ⌘) + |A(⌘, ⌘0]| = ⌘0 � ⌘ � |P (⌘, ⌘0]|+ |P (⌘, ⌘0] \B|
= ⌘0 � ⌘ � |P (⌘, ⌘0] \B|
= ⌘0 � ⌘ � |B(⌘, ⌘0]|+ |B(⌘, ⌘0] \ P |
= pslack(B, ⌘0)� pslack(B, ⌘) + |B(⌘, ⌘0] \ P |,

completing the proof.

Lemma 5.4. Consider the current optimal plan P , the backup plan B, and the
adversary stash A at time t. Assume that invariants (InvA) and (InvB) hold, and
let ⇣ be a tight slot of P (possibly, ⇣ = t� 1). Let f⇤ be the earliest-deadline packet
in B(⇣, T] \ P and let g⇤ be the latest-deadline packet in A[t, ⇣]. (We allow here the
possibility that f⇤ or g⇤ is undefined). Then

(a) If f⇤ is defined, then pslack(B, ⌧) � pslack(P, ⌧) + |A(⇣, ⌧]| for any ⌧ 2
(⇣, df⇤). Otherwise this inequality holds for any ⌧ > ⇣.

(b) If g⇤ is defined, then pslack(B, ⌧) � pslack(P, ⌧) + |B(⌧, ⇣] \ P | for any ⌧ 2
[dg⇤ , ⇣]. Otherwise this inequality holds for any ⌧ 2 [t, ⇣].

Proof. We first observe that, since B is feasible and ⇣ is a tight slot for P , we
have pslack(B, ⇣) � 0 = pslack(P, ⇣).

(a) If packet f⇤ exists, let ✓ = df⇤ ; otherwise let ✓ = T + 1, where T is the time
horizon, as defined in section 2. Let ⌧ 2 (⇣, ✓). By the definition of f⇤, there is no
packet in B \ P with deadline in (⇣, ✓); in particular B(⇣, ⌧] \ P = ;. Using this,
equation pslack(P, ⇣) = 0, and Lemma 5.3 (with ⌘ = ⇣ and ⌘0 = ⌧), we obtain

pslack(P, ⌧) + |A(⇣, ⌧]| = pslack(B, ⌧)� pslack(B, ⇣)  pslack(B, ⌧) ,

which implies claim (a).
(b) If packet g⇤ exists, let � = dg⇤ ; otherwise let � = t. Let ⌧ 2 [�, ⇣]. By the

definition of �, there is no packet in A with deadline in (�, ⇣], which implies that
A(⌧, ⇣] = ;. Using this, equation pslack(P, ⇣) = 0, and Lemma 5.3 (with ⌘ = ⌧ and
⌘0 = ⇣), we obtain

�pslack(P, ⌧) = pslack(B, ⇣)� pslack(B, ⌧) + |B(⌧, ⇣] \ P | .

Using pslack(B, ⇣) � 0, we get �pslack(P, ⌧) � �pslack(B, ⌧)+ |B(⌧, ⇣]\P | and claim
(b) follows.

In some cases of the analysis, we will have situations when a packet g 2 A needs
to be removed from A. By the definition of the backup plan, this causes g to be added
to B, making B infeasible. The lemma below shows that we can restore the feasibility
of B after such a change by removing from B a suitably chosen packet that is not
in P.

Lemma 5.5. Consider the current optimal plan P , the backup plan B, and the
adversary stash A at time t. Assume that invariants (InvA) and (InvB) hold. Let
g 2 A, ⌘ = prevts(P, dg), and ⌘0 = nextts(B, dg). Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1646 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

(a) B(⌘, ⌘0] \ P 6= ;; and
(b) for any f 2 B(⌘, ⌘0]\P , the set C = B \{f}[{g} is feasible and wf  wg

(thus w(C) � w(B)).

Proof. Note that the choice of g 2 A implies that g /2 B. We use Lemma 5.3
with ⌘ and ⌘0 as defined here. We can apply this lemma because B satisfies invariant
(InvB). From that lemma, substituting pslack(P, ⌘) = pslack(B, ⌘0) = 0, we get

pslack(P, ⌘0) + |A(⌘, ⌘0]| = �pslack(B, ⌘) + |B(⌘, ⌘0] \ P |  |B(⌘, ⌘0] \ P | ,

where the last inequality follows from pslack(B, ⌘) � 0, which is a consequence of
the feasibility of B. The existence of g implies A(⌘, ⌘0] 6= ;, and hence, using the
feasibility of P , we obtain that B(⌘, ⌘0] \ P 6= ; holds as well, proving claim (a).

Pick any f 2 B(⌘, ⌘0] \ P . From df  ⌘0 = nextts(B, dg) we obtain that C is
feasible. Inequality df > ⌘ = prevts(P, dg) and f 62 P imply that wf  minwt(P, dg) 
wg, and therefore w(C) � w(B), completing the proof of claim (b).

As a corollary, we obtain that Lemma 5.5(b) holds for f equal to the earliest-
deadline packet f⇤ in B \ P with df⇤ > prevts(P, dg).

Corollary 5.6. Consider the current optimal plan P , the backup plan B, and
the adversary stash A at time t. Assume that invariants (InvA) and (InvB) hold. Let
g 2 A, ⌘ = prevts(P, dg), and let f⇤ be the earliest-deadline packet in B(⌘, T] \ P .
Then packet f⇤ exists, the set C = B \ {f⇤} [{g} is feasible, and wf⇤  wg (thus
w(C) � w(B)).

Proof. Applying Lemma 5.5(a) to packet g and ⌘0 = nextts(B, dg) gives us that
B(⌘, ⌘0] \ P 6= ;, which in turn implies that df⇤ 2 (⌘, ⌘0]. Then, using Lemma 5.5(b)
for f = f⇤ implies the corollary.

Potential function. We use the backup plan B to define a potential function
needed for the amortized analysis of Algorithm PlanM. If B is the current snapshot
of B, then the potential value at time t is

 (B) =
1

�
wt(B) .(5.4)

For brevity, we will use notation e t = (eBt) for the potential at the beginning of step
t, before any packet arrives, and t = (Bt) for the potential just before a packet is
transmitted in step t.

The intuition behind this definition is as follows. In order to be �-competitive,
the average (per step) profit of Algorithm PlanM should be at least 1/� times the
adversary’s average profit. However, due to the choice of coe�cients in line 1 of the
algorithm, Algorithm PlanM tends to postpone transmitting heavy packets with large
deadlines. (For example, given just two packets, a tight packet with weight 1 and a
nontight packet with weight 2.6 < �2, the algorithm will transmit the tight packet
in the current step.) As a result, in tight instances, PlanM’s actual profit per step,
throughout most of the game, is often smaller than 1/� times the adversary’s, and
only near the end of the instance, when delayed heavy packets are transmitted, the
algorithm can make up for this deficit.

In our amortized analysis, if there is a deficit in a given step, we pay for it
with a “loan” that is represented by an appropriate increase of the potential function.
Eventually, of course, these loans need to be repaid; the potential eventually decreases
to 0, and this decrease must be covered by excess profit. The formula for the potential

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1647

 is designed to guarantee such future excess profits. To see this, imagine that no
more packets arrive. Since B \A = ;, the packets in B will not be transmitted in the
future by the adversary. If the algorithm does not execute any more leap steps, then it
will collect all the packets in P, which are in total heavier than the packets in B (as B
is feasible by invariant (InvB)(i) and each packet f 2 B\P satisfies wt

f  minwt(P, dtf)
at each time step t). On the other hand, if the algorithm executes a leap step, instead
of a packet ousted from P in this step, the algorithm will collect a packet from B \ P
(or a better packet) after it is added to the optimal plan as a substitute packet.

5.3. Overview of the analysis. This section gives an overview of the analysis,
states the main theorem, and shows how it follows from results that will be established
in the sections that follow.

Initial and final state. At the beginning, per assumption (A1), we assume that
the optimal plan is prefilled with virtual 0-weight packets, each in a slot equal to
its deadline, and none of them scheduled by the adversary for transmission. The
adversary stash A is empty; i.e., before the first step (at time 0) we have eA0 = ;,
and the backup plan is the same as the optimal plan, i.e., eB0 = eP 0. Thus invariants
(InvA) and (InvB) clearly hold, and e 0 = 0. At the end, after all (nonvirtual) packets
expire, the potential equals 0 as well, i.e., e T+1 = 0, where T is the time horizon (the
last step).

Amortized analysis. At the core of our analysis are bounds relating amortized
profits of the algorithm and the adversary in each step t. For packet arrivals in step
t, we will show the following packet-arrivals inequality :

 t � e t � 0 .(5.5)

For the transmission event in a step t, we will show that the following packet-
transmission inequality holds:

�wt(ALG[t])� � (�tw) + (e t+1 � t) � advcredit
t,(5.6)

where ALG[t] is the packet in slot t in the algorithm’s schedule ALG (thus wt(ALG[t]) is
the algorithm’s profit), and �tw is the total amount by which the algorithm increases
the weights of its pending packets in step t.

We prove the packet-arrivals inequality (5.5) in section 5.4 and the packet-
transmission inequality (5.6) in section 5.5. Assuming that these two inequalities
hold, we now show our main result.

Theorem 5.7. Algorithm PlanM is �-competitive.

Proof. We show that �w0(ALG) � w0(OPT), which implies the theorem. First,
by Claim 5.1, we have w0(OPT) 

P
t advcredit

t. Second, note that
X

t

(e t+1 � e t) = e T+1 � e 0 = 0 ,(5.7)

where e 0 = 0 is the initial potential and e T+1 = 0 is the final potential after the last
step T . Observe also that

X

t

[wt(ALG[t])��tw]  w0(ALG) .(5.8)

This follows from the observation that if the weight of ALG[⌧] was increased by some

value � > 0 at some step t0 < ⌧ , then � also contributes to �t0w, so such contributions

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1648 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

cancel out in (5.8). (There may be several such �’s, as the weight of a packet may
have been increased multiple times. Note that the bound (5.8) may not be tight if
some packets with increased weights are later dropped.)

Summarizing, using the above bounds yields

w0(OPT) 
X

t

advcredit
t(5.9)


X

t

h
�wt(ALG[t])� � (�tw) + (e t+1 � t)

i
+
X

t

(t � e t)(5.10)

=
X

t

h
�wt(ALG[t])� � (�tw)

i
+
X

t

(e t+1 � e t)

 �w0(ALG) ,(5.11)

where inequality (5.9) is (5.1), inequality (5.10) follows by applying (5.5) and (5.6)
for each step t, and inequality (5.11) holds by (5.7) and (5.8).

5.4. Packet arrivals. Let t be the current time step. Our aim in this section is
to prove that invariants (InvA) and (InvB) can be preserved as packets arrive in step
t, using appropriate modifications of sets A and B. We also prove that the packet-
arrivals inequality (5.5) holds for step t. To this end, it is su�cient to show how to
preserve both invariants, without decreasing the value of w(B) (and thus as well),
in response to an arrival of each individual packet.

Thus, consider the arrival event of a packet s at time t. Let P be the optimal plan
just before s arrives, and let Q be the optimal plan just after s arrives. Furthermore,
let A and B be the snapshots of A and B just before s arrives, and let A+s and B+s

denote, respectively, the snapshots of A and B just after s arrives and the changes
described below are applied. The algorithm does not change the weights and deadlines
after packet arrivals, so we will omit the superscript t in the notation for weights and
deadlines, that is wq = wt

q and dq = dtq, for each packet q. There are two cases,
depending on whether or not s 2 Q.

Case A.1. s is not added to the optimal plan P, i.e., Q = P . Lemma A.2 implies
that ws < minwt(P, ds) = minwt(Q, ds). In this case, we do not change A, i.e.,
A+s = A, so invariant (InvA) is preserved. The backup plan B remains the same as
well, so w(B) does not change and invariant (InvB) is preserved.

Case A.2. s is added to the optimal plan P. Let u be the lightest packet in
P with du  nextts(P, ds); by assumption (A1) such u exists. By the choice of u
and Lemma A.2, we have Q = P [{s} \ {u}, nextts(P, du)  nextts(P, ds), and
ws > wu = minwt(P, ds) = minwt(P, du).

Replacing u by s in P can also trigger changes in A and B. We describe these
changes in two parts:

(i) First, we show that if u 2 A, then we can remove u from A, preserving the
invariants and not decreasing the potential.

(ii) Then, assuming that u /2 A, we describe and analyze the remaining changes.
Let A(i) denote the intermediate adversary stash, after the change in (i) and before
the change in (ii), where we let A(i) = A if u /2 A, that is when change (i) does not
apply. We adopt the same notation for snapshots of set B.

(i) Dealing with u 2 A. In this case we need to remove u from A to preserve
invariant (InvA). But this also forces us to add u to B in order to preserve (InvB)(ii),
which in turn requires removing some packet from B to preserve its feasibility.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1649

To implement these changes, we use Lemma 5.5 with g = u, which gives us
that there is a packet fu 2 B \ P such that the set B \ {fu} [{u} is feasible and
w(B \ {fu} [{u}) � w(B). We then let

A(i) = A \ {u} and B(i) = B \ {fu} [{u} .

Since u is scheduled in A in interval [t, du] and wu = minwt(P, du), the adversary
adjustment credit associated with removing u from A is wu � minwt(P, du) = 0 (see
section 5.1). As explained above, we also have thatB(i) is feasible and w(B(i)) � w(B);
thus invariant (InvB) is preserved and the change of w(B) is nonnegative.

(ii) Analysis of other changes. By (i) we can now assume that u /2 A(i), and
invariant (InvB)(ii) together with u 2 P imply that u 2 B(i). We now consider the
changes of B resulting from including s in P. We analyze two subcases, depending on
whether or not s 2 OPT.

Case A.2.a. s 2 OPT. We add s to A in the same slot as in OPT. Specifically,
we take A+s = A(i) [{s} and B+s = B(i). Invariant (InvA) is preserved as s 2 A+s,
invariant (InvB) holds as B remains una↵ected in (ii), and the value of w(B) does not
change.

Case A.2.b. s /2 OPT. In this case, we simply let A+s = A(i), so invariant
(InvA) continues to hold. However, s needs to get added to B to preserve invariant
(InvB)(ii), so we need to remove some packet from B to maintain its feasibility, and
this packet must be lighter than s to ensure that the potential does not decrease.
Define ⇠ = nextts(P, ds) and ⇠B = nextts(B(i), ds). We have two cases.

If du  ⇠B , we replace u by s in B. That is, we let B+s = B(i) [{s} \ {u},
and this satisfies invariant (InvB)(ii). The case condition implies that invariant
(InvB)(i) continues to hold, and, as wu < ws in Case A.2, the value of w(B) does not
decrease.

Next, assume that du > ⇠B . Note that du  ⇠, by the definition of u. Let
� = prevts(P, ds). In this case we have that � < ds  ⇠B < du  ⇠, so du and ds
are in the same segment (�, ⇠] of P . Since � is a tight slot for P , ⇠B is a tight slot
for B(i), and pslack(P, ⇠B) > 0, from Lemma 5.3 with ⌘ = � and ⌘0 = ⇠B we get
that

|B(i)(�, ⇠B] \ P | = pslack(B(i),�) + pslack(P, ⇠B) + |A(i)(�, ⇠B]| > 0 ,

implying B(i)(�, ⇠B] \ P 6= ;. Choose any f 2 B(i)(�, ⇠B] \ P and let B+s = B(i) [
{s} \ {f}, preserving invariant (InvB)(ii). Invariant (InvB)(i) holds for B+s because
df  ⇠B = nextts(B(i), ds). The optimality of P and the choice of u and f imply that
wf  minwt(P, ds) = wu < ws; thus w(B) cannot decrease.

Summarizing, we showed that in response to the arrival of any packet s in step t
we can modify A and B in such a way that the invariants (InvA) and (InvB) will be
preserved and the value of will not decrease. This gives us that the packet-arrivals
inequality (5.5) holds for step t and that after packet arrivals both invariants (InvA)
and (InvB) will hold, concluding the analysis of packet arrivals in step t.

5.5. Transmitting a packet. Let t be the current step of the computation.
After all packets with release time equal to t arrive, the algorithm transmits its packet
p = ALG[t]. Recall that P t is the optimal plan just before transmitting p and eP t+1

is the optimal plan after the algorithm transmits p and possibly adjusts weights and
deadlines, and after the time is incremented to t+ 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1650 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

We split the analysis of the transmission step into two parts, called the adversary
step and the algorithm’s step, defined as follows:

Adversary step: If packet At[t] is defined, say At[t] = j, then we need to remove
it from A. (Recall that packets in A may have been removed or replaced
during the analysis, so j may not be equal to OPT[t], the packet scheduled
in OPT at time t.) Removing j from A could trigger a change in B, but the
optimal plan P remains unchanged. We show that these changes preserve both
invariants (InvA) and (InvB). We should stress that these changes are made
without advancing the current time, which will be done in algorithm’s step.
In the analysis of the adversary step, given in Section 5.5.1, we establish a
relation (inequality (5.12)) between the adversary transmission credit and the
change of the potential. By At

adv and Bt
adv we will denote the snapshots of sets

A and B, respectively, right after the adversary step.
Algorithm’s step: In the algorithm’s step, the algorithm transmits p, the time is incre-

mented to t+ 1, and the optimal plan changes from P t to eP t+1.
The analysis of this step assumes that the changes described in the adversary
step have already been implemented. Using the bound (5.12), invariants (InvA)
and (InvB), and other properties, we then show that the packet-transmission
inequality (5.6) holds after the sets P, A, and B are updated to reflect the
changes triggered by the packet’s transmission. We also ensure that invariants
(InvA) and (InvB) are preserved.
The analysis of the algorithm’s step is given in sections 5.5.2–5.5.6. We first
analyze the ordinary step in section 5.5.2. We then give a roadmap for the
analysis of a leap step in section 5.5.3, as it will be divided into substeps. We
analyze the particular substeps in section 5.5.4, which describes the changes in
the initial segment [t,↵] of P t, and in sections 5.5.5–5.5.6, which contain the
analysis of other changes resulting from a leap step.

In Table 1, we summarize the notation of snapshots that we use in this section.

5.5.1. Adversary step. As defined in section 5.1, if At contains a packet in
slot t, then the adversary gains the transmission credit of advcredit

t
t = wt(At[t]).

Otherwise, the adversary’s transmission credit equals advcredittt = minwt(P t, t). (The
overall adversary credit for this step also includes the adjustment credit, but in this
section we focus only on the relation between the transmission credit and the potential
change in the adversary step.)

Except for possibly removing packet At[t] from A, if it is defined, we will not
make other changes to A, so invariant (InvA) will be preserved. Below we show that
with appropriate changes invariant (InvB) will also be preserved after the adversary
step. Further, denoting by �adv the change of the potential in the adversary step,
we prove the following auxiliary inequality:

�adv � advcredit
t
t � �

1

�2
wt

p �
1

�
wt(subt(p)) .(5.12)

Recall that throughout section 5.5 we denote the packet scheduled by the algorithm
in step t by p.

The proof of inequality (5.12) is divided into two cases, depending on whether or
not At[t] is defined. As packet weights are not changed in the adversary step, below
we omit the superscript t in the notation for weights.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1651

Table 1

Notation of snapshots of sets P,B, and A used in the analysis. The particular snapshots for
each substep of the analysis of a leap step will be defined later, in the respective sections (their
numbers are given in parentheses).

Case ADV.1. At contains a packet in slot t. Let j = At[t]. We will now remove
j from the adversary stash A and, since by invariant (InvA) we have j 2 P t, we
need to add packet j to the backup plan B to maintain invariant (InvB)(ii), which
in turn requires removing a packet from B to preserve its feasibility. To this end,
we apply Lemma 5.5 (with g = j), which implies that there is a packet fj 2 Bt \
P t such that dfj > prevts(P t, dj), wfj  wj , and for which set Bt \ {fj} [{j} is
feasible.

We thus set At
adv = At \ {j} and Bt

adv = Bt \ {fj} [{j}. Invariant (InvA) is
clearly preserved, and by Lemma 5.5, invariant (InvB) continues to hold as well. The
potential change is

�adv =
1

�

�
w(Bt

adv)� w(Bt)
�

=
1

�
(�wfj + wj).(5.13)

From the definition of subt(j), dfj > prevts(P t, dj), and fj /2 P t, we have that fj is a
candidate for sub

t(j), and thus w(subt(j)) � wfj . Using (5.13) and advcredit
t
t = wj ,

it follows that

� (�adv � advcredit
t
t) = �wfj + wj � �wj

= � 1

�
wj � wfj

� � 1

�
wj � w(subt(j))

� � 1

�
wp � w(subt(p)) ,(5.14)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1652 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

where inequality (5.14) follows from the choice of p in line 1 of the algorithm’s de-
scription, using also that j 2 P t. This implies (5.12).

Case ADV.2. Slot t is empty in At. In this case, we do not change A and B,
so At

adv = At and Bt
adv = Bt. Invariants (InvA) and (InvB) are trivially preserved.

Recall that advcredittt = minwt(P t, t) = w`, where ` denotes the lightest packet in the
initial segment of P t. Note that subt(`) = ` and that �adv = 0. Then

� (�adv � advcredit
t
t) = ��w`

= � 1

�
w` � w(subt(`))

� � 1

�
wp � w(subt(p)) ,(5.15)

where inequality (5.15) follows from the choice of p again. Thus (5.12) holds.
This concludes the analysis of the adversary step. In particular, we have deter-

mined the snapshots At
adv and Bt

adv, of the adversary stash A and the backup plan
B, respectively, resulting from the adversary step. Next, in the following sections, we
analyze the algorithm’s step.

5.5.2. Ordinary step. We now assume that the adversary step, as described
in the previous section, has already been implemented. The current optimal plan P t

remains unchanged in the adversary step, and the current snapshots of A and B are
At

adv and Bt
adv. In this section we analyze the algorithm’s move at step t, assuming

this is an ordinary step, as defined in section 4.
In an ordinary step a packet p 2 P t[t,↵] is transmitted, where ↵ = nextts

t(t)
is the first tight slot in P t. The algorithm makes no changes in packet weights and
deadlines, so �tw = 0. Thus, to simplify notation, for any packet q we can write
wq = wt

q and dq = dtq, omitting the superscript t. As usual, ` denotes the lightest
packet in the initial segment P t[t,↵].

By the algorithm, p is the heaviest packet in P t[t,↵]. Since subt(p) = `, inequality
(5.12) gives us that

�adv � advcredit
t
t � �

1

�2
wp �

1

�
w` .(5.16)

According to Lemma A.4, the new optimal plan (starting at time slot t+1) is eP t+1 =
P t \ {p}.

We have two cases, depending on whether or not the adversary stash contains a
packet in the initial segment [t,↵] of P t.

Case O.1. At
adv[t,↵] = ;. In this case, p 62 At

adv (as p 2 P t[t,↵]) and we do
not further change set A, i.e., eAt+1 = At

adv. So invariant (InvA) is preserved and
advcredit

t = advcredit
t
t.

We now show that we can preserve invariant (InvB). As p 62 At
adv and (InvB)(ii),

we have that p 2 Bt
adv. We modify the backup plan B by removing p; that is,

eBt+1 = Bt
adv \ {p}. This immediately gives us that invariant (InvB)(ii) continues to

hold.
Next, we show that invariant (InvB)(i) holds as well. Since eBt+1 is with respect

to time t+ 1 and Bt
adv is feasible, we have that pslack(eBt+1, ⌧) = pslack(Bt

adv, ⌧) � 0
for ⌧ � dp. So it remains to consider slots ⌧ 2 [t + 1, dp). The case condition and
invariant (InvB)(ii) imply that P t[t,↵] ✓ Bt

adv. This, together with the feasibility of
Bt

adv and ↵ being a tight slot in P t, gives us that in fact P t[t,↵] = Bt
adv[t,↵]. From

this and pslack(P t, ⌧) � 1 for ⌧ 2 [t+ 1, dp) (as ↵ � dp is the first tight slot), we get

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1653

that pslack(eBt+1, ⌧) = pslack(Bt
adv, ⌧)�1 = pslack(P t, ⌧)�1 � 0 for all ⌧ 2 [t+1, dp),

completing the proof that invariant (InvB)(i) continues to hold.
The calculation showing the packet-transmission inequality (5.6) is quite simple.

Taking into account that the adversary credit is advcreditt = advcredit
t
t, and that the

change of the potential in the algorithm’s step is �ALG = 1
� (w(

eBt+1)�w(Bt
adv)) =

� 1
�wp, we obtain

�wt(ALG[t])� � (�tw) + (e t+1 � t)� advcredit
t

= �wp � � · 0 + [�ALG +�adv]� advcredit
t
t

= �wp +�ALG + [�adv � advcredit
t
t]

� �wp �
1

�
wp +


� 1

�2
wp �

1

�
w`

�
(5.17)

=
1

�
wp �

1

�
w` � 0 ,(5.18)

where inequality (5.17) uses (5.16), and the inequality in the last step in line (5.18)
uses the definition of `, namely that wp � w`.

Case O.2. At
adv[t,↵] 6= ;. (This includes the case when p 2 At

adv.) We first de-
scribe our modifications of sets A and B, and then argue that with these modifications
our invariants are preserved and inequality (5.6) is satisfied.

Changing sets A and B. Let g⇤ be the latest-deadline packet in At
adv[t,↵]. Packet

g⇤ exists, by the case condition. Note that dg⇤ � t+ 1, because At
adv cannot contain

a packet with deadline t (such a packet would be removed from A when we analyze
the adversary step). Let f⇤ be the earliest-deadline packet in Bt

adv \P t. Observation
5.2(a) with ⌘ = t � 1 implies that f⇤ is well defined. Note that possibly df⇤ = t, in
which case f⇤ cannot remain in B in the next step.

If p 2 At
adv, let g = p; otherwise let g = g⇤. (In either case we have g 2 At

adv.)
We remove g from A; i.e., we set eAt+1 = At

adv \ {g}. If we have g = g⇤ 6= p, then
p 2 Bt

adv, so p will need to be removed from Bt
adv, and due to removing g from A we

will also need to add it to B to satisfy invariant (InvB)(ii). In either case, we remove
f⇤ from B. Thus the new backup plan will be

eBt+1 =

⇢
Bt

adv \ {f⇤} if g = p,
Bt

adv [{g⇤} \ {f⇤, p} if g = g⇤ 6= p.

Note that in both cases it holds that eBt+1 = Bt
adv [{g} \ {f⇤, p}.

For a warm-up, before proving that our invariants hold, let’s verify that all pack-
ets in eBt+1 have deadlines at least t + 1. Indeed, as already mentioned earlier,
we have dg⇤ � t + 1, and if some q 2 eBt+1 \ {g⇤} had dq = t, then, by the def-
initions of f⇤ and eBt+1, this q would also be in P t, but this implies that ↵ = t
and P t[t, t] = {q}, contradicting the case condition because q /2 At

adv, by invariant
(InvB)(ii).

Preserving the invariants. We now have p /2 eAt+1, so invariant (InvA) is pre-
served. We next show that invariant (InvB) holds after the step. For part (InvB)(ii),
we need to show that eP t+1 \ eBt+1 = eP t+1 \ eAt+1. This can be verified quite easily
by considering how P \ B and P \ A change: If g = p, then both sets do not change,
and if g = g⇤ 6= p, then p is replaced by g⇤ in both sets.

To streamline the argument for part (InvB)(i) (feasibility), we divide the process
of updating and analyzing B into two parts: first we analyze the e↵ects of replacing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1654 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

f⇤ by g in B, and then we show that we can remove p from B (and increment t),
preserving its feasibility.

So in the first part we consider the auxiliary set Bt
(i) = Bt

adv[{g}\{f⇤}. Directly
from Corollary 5.6, we obtain that Bt

(i) is a feasible set of packets at time t. Further,
we also show that it has the following property.

Claim 5.8. pslack(Bt
(i), ⌧) � 1 for any ⌧ 2 [t, dp).

Proof. We first observe that for ⌧ 2 [t, df⇤), by invoking Lemma 5.4(a) with
⇣ = t� 1, B = Bt

adv, A = At
adv, and with the current plan P t, we can obtain that

pslack(Bt
adv, ⌧) � pslack(P t, ⌧) + |At

adv[t, ⌧]| .(5.19)

Now we consider three cases depending on the value of ⌧ . The first case is for ⌧ 2
[t,min(df⇤ , dg)). Then

pslack(Bt
(i), ⌧) = pslack(Bt

adv, ⌧) � pslack(P t, ⌧) � 1 ,

where the equality uses that Bt
(i)[t, ⌧] = Bt

adv[t, ⌧] (as ⌧ < min(df⇤ , dg)), the first
inequality uses (5.19), and the last inequality follows from the fact that ⌧ is not a
tight slot of P t, as ⌧ 2 [t,↵).

In the second case, for slots ⌧ 2 [dg,min(df⇤ , dp)), we note that g 2 At
adv[t, ⌧], so

equation (5.19) and pslack(P t, ⌧) � 1 imply

pslack(Bt
(i), ⌧) = pslack(Bt

adv, ⌧)� 1 � pslack(P t, ⌧) + |At
adv[t, ⌧]|� 1 � 1 .

In the third case, we deal with ⌧ 2 [df⇤ , dp). For ⌧ 2 [df⇤ , dg), replacing f⇤ by g
increases the value of pslack(B, ⌧) by 1, implying pslack(Bt

(i), ⌧) = pslack(Bt
adv, ⌧)+1 �

1, as Bt
adv is feasible. In particular, we are done if g = p. It thus remains to consider

the subcase when g = g⇤ 6= p and ⌧ 2 [max(df⇤ , dg⇤), dp), for which we use Lemma
5.4(b) with ⇣ = ↵, B = Bt

adv, A = At
adv, and the current plan P t, to get

pslack(Bt
(i), ⌧) = pslack(Bt

adv, ⌧) � pslack(P t, ⌧) � 1 ,

where the equality uses that Bt
(i)[t, ⌧] = Bt

adv[t, ⌧][{g} \ {f⇤} (as ⌧ � max(df⇤ , dg)),
and the last inequality follows from the fact that ⌧ is not a tight slot of P t, as
⌧ 2 [t,↵).

Next, note that we can express eBt+1 as eBt+1 = Bt
(i) \ {p}—indeed, this works no

matter whether g = p or g = g⇤. It remains to show that removing p from Bt
(i) and

incrementing the current time to t + 1 preserves feasibility. These changes decrease
the value of pslack(B, ⌧) for ⌧ 2 [t + 1, dp), but Claim 5.8 ensures that we still have
pslack(eBt+1, ⌧) � 0 for such ⌧ . For ⌧ � dp, the value of pslack(B, ⌧) is not a↵ected.
Hence, invariant (InvB)(i) holds after the step.

Deriving inequality (5.6). Let �ALG be the change of in the algorithm’s
step, so �ALG = 1

� (w(
eBt+1) � w(Bt

adv)) = 1
� (�wp � wf⇤ + wg). The adversary

adjustment credit is advcreditt(t,↵] = wg �minwt(P t, dtg) = wg �w`, since we removed
g from A and minwt(P t, dtg) = w`  wg. Thus, the total adversary credit for step t
is advcredit

t = advcredit
t
t + advcredit

t
(t,↵] = advcredit

t
t + wg � w`. (See section 5.1 for

the definition of advcreditt.) Note that wf⇤  w` as f⇤ 62 P t and that wg  wp as p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1655

is the heaviest packet in P t[t,↵] and g 2 P t[t,↵]. We show the packet-transmission
inequality (5.6) by summing these changes:

�wt(ALG[t])� � (�tw) + (e t+1 � t)� advcredit
t

= �wp � � · 0 + [�ALG +�adv]� [advcredittt + wg � w`]

= �wp +�ALG � wg + w` + [�adv � advcredit
t
t]

� �wp +
1

�
[�wp � wf⇤ + wg]� wg + w` +


� 1

�2
wp �

1

�
w`

�
(5.20)

=
1

�
wp �

1

�
wf⇤ � 1

�2
wg +

1

�2
w`

� 1

�
wp �

1

�
w` �

1

�2
wp +

1

�2
w`(5.21)

=
1

�3
(wp � w`) � 0 ,(5.22)

where inequality (5.20) uses (5.16), inequality (5.21) holds because wf⇤  w` and
wg  wp, and the last inequality (5.22) follows from wp � w`. This concludes the
analysis of an ordinary step.

5.5.3. Leap step: A roadmap. In the remainder of the analysis, we focus on
a leap step of Algorithm PlanM(t), when it transmits a packet p 2 P t(↵, T], where, as
defined earlier, P t represents the current optimal plan, already updated to take into
account packet arrivals. As in this case some packet weights change, we use notation
wt

a and wt+1
a (or wt(a) and wt+1(a)) for the weights of a packet a before and after

p is transmitted, respectively. For packets whose weight does not change, we may
occasionally omit the superscript t. We apply the same convention to deadlines.

By Lemma B.1(a), the new optimal plan (starting at time t+ 1) is

eP t+1 = P t \ {p, `} [{%} ,

where, as usual, % = sub
t(p) and ` is the lightest packet in P t[t,↵].

All changes in the optimal plan resulting from transmitting p are within two
intervals of the plan: the initial segment [t,↵] and the interval (�, �], where � =
prevts

t(dtp) and � = nextts
t(dt%) (possibly, ↵ = �). In segment [t,↵], packet ` is ousted.

In interval (�, �] (that could consist of several segments), packet p gets replaced by %,
and Algorithm PlanM increases the weight of % to µ = minwt(P t, dt%). Furthermore, if
this is an iterated leap step (i.e., k > 1 in the algorithm), PlanM also modifies weights
and deadlines of some packets hi. These changes in the optimal plan may change
some values of pslack(⌧) and may force changes in A or B, which might in turn trigger
additional changes in these sets to restore invariants (InvA) and (InvB).

We divide the analysis of a leap step into two substeps, namely (i) processing the
initial segment [t,↵] and (ii) processing interval (�, �]. These are outlined later in this
section and described in detail in sections 5.5.4, 5.5.5, and 5.5.6. Before proceeding
to that, we introduce two key inequalities bounding the potential change in these
substeps, and we show how to derive from them the packet-transmission inequality
(5.6).

Two key inequalities. We now define several quantities that we will use in our
estimates and in the two key inequalities below:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1656 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

�[t,↵] : The change of the potential due to the modifications in A and B
implemented when processing interval [t,↵]. These modifications include
the removal of ` from P t[t,↵], as well as other modifications that are
triggered by it.

�(�,�] : The change of the potential due to the modifications in A and B im-
plemented when processing interval (�, �]. These modifications include
the replacement of p by % in (�, �], the increases of weights and possible
decreases of deadlines of some packets, as well as other modifications
that are triggered by these changes.

advcredit
t
(�,�]: The adversary adjustment credit for modifications of packets in A

implemented when processing interval (�, �], namely for removing them
or replacing them by lighter packets.

�tw: As defined earlier, this is the total adjustment of weights of packets
in P t that is done by the algorithm in step t (always strictly positive as
the algorithm increases the weight of % by a nonzero amount).

Note that we do not define the adversary adjustment credit for processing the
initial segment [t,↵], as in that substep of the analysis the adversary does not need
to be compensated for any change in A.

We will derive the proof of the packet-transmission inequality (5.6) from the
two key inequalities below, which bound the changes of the potential resulting from
processing intervals [t,↵] and (�, �], respectively:

�[t,↵] � �
1

�
wt

`,(5.23)

�(�,�] � � (�tw)� advcredit
t
(�,�] � �wt

p + wt
%.(5.24)

Deriving the packet-transmission inequality. We now derive (5.6) from (5.23) and
(5.24). We start with two simple but useful bounds. First, using inequality (5.12)
and the definition of %, we have

�adv � advcredit
t
t � �

1

�2
wt

p �
1

�
wt

% .(5.25)

Also, for any ⌧ � t, we have

1

�2
wt

p +
1

�
wt

% � wt
` � minwt(P t, ⌧) ,(5.26)

where the first inequality follows from the choice of p in line 1 of the algorithm
(specifically, because the algorithm chose p over ` and because ` = sub(P t, `)), and the
second one follows from wt

` = minwt(P t, t) � minwt(P t, ⌧), that is, the monotonicity
of minwt(P t, ⌧) with respect to ⌧ .

So assume now that (5.23) and (5.24) hold. The total potential change in this
step is

e t+1 � t = �adv +�[t,↵] +�(�,�] ,

because all changes in the optimal plan and in sets A and B are accounted for
(uniquely) in the terms on the right-hand side. (The changes during the adversary
step, accounted for in �adv , were discussed in section 5.5.1. The changes associated
with the algorithm’s step, which contribute to �[t,↵] and �(�,�] , will be detailed in
sections 5.5.4–5.5.6.) The total adversary credit is the sum of the transmission credit,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1657

which was analyzed in section 5.5.1, and the adjustment credits for decreasing some
packet weights in A, so

advcredit
t = advcredit

t
t + advcredit

t
(�,�] ,

as the changes in [t,↵] will not involve any weight decreases in the adversary stash
A. Combining it all together, we have

�wt(ALG[t])� � (�tw) + (e t+1 � t)� advcredit
t

= �wt
p � � (�tw) + [�adv +�[t,↵] +�(�,�]]� [advcredittt + advcredit

t
(�,�]]

= �wt
p + [�adv � advcredit

t
t] +�[t,↵] + [�(�,�] � � (�tw)� advcredit

t
(�,�]]

� �wt
p +


� 1

�2
wt

p �
1

�
wt

%

�
+


� 1

�
wt

`

�
+
⇥
�wt

p + wt
%

⇤
(5.27)

=
1

�3
wt

p +
1

�2
wt

% �
1

�
wt

` � 0 ,

(5.28)

where in inequality (5.27) we use, in this order, inequalities (5.25), (5.23), and (5.24),
and in line (5.28) the equality is obtained by repeatedly applying the definition of �,
while the last inequality follows from (5.26).

Therefore, to complete the analysis, it is now su�cient to show that the two
key inequalities (5.23) and (5.24) hold, and that invariants (InvA) and (InvB) are
preserved after the step. As mentioned above, we divide the proof into two substeps,
more precisely defined as follows:

Processing the initial segment [t,↵]. In this substep, presented in section 5.5.4 below,
we assume that the changes described in the adversary step have already been
implemented. We describe changes in A and B triggered by the removal of `
from the optimal plan and by incrementing the time to t+ 1. We show that
inequality (5.23) holds and that invariants (InvA) and (InvB) are preserved
after these changes. More precisely, let P t+1

ins = P t \ {`} be plan P after
removing ` and incrementing the current time to t + 1, and let At+1

ins and
Bt+1

ins be the snapshots of sets A and B after implementing necessary changes
resulting from modifying P. We prove that invariants (InvA) and (InvB)
hold for plan P t+1

ins and sets At+1
ins , B

t+1
ins . (As indicated by superscript t+ 1,

these sets are defined with respect to time t+ 1.)
Processing interval (�, �]. In this substep, we assume that the changes described in the

adversary step and in the processing of [t,↵] have already been implemented.
We describe changes in A and B triggered by the replacement of p by %
and, for an iterated leap step, by modifications of packets hi. We prove that
inequality (5.24) holds and that invariants (InvA) and (InvB) are preserved
after these changes. In other words, we show that both invariants hold after
the transmission event, i.e., for plan eP t+1 and sets eAt+1 and eBt+1. The
proof will be divided into two cases, depending on whether it is a simple or
an iterated leap step (see sections 5.5.5 and 5.5.6, respectively). The proof
for an iterated leap step is further divided into a number of smaller stages.
Each such stage consists of modifications of P, B, and A that involve packets
with deadlines in some time interval (⇣, ⌘] ✓ (�, �], where ⇣ and ⌘ are tight
slots of P.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1658 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Throughout the process, while we gradually make changes in sets P, B, and A,
we will ensure that the following two properties hold:

Locality of changes. For a substep or stage in which an interval (⇣, ⌘] of slots is
processed, let Ṗ be the snapshot of P just before processing interval (⇣, ⌘]
and let P̈ be the optimal plan after this subset or stage; ⇣ and ⌘ will always
be tight slots of Ṗ . We will maintain the property that the changes of P
are confined to the set P(⇣, ⌘] of packets, or more precisely,

Ṗ \ Ṗ (⇣, ⌘] = P̈ \ P̈ (⇣, ⌘] .(5.29)

We also do not change the deadlines and weights of packets in Ṗ \ Ṗ (⇣, ⌘].
Equation (5.29) implies that |Ṗ (⇣, ⌘]| = |P̈ (⇣, ⌘]|, since all plans are full.
Therefore, ⌘ and ⇣ are tight slots of P̈ and all values of pslack(P, ⌧) remain
una↵ected for ⌧ /2 (⇣, ⌘). We remark that substeps and stages in the
analysis of each case will have pairwise disjoint intervals (⇣, ⌘].

Monotonicity of B \ P. No packets will be added to B(↵, T]\P throughout the analy-
sis. (In fact, the only packet that may be added to B is `. This could
happen when segment [t,↵] is processed.)

We remark that some “intermediate snapshots” of P in the analysis of a leap
step, such as P t+1

ins , mentioned above, are only auxiliary concepts used to capture the
changes of P after each substep or stage of the analysis. These snapshots satisfy the
definition of plans and are full, but they may not be optimal for the current set of
pending packets. As we do not rely on these intermediate plans being optimal, this
presents no issue for the analysis.

5.5.4. Leap step: Processing the initial segment. We now focus on the
first substep of the analysis of the leap step, namely on processing segment [t,↵] of
the optimal plan P. As explained earlier in section 5.5.3, we assume that the changes
in sets A and B described in the adversary step (section 5.5.1) have already been
implemented. Recall that At

adv and Bt
adv represent the snapshots of sets A and B,

respectively, resulting from the adversary step. As the adversary step does not a↵ect
the optimal plan, the current plan is still P t.

In this substep, we advance the time to t+ 1 and remove ` from P; that is, plan
P t is changed to P t+1

ins = P t\{`}. P t+1
ins is a plan for the set of packets pending at time

t + 1, that consists of the packets that were pending at time t, but excluding ` and
packets that expired at time t. Since d`  ↵ = nextts(P t, t), the values of pslack(P, ⌧)
may only change for ⌧ < ↵, i.e., pslack(P t+1

ins , ⌧) = pslack(P t, ⌧) for ⌧ � ↵. We may
also need to make changes in sets A and B, in order to preserve the invariants. We
refer to this substep as “processing the initial segment”, although some modifications
of B may involve pending packets with deadlines after ↵. We divide this substep into
two parts:

(i) first we show that if ` 2 At
adv then we can remove it from A, preserving the

invariants and not decreasing the potential, and then
(ii) assuming that ` /2 A, we analyze the e↵ect of removing ` from P and incre-

menting the time.
Let At

(i) denote the intermediate adversary stash, after the change in (i) and before
the change in (ii), where we let At

(i) = At
adv if ` /2 At

adv, that is when change (i) does
not apply. We adopt the same notation for set B. Note that P does not change in
(i), i.e., P t

(i) = P t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1659

(i) Dealing with the case ` 2 At
adv. We now consider the case when ` 2 At

adv.
Since ` /2 P t+1

ins , we need to remove ` from A to preserve invariant (InvA). In order to
satisfy invariant (InvB), we are then forced to add ` to B, which in turn requires us
to remove some packet from B \ P to restore feasibility of B. To identify this packet
we use Lemma 5.5 (with g = `), which shows that there is a packet f` 2 Bt

adv \P t for
which the set Bt

adv \{f`}[{`} is feasible and satisfies w(Bt
adv \{f`}[{`}) � w(Bt

adv).
We thus set At

(i) = At
adv \{`} and Bt

(i) = Bt
adv \{f`}[{`}, and this preserves both

invariants (InvA) and (InvB). Note that the adversary does not get any adjustment
credit for the removal of `, as w` = minwt(P t, d`), by the definition of `. Further, since
the contribution of this change of B to �[t,↵] is positive, when estimating �[t,↵]
we will account for this contribution without an explicit reference.

(ii) Removing ` from P and incrementing the time. By (i) we have ` /2 At
(i),

and thus also ` 2 Bt
(i), by invariant (InvB)(ii). Now, the plan is changed from P t to

P t+1
ins = P t \ {`}. As we do not further change A, i.e., At+1

ins = At
(i), invariant (InvA)

holds. (Note that after the adversary step, analyzed in section 5.5.1, At
(i) cannot

contain a packet that expires at time t.) However, we need to preserve invariant
(InvB). Denoting by f1 the earliest-deadline packet in Bt

(i) \ P t, we consider two
cases.

Case L.InSeg.1. df1 � d`. We let Bt+1
ins = Bt

(i) \ {`}. Inequality (5.23) holds

as �[t,↵] � � 1
� wt

`. (This inequality could be strict, due to the contribution from
replacing f` by `, as discussed in part (i) above.) Invariant (InvB)(ii) holds because
` /2 P t+1

ins andA does not change in (ii). To show that (InvB)(i), i.e., the feasibility of B,
is preserved, note that pslack(Bt+1

ins , ⌧) = pslack(Bt
(i), ⌧) � 0 for ⌧ � d`. Furthermore,

pslack(Bt
(i), ⌧) � pslack(P t, ⌧) � 1 for ⌧ 2 [t, d`), where the first inequality follows

from the definition of f1, df1 � d` > ⌧ , and Lemma 5.4(a) with ⇣ = t � 1, and the
second inequality follows from the fact that ⌧ is before the first tight slot ↵ of P t.
Hence, for ⌧ 2 [t+1, d`) we have pslack(B

t+1
ins , ⌧) = pslack(Bt

(i), ⌧)� 1 � 0, concluding
the proof that invariant (InvB) is maintained.

Case L.InSeg.2. df1 < d`. In this case, we let Bt+1
ins = Bt

(i) \ {f1}. Then

�[t,↵] � � 1
� wt

f1
� � 1

� wt
`, where the second inequality follows from ` 2 P t[t,↵]

and f1 /2 P t. Thus inequality (5.23) holds. Regarding invariant (InvB), its part
(ii) follows from the changes of sets A and B. To show invariant (InvB)(i), note
that pslack(Bt+1

ins , ⌧) = pslack(Bt
(i), ⌧) � 0 for ⌧ � df1 . For ⌧ 2 [t, df1), we first

get pslack(Bt
(i), ⌧) � pslack(P t, ⌧) � 1 by Lemma 5.4(a) with ⇣ = t � 1, using the

fact that ⌧ is before the first tight slot ↵ of P t, as ⌧ < df1 < d`  ↵ (here, we
use the case condition in the second inequality). Then, for ⌧ 2 [t + 1, df1), we have
pslack(Bt+1

ins , ⌧) � pslack(Bt
(i), ⌧) � 1 � 0. Thus, invariant (InvB) is preserved after

processing the initial segment [t,↵].

5.5.5. Processing (�, �] in a simple leap step. We now address the second
substep of analyzing a leap step, namely processing the interval (�, �], focusing on
the case of a simple leap step. (The case of an iterated leap step will be handled
separately, in section 5.5.6.) Recall that the algorithm replaces p by % in P, and that
in a simple leap step we have k = 0, that is (�, �] is a segment of P t and dp, d% 2 (�, �]
(see section 4).

We assume that the changes in P and sets A and B described in sections 5.5.1
and 5.5.4 have already been implemented. (We note that these changes might have
involved some packets considered in this section; for example, it is possible that % is
the same as packet fj removed from B when processing the adversary step in section

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1660 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

5.5.1.) In particular, the current time is already advanced to t + 1, and we assume
that both invariants (InvA) and (InvB) hold for sets At+1

ins , B
t+1
ins , and P t+1

ins , all three
defined with respect to time t + 1. It now remains to describe how we process the
interval (�, �]. In this substep, the plan changes from P t+1

ins to eP t+1 = P t+1
ins \{p}[{%}

and the weight of % is increased. The replacement of p by % may trigger modifications
in A and B, in order to restore the invariants.

P t+1
ins only di↵ers from P t in that in P t+1

ins the current time is incremented to
t+ 1, packet ` is removed, and the interval [t+ 1,↵] of P t may be split into multiple
segments. Slot ↵ = nextts(P t, t) is also tight in P t+1

ins , and there were no changes
in P after slot ↵; that is, P t(↵, T] = P t+1

ins (↵, T]. Therefore, d% and dp are still
in the same segment (�, �] of P t+1

ins , so prevts(P t+1
ins , d%) = prevts(P t+1

ins , dp) = � and
nextts(P t+1

ins , d%) = nextts(P t+1
ins , dp) = �.

In order to build some intuition behind our modifications of A and B, before
we give a formal argument, let us consider a few illustrative scenarios, focusing on
maintaining invariant (InvB). The simplest case is when p /2 Bt+1

ins and % 2 Bt+1
ins , as

then we can simply let eBt+1 = Bt+1
ins .

Suppose next that p 2 Bt+1
ins and % /2 Bt+1

ins . In this case we are forced to remove
p from B, and to add % to B. If d% � dp, then we don’t need to make any more
changes, that is we can let eBt+1 = Bt+1

ins \ {p} [{%}, and eBt+1 will be feasible. In
fact, even when d% < dp, using the properties of B established in section 5.2, we can
take eBt+1 = Bt+1

ins \ {p} [{%} as long as At+1
ins (�, �] = ;.

In the remaining situations, some additional modifications of B are needed. In
essence, what will happen is this: If p 2 Bt+1

ins , we will replace it in B by the latest-
deadline packet g⇤ in At+1

ins [t + 1, �], which will be removed from A. Similarly, if
% /2 Bt+1

ins , then % will replace in B the earliest-deadline packet f⇤ in Bt+1
ins (�, T]\P t+1

ins .
Using the results from section 5.2, we show that such packets exist and that these
changes will indeed preserve the feasibility of B.

We now give a formal argument. The proof is organized into two subcases, de-
pending on whether some changes in A are needed or not.

Case L.(�, �].S.1. % /2 Bt+1
ins and At+1

ins (�, �] = ;. (In particular, the case condition
implies that p 62 At+1

ins , as p 2 P t+1
ins (�, �], and that P t+1

ins (�, �] ✓ Bt+1
ins ; it is possible

though that this inclusion is strict.) Then we do not further change set A, i.e.,
eAt+1 = At+1

ins . Since p 62 eAt+1 and deadlines of all packets remain unchanged, invariant
(InvA) holds.

Regarding B, note that % /2 At+1
ins by invariant (InvA), and p 2 Bt+1

ins , by invariant
(InvB)(ii) and p /2 At+1

ins . Thus, we let eBt+1 = Bt+1
ins \ {p} [{%}, which preserves

invariant (InvB)(ii). Next, we need to show the feasibility of eBt+1, i.e., invariant
(InvB)(i). If d% � dp, then replacing p by % in B preserves feasibility, and thus, as Bt+1

ins

is feasible, the new backup plan eBt+1 is feasible as well. Otherwise, d% < dp. For ⌧ /2
[d%, dp), it holds that pslack(eBt+1, ⌧) = pslack(Bt+1

ins , ⌧) � 0, by the feasibility of Bt+1
ins .

Next, consider some ⌧ 2 [d%, dp) ✓ (�, �). By the case condition, At+1
ins (�, �] = ;; thus

using Lemma 5.4(b) with ⇣ = � we get that pslack(Bt+1
ins , ⌧) � pslack(P t+1

ins , ⌧) � 1,
where the second inequality holds because ⌧ 2 (�, �) is not a tight slot in P t+1

ins . Hence,
pslack(eBt+1, ⌧) = pslack(Bt+1

ins , ⌧) � 1 � 0 for ⌧ 2 [d%, dp), and we can conclude that
invariant (InvB) holds after the step.

Finally, we prove inequality (5.24). According to the algorithm, we have wt+1
% =

minwt(P t, dt%). Then the terms on the left-hand side of (5.24) are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1661

�(�,�] =
1

�
(�wt

p + wt+1
%) , �tw = wt+1

% � wt
% , and advcredit

t
(�,�] = 0.

Plugging these in, we obtain

�(�,�] � � (�tw)� advcredit
t
(�,�] =

1

�
(�wt

p + wt+1
%)� � (wt+1

% � wt
%)� 0

= � 1

�
wt

p � wt+1
% + �wt

%

� � 1

�
wt

p � (
1

�2
wt

p +
1

�
wt

%) + �wt
%(5.30)

= �wt
p + wt

% ,

where inequality (5.30) follows from wt+1
% = minwt(P t, dt%)  1

�2wt
p +

1
�w

t
%, by (5.26).

This shows that (5.24) holds.
Case L.(�, �].S.2. % 2 Bt+1

ins or At+1
ins (�, �] 6= ;. (Thus, there is a packet in (Bt+1

ins \
P t+1
ins) [At+1

ins which has deadline in (�, �].)
Changing sets A and B. Let g⇤ be the latest-deadline packet in At+1

ins [t + 1, �].
Packet g⇤ is well defined: this is trivially true if the second condition of the case is
satisfied, and otherwise we have % 2 Bt+1

ins \ P t+1
ins , in which case Observation 5.2(b)

with ⌘ = � implies that At+1
ins [t+ 1, �] 6= ;. (We remark that dg⇤  � if At+1

ins (�, �] =
;.) Similarly, let f⇤ be the earliest-deadline packet in Bt+1

ins (�, T] \ P t+1
ins . We show

that packet f⇤ is well defined. This is trivially true if % 2 Bt+1
ins , while otherwise it

holds that At+1
ins (�, �] 6= ;, and then Observation 5.2(a) with ⌘ = � gives us that

Bt+1
ins (�, T] \ P t+1

ins 6= ;. (It is possible that df⇤ > � if % /2 Bt+1
ins .)

We now define packets g and f , and we modify B and A as follows. If p 2 At+1
ins ,

let g = p; otherwise let g = g⇤. If % 2 Bt+1
ins , let f = %; otherwise let f = f⇤. We

remove g from A; i.e., we set eAt+1 = At+1
ins \ {g}. To preserve invariant (InvB)(ii), we

must add % to B (if it’s not there already) because % 2 eP t+1 \ eAt+1. Hence, we let
eBt+1 = Bt+1

ins [{g} \ {f, p} [{%}; this definition applies no matter whether g = p or
g = g⇤ nor whether f = % or f = f⇤. (In particular, if g = p and f = %, then B will
not change.)

Deriving inequality (5.24). We first claim that wt
f  wt

%. As f 2 {f⇤, %}, it is
enough to prove that wt

f⇤  wt
%. We have df⇤ > � � ↵, and, by the monotonicity

property of B \ P (see section 5.5.3), no packets were added to B(↵, T] \ P when
processing segment [t,↵], implying that f⇤ 2 Bt(�, T] \ P t. Then the inequality
wt

f⇤  wt
% follows from the choice of % = sub

t(p) as the heaviest pending packet not
in P t with deadline after slot �.

We also claim that wt
g  wt

p. As g 2 {g⇤, p}, it is enough to prove that wt
g⇤  wt

p.
Indeed, as we do not add any packet to A when processing segment [t,↵], it holds
that g⇤ 2 At and, thus, g⇤ 2 P t by invariant (InvA). The choice of g⇤ implies
that prevts(P t, dtg⇤)  prevts(P t, dtp), which in turn implies that w(sub(P t, g⇤)) � wt

%.
Therefore, if we had wt

g⇤ > wt
p then the algorithm would transmit g⇤ instead of p.

(Strictly speaking, here were rely on the “locality of changes” invariant from section
5.5.3, namely that P(↵, T] does not change when processing segment [t,↵].)

According to the algorithm, wt+1
% = minwt(P t, dt%). Then the terms on the left-

hand side of (5.24) are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1662 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

part (i)
Bt+1

(i) = Bt+1
ins � {g} \ {f}

P̃ t+1 = P t+1
(i) \ {p} � {�}

Ãt+1 = At+1
(i)

B̃t+1 = Bt+1
(i) \ {p} � {�}

P t+1
(i) = P t+1

ins

At+1
(i) = At+1

ins \ {g}
part (ii)

At+1
ins

P t+1
ins

Bt+1
ins

Fig. 5.3. Changing B in two parts.

�(�,�] =
1

�
(wt

g � wt
p � wt

f + wt+1
%) ,

�tw = wt+1
% � wt

% , and

advcredit
t
(�,�] = wt

g �minwt(P t, dtg)

 wt
g �minwt(P t, dt%) = wt

g � wt+1
% ,(5.31)

where the inequality in (5.31) follows from nextts(P t, dtg)  � = nextts(P t, dt%). (For
simplicity, the estimate for advcreditt(�,�] is given above with respect to P t, as described
in section 5.1. To be completely formal, in this substep this credit would be with
respect to the intermediate plan P t+1

ins . However, using P t instead of P t+1
ins cannot

make the adversary credit smaller since minwt(P t+1
ins , dtg) � minwt(P t, dtg), which holds

as P t+1
ins = P t \{`} and as any tight slot of P t is also tight in P t+1

ins .) Thus the changes
described above give us that

�(�,�] � � (�tw)� advcredit
t
(�,�]

� 1

�
(wt

g � wt
p � wt

f + wt+1
%)� � (wt+1

% � wt
%)� (wt

g � wt+1
%)

= �
✓

1

�2
wt

g +
1

�
wt

p

◆
+

✓
� 1

�
wt

f + �wt
%

◆

� �wt
p + wt

% ,(5.32)

using bounds wt
f  wt

% and wt
g  wt

p in step (5.32). This shows (5.24).

Preserving the invariants. Since after the changes it holds that p /2 eAt+1, invariant
(InvA) is maintained. We now show that invariant (InvB) holds. That condition
(InvB)(ii) is true follows directly from the way we update A and B. Therefore, we
will focus on condition (InvB)(i), that is, the feasibility of B. If we have both f = %
and g = p, then eBt+1 = Bt+1

ins , and the feasibility of eBt+1 is trivial. Hence, from now
on we assume that f = f⇤ 6= % or g = g⇤ 6= p (or both).

We split the changes in B into two parts (see Figure 5.3):

(i) First, we show that invariant (InvB) holds for the intermediate backup plan
Bt+1

(i) = Bt+1
ins [{g} \ {f}, which we consider with respect to adversary stash

At+1
(i) = eAt+1 = At+1

ins \ {g} and plan P t+1
(i) = P t+1

ins . In other words, we first
implement the removal of g from A together with the corresponding changes
in B \ P but postpone the change in the plan.

(ii) Second, we replace p by % in P, so eP t+1 = P t+1
(i) \ {p} [{%} and eBt+1 =

Bt+1
(i) \ {p} [{%}, and we show that eBt+1 is feasible as well.

Claim 5.9. Assume that f = f⇤ 6= % or g = g⇤ 6= p. Set Bt+1
(i) = Bt+1

ins [{g}\{f}
as a feasible set of packets with respect to time t+ 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1663

Proof. The claim clearly holds if df  dg, so for the rest of the proof we assume
that dg < df . Recall that, according to the assumptions of our Case L.(�, �].S.2, we
have that either % 2 Bt+1

ins or At+1
ins (�, �] 6= ; holds.

It is su�cient to show that pslack(Bt+1
ins , ⌧) � 1 for any ⌧ 2 [dg, df), as this will

imply that df  nextts(Bt+1
ins , dg), which in turn implies the feasibility of Bt+1

(i) . We
consider two cases.

First, assume that % /2 Bt+1
ins . This implies f = f⇤ and At+1

ins (�, �] 6= ;, which
means that dg 2 (�, �], no matter whether g = p or g = g⇤. Then, for ⌧ 2 [dg, df),
Lemma 5.4(a) with ⇣ = � gives us

pslack(Bt+1
ins , ⌧) � pslack(P t+1

ins , ⌧) + |At+1
ins (�, ⌧]| � 1,

since g 2 At+1
ins (�, ⌧] and pslack(P t+1

ins , ⌧) � 0.
In the second case we have % 2 Bt+1

ins \ P t+1
ins , so f = %. We then have g = g⇤ (as

we assume that f 6= % or g 6= p). For ⌧ 2 [dg, df), we use Lemma 5.4(b) with ⇣ = �
to obtain

pslack(Bt+1
ins , ⌧) � pslack(P t+1

ins , ⌧) + |Bt+1
ins (⌧, �] \ P t+1

ins | � 1,

where we use f = % 2 Bt+1
ins (⌧, �] \ P t+1

ins in the second inequality.

From the definitions of P t+1
(i) , At+1

(i) , and Bt+1
(i) , and using Claim 5.9, invariants

(InvA) and (InvB) hold for these three intermediate sets.
Before replacing p by % in the optimal plan and in B, we prove the following claim.

Claim 5.10. Assume that f = f⇤ 6= % or g = g⇤ 6= p. If d% < dp, then
pslack(Bt+1

(i) , ⌧) � 1 for any ⌧ 2 [d%, dp).

Proof. Let f̂ be the earliest-deadline packet in Bt+1
(i) (�, T]\P t+1

(i) , and let ĝ be the

latest-deadline packet in At+1
(i) [t+1, �]. These definitions are similar to the definitions

of f⇤ and g⇤, but they are not equivalent because in part (i) we could have removed
f⇤ from B and g⇤ from A. For this reason, packets f̂ and ĝ may not actually exist, in
which case, abusing notation, we will introduce artificial notations for their deadlines:
if f̂ does not exist, we let df̂ = T, and, similarly, if ĝ does not exist, we let dĝ = t+1.
We now observe that

pslack(Bt+1
(i) , ⌧) � pslack(P t+1

(i) , ⌧) � 1(5.33)

for ⌧ 2 (�,min(df̂ , �)) [[max(dĝ,� + 1), �).

Indeed, the first inequality follows from Lemma 5.4, which we can apply here because
both invariants (InvA) and (InvB) are true for P t+1

(i) , At+1
(i) , and Bt+1

(i) . Specifically,
apply Lemma 5.4(a) with ⇣ = �, obtaining the first inequality for ⌧ 2 (�, df̂), and
Lemma 5.4(b) with ⇣ = �, to obtain the first inequality for ⌧ 2 (dĝ, �). To justify the
second inequality in (5.33), note that, as (�, �] is a segment of P t+1

(i) = P t+1
ins , we have

pslack(P t+1
(i) , ⌧) � 1 for ⌧ 2 (�, �).

Since [d%, dp) ✓ (�, �), inequality (5.33) directly implies Claim 5.10 when df̂ � �
or dĝ  �. Therefore, for the rest of the argument, we will assume that df̂ < � and
dĝ > �.

Next, observe that, since Bt+1
(i) is obtained from Bt+1

ins by replacing f by g, we
have

pslack(Bt+1
(i) , ⌧) = pslack(Bt+1

ins , ⌧) + 1 � 1 for ⌧ 2 [df , dg),(5.34)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1664 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

where the inequality follows from the feasibility of Bt+1
ins . (It is possible that dg  df ,

in which case this interval is empty.)
From these two observations, (5.33) and (5.34), it is now su�cient to show that

[d%, dp) ✓ (�, df̂) [[df , dg) [[dĝ, �).(5.35)

Note that dĝ  dg⇤ and df̂ � df⇤ , by the definitions of these packets and of Bt+1
(i) and

At+1
(i) (note that g is not a candidate for f̂ as g 2 P t+1

(i)).
Now we consider three cases.
If f = %, then it holds that g = g⇤ by the claim’s assumption, and interval [d%, dp)

is covered by [df , dg) = [d%, dg⇤) and [dĝ, �), because dĝ  dg⇤ and dp  �.
Similarly, if g = p, then we have f = f⇤, and interval [d%, dp) is covered by

[df , dg) = [df⇤ , dp) and (�, df̂), because df̂ � df⇤ .
The last case is when f = f⇤ and g = g⇤. Then interval [d%, dp) ✓ (�, �) is

covered by (�, df⇤) [[df⇤ , dg⇤) [[dg⇤ , �), which implies (5.35) because df̂ � df⇤ and
dĝ  dg⇤ .

Finally, we show that the new backup plan eBt+1 = Bt+1
(i) \ {p}[{%} is feasible. If

d% � dp, then the feasibility of B is clearly preserved after replacing p by %. Otherwise,
d% < dp, and for ⌧ 2 [d%, dp) we have pslack(eBt+1, ⌧) = pslack(Bt+1

(i) , ⌧) � 1 � 0 by

Claim 5.10, while pslack(eBt+1, ⌧) = pslack(Bt+1
(i) , ⌧) � 0 for ⌧ /2 [d%, dp) by Claim 5.9.

Hence, invariant (InvB) holds after the step.

5.5.6. Processing (�, �] in an iterated leap step. Here we address the last
(and by far most involved) part of our argument, namely the analysis of an iterated
leap step. As a reminder, this step occurs when k � 1 in the algorithm, or, equiva-
lently, when d% is in a later segment of P t than dp. The initial comments in section
5.5.5 apply here as well. To recap: We assume that A and B have already been mod-
ified as described in sections 5.5.1 (the adversary step) and 5.5.4 (processing segment
[t,↵]). In particular, the time step has already been incremented to t + 1 and the
current snapshots of P, B, and A are denoted P t+1

ins , Bt+1
ins , and At+1

ins , respectively.
Recall that P t+1

ins = P t \ {`}. We assume that both invariants (InvA) and (InvB) hold
for these sets (with respect to time step t+ 1).

As before, � = prevts
t(dp) and � = nextts

t(d%). As this is an iterated leap step,
we have d% > nextts

t(dp), so the interval (�, �] of P t+1
ins is a union of two or more

consecutive segments of P t+1
ins . (The content of this interval is identical to the same

interval in P t; in fact, P t+1
ins and P t are identical starting right after ↵ = nextts

t(t), the
first tight slot of P t.) Let h0 = p, h1, . . . , hk be the packets from Algorithm PlanM

(line 9), and let hk+1 = %. All packets h0, h1, . . . , hk are in di↵erent segments of
P t+1
ins , not necessarily consecutive, while hk+1 = % has deadline in the same segment

as hk, but % /2 P t+1
ins . The deadlines and weights of packets % and h1, . . . , hk are still

unchanged before processing (�, �] (that is, they are the same as in step t).
We need to estimate the potential change due to weight increases and the changes

triggered by the replacement of p by % and by the “shifting” of hi’s. We also need to
prove key inequality (5.24) and that invariants (InvA) and (InvB) hold after the step.

The overall structure of the argument in this case is similar to Case L.(�, �].S
(simple leap step), with the analysis split according to whether changes in A are
needed (Case L.(�, �].I.2) or not (Case L.(�, �].I.1). In Case L.(�, �].I.2, the analysis
will be divided into several stages corresponding to processing of di↵erent groups of
segments.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1665

For i = 0, . . . , k, let µi = minwt(P t, dthi
); note that wt

` � µ0 � µ1 � · · · � µk =
minwt(P t, d%) and the algorithm ensures that wt+1

hi
� µi�1 for i = 1, . . . , k + 1. In

both cases below, we use the following simple bound on the change of weights of hi’s.

Lemma 5.11. For any 1  a0  b0  k, let �tw(h
a0 , . . . , hb0) be the total amount

by which the algorithm increases the weights of packets h
a0 , . . . , hb0 in step t. Suppose

that there exists i 2 [a0, b0] such that wt
hi

< µi�1, i.e., the algorithm increases the
weight of hi in Line 11 (and thus �tw(h

a0 , . . . , hb0) > 0). Then �tw(h
a0 , . . . , hb0) 

µ
a0�1

� wt
h
b
0 .

Proof. Let c 2 [a0, b0] be the maximum index such that wt
hc

< µc�1; such c exists
by the assumption of the lemma. We show the claim as follows:

�tw(h
a0 , . . . , hb0) =

cX

i=a0
max(µi�1 � wt

hi
, 0)


c�1X

i=a0
max(µi�1 � µi, 0) + max(µc�1 � wt

hc
, 0)(5.36)

=
c�1X

i=a0
(µi�1 � µi) + µc�1 � wt

hc
(5.37)

= µ
a0�1

� wt
hc

 µ
a0�1

� wt
h
b
0 ,(5.38)

where inequality (5.36) follows from wt
hi
� µi, equality (5.37) from µi�1 � µi and

from µc�1 > wt
hc

(by the choice of c), and inequality (5.38) from wt
hc
� wt

h
b
0 by

Lemma B.1(b) and c  b0.

Case L.(�, �].I.1. % /2 Bt+1
ins and At+1

ins (�, �] = ;. In this case, we do not make any
changes in A, i.e., eAt+1 = At+1

ins . From the case condition, p = h0, h1, . . . , hk /2 At+1
ins ,

because each hi is in P t+1
ins (�, �]. It follows that A is indeed not a↵ected by the

decrease of the deadlines of hi’s. Thus invariant (InvA) holds. Note that % /2 At+1
ins

by invariant (InvA). From the case condition and p 2 P t+1
ins (�, �], we have p /2 At+1

ins ;
therefore p 2 Bt+1

ins by invariant (InvB)(ii). This means that in order to preserve
invariant (InvB)(ii) we need to remove p from B and add % to it. Thus we set eBt+1 =
Bt+1

ins \ {p} [{%}.
Deriving inequality (5.24). To prove this inequality, we first show that

�tw(h1, . . . , hk)  µ0 � µk.(5.39)

(The weight increase �tw(h1, . . . , hk) was defined in Lemma 5.11.) Indeed, if there
is no i 2 [1, k] such that wt

hi
< µi�1, then �tw(h1, . . . , hk) = 0  µ0�µk as µ0 � µk.

Otherwise, we use Lemma 5.11 with a0 = 1 and b0 = k to get �tw(h1, . . . , hk) 
µ0 � wt

hk
 µ0 � µk, where the last inequality follows from wt

hk
� µk.

In this case, the terms on the left-hand side of inequality (5.24) are

�(�,�] =
1

�

�
� wt

p + wt+1
% +�tw(h1, . . . , hk)

�
,

�tw = wt+1
% � wt

% +�
tw(h1, . . . , hk),

advcredit
t
(�,�] = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1666 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

The equation for �(�,�] is true because all packets h1, . . . , hk are both in P t+1
ins and

in eP t+1, by Lemma B.1(a), and none of them is in At+1
ins = eAt+1, so we keep all of

them in B to preserve invariant (InvB)(ii). The last equation holds because we have
not changed the adversary stash. Plugging in these formulas, taking into account that
wt+1

% = µk, and using inequality (5.39), we can obtain inequality (5.24) with an easy
calculation:

�(�,�] � � (�tw)� advcredit
t
(�,�]

=
1

�
(�wt

p + wt+1
% +�tw(h1, . . . , hk))

� � (wt+1
% � wt

% +�
tw(h1, . . . , hk))� 0

= � 1

�
wt

p � µk + �wt
% ��tw(h1, . . . , hk)

� � 1

�
wt

p � µk + �wt
% � (µ0 � µk)

= � 1

�
wt

p + �wt
% � µ0

� � 1

�
wt

p + �wt
% �

✓
1

�2
wt

p +
1

�
wt

%

◆
(5.40)

= �wt
p + wt

% ,

where inequality (5.40) follows from µ0 = minwt(P t, dp)  1
�2 wt

p + 1
� wt

%, which is
inequality (5.26) with ⌧ = dp.

Preserving invariant (InvB). That invariant (InvB)(ii) is preserved follows im-
mediately from the definitions of eP t+1, eAt+1, and eBt+1. Next, we show invariant
(InvB)(i), which is the feasibility of eBt+1, and we split the argument into two parts.
First, we show that the invariant holds for the intermediate backup plan resulting
from replacing p by %, and then later we show that modifying the deadlines of the
hi’s preserves the invariant as well.

So consider an intermediate plan P t+1
(i) = P t+1

ins \ {p} [{%} and backup plan

Bt+1
(i) = Bt+1

ins \ {p} [{%}, both with respect to time t + 1 but with the deadlines of
packets h1, h2, . . . , hk still unchanged. Since this is an iterated leap step, we have that
d% > dp, so replacing p by % in B preserves feasibility. Therefore, Bt+1

(i) is feasible.

Now, we consider eBt+1, that is, the backup plan at step t+ 1, which is obtained
from Bt+1

(i) by decreasing the deadlines of hi’s, as in the algorithm. As slots outside

(�, �) are not a↵ected, we have pslack(eBt+1, ⌧) = pslack(Bt+1
(i) , ⌧) � 0 for ⌧ /2 (�, �).

So it remains to consider slots ⌧ 2 (�, �).
Recall that packets h1, . . . , hk belong to both Bt+1

ins and eBt+1. We also have that
pslack(P t+1

(i) , ⌧) � 1 for any ⌧ 2 (�, �), which holds as replacing p by % merges all seg-

ments between � = prevts
t(dp) and � = nextts

t(d%). Since At+1
(i) (�, �] = At+1

ins (�, �] =
;, Lemma 5.4(b) with ⇣ = � gives us that for any ⌧ 2 (�, �),

pslack(Bt+1
(i) , ⌧) � pslack(P t+1

(i) , ⌧) � 1 .(5.41)

Next, we claim that for ⌧ 2 (�, �),

pslack(eBt+1, ⌧) � pslack(Bt+1
(i) , ⌧)� 1 .(5.42)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1667

To justify this inequality, we observe that dt+1
hi

= ⌧i�1 � dthi�1
for i = 1, . . . , k, which

gives us that intervals [dt+1
hi

, dthi
) ⇢ (�, �) are disjoint. This implies in turn that, for

⌧ 2 (�, �), decreasing the deadlines of all hi’s can decrease pslack(B, ⌧) at most by
one, which yields inequality (5.42).

Inequalities (5.41) and (5.42) yield pslack(eBt+1, ⌧) � pslack(Bt+1
(i) , ⌧) � 1 � 0 for

⌧ 2 (�, �), completing the proof that eBt+1 satisfies invariant (InvB)(i).
Case L.(�, �].I.2. % 2 Bt+1

ins or At+1
ins (�, �] 6= ;. In this case, both sets A and

B will be changed. We focus on the segments of P t+1
ins which contain the packets

h0 = p, h1, . . . , hk. These are the segments of the current optimal plan that are
modified by the algorithm when p is transmitted. Specifically, for i = 0, . . . , k, let Si

be the segment of P t+1
ins that ends at ⌧i = nextts

t(dthi
), that is the segment containing

dthi
. (See Figure 4.1.) Recall that prevts

t(dp) = �, ⌧k = �, and that we defined
hk+1 = %. We first organize segments Si into groups and then split the sequence of
changes in this case into stages, having one stage for each group.

Groups. We start by defining a packet g 2 At+1
ins . Let g⇤ be the latest-deadline

packet in At+1
ins [t+ 1, �]. Observe that packet g⇤ is well defined. This is trivially true

if the second part of the case condition holds, while in the case when % 2 Bt+1
ins \P t+1

ins ,
we use Observation 5.2(b) with ⌘ = � to get that At+1

ins [t + 1, �] 6= ;. (It is possible
that dg⇤  � in the second case.)

We now define g as follows: If dtg⇤ is in a segment Si for which hi 2 At+1
ins , then let

g = hi; otherwise let g = g⇤. Observe that, in particular, if hk 2 At+1
ins , then g = hk.

We will process segments Si in groups, where each group is specified by some
nonempty interval of indices [a, b] ✓ {0, . . . , k} of segments Si. We will denote such a
group by ha, bi (to avoid confusion with the notation for segments and time intervals).
These intervals will be chosen so that they partition the set of all indices {0, . . . , k}.
Roughly, we have a group for each hi 2 At+1

ins (that needs to be replaced in or removed
from A because its deadline needs to be decreased), a special last group, and possibly
a special group at the beginning. Let i1 < i2 < · · · < il be the indices of those
packets h0 = p, h1, . . . , hk that are in At+1

ins . Note that if l > 0, then dtg 2 [dt(hil), �],
because hil 2 At+1

ins is a candidate for g⇤. In particular, since g 2 At+1
ins , we have that

g /2 {h0, . . . , hk}\{hil}; that is, among all packets h0, . . . , hk, g may be possibly equal
only to hil . The definition of these groups depends on whether some packet hi is in
At+1

ins (that is l > 0) or none of them is in At+1
ins (that is l = 0):

Case l > 0. If l > 1, then for each c = 1, . . . , l � 1, the interval hic, ic+1 � 1i is a
middle group. If i1 > 0 (meaning that h0 = p 62 At+1

ins), then there is a special initial
group h0, i1 � 1i. If i1 = 0, then there is no initial group. Next, we assign the indices
in [il, k] to one or two groups and define index ã. If g = hil (in particular, if il = k),
then hil, ki is the terminal group, and we let ã = il. Otherwise, g 6= hil , and we let
ã be the smallest index in 0, . . . , k for which ⌧ã � dtg. The assumption that g 6= hil

implies that ã > il. Then hã, ki is the terminal group and hil, ã� 1i is a new middle
group. (See Figure 5.4 for two examples that illustrate the case when l > 0.)

Case l = 0. We define one or two groups only. There is the terminal group hã, ki,
where ã is again the smallest index in 0, . . . , k with ⌧ã � dtg. If ã > 0, we also have
the initial group h0, ã� 1i .

Observe that we always define ã so that hã, ki is the terminal group. We further
define index b̃ so that the first group is h0, b̃i; for example, if l > 0 and i1 > 0,
then b̃ = i1 � 1. Note that in almost every group ha, bi packet ha is in At+1

ins ; the
only two possible exceptions are (i) the initial group, and (ii) the terminal group in
case when either l = 0 or l � 1 and ã 6= il. On the other hand, for any group ha, bi

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1668 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

h8h7g*h6h5p = h0 h1 h2 h3 h4

β γS1 S2 S3S0 S4 S5 S6 S7 S8

h8h7g* , h6h5p = h0 h1 h2 h3 h4

β γS1 S2 S3S0 S4 S5 S6 S7 S8

Fig. 5.4. Two examples that illustrate assigning segments into groups. In both examples we
have k = 8. Segments are separated by vertical bars. Segments Si are colored (shaded). Green (or
dark shaded) segments Si are those for which packet hi is in At+1

ins . In the first example, we have
l = 3, (i1, i2, i3) = (2, 3, 6), g = g⇤ (as g⇤ is not in Si for any i), and ã = 7. We have 5 groups:
the initial group h0, 1i, middle groups h2, 2i, h3, 5i, and h6, 6i, and the terminal group h7, 8i. In the
second example we have l = 4, (i1, i2, i3, i4) = (0, 2, 3, 6), and g = h6 (because g⇤ is in S6 and h6

is in At+1
ins). Since i1 = 0 there is no initial group. We have 4 groups: middle groups h0, 1i, h2, 2i,

h3, 5i, and the terminal group h6, 8i.

h9h8h7h4 h5 h6

S4 S5 S6 S9S7 S8

S4 S5 S6 S9

h10h9h8h5 h6 h7

S7 S8

h10h4

Fig. 5.5. An illustration of the changes in P in the stage when a middle group ha, bi = h4, 9i is
processed.

packets ha+1, . . . , hb are never in At+1
ins , and thus these packets are in Bt+1

ins by invariant
(InvB)(ii).

Stages. The changes implemented during the processing of interval (�, �] involve
the replacement of p by % in P, weight increases of % and hi’s, and deadline decreases
of hi’s, as described in the algorithm. These changes will also trigger changes of B and
A necessary to preserve the invariants. We will organize all these changes (of P, B, A,
and the instance itself) into a sequence of stages, with one stage for each group ha, bi.
The stages will be implemented in the reverse order of the groups, that is, starting
from the stage for the terminal group (which is defined in all cases), continuing with
middle groups in the reverse order of their indices, and ending by the group containing
index 0, which may be of any type.

To better understand the partition into stages, as described below, it helps to
think of the substitution of p by % = hk+1 in the optimal plan as a chain of substi-
tutions: first replace hk by %, then replace hk�1 by hk, and so on, and eventually
replace p = h0 by h1. In our process here, rather than processing these substitutions
individually, we process the substitutions within each group ha, bi simultaneously as
one stage, in which ha is replaced by hb+1. (See Figure 5.5 for an illustration.)

Formally, let Ṗ t+1
ha,bi be the snapshot of the intermediate plan P just before the

stage for group ha, bi, and let P̈ t+1
ha,bi be the snapshot of the intermediate plan P just

after the stage for group ha, bi. (We remark that Ṗ t+1
ha,bi is not necessarily an optimal

plan. It is only meant to be an “intermediate plan” used to capture gradual changes
in the optimal plan as stages are executed. It is, however, feasible, and it will satisfy

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1669

stage for
terminal group

stage for
middle group

. . .

stage for
first group

Ṗ t+1
�0,b̃�. . .P t+1

ins = Ṗ t+1
�ã,k� P̈ t+1

�ã,k� P̈ t+1
�a,b�Ṗ t+1

�a,b� P̈ t+1
�0,b̃� = �P k+1

Fig. 5.6. Notation for stages.

appropriate invariants.) Naturally, if ha, bi and hb+ 1, ci are two consecutive groups,
then P̈ t+1

hb+1,ci = Ṗ t+1
ha,bi. We adopt the same conventions for sets B and A. In this

notation (see Figure 5.6 for an illustration) we have the following:
• In the first stage, that corresponds to the terminal group hã, ki, we have

Ṗ t+1
hã,ki = P t+1

ins , Ḃt+1
hã,ki = Bt+1

ins , and Ȧt+1
hã,ki = At+1

ins . Note that in this stage, it

holds that hk+1 = % /2 Ṗ t+1
hã,ki.

• When describing the stage for each group ha, bi, we assume that the changes
in stages for groups ha0, b0i with a0 > b have already been implemented. As
an invariant we will ensure that hb+1 /2 Ṗ t+1

ha,bi (for b = k, this holds by hk+1 =

% /2 Ṗ t+1
hã,ki = P t+1

ins). In this stage, the plan changes from Ṗ t+1
ha,bi to P̈ t+1

ha,bi =

Ṗ t+1
ha,bi \ {ha} [{hb+1}, which will imply that ha /2 P̈ t+1

ha,bi just after this stage
is processed. Further, the weights and deadlines of packets ha+1, . . . , hb+1

are adjusted according to the algorithm (for b = k, the deadline of hk+1 = %
remains the same). This stage also involves changes in A and B triggered by
the changes in P and by the adjustments of weights and deadlines. These
changes will convert Ḃt+1

ha,bi and Ȧt+1
ha,bi to B̈t+1

ha,bi and Ät+1
ha,bi, respectively.

• After the last stage, corresponding to the first group h0, b̃i (which could be
an initial, middle, or terminal group), we have P̈ t+1

h0,b̃i =
eP t+1, B̈t+1

h0,b̃i =
eBt+1,

and Ät+1
h0,b̃i =

eAt+1.

By the results of section 5.5.4, invariants (InvA) and (InvB) hold for Ṗ t+1
hã,ki, Ḃ

t+1
hã,ki,

and Ȧt+1
hã,ki. In the stage for each group ha, bi, we will show that these invariants are

preserved and that an appropriate bound on amortized profits holds. This will give us
that inequality (5.24) holds when processing interval (�, �] and that invariants (InvA)
and (InvB) hold afterwards, that is for sets eP t+1, eBt+1, and eAt+1.

Note that the changes of P implemented by the algorithm in the stage for group
ha, bi satisfy

Ṗ t+1
ha,bi \ Ṗ

t+1
ha,bi(⌘, ⌧b] = P̈ t+1

ha,bi \ P̈
t+1
ha,bi(⌘, ⌧b]

for ⌘ = prevts(Ṗ t+1
ha,bi, d

t
ha
), which is the “locality of changes” invariant (5.29) from

section 5.5.3. The pslack(P, ⌧) values are actually a↵ected only for ⌧ 2 [dtha
, ⌧b). (We

remark that changes of P involve packet hb+1 with dthb+1
> ⌧b (if b < k); however,

hb+1 /2 Ṗ t+1
ha,bi, and we change the deadline of hb+1 to ⌧b during the stage for group

ha, bi.)
Finally, we will maintain the property that after the stage for each group ha, bi,

packet ha will not be in Ät+1
ha,bi, even though it may have been in A earlier. This is

necessary for invariant (InvA), because ha /2 P̈ t+1
ha,bi. As also % = hk+1 /2 Ȧt+1

hã,ki = At+1
ins ,

this will give us that hb+1 /2 Ȧt+1
ha,bi for any group ha, bi. Recall that, importantly,

packets ha+1, . . . , hb are also not in Ȧt+1
ha,bi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1670 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Deriving inequality (5.24). We split the potential changes and the adversary credit
for replacing packets in A among groups in a natural way. Let �ha,bi be the total
change of the potential due to the modifications implemented in the stage for group
ha, bi, and let advcredit

t
ha,bi be the adversary adjustment credit for the changes of A

implemented in the stage for group ha, bi (that is, for removing a packet or for replacing
ha by a lighter packet). Recall that �tw(ha+1, . . . , hb+1) is the total amount by which
the algorithm increases the weights of ha+1, . . . , hb+1. Our goal is to prove for each
group ha, bi that

�ha,bi � ��tw(ha+1, . . . , hb+1)� advcredit
t
ha,bi � �wt

ha
+ wt

hb+1
.(5.43)

(Note that the right-hand side of (5.43) is negative, by Lemma B.1(b).)
It remains to observe that the sum of (5.43) over all groups gives us exactly the

key inequality (5.24). Indeed, the right-hand sides sum to �wt
h0

+wt
hk+1

= �wt
p+wt

%.
Regarding the left-hand side of (5.43), �(�,�] equals the sum of �ha,bi over all
groups ha, bi, and similarly for �tw and advcredit

t
(�,�]. (Note that the increase of the

weight of % = hk+1 is accounted for in inequality (5.43) for the terminal group hã, ki.)
Stage for the terminal group. Let hã, ki be the terminal group of segments. In

this stage, we change plan P by removing hã and adding %, we increase the weights
of packets hã+1, . . . , hk+1 = %, and we decrease the deadlines of packets hã+1, . . . , hk.
We thus have P̈ t+1

hã,ki = Ṗ t+1
hã,ki \ {hã} [{%}.

Let f⇤ be the earliest-deadline packet in Ḃt+1
hã,ki(�, T]\Ṗ

t+1
hã,ki. We argue that packet

f⇤ is well defined, which is trivially true if % 2 Bt+1
ins (�, T] = Ḃt+1

hã,ki(�, T]. Otherwise,

At+1
ins (�, �] = Ȧt+1

hã,ki(�, �] 6= ; and then Observation 5.2(a) with ⌘ = � implies that

Ḃt+1
hã,ki(�, T] \ Ṗ

t+1
hã,ki 6= ;. (Possibly, df⇤ > � in the second case.)

We then define a packet f 2 Ḃt+1
hã,ki \ Ṗ

t+1
hã,ki, letting f = % if % 2 Ḃt+1

hã,ki, and f = f⇤

otherwise.
Next, we modify sets A and B. We remove g from A, i.e., Ät+1

hã,ki = Ȧt+1
hã,ki \ {g}.

This ensures that invariant (InvA) is preserved, because hã /2 Ät+1
hã,ki and none of

packets hã+1, . . . , hk is in Ät+1
hã,ki (by the definition of groups); thus the decrease of

their deadlines, implemented in this stage, does not a↵ect A.
Regarding B, note that % 2 P̈ t+1

hã,ki \ Ät+1
hã,ki, so we need to include % in B̈t+1

hã,ki to

preserve invariant (InvB)(ii). Hence, we let B̈t+1
hã,ki = Bt+1

ins [{g} \ {f, hã} [{%}; this
definition applies no matter whether g = hã or g = g⇤ nor whether f = % or f = f⇤.

Deriving (5.43) for the terminal group. Apart from the changes in the paragraph
above, the algorithm changes the weights of packets hã+1, . . . , hk+1 = %, which results
in the increase of the weight of the optimal plan. Taking all these changes into account,
the terms on the left-hand side of (5.43) are

�hã,ki =
1

�

�
wt

g � wt
f � wt

hã
+ wt+1

% +�tw(hã+1, . . . , hk)
�

=
1

�

�
wt

g � wt
f � wt

hã
+ µk +�tw(hã+1, . . . , hk)

�
,(5.44)

�tw(hã+1, . . . , hk+1) = �tw(hã+1, . . . , hk) + wt+1
% � wt

%

= �tw(hã+1, . . . , hk) + µk � wt
%,(5.45)

advcredit
t
hã,ki = wt

g �minwt(P t, dtg).(5.46)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1671

Equation (5.44) follows from the definition of B̈t+1
hã,ki, as % is added to B with its new

weight wk+1
% = µk and packets hã+1, . . . , hk remain in B, although their weights are

changed. (Recall that for each group ha, bi, packets ha+1, . . . , hb are always in B.)
Equation (5.45) holds because wk+1

% = µk. In A, we just removed g, implying (5.46).
(See section 5.1 for the definition of the adversary adjustment credit associated with
the removal of packets from A.)

We further claim that the following inequalities hold:

�tw(hã+1, . . . , hk)  µã � µk,(5.47)

wt
g  wt

hã
,(5.48)

wt
f  wt

%,(5.49)

minwt(P t, dtg) � µã.(5.50)

To show (5.47), we consider two simple cases. If there is no i 2 hã + 1, ki such that
wt

hi
< µi�1, then �tw(hã+1, . . . , hk) = 0  µã � µk as µã � µk. Otherwise, we use

Lemma 5.11 with a0 = ã+1 and b0 = k to get�tw(hã+1, . . . , hk)  µã�wt
hk
 µã�µk,

where the last inequality follows from wt
hk
� µk.

Inequality (5.48) is trivial if g = hil , in which case also ã = il. Otherwise, ã > il.
By the definition of the terminal group, ã is the smallest index with ⌧ã � dtg, and thus
dtg > ⌧ã�1. We also have that hã is the heaviest packet in plan Ṗ t+1

hã,ki = P t+1
ins with

deadline in (⌧ã�1, �]. (This property holds for plan P t, by the algorithm. However, the
changes in section 5.5.4, where we process [t,↵], do not a↵ect packets in the optimal
plan after the first tight slot ↵  �; see also the “locality of changes” invariant in
section 5.5.3.) As g 2 Ṗ t+1

hã,ki and dtg 2 (⌧ã�1, �] (by the definition of ã), we conclude
that wt

g  wt
hã
.

Next, we justify (5.49). Indeed, since dtf > � and the only packet possibly added
to B in the analysis of the transmission step is ` with dt`  ↵  �, we have that
f /2 P t, and then the inequality holds by the definition of %.

Finally, inequality (5.50) follows from ⌧ã � dtg and the monotonicity of theminwt()
function.

Using the above equations and inequalities, we derive inequality (5.43) as follows:

�hã,ki � ��tw(hã+1, . . . , hk+1)� advcredit
t
hã,ki

=
1

�

�
wt

g � wt
f � wt

hã
+ µk +�tw(hã+1, . . . , hk)

�

� � (�tw(hã+1, . . . , hk) + µk � wt
%)� (wt

g �minwt(P t, dtg))

= � 1

�2
wt

g �
1

�
wt

f �
1

�
wt

hã
��tw(hã+1, . . . , hk)

� µk + �wt
% +minwt(P t, dtg)

� � 1

�2
wt

hã
� 1

�
wt

% �
1

�
wt

hã
� (µã � µk)� µk + �wt

% + µã(5.51)

= �wt
hã

+ wt
hk+1

,(5.52)

where in inequality (5.51) we use (5.47), (5.48), (5.49), and (5.50), and in step (5.52)
we substituted wt

% = wt
hk+1

.
Invariant (InvB) after the stage for the terminal group. We claim that after the

stage for the terminal group, invariant (InvB) holds for backup plan B̈t+1
hã,ki. (The

proof given here is an extension of the one for the case L.[�, �).S.2 in section 5.5.5.)
To show this, we split all changes of this stage into three parts (see Figure 5.7):

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1672 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

part
(i)

P t+1
(ii) = P t+1

(i) \ {hã} � {�}

Bt+1
(ii) = Bt+1

(i) \ {hã} � {�}

At+1
(ii) = At+1

(i)

part
(ii)

part
(iii)

(deadline changes only)

Ṗ t+1
�ã,k�

Ḃt+1
�ã,k�

Ȧt+1
�ã,k�

P̈ t+1
�ã,k� = P t+1

(ii)

B̈t+1
�ã,k� = Bt+1

(ii)

Ät+1
�ã,k� = At+1

(ii)

P t+1
(i) = Ṗ t+1

�ã,k�

Bt+1
(i) = Ḃt+1

�ã,k� � {g} \ {f}
At+1

(i) = Ȧt+1
�ã,k� \ {g}

Fig. 5.7. Partition of the stage for the terminal group into three parts in the proof that invariant
(InvB) is preserved.

(i) First, we implement the changes in A and B \ P, but postpone changes in
P; that is, we consider sets P t+1

(i) = Ṗ t+1
hã,ki, B

t+1
(i) = Ḃt+1

hã,ki [{g} \ {f}, and
At+1

(i) = Ȧt+1
hã,ki \ {g} = Ät+1

hã,ki. The deadlines of packets hã+1, . . . , hk are as
yet unchanged.

(ii) Second, we replace hã by % in P but still do not implement the deadline
changes, so P t+1

(ii) = P t+1
(i) \ {hã}[{%}, Bt+1

(ii) = Bt+1
(i) \ {hã}[{%}, and At+1

(ii) =

At+1
(i) .

(iii) Third, we decrease the deadlines of packets hã+1, . . . , hk, ending up with plan
P̈ t+1
hã,ki and backup plan B̈t+1

hã,ki. (Note that A and B \ P are not a↵ected by

the deadline decreases, since packets hã+1, . . . , hk are in P t+1
(ii) \At+1

(ii) .)
In the argument for the first two parts, we can assume that f = f⇤ 6= % or

g = g⇤ 6= hã (or both), since if both f = % and g = hã, then Bt+1
(ii) = Ḃt+1

hã,ki = Bt+1
ins , in

which case invariant (InvB) holds after part (ii), as (InvB)(i) is trivial and (InvB)(ii)
follows from the way P and A are modified in parts (i) and (ii). (Recall that g 2
{g⇤, hã} and that g = hã i↵ ã = il.)

Claim 5.12. Assume that f = f⇤ 6= % or g = g⇤ 6= hã. Then set Bt+1
(i) =

Ḃt+1
hã,ki [{g} \ {f} is a feasible set of packets pending at time t+ 1.

Proof. Recall that Ṗ t+1
hã,ki = P t+1

ins and that the same relations hold for sets B
and A. Also, we are currently in Case L.(�, �].I.2, in which either % 2 Bt+1

ins or
At+1

ins (�, �] 6= ;.
The claim clearly holds if dtf  dtg. Otherwise, by the definition of tight slots, it

su�ces to prove dtf  nextts(Bt+1
ins , dtg), from which the feasibility of Bt+1

(i) follows. In

particular, we show that pslack(Bt+1
ins , ⌧) � 1 for any ⌧ 2 [dtg, d

t
f).

We now consider two cases. First, assume that % /2 Bt+1
ins . This implies f = f⇤

and At+1
ins (�, �] 6= ;, which means that dtg 2 (�, �], no matter whether g = hã or

g = g⇤. Then, for ⌧ 2 [dtg, d
t
f), Lemma 5.4(a) with ⇣ = � gives us

pslack(Bt+1
ins , ⌧) � pslack(P t+1

ins , ⌧) + |At+1
ins (�, ⌧]| � 1,

since At+1
ins (�, ⌧] contains g and pslack(P t+1

ins , ⌧) � 0.
Otherwise, % 2 Bt+1

ins \ P t+1
ins , so f = %. In this case, g = g⇤ holds (as we assume

in this part that f = f⇤ 6= % or g = g⇤ 6= hã). For ⌧ 2 [dtg, d
t
f), we use Lemma 5.4(b)

with ⇣ = � to obtain

pslack(Bt+1
ins , ⌧) � pslack(P t+1

ins , ⌧) + |Bt+1
ins (⌧, �] \ P t+1

ins | � 1,

where we use f = % 2 Bt+1
ins (⌧, �] \ P t+1

ins in the second inequality.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1673

From the definitions of P t+1
(i) , At+1

(i) , and Bt+1
(i) , and using Claim 5.12, invariants

(InvA) and (InvB) hold for these three intermediate sets.
Before considering part (ii) (that is, replacing hã by % in P and B), we prove the

following claim.

Claim 5.13. Assume that f = f⇤ 6= % or g = g⇤ 6= hã. If dt% < dthã
, then ã = k

and pslack(Bt+1
(i) , ⌧) � 1 for any ⌧ 2 [dt%, d

t
hã
).

Proof. Let � = prevts
t(dt%). By the definitions of � and % and since the tight slots

of P t+1
ins are the same as those of P t starting with slot ↵, dt% is in the segment (�, �] of

P t+1
(i) = P t+1

ins ; consequently, dthã
also belongs to this segment. So ã = k, proving the

first part of the claim. Moreover, it follows that pslack(P t+1
(i) , ⌧) � 1 for ⌧ 2 [dt%, d

t
hk
).

We now make two observations that will be used later to prove Claim 5.13. First,
observe that replacing f by g in B results in

pslack(Bt+1
(i) , ⌧) = pslack(Bt+1

ins , ⌧) + 1 � 1 for ⌧ 2 [dtf , d
t
g) ,(5.53)

where the inequality follows from the feasibility of Bt+1
ins . (It is possible that dtg  dtf ,

in which case this interval is empty.)
Next, let f̂ be the earliest-deadline packet in Bt+1

(i) (�, T] \ P t+1
(i) , and let ĝ be the

latest-deadline packet in At+1
(i) [t+1, �]; if f̂ is undefined, we let dt

f̂
= T , and similarly

if ĝ is undefined, we let dtĝ = t + 1. By Lemma 5.4 (which we can apply because
invariants (InvA) and (InvB) are true for P t+1

(i) , At+1
(i) , and Bt+1

(i)), it holds that

pslack(Bt+1
(i) , ⌧) � pslack(P t+1

(i) , ⌧) � 1(5.54)

for ⌧ 2 (�,min(dt
f̂
, �)) [[max(dtĝ,�+ 1), �).

Specifically, we apply Lemma 5.4(a) with ⇣ = � to derive the first inequality for
⌧ 2 (�, dt

f̂
), and Lemma 5.4(b) with ⇣ = � to derive the first inequality for ⌧ 2 [dtĝ, �).

The second inequality holds because (�, �] is a segment of P t+1
(i) .

If dt
f̂
� � or dtĝ  �, then inequality (5.54) directly implies the lemma, because

[dt%, d
t
hk
) ✓ (�, �). Therefore, for the rest of the proof, we will assume that dt

f̂
< �

and dtĝ > �.
To complete the proof, it is su�cient to show that inequalities (5.53) and (5.54)

cover the whole range of ⌧ 2 [dt%, d
t
hk
), that is,

[dt%, d
t
hk
) ✓ (�, dt

f̂
) [[dtf , d

t
g) [[dtĝ, �).(5.55)

Note that dtĝ  dtg⇤ and dt
f̂
� dtf⇤ by the definitions of these packets and of Bt+1

(i)

and At+1
(i) (note that g is not a candidate for f̂ as g 2 P t+1

(i)). If f = %, then it holds that
g = g⇤ by the assumption, and the interval [dt%, d

t
hk
) is covered by [dtf , d

t
g) = [dt%, d

t
g⇤)

and [dtĝ, �), because dtĝ  dtg⇤ and dthk
 �. Similarly, if g = hk, we have f = f⇤,

and [dt%, d
t
hk
) is covered by [dtf , d

t
g) = [dtf⇤ , dthk

) and (�, dt
f̂
), since dt

f̂
� dtf⇤ . Finally,

consider the case of f = f⇤ and g = g⇤. Then the interval [dt%, d
t
hk
) ✓ (�, �) is

covered by (�, dtf⇤) [[dtf⇤ , dtg⇤) [[dtg⇤ , �), which implies (5.55), because dt
f̂
� dtf⇤ and

dtĝ  dtg⇤ .

We now address the second part, where Bt+1
(i) is changed into Bt+1

(ii) = Bt+1
(i) \{hã}[

{%}, and we show that Bt+1
(ii) satisfies invariant (InvB). We consider the feasibility of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1674 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Bt+1
(ii) first. Recall that in this part we assume f = f⇤ or g = g⇤. If dt% � dthã

, then the
feasibility of B is clearly preserved after replacing hã by %. Otherwise, dt% < dthã

, in
which case, by Claim 5.13, we have ã = k and pslack(Bt+1

(ii) , ⌧) = pslack(Bt+1
(i) , ⌧)�1 � 0

for ⌧ 2 [dt%, d
t
hã
); while pslack(Bt+1

(ii) , ⌧) = pslack(Bt+1
(i) , ⌧) � 0 for ⌧ /2 [dt%, d

t
hã
), by

Claim 5.12. Therefore, Bt+1
(ii) is indeed feasible. In this part, we replace hã by % in

both P and B and A is unchanged, so invariant (InvB)(ii) is preserved as well.
Finally, we consider the third part of this stage, where the deadline decreases of

hã+1, . . . , hk are implemented, converting Bt+1
(ii) into B̈t+1

hã,ki. (Unlike in the first two
parts, we perform this part also in the case f = % and g = hã.) We only need to show
that B̈t+1

hã,ki remains feasible, since invariant (InvB)(ii) is not a↵ected.
There is no deadline decrease in this part if ã = k, so it remains to deal with the

case when ã < k. Recall that the algorithm will change the deadline dthi
to dt+1

hi
= ⌧i�1

for each i = ã+ 1, . . . , k. These changes result in decreasing pslack(B) by one in each
interval [⌧ã, dthã+1

), . . . , [⌧k�1, dthk
). Other slots in B are not a↵ected. These intervals

are disjoint because dthi
 ⌧i for i = 0, . . . , k. Thus, it su�ces to show the following

claim.

Claim 5.14. Assume that ã < k. Then pslack(Bt+1
(ii) , ⌧) � 1 for any ⌧ 2 [⌧ã, �).

Proof. We first show that pslack(P t+1
(ii) , ⌧) � 1 for any ⌧ 2 [⌧ã, �). To this end, we

consider two cases.
The first case is when ⌧ 2 [⌧ã, dt%). For such ⌧ we have pslack(P t+1

(ii) , ⌧) �
pslack(P t+1

(i) , ⌧) + 1 � 1, because replacing hã by % causes pslack(P, ⌧) to increase

by 1 for ⌧ 2 [dthã
, dt%) ◆ [⌧ã, dt%), and because P t+1

(i) = P t+1
ins is feasible.

The second case is when ⌧ 2 [dt%, �). In this case we argue as follows. Since for
ã < k replacing hã by % in P does not decrease any value pslack(P, ⌧) (i.e., there are
no new tight slots in P) and each slot ⌧ 2 [dt%, �) belongs to the segment of P t+1

(ii)

ending at �, we indeed have pslack(P t+1
(ii) , ⌧) � 1 for any ⌧ 2 [dt%, �).

We thus have pslack(P t+1
(ii) , ⌧) � 1 for all ⌧ 2 [⌧ã, �), as claimed. To finish the

proof, note that dtg⇤  ⌧ã by the definitions of g⇤ and the terminal group hã, ki, and
that At+1

(ii) (⌧ã, �] = ;. Thus for ⌧ 2 [⌧ã, �), we can apply Lemma 5.4(b) with ⇣ = � to

obtain pslack(Bt+1
(ii) , ⌧) � pslack(P t+1

(ii) , ⌧) � 1, completing the proof.

Putting it all together and using Claim 5.14, we obtain that pslack(B̈t+1
hã,ki, ⌧) �

pslack(Bt+1
(ii) , ⌧)�1 � 0 for any ⌧ 2 [⌧ã, �), while pslack(B̈

t+1
hã,ki, ⌧) = pslack(Bt+1

(ii) , ⌧) � 0
for ⌧ /2 [⌧ã, �). This concludes the proof that invariant (InvB) holds after the stage
for the terminal group.

Stage for a middle group. We now analyze the stage in which the segments rep-
resented by a middle group ha, bi of indices are processed. The current intermediate
plan, backup plan, and adversary stash are Ṗ t+1

ha,bi, Ḃ
t+1
ha,bi, and Ȧt+1

ha,bi, respectively, and
we assume that they satisfy invariants (InvA) and (InvB). At this point, it holds that

(a) ha 2 Ȧt+1
ha,bi by the definition of the middle group,

(b) hb+1 /2 Ṗ t+1
ha,bi as a result of the previous stage (recall that b < k for a middle

group), which implies that hb+1 /2 Ȧt+1
ha,bi by invariant (InvA), and

(c) hb+1 /2 Ḃt+1
ha,bi, because hb+1 was removed from P in the previous stage (that

is, we had hb+1 2 P t(↵, T], but now hb+1 /2 Ṗ t+1
ha,bi), and because we do not add

any packets to B(↵, T]\P while processing a leap step (see the “monotonicity
of B \ P” invariant in section 5.5.3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1675

The changes of plan P in this stage involve removing ha and adding back hb+1;
that is, Ṗ t+1

ha,bi is changed to P̈ t+1
ha,bi = Ṗ t+1

ha,bi \ {ha} [{hb+1}. We also decrease the
deadlines of packets ha+1, . . . , hb+1 and increase the weights of a subset of packets
ha+1, . . . , hb+1, according to the algorithm. Since ha is removed from P, we also need
to remove it from A to preserve invariant (InvA). Similarly, as hb+1 is added back to
P (and is not in A), it needs to be added to B or to A so that invariant (InvB)(ii)
continues to hold. The changes of A and B depend on two cases, which are described
below.

Case L.(�, �].M.1. There is an index i 2 [a+ 1, b+ 1] such that wt
hi

< µi�1; i.e.,
the algorithm (in line 11) increases the weight of hi. We will remove ha from A and
add hb+1 to B. To restore the feasibility of B, we apply Lemma 5.5 for packet g = ha

to identify a packet fa 2 Ḃt+1
ha,bi \ Ṗ t+1

ha,bi for which set Ḃt+1
ha,bi \ {fa} [{ha} is feasible

and dtfa > prevts(Ṗ t+1
ha,bi, d

t
ha
). We then let

Ät+1
ha,bi = Ȧt+1

ha,bi \ {ha} and B̈t+1
ha,bi = Ḃt+1

ha,bi \ {fa} [{hb+1} .

With these changes, (InvA) is preserved, since also none of packets ha+1, . . . , hb+1,
whose deadlines are decreased, is in Ät+1

ha,bi. We will show below that B̈t+1
ha,bi is feasible,

even with the deadlines of ha+1, . . . , hb+1 decreased by the algorithm.
Deriving (5.43) in Case L.(�, �].M.1. We need to take into account the addition

of hb+1 in B and possible change of weights of some packets ha+1, . . . , hb+1. Taking
these changes into account, the terms on the left-hand side of (5.43) can be expressed
or estimated as follows:

�ha,bi =
1

�

⇣
�tw(ha+1, . . . , hb+1) + wt

hb+1
� wt

fa

⌘
,(5.56)

�tw(ha+1, . . . , hb+1)  µa � wt
hb+1

,(5.57)

advcredit
t
ha,bi = wt

ha
�minwt(Ṗ t+1

ha,bi, d
t
ha
)  wt

ha
� µa.(5.58)

To justify (5.56), note that while hb+1 /2 Ḃt+1
ha,bi is added to B with its new weight wt+1

hb+1
,

its weight increase of wt+1
hb+1
�wt

hb+1
is already accounted for in �tw(ha+1, . . . , hb+1).

Inequality (5.57) can be derived from the case condition, which says that there
is i 2 [a+ 1, b+ 1] such that wt

hi
< µi�1, so we just need to apply Lemma 5.11 with

a0 = a+ 1 and b0 = b+ 1 to get (5.57).
Inequality (5.58) follows from the definition of µa as µa = minwt(P t, dtha

) and
from the observation that minwt(Ṗ t+1

ha,bi, d
t
ha
) � minwt(P t, dtha

), which in turn follows

from nextts(Ṗ t+1
ha,bi, d

t
ha
) = nextts(P t, dtha

) and Ṗ t+1
ha,bi[t+1, ⌘] = P t[t, ⌘]\{`}, where ⌘ =

nextts(Ṗ t+1
ha,bi, d

t
ha
). (The equality nextts(Ṗ t+1

ha,bi, d
t
ha
) = nextts(P t, dtha

) holds because of
the “locality of changes” invariant from section 5.5.3.)

Next, we claim that

wt
fa  wt

hb+1
.(5.59)

Indeed, fa is not in P t since, by its definition, fa /2 Ṗ t+1
ha,bi and dtfa > prevts(Ṗ t+1

ha,bid
t
ha
) �

�, so fa could not have been removed from P in this step. (Note that hb+1 is tem-
porarily removed from P, but it cannot be equal to fa because hb+1 /2 Ḃt+1

ha,bi). Thus
wt

fa
 wt

%, because % is the heaviest pending packet not in P t with deadline after �

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1676 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

part
(i)

part
(ii)

part
(iii)

(deadline changes only)

Ṗ t+1
�a,b�

Ḃt+1
�a,b�

Ȧt+1
�a,b�

P t+1
(i) = Ṗ t+1

�a,b�

Bt+1
(i) = Ḃt+1

�a,b� \ {fa} � {ha}

At+1
(i) = Ȧt+1

�a,b� \ {ha}

P t+1
(ii) = P t+1

(i) \ {ha} � {hb+1}

Bt+1
(ii) = Bt+1

(i) \ {ha} � {hb+1}

At+1
(ii) = At+1

(i)

P̈ t+1
�a,b� = P t+1

(ii)

B̈t+1
�a,b� = Bt+1

(ii)

Ät+1
�a,b� = At+1

(ii)

Fig. 5.8. Partition of the stage for the middle group in Case L.(�, �]M.1. into three parts.

and fa /2 P t is pending in step t. By Lemma B.1(b) we have wt
%  wt

hb+1
, which

implies that wt
fa
 wt

hb+1
. (As an additional clarification, the argument in this para-

graph relies tacitly on two properties of earlier changes in processing the transmission
event: One, no packets with deadlines after ↵ are added to B \ P, and two, the tight
slots of Ṗ t+1

ha,bi in the interval (�, ⌧b] are the same as tight slots in P t; cf. section 5.5.3.)
Then we prove (5.43) as follows:

�ha,bi � ��tw(ha+1, . . . , hb+1)� advcredit
t
ha,bi

� 1

�

⇣
�tw(ha+1, . . . , hb+1) + wt

hb+1
� wt

fa

⌘

� ��tw(ha+1, . . . , hb+1)� (wt
ha
� µa)

=
1

�

⇣
wt

hb+1
� wt

fa

⌘
��tw(ha+1, . . . , hb+1)� wt

ha
+ µa

� �(µa � wt
hb+1

)� wt
ha

+ µa(5.60)

= �wt
ha

+ wt
hb+1

,

where inequality (5.60) follows from (5.59) and (5.57).
Invariant (InvB) in Case L.(�, �].M.1. We claim that after the stage for the

middle group ha, bi, invariant (InvB) holds, which we show by partitioning this stage
into three parts:

(i) We first let Bt+1
(i) = Ḃt+1

ha,bi \ {fa} [{ha}.
(ii) Second, we modify Bt+1

(i) to obtain set Bt+1
(ii) = Bt+1

(i) \ {ha} [{hb+1}.
(iii) Finally, we implement the decrease of the deadlines of packets ha+1, . . . , hb+1,

changing Bt+1
(ii) to B̈t+1

ha,bi.
In each part, we also appropriately modify the sets P and A, as illustrated in

Figure 5.8.
That Bt+1

(i) is feasible follows from the choice of fa and Lemma 5.5. Since

dtha
< dthb+1

, Bt+1
(ii) is also a feasible set of packets, and moreover, pslack(Bt+1

(ii) , ⌧) =

pslack(Bt+1
(i) , ⌧) + 1 � 1 for any ⌧ 2 [dtha

, dthb+1
), by the feasibility of Bt+1

(i) . Fi-

nally, we argue that B̈t+1
ha,bi remains feasible. The deadline decreases for packets

ha+1, . . . , hb+1 decrease pslack(B) by one for slots in each of the disjoint intervals
[⌧a, dtha+1

), . . . , [⌧b, dthb+1
). As dtha

 ⌧a, all these intervals are contained in [dtha
, dthb+1

);

hence, by the earlier observation, it holds that pslack(B̈t+1
ha,bi, ⌧) � pslack(Bt+1

(ii) , ⌧)�1 �
0 for any ⌧ 2 [dtha

, dthb+1
). For ⌧ /2 [dtha

, dthb+1
), the values of pslack(B) do not change.

It follows that B̈t+1
ha,bi is feasible; that is, invariant (InvB)(i) holds after the stage. That

invariant (InvB)(ii) holds as well follows directly from the definitions of P̈ t+1
ha,bi, B̈

t+1
ha,bi,

and Ät+1
ha,bi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1677

Case L.(�, �].M.2. For all indices i 2 [a + 1, b + 1] we have wt
hi
� µi�1. Thus in

this case the algorithm does not increase the weights of packets ha+1, . . . , hb+1, i.e.,
�tw(ha+1, . . . , hb+1) = 0.

Before describing the changes in A, we argue that ha+1 /2 Ȧt+1
ha,bi. This is trivial if

b > a, because then packets ha+1, . . . , hb are not in A before processing the groups.
Otherwise, we have a = b. Since in the stages, we process the groups backwards
with respect to time slots, the stage for the group hb+ 1, b0i containing index b+ 1 is
already completed, and it guarantees that hb+1 is not in P̈ t+1

hb+1,b0i
= Ṗ t+1

ha,bi and thus

not in Ät+1

hb+1,b0i
= Ȧt+1

ha,bi by invariant (InvA), as claimed. (See also the overview of

the partition into stages, earlier in the description of Case L.(�, �].I.2.)
We now change A as follows: we remove ha from A, and we put ha+1 in the

former slot of ha in Ȧt+1
ha,bi, that is Ät+1

ha,bi = Ȧt+1
ha,bi \ {ha} [{ha+1}. This is valid

because, as we showed above, ha+1 /2 Ȧt+1
ha,bi, and the new deadline of ha+1 is ⌧a.

Then advcredit
t
ha,bi = wt

ha
� wt

ha+1
, as the weight of ha+1 does not change. Since

packets ha+2, . . . , hb+1 are not in Ät+1
ha,bi, the decreases of their deadlines do not a↵ect

A. After these changes, invariant (InvA) will be preserved.
Regarding B, recall that hb+1 /2 Ḃt+1

ha,bi, ha 2 Ȧt+1
ha,bi, and ha /2 P̈ t+1

ha,bi. Also, if

b > a, then ha+1 2 Ḃt+1
ha,bi. Then, since ha+1 is newly added to A, we let B̈t+1

ha,bi =

Ḃt+1
ha,bi [{hb+1} \ {ha+1}; it is possible here that ha+1 = hb+1, in which case B does

not change.
Deriving (5.43) in Case L.(�, �].M.2. In this case, the terms on the left-hand side

of (5.43) are

�ha,bi =
1

�

⇣
�wt

ha+1
+ wt

hb+1

⌘
,

�tw(ha+1, . . . , hb+1) = 0,

advcredit
t
ha,bi = wt

ha
� wt

ha+1

with all formulas following directly from the definition and the fact that the weights
remain unchanged. Plugging these in, we obtain

�ha,bi � ��tw(ha+1, . . . , hb+1)� advcredit
t
ha,bi

=
1

�

⇣
�wt

ha+1
+ wt

hb+1

⌘
� � · 0� (wt

ha
� wt

ha+1
)

= �wt
ha

+
1

�2
wt

ha+1
+

1

�
wt

hb+1

� �wt
ha

+
1

�2
wt

hb+1
+

1

�
wt

hb+1
(5.61)

= �wt
ha

+ wt
hb+1

,

where inequality (5.61) follows from wt
ha+1

� wt
hb+1

, by Lemma B.1(b) and a  b.

Invariant (InvB) in Case L.(�, �].M.2. We show that B̈t+1
ha,bi is feasible by consid-

ering first an intermediate backup plan Bt+1
(i) = Ḃt+1

ha,bi[{hb+1}\{ha+1}, computed with

packets ha+1, . . . , hb+1 having their deadlines unchanged. Since Bt+1
(i) is obtained by

replacing ha+1 by hb+1 in B, and dtha+1
 dthb+1

, Bt+1
(i) is feasible; moreover, it satisfies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1678 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

pslack(Bt+1
(i) , ⌧) = pslack(Ḃt+1

ha,bi, ⌧) + 1 � 1 for any ⌧ 2 [dtha+1
, dthb+1

). Next, to prove

the feasibility of B̈t+1
ha,bi, we decrease the deadlines of packets ha+1, . . . , hb+1. This

decreases pslack(B) by one for slots in disjoint intervals [⌧a+1, dtha+2
), . . . , [⌧b, dthb+1

).
(We do not consider ha+1 here because this packet was already removed from B.)
These intervals are contained in [dtha+1

, dthb+1
), and we thus have pslack(B̈t+1

ha,bi, ⌧) �
pslack(Bt+1

(i) , ⌧) � 1 � 0 for ⌧ 2 [dtha+1
, dthb+1

). For ⌧ /2 [dtha+1
, dthb+1

), the values of

pslack(B) do not change. Therefore, B̈t+1
ha,bi is feasible, showing (InvB)(i). Part (ii) of

invariant (InvB) is implied by the changes of sets P,A, and B.
This completes the proof that invariants (InvA) and (InvB) are preserved after

the stage for the middle group ha, bi, and that inequality (5.43) holds for this stage.
Stage for the initial group. The initial group h0, b̃i is defined when either l > 0

and i1 > 0 or if l = 0 and ã > 0. In either case, we have h0, . . . , hb̃ 62 Ȧt+1
h0,b̃i.

In the stage in which this group is processed, we change plan P by removing
h0 = p and adding hb̃+1, so

eP t+1 = Ṗ t+1
h0,b̃i \ {p} [

�
hb̃+1

. (Recall that eP t+1 = P̈ t+1

h0,b̃i
and the corresponding relation holds for A and B, since we process the stage for
the initial group after all other groups.) We also decrease the deadlines of packets
h1, . . . , hb̃+1, and for some we increase their weights, according to the algorithm. We

do not change A; thus eAt+1 = Ȧt+1
h0,b̃i and advcredit

t
h0,b̃i = 0. Since packets h1, . . . , hb̃+1

are not in Ȧt+1
h0,b̃i, it follows that invariant (InvA) is preserved. To update B, we let

eBt+1 = Ḃt+1
h0,b̃i \ {p} [

�
hb̃+1

(recall that hb̃+1 /2 Ḃt+1

h0,b̃i).

Deriving (5.43) for the initial group. The terms on the left-hand side of (5.43)
can be expressed or estimated as follows:

�h0,b̃i =
1

�

⇣
�tw(h1, . . . , hb̃+1)� wt

p + wt
hb̃+1

⌘
,(5.62)

�tw(h1, . . . , hb̃+1) 
1

�2
(wt

p � wt
hb̃+1

),(5.63)

advcredit
t
h0,b̃i = 0.(5.64)

Equations (5.62) and (5.64) follow directly from the definitions and the case assump-
tion.

To justify (5.63), we consider two cases. If the algorithm does not increase the
weight of any of the packets h1, . . . , hb̃+1, then �

tw(h1, . . . , hb̃+1) = 0  1
�2 (wt

p �
wt

hb̃+1

), by Lemma B.1(b). Otherwise, there is i 2 [1, b̃ + 1] such that wt
hi

< µi�1,

and applying Lemma 5.11 with a0 = 1 and b0 = b̃+ 1, we obtain

�tw(h1, . . . , hb̃+1)  µ0 � wt
hb̃+1

 1

�2
wt

p +
1

�
wt

% � wt
hb̃+1

(5.65)

 1

�2
(wt

p � wt
hb̃+1

) ,(5.66)

where inequality (5.65) uses the bound µ0  1
�2 wt

p +
1
� wt

%, which follows from (5.26),
and inequality (5.66) uses wt

%  wt
hb̃+1

, which follows from Lemma B.1(b). Thus (5.63)
holds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1679

The calculation showing (5.43) is now quite simple:

�h0,b̃i � ��tw(h1, . . . , hb̃+1)� advcredit
t
h0,b̃i

=
1

�

⇣
�tw(h1, . . . , hb̃+1)� wt

p + wt
hb̃+1

⌘
� ��tw(h1, . . . , hb̃+1)� 0

=
1

�
(�wt

p + wt
hb̃+1

)��tw(h1, . . . , hb̃+1)

� 1

�
(�wt

p + wt
hb̃+1

)� 1

�2
(wt

p � wt
hb̃+1

)(5.67)

= �wt
p + wt

hb̃+1

,

where inequality(5.67) holds by (5.63).
Invariant (InvB) after the stage for the initial group. That invariant (InvB)(ii) is

preserved follows directly from the formulas for eP t+1, eBt+1, and eAt+1.
To show invariant (InvB)(i), that is the feasibility of eBt+1, we consider an inter-

mediate backup plan Bt+1
(i) = Ḃt+1

h0,b̃i \ {p} [
�
hb̃+1

, where the deadlines of pack-

ets h1, . . . , hb̃+1 remain unchanged. Replacing p by hb̃+1 in B preserves feasibil-
ity as dtp < dthb̃+1

. So Bt+1
(i) is feasible; moreover, it satisfies pslack(Bt+1

(i) , ⌧) =

pslack(Ḃt+1
h0,b̃i, ⌧) + 1 � 1 for any ⌧ 2 [dtp, d

t
hb̃+1

).

We now decrease the deadlines of packets h1, . . . , hb̃+1, as in the algorithm. This
decreases pslack(B, ⌧) by one for slots ⌧ in disjoint intervals [⌧0, dth1

), . . . , [⌧b̃, d
t
hb̃+1

).

These intervals are contained in [dtp, d
t
hb̃+1

), and we thus have pslack(eBt+1, ⌧) �
pslack(Bt+1

(i) , ⌧) � 1 � 0 for ⌧ 2 [dtp, d
t
hb̃+1

). The values of pslack(B) are not a↵ected

for slots ⌧ /2 [dtp, d
t
hb̃+1

). Therefore, eBt+1 is feasible; that is, invariant (InvB)(i) holds
after the stage for the initial group and after the algorithm’s step as well.

Summary of Case L.(�, �].I.2. In this case, we processed changes in the interval
(�, �] when % 2 Bt+1

ins or At+1
ins (�, �] 6= ;. We divided the segments in this interval that

contain packets hi into groups, and each group was processed in a separate stage, in
reverse order (i.e., backwards with respect to time slots). For each stage, we proved
that (i) invariants (InvA) and (InvB) are preserved, and that (ii) inequality (5.43)
holds for this stage. The last stage corresponds to a group h0, b̃i (that may be of any
type), and we proved that after this last stage the backup plan eBt+1 = B̈t+1

h0,b̃i satisfies

invariant (InvB), and that the adversary stash eAt+1 = Ät+1
h0,b̃i satisfies invariant (InvA).

All inequalities (5.43) (one for each group) imply the key inequality (5.24), which is
needed for amortized analysis.

This concludes the analysis of an iterated leap step and thus also the analysis of
an event of packet transmission. Together with the analysis of packet arrivals given
in section 5.4, this completes the proof of �-competitiveness of Algorithm PlanM, as
described in section 5.3.

6. Final comments. Our result establishes a tight bound of � on the com-
petitive ratio of PacketSchD in the deterministic case, settling a long-standing open
problem. There is still a number of intriguing open problems about online packet
scheduling that deserve further study.

Of these open problems, the most prominent one is to establish tight bounds
for randomized algorithms for PacketSchD. The best known upper bound to date is
e/(e� 1) ⇡ 1.582 [4, 9, 8, 21]. This ratio is achieved by a memoryless algorithm and
it holds even against an adaptive adversary. No better upper bound for the oblivious

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1680 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

adversary is known. (In fact, against the oblivious adversary, the same ratio can be
attained for a more general problem of online vertex-weighted bipartite matching [1,
13].) The best lower bounds, to the best of our knowledge, are 4/3 ⇡ 1.333 [8] against
the adaptive adversary, and 1.25 [10] against the oblivious one, respectively. (Both
lower bounds use 2-bounded instances and are in fact tight for 2-bounded instances.)
Closing these gaps would provide insight into the power of randomization in packet
scheduling.

In practical settings, the choice of the packet to transmit needs to be made at
speed matching the link’s rate, so the running time and simplicity of the schedul-
ing algorithm are important factors. This motivates the study of memoryless algo-
rithms for PacketSchD, as those algorithms tend to be easy to implement and fast.
All known upper bounds for competitive randomized algorithms we are aware of
are achieved by memoryless algorithms (see [15]). For deterministic algorithms, the
only memoryless one that beats ratio 2 is the 1.893-competitive algorithm in [14].
The main question here is whether the ratio of � can be achieved by a memoryless
algorithm.

Among other models for packet scheduling, optimal competitiveness for the FIFO
model is still wide open, both in the deterministic and randomized cases. We refer
the reader to the (still mostly current) survey of Goldwasser [15], who provides a
thorough discussion of various models for online packet scheduling and related open
problems.

Appendix A. Properties of optimal plans. A computation of an online
algorithm can be thought of as a sequence of events, with each event being either
a packet arrival or transmitting a packet (which includes incrementing the current
time). In this appendix, we give formal statements of “plan-update lemmas,” which
explain how the structure of the optimal plan changes in response to these events.

The proofs are based on analyzing Algorithm ComputePlan, given in section 3,
for computing the optimal plan in a greedy fashion. In the proofs, we will refer to the
packets j added to the plan in line 5 of this algorithm as admitted to the plan, and
to the remaining packets as rejected .

We will use notation U for the current set of pending packets, which is the default
argument for Algorithm ComputePlan. For a set Z ✓ U of pending packets and a
packet j, by Z.j we will denote the set of packets in Z that are (strictly) heavier than
j and by ZDj the set of packets in Z that are at least as heavy as j. (In most cases we
will use this notation when Z is the optimal plan and j 2 U , but occasionally we apply
it in other contexts.) If P is an optimal plan, then P.j can be thought of, equivalently,
as the set of all packets that are admitted to set X in Algorithm ComputePlan when
all packets heavier than j have already been considered (and similarly for PDj).

In the condition of admitting j 2 U in Algorithm ComputePlan (line 4) it is
su�cient to check if pslack(X [{j} , ⌧) � 0 only for ⌧ � dj , because for smaller values
of ⌧ the addition of j does not change the value of pslack(⌧). This condition can be
equivalently stated as pslack(X, ⌧) � 1 for each ⌧ � dj . Note also that, letting P be
the computed optimal plan, right before processing j we have X = P.j , and right
after processing j we have X = PDj .

The following observation summarizes some simple but useful properties of plans.

Observation A.1. Let U be the set of packets pending at time t, and let P be the
optimal plan at time t. Then the following hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1681

(a) P depends only on the ordering of packets in U with respect to weights (not
on the actual values of the weights).

(b) P does not change if the weight of any packet in P is increased. It also does
not change if the weight of any packet in U \ P is decreased.

(c) For a packet j 2 P , let � = prevts(P, dj). Then for any slot ⇠ 2 (�, dj] there
is a schedule of P in which j is scheduled in slot ⇠.

(d) If j 2 U is a packet and ⇣ a slot such that pslack(PDj , ⇣) = 0, then PDj [t, ⇣] =
P [t, ⇣], and consequently pslack(PDj , ⌧) = pslack(P, ⌧) for all ⌧ 2 [t, ⇣].

Proof. Part (a) follows directly from the correctness of Algorithm ComputePlan

that computes P . Part (b) is also straightforward: P is heavier than any other plan
(feasible set of pending packets) for U . If the weight of j 2 P is increased by � > 0,
the weight of P will increase by �, and as the weight of any other plan X increases
by at most �, plan P remains to be optimal. The proof for the second part of (b) is
similar.

To show (c), compute the desired schedule as follows. First, schedule packets in P
in the canonical order. In this schedule, j will be scheduled at some slot ⇠0 2 (�, dj].
If ⇠0 = ⇠, we are done. If ⇠0 2 (�, ⇠), shift the packets in [⇠0 + 1, ⇠] to the left by one
slot and schedule j at ⇠. The last case is when ⇠0 2 (⇠, dj]. In this case, we use the
fact that pslack(P, ⌧) � 1 for all ⌧ 2 (�, dj), which means that for any ⌧ 2 (�, dj) the
number of packets in P with deadline at most ⌧ is strictly less than ⌧ � t + 1, the
number of slots in [t, ⌧]. Then, by the canonical ordering, we have that none of the
packets scheduled in [⇠, ⇠0 � 1] is scheduled at its deadline. Therefore, we can shift
these packets to the right by one slot, which allows us to schedule j at slot ⇠.

Part (d) also follows from the correctness of ComputePlan: Consider its run that
produces P . Immediately after packet j is processed we have pslack(XDj , ⇣) = 0, i.e.,
slot ⇣ is already tight. Then no packet lighter than j with deadline at most ⇣ will be
later admitted to X. Thus, P [t, ⇣] = X[t, ⇣] is already fixed at that point, and so are
its slack values.

In the rest of this section we now deal with plan-update lemmas. First, in section
A.1 we explain how the optimal plan changes in response to packet arrivals. In section
A.2 we detail how to update the optimal plan after some arbitrary packet from the
plan is transmitted. The plan properties in these two sections are not specific to our
algorithm; they address general properties of optimal plans. Later in section B, we
give the plan-update lemma specifically for a leap step of Algorithm PlanM.

A.1. Updating the optimal plan after a packet arrival. In this section, we
address the question of how the optimal plan changes when a new packet is released.
So consider some step t, and let U be the current set of pending packets and P the
optimal plan for U . Suppose that now another packet s is released, and let U 0 = U[{s}
be the new set of pending packets. Denote by Q the optimal plan for U 0. The lemma
below explains how to determine Q from P and it gives its important properties. (See
Figure A.1 for an illustration.)

Lemma A.2 (The Plan-Update Lemma for Packet Arrival). Consider the sce-
nario above, involving the arrival of a new packet s. Let � = nextts(P, ds) and define
f to be the packet in P [t, �] with wf = minwt(P, ds); in other words, the minimum-
weight packet in P [t, �]. Also, let � = prevts(P, df). By definition, we have � < �
and df , ds 2 (�, �].

If ws < wf , then Q = P ; i.e., s is not added to the optimal plan.
If ws > wf , then Q = P [{s} \ {f}; i.e., s is added to the optimal plan replacing

f . In this case the following properties hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1682 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Fig. A.1. An illustration of changes of tight slots and segments in Case (b1) of Lemma A.2 on
the left and in Case (b2) on the right. The segments are separated by vertical dark-red line segments.

(a) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ 2 [t,min(df , ds)) [[max(df , ds), T].
(b) For slots ⌧ 2 [min(df , ds),max(df , ds)), there are two cases:

(b1) If ds > df , then pslack(Q, ⌧) = pslack(P, ⌧) + 1 for ⌧ 2 [df , ds). It
follows that all segments of P in the interval (�, �] get merged into one
segment (�, �] of Q.

(b2) If ds  df , then pslack(Q, ⌧) = pslack(P, ⌧) � 1 for ⌧ 2 [ds, df), and
thus there might be new tight slots in [ds, df). This case happens only
when (�, �] is itself a segment of P and it contains both df and ds.
This segment may get split into multiple segments of Q.

(c) For any slot ⌧ � t, minwt(Q, ⌧) � minwt(P, ⌧).

We remark that packet f satisfies wf 6= ws, by assumption (A2).

Proof. We start by proving how the set of packets in the optimal plan changes.
Let U be the set of packets pending before s is released and U 0 = U [{s} be the set of
pending packets after the release of s. We consider two “parallel” runs of Algorithm
ComputePlan, one on U to compute P and the other on U 0 to compute Q.

Suppose first that ws < wf . Then both runs will be identical until right after the
time when f is considered. Thus PDf = QDf . Moreover, as f is the minimum-weight
packet in P with df  � = nextts(P, ds), we have P [t, �] ✓ PDf ; that is, all packets
in P with deadline at most � are in PDf . Thus pslack(QDf , �) = pslack(PDf , �) =
pslack(P, �) = 0. Therefore, as ds  � and as s is considered after f , packet s will not
be admitted, which implies that both runs produce the same plan P = Q.

For the rest of the proof, we assume that ws > wf . To prove thatQ = P[{s}\{f},
based on Observation A.1(b), without loss of generality we can assume that ws =
wf + " for a tiny " > 0, so that s immediately precedes f in the ordering of U 0 by
decreasing weights.

Specifically, since f 2 P , P does not change if f ’s weight is increased to ws � ".
We will show that Q = P [{s} \ {f} with this increased weight of f . But as then
f /2 Q, decreasing f ’s weight back to its original value does not change Q.

With the assumption about wf , the run on U 0 before s is considered will be
identical to the run on U before f is considered; thus Q.s = P.f . In the next step
of these runs, we consider packet f for P and packet s for Q. We now have two
cases.

Suppose that ds > df . Then, since f is admitted to P , we have pslack(P.f , ⌧) � 1
for ⌧ � df , which, by the paragraph above, implies that pslack(Q.s, ⌧) � 1 for ⌧ � ds;
and thus s will be admitted to Q. As df , ds  �, we also have pslack(QDs, �) =
pslack(PDf , �) = 0. This means that in the run on U 0 packet f , which is considered
next, will be rejected. From this point on, both runs are again the same, because no
packet with deadline at most � is admitted, and because for ⌧ > � and any packet g

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1683

lighter than f we have pslack(P.g, ⌧) = pslack(Q.g, ⌧), so g gets admitted to Q if and
only if g is admitted to P .

Next, consider the case when ds  df . In this case, since also df  �, we have
nextts(P, df) = �, so the interval (�, �] is in fact a single segment of P . (This also
proves the second claim in Case (b2), namely that (�, �] is a segment of P .) This gives
us that pslack(P.f , ⌧) � pslack(P, ⌧) � 1 for all ⌧ 2 (�, �). Since P admits f , we also
have pslack(P.f , ⌧) � 1 for all ⌧ � df . Therefore, pslack(Q.s, ⌧) = pslack(P.f , ⌧) � 1
for all ⌧ � ds, which implies that Q will admit s. As in the previous case, we will then
have pslack(QDs, �) = pslack(PDf , �) = 0, so the run for Q will not admit f (which is
next in the ordering), and the remainders of both runs will be identical.

Next, to prove parts (a)–(c) in the case ws > wf , we analyze the changes of
pslack() and minwt() caused by the arrival of s.

(a) This part is straightforward, as replacing f by s in the plan does not change
any value of |P [t, ⌧]| for slots ⌧ 2 [t,min(df , ds)) [[max(df , ds), T]. In particular, �
and � remain tight in Q, and slots in (�,min(df , ds)) [[max(df , ds), �) are not tight
in Q.

(b) Recall that Q = P [{s} \ {f}. Suppose that ds > df . Then pslack(Q, ⌧) =
pslack(P, ⌧) + 1 for ⌧ 2 [df , ds) as |Q[t, ⌧]| = |P [t, ⌧]| � 1 for such ⌧ . So there are no
tight slots in the interval [df , ds) in Q. This shows (b1).

The argument for (b2) is similar. Suppose that ds  df . As already justified
earlier, (�, �] is a segment of P . Hence, as � < ds  df  �, the slack values for
⌧ 2 [ds, df) are strictly positive in P . Further, pslack(Q, ⌧) = pslack(P, ⌧)� 1 � 0 for
⌧ 2 [ds, df). This means that in Q there may appear additional tight slots in [ds, df).

(c) For ⌧ 2 [t,�], the set of packets with deadline at most ⌧ does not change and
tight slots up to � remain the same. Hence, minwt(Q, ⌧) = minwt(P, ⌧) for such ⌧ .
For ⌧ 2 (�, �], it holds that minwt(P, ⌧) = wf and, as s replaces f and � remains
a tight slot, all packets in Q with deadlines at most nextts(Q, ⌧)  � are heavier
than f , so we actually have minwt(Q, ⌧) > minwt(P, ⌧). Finally, consider ⌧ > �.
Since tight slots after � are unchanged, the set of packets considered in the definition
of minwt(⌧) changes only by replacing f by s with ws > wf , which implies that
minwt(Q, ⌧) � minwt(P, ⌧).

The observation below provides a characterization of optimal plans in terms of
the minwt() function. Its ()) implication follows from the first claim of Lemma A.2.
The (() implication follows by noting that if a plan P satisfies the condition in the
observation, then running Algorithm ComputePlan on U will produce exactly the set
of packets in P . (The formal proof proceeds by induction, showing that packets from
P will be admitted to X because P is feasible, but packets from U \ P will not, as
the condition in line (4) will be violated at the time they are considered.)

Observation A.3. A plan P is optimal for a set U of pending packets if and only
if wj < minwt(P, dj) for all packets j 2 U \ P .

A.2. Updating the optimal plan after transmitting a packet. Next, we
analyze how the optimal plan evolves after an algorithm transmits a packet from the
current optimal plan. (Only such transmissions are relevant to our analysis as in
our algorithm PlanM packets from outside the optimal plan are not considered for
transmission.) We stress that in this section we only analyze the e↵ects of the event
of a packet being transmitted, and the properties we establish are independent of the
algorithm. In Appendix B we will deal with the changes in the plan specific to PlanM,
namely with packet transmissions that also involve adjustments of the instance.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1684 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Fig. A.2. An illustration of changes of tight slots and segments in Lemma A.4.

So let U be the set of packets pending at a time t and denote by P = P t the
optimal plan for U . Suppose that we choose some packet p 2 P , transmit it at time t,
and advance the time to t+1. The set U 0 of packets pending at time t+1 is obtained
from U by removing p and all packets that expire at time t. In this section, Q will
denote the new optimal plan for U 0 and time step t + 1; that is, Q = eP t+1 in the
notation from section 5.5.

We now explain how to obtain Q from P . There are two cases, depending on
whether or not p is in the initial segment [t,↵] of P , where ↵ = nextts(P, t). We start
with the case when p is in the initial segment, which is quite straightforward. See
Figure A.2 for an illustration.

Lemma A.4 (The Plan-Update Lemma for Transmitting p 2 P [t,↵]). Suppose
that at time t we transmit a packet p 2 P [t,↵], where ↵ = nextts(P, t). Then:

(a) Q = P \ {p}. Thus the new optimal plan Q is obtained from P simply by
removing p.

(b) pslack(Q, ⌧) = pslack(P, ⌧)�1 for ⌧ 2 [t+1, dp) and pslack(Q, ⌧) = pslack(P, ⌧)
for ⌧ � dp. Thus new tight slots may appear in [t+ 1, dp).

(c) For any slot ⌧ � t+ 1, minwt(Q, ⌧) � minwt(P, ⌧).

Note that part (b) is meaningful in the special case when dp = t, as according
to our definition of pslack(), pslack(Q, t) is defined and equal to 0, that is slot t is
considered tight at time t+ 1.

Proof. Observe first that P \ {p} ✓ U 0. Indeed, if some q 2 P \ {p} had dq = t, it
would mean that the first tight slot ↵ is t, so q would have to be equal to p.

(a) According to Observation A.1(c), P has a schedule where p is scheduled in
slot t. This implies directly that P \ {p} is a feasible set of packets at time t + 1. If
Q0 6= P \{p} is any other feasible subset of U 0, then Q0 would have a schedule starting
at time t + 1, so P 0 = Q0 [{p} would have a schedule starting at time t and thus
would be feasible at time t. Since P is heavier than P 0, P \ {p} is heavier than Q0,
thus proving that the optimal plan at time t+ 1 is indeed Q = P \ {p}.

(b) For ⌧ 2 [t + 1, dp), pslack(Q, ⌧) = pslack(P, ⌧) � 1 as in Q the time is incre-
mented and |Q[t + 1, ⌧]| = |P [t + 1, ⌧]|. For ⌧ � dp, incrementing the time for Q is
compensated by p not contributing to Q[t+1, ⌧] (that is, |Q[t+1, ⌧]| = |P [t+1, ⌧]|�1),
and thus pslack(Q, ⌧) = pslack(P, ⌧).

(c) By (b), the value of nextts(P, ⌧) may only decrease. Since also no packet is
added to the plan, in the definition of minwt(Q, ⌧) we consider a subset of packets
used to define minwt(P, ⌧), which shows (c).

For the case p 2 P (↵, T], recall that the substitute packet sub(P, p) for p is the
heaviest pending packet % 2 U \ P satisfying d% > prevts(P, dp). We prove that
sub(P, p) really appears in the plan when p is transmitted. See Figure A.3 for an
illustration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1685

Fig. A.3. An illustration of changes of tight slots and segments, in Case (d1) of Lemma A.5
on the top and in Case (d2) on the bottom.

Lemma A.5 (The Plan-Update Lemma for Transmitting p 2 P (↵, T]). Suppose
that at time t we transmit a packet p 2 P (↵, T], where ↵ = nextts(P, t). Let % =
sub(P, p), � = prevts(P, dp), and � = nextts(P, d%), and denote by ` the lightest packet
in P [t,↵], i.e., in the initial segment of P . Then the following hold:

(a) Q = P \ {p, `} [{%}. Thus the new optimal plan Q is obtained from P by
removing ` and replacing p by %.

(b) pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [t+ 1, d`).
(c) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ 2 [d`,min(dp, d%)) [[max(dp, d%), T].
(d) For ⌧ 2 [min(dp, d%),max(dp, d%)) there are two cases:

(d1) If d% > dp, then pslack(Q, ⌧) = pslack(P, ⌧) + 1 for ⌧ 2 [dp, d%). This
means that all segments of P in (�, �] get merged into one segment
(�, �] of Q.

(d2) If d% < dp, then pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [d%, dp). In this
case (�, �] is itself a segment of P , and in Q there might be new tight
slots in [d%, dp) that partition (�, �] into smaller segments.

Proof. (a) Let U be the set of packets pending at time t before transmitting p
and U 0 be the packets that remain pending at time t+ 1 after p is transmitted; that
is, U 0 is obtained from U by removing p and all packets that expire at time t. We
observe first that P \{p, `} ✓ U 0. Indeed, if there was some q 2 P \{p, `} with dq = t,
this would imply that ↵ = t, so d` = t and thus ` = q, contradicting the choice of q.
Obviously, p /2 U 0. As for `, it may or may not be in U 0, depending on whether or not
d` > t. We also have % 2 U 0, because d% > � � t.

We prove that Q = P \ {p, `} [{%} in two substeps:
• First, we increment the time to t + 1 but without transmitting p. After

this substep the set of pending packets is U = {a 2 U : da � t+ 1}, i.e., we
exclude packets that expire at time t. We show that the optimal plan for U
is Q = P \ {`}.

• In the second substep we remove p from U (and transmit it in time slot t), so
the new set of pending packets will be U 0 = U \ {p}, and we prove that the
new optimal plan will be Q = Q \ {p} [{%}. (Recall that we have p 6= ` as
p 62 P [t,↵] and ` 2 P [t,↵].)

The intuition is that these two substeps are largely independent: incrementing t
to t+1 will squeeze out ` from P , no matter what packets with deadlines after ↵ are
removed from U .

First substep. For the first substep, we use an argument similar to the one in
Lemma A.4. Observe that P \ {`} is a feasible set of packets at time t + 1, since P

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1686 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

has a schedule where ` is in slot t, by Observation A.1(c). Let Q0 6= P \ {`} be any
other subset of U that is feasible at time t + 1; we show that w(Q0) < w(P \ {`}).
Since P contains exactly ↵� t+ 1 packets with deadline at most ↵, there is a packet
q0 2 P [t,↵] such that q0 /2 Q0 (possibly q0 = `). As Q0 has a schedule starting at
time t + 1, P 0 = Q0 [{q0} has a schedule starting at time t and thus is feasible at
time t. Since P is at least as heavy as P 0 and ` is the lightest packet in P [t,↵],
implying w`  w

q0 , we conclude that indeed w(P \ {`}) � w(Q0). Hence, the plan

after incrementing the time is indeed Q = P \ {`}.
Thus we can think of Q as being obtained from P by advancing the time to t+1

and removing `. It follows that pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ � d`. In particular,
� is a tight slot of Q and � = prevts(Q, dp). Further, as U and U contain the same
packets with deadline after � and as � � d`, we get that % is the heaviest packet in
U \Q with deadline greater than �. Summarizing, we have

� = prevts(Q, dp),(A.1)

% = argmaxj
�
wj : j 2 U \Q & dj > �

,(A.2)

� = nextts(Q, d%).(A.3)

Second substep. In the second substep we establish a relationship between Q
and Q. To this end, we consider two “parallel” runs of the greedy algorithm to
compute plans: one run of ComputePlan(U , t+ 1) which yields Q and another run of
ComputePlan(U 0, t+1) which yields Q. (Recall that U 0 = U \{p}.) The contents of the
set X in these two runs after processing packets heavier than some packet j is equal
to Q.j and Q.j , respectively. To avoid ambiguity, we will be using these notations
when referring to the contents of X during these runs.

We divide these two runs into three phases. In the first phase we consider the
two runs for packets j with wj > wp (that is, before p gets admitted to Q). Since
U.p = U 0

.p, in this phase the two runs are exactly the same. This gives us that

Q.p = Q.p.

The second phase involves packets j with wp � wj > w%. We claim that during this
phase the following invariants will be maintained:

QDj = QDj \ {p} ,(A.4)

pslack(QDj , ⌧) =

8
><

>:

pslack(QDj , ⌧) for ⌧ 2 [t+ 1,�],

pslack(QDj , ⌧) � 1 for ⌧ 2 (�, dp),

pslack(QDj , ⌧) + 1 for ⌧ � dp.

(A.5)

We first show that these properties hold for j = p. We have p 2 Q and U 0 = U \ {p};
this means that p will be admitted to QDp in the run for U but it will not be considered
in the run for U 0. Thus property (A.4) follows. Invariant (A.4) and the definition of
pslack() imply all relations between pslack(QDp, ⌧) and pslack(QDp, ⌧) in invariant
(A.5), and the inequality pslack(QDp, ⌧) � 1 for ⌧ 2 (�, dp) follows immediately from
(A.1). (Note that pslack(QDa, ⌧) � pslack(Q, ⌧) holds for any packet a and slot ⌧ .)

Next, consider packets j with wp > wj > w%. If j gets admitted to QDj then
invariant (A.5) implies that it also gets admitted to QDj , preserving (A.4). That
(A.5) is preserved follows from the same argument as for j = p above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1687

So consider the second case, when j does not get admitted toQDj . We claim that j
will also not be admitted toQDj . To justify this, we argue as follows. By (A.2), % is the
heaviest packet in U with deadline after � that will not be admitted to Q. Therefore,
since wj > w%, we have dj  �. Suppose for a contradiction that j is admitted to
QDj . As j is not admitted to QDj , there must be ⌧ � dj such that pslack(Q.j , ⌧) = 0,
although pslack(Q.j , ⌧) > 0 as j is admitted to QDj . Due to invariant (A.5) for
⌧ 2 [t + 1,�], we must have ⌧ > �. As ⌧ is already tight, by Observation A.1(d)
we get that pslack(Q.j ,�) = pslack(Q,�) = 0, where the second step holds by (A.1).
Using invariant (A.5) for ⌧ 2 [t+1,�], we obtain pslack(Q.j ,�) = pslack(Q.j ,�) = 0,
contradicting that we must have pslack(Q.j ,�) > 0 as j is admitted to QDj and
dj  �. Thus we indeed have that j will not be admitted to QDj . As in this case j
is not admitted to both QDj and QDj , both invariants (A.4) and (A.5) are obviously
preserved.

In the third phase we analyze both runs for packets j with wj  w%. We claim
that for these packets the following invariants hold:

QDj = QDj \ {p} [{%} ,(A.6)

pslack(QDj , ⌧) = pslack(QDj , ⌧) for ⌧ � �,(A.7)

pslack(QDj , �) = pslack(QDj , �) = 0.(A.8)

Note that property (A.7) follows directly from (A.6), because dp, d%  �. Thus we
only need to show that (A.6) and (A.8) hold for all j in this phase.

We first consider j = %. As % /2 Q, % will not be admitted to QD%. From (A.5)
and (A.2) we have that pslack(Q.%, ⌧) � 1 for ⌧ � d%, and thus % will be admitted to
QD%. This gives us (A.6) and (A.7). Since % /2 Q, all packets in Q[t+1, �] are heavier
than %; in other words, we have Q[t+1, �] = QD%[t+1, �], which together with (A.3)
implies that � = nextts(QD%, d%). Then, from (A.7) (which we already established for
%), we obtain that pslack(QD%, �) = pslack(QD%, �) = 0.

In the rest of the third phase, for each packet j with wj < w%, condition (A.8)
implies that if dj  �, then j will not be admitted to QDj or to QDj . On the other
hand, if dj > �, then condition (A.7) implies that j will be admitted either to both
QDj and QDj or to none. This completes the proof that the above invariants are
preserved, and the proof of (a) as well.

(b) We now analyze the changes in the values of pslack(). If d` > t, it holds that
pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [t+ 1, d`), as in the transmission step the time
was incremented and there is no change in the set of packets taken into account.

(c) For ⌧ 2 [d`,min(d%, dp)) we have pslack(Q, ⌧) = pslack(P, ⌧), as in the trans-
mission step the time was incremented, but ` was forced out. (In particular, since
d`  ↵ < min(d%, dp), ↵ is a tight slot in Q, including the special case when ↵ = t.)
Similarly, for ⌧ � max(d%, dp), it holds that pslack(Q, ⌧) = pslack(P, ⌧), since in the
transmission step the time was incremented, ` was forced out, p was transmitted, and
% appeared in Q.

(d) In Case (d1), for ⌧ 2 [dp, d%), we have pslack(Q, ⌧) = pslack(P, ⌧) + 1, as
in the transmission step the time was increased, but ` was forced out and p was
transmitted. It follows that Q has no tight slots in [dp, d%), so prevts(Q, d%) = � and
nextts(Q, dp) = �, which means that in Q the interval (�, �] forms one segment.

In Case (d2), the definitions of � = prevts(P, dp) and � = nextts(P, d%), together
with d% < dp, imply that (�, �] is indeed a segment of P . In particular, this means that
pslack(P, ⌧) � 1 for ⌧ 2 [d%, dp). For such slots ⌧ we thus obtain that pslack(Q, ⌧) =
pslack(P, ⌧)� 1 because in the transmission step the time was increased, ` was forced
out, and % was added to Q.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1688 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

Note that after transmitting p 2 P (↵, T] (without adjusting packet weights or
deadlines appropriately), the slot monotonicity property does not hold. This is be-
cause minwt(d%) decreases, as minwt(P, d%) > w% but minwt(Q, d%) = w%.

Appendix B. Leap step of Algorithm PlanM. Algorithm PlanM artificially
adjusts weights and deadlines of some pending packets in leap steps, and therefore the
results from the previous section are not su�cient to fully characterize how the optimal
plan evolves during its computation. Lemmas A.2 and A.4 remain valid for Algorithm
PlanM, but we still need a variant of Lemma A.5 that will characterize the changes
in the optimal plan after a leap step. We provide such a characterization below; see
Lemma B.1. Then we use this lemma to prove Lemma B.2, the slot-monotonicity
property for leap steps.

In the following, similar to the previous section, we use P for P t (the optimal
plan after all packets at time t have been released) and by Q = eP t+1 we denote
the optimal plan just after the event of transmitting p, incrementing the time, and
changing weights and deadlines (but before new packets at time t+ 1 are released).

Lemma B.1. Suppose that t is a leap step of Algorithm PlanM in which p
was transmitted, and let % = sub(P, p) be the substitute packet of p. Let packets
h0 = p, h1, . . . , hk and tight slots ⌧0, . . . , ⌧k = � = nextts(P, dt%) be as defined in the
algorithm. Furthermore, let � = ⌧�1 = prevts(P, dtp). Then the following hold:

(a) Q = P \ {p, `}[{%} ; in particular, if k � 1, all packets h1, h2, . . . , hk are in
Q.

(b) wt
p = wt

h0
> wt

h1
> wt

h2
> · · · > wt

hk
> wt

%.
(c) hk’s deadline is in the segment of P ending at �, that is, prevts(P, dt%) <

dthk
 �.

(d) The pslack() values change as follows (see Figure B.1):

(d.i) pslack(Q, ⌧) = pslack(P, ⌧)� 1 for ⌧ 2 [t+ 1, dt`).
(d.ii) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ 2 [dt`,�].
(d.iii) If k � 1, then for i = 0, . . . , k � 1 we have the following changes in

(⌧i�1, ⌧i]:

(d.iii.1) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ 2 (⌧i�1, dthi
) [{⌧i}.

(d.iii.2) pslack(Q, ⌧) = pslack(P, ⌧) + 1 for ⌧ 2 [dthi
, ⌧i).

(d.iv) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ 2 (⌧k�1,min(dthk
, dt%)).

(d.v) For ⌧ 2 [min(dthk
, dt%),max(dthk

, dt%)), there are two cases:

(d.v.1) If dthk
< dt%, then pslack(Q, ⌧) = pslack(P, ⌧) + 1 for ⌧ 2

[dthk
, dt%).

(d.v.2) If dt% < dthk
, then pslack(Q, ⌧) = pslack(P, ⌧) � 1 for ⌧ 2

[dt%, d
t
hk
).

(d.vi) pslack(Q, ⌧) = pslack(P, ⌧) for ⌧ � max(dthk
, dt%).

(e) Any tight slot of P is a tight slot of Q, but there might be new tight slots of
Q in [t + 1, dt`) and, in Case (d.v.2), also in [dt%, d

t
hk
). Thus, in general, we

have nextts(Q, ⌧)  nextts(P, ⌧) for all ⌧ � t+ 1.
(f) wt+1

hi
� minwt(P, dt+1

hi
) for any i = 1, . . . , k, and wt+1

% � minwt(P, dt+1
%).

Proof. (a) The claim clearly holds for a simple leap step by Lemma A.5, i.e., when
k = 0, because in this case the algorithm does not decrease deadlines, and increasing
the weight of % does not change the new optimal plan Q, by Observation A.1(b).

Thus consider an iterated leap step. Let Q be the optimal plan after p is trans-
mitted and the time is increased, but before the adjustment of weights and dead-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1689

lines in line 11 of the algorithm are taken into account. From Lemma A.5 we have
Q = P \ {p, `} [{%}; in particular, packets h1, h2, . . . , hk are in Q. Our goal is to
prove that Q = Q.

By Observation A.1(b), increasing the weights of packets in the optimal plan
cannot change the plan, so it is su�cient to show that the feasibility and optimality
of the plan is not a↵ected by the decrease of the deadlines of packets h1, h2, . . . , hk.

By Lemma A.5, all segments of Q between � = prevts(P, dtp) and � = nextts(P, dt%)
get merged into one, which means that pslack(Q, ⌧) � 1 for any ⌧ 2 (�, �). For i =
1, . . . , k, decreasing the deadline of hi from dthi

to dt+1
hi

= ⌧i�1 decreases pslack(Q, ⌧)
by 1 for ⌧ 2 [⌧i�1, dthi

). All k intervals where these decreases occur are contained
in (�, �) and, since dthi

 ⌧i for all i, these intervals do not overlap. Thus, after
decreasing the deadlines of the hi’s, all values of pslack() will remain nonnegative for
Q, so Q remains a feasible set of packets. Decreasing these deadlines cannot make
previously unfeasible sets of packets feasible, implying that Q remains optimal. Thus
Q = Q, as claimed. In particular, packets h1, h2, . . . , hk remain in Q.

(b) By the choice of p in the algorithm, p is the heaviest packet in the segments
of P in (�, �], because % is the substitute packet for any packet in P with deadline
in (�, �]. Thus for each i = 1, . . . , k, since dthi

2 (�, �], we get wt
p > wt

hi
. The

ordering of weights of hi’s follows from the definition of hi’s in line 9 of the algorithm’s
description. Finally, for any i = 0, . . . , k inequality wt

hi
> wt

% holds, because % /2 P
and dthi

< � = nextts(P, dt%).
(c) This holds by the definition of hi’s in line 9 and by the condition of the while

loop in line 7, which stops the loop when ⌧i = nextts(P, dthi
) = �.

(d) For any slot ⌧ 2 [t + 1,�] [(�, T] the value of pslack(⌧) is not a↵ected by
the decrease of the deadlines of hi’s, since hi’s are both in P and in Q and since
their old and new deadlines are in (�, �]. We thus get exactly the same changes of
the pslack() values outside (�, �] as in Lemma A.5. Regarding slots in (�, �], Lemma
A.5(d) shows that pslack(⌧) decreases by 1 for ⌧ 2 [dt%, d

t
p) if dt% < dtp, and increases

by 1 for ⌧ 2 [dtp, d
t
%) if d

t
p < dt%. In the former case, we have ⌧0 = � as dt% and dtp are

in the same segment, that is k = 0. In the latter case, we sum the increase of values
pslack(⌧) for ⌧ 2 [dtp, d

t
%) with the changes of the pslack() values due to decreasing

the deadlines of hi’s, analyzed in (a), and we get the changes summarized in (d); see
Figure B.1.

Part (e) follows from (c) and (d), which imply that the value of pslack(P, ⌧) does
not increase for any tight slot ⌧ in P .

Part (f) follows from the way the weights are changed in lines 4 and 11 of the
algorithm.

Next, we show that, thanks to the deadline adjustments in Algorithm PlanM, the
slot monotonicity property for optimal plans is preserved in leap steps.

Lemma B.2. If step t is a leap step of Algorithm PlanM, then minwt(Q, ⌧) �
minwt(P, ⌧) for any ⌧ � t+ 1.

Proof. We use notation from Lemma B.1. By Lemma B.1(e) all tight slots of P
are tight slots of Q (in particular, � and � remain tight slots); thus nextts(Q, ⌧) 
nextts(P, ⌧) for all ⌧ � t+1. Fix some ⌧ � t+1, and let a be the packet that realizes
minwt(Q, ⌧), that is the minimum-weight packet in Q with dt+1

a  nextts(Q, ⌧). We
need to show that wt+1

a � minwt(P, ⌧). We have three cases.
Case 1. ⌧  �. Lemma B.1(a) shows that ` is forced out of the optimal plan,

thus not in Q, and otherwise the set of packets in the optimal plan with deadline at

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1690 P. VESELÝ, M. CHROBAK, L. JEŻ, AND J. SGALL

h1 h2Q ϱ h3p

Q h1 h2 h3 ϱp

dh1
t+1 dh2

t+1 dh3
t+1

� − − − − − � �� − − − − − −− � � � � � � � � � � � � � � � �Δ pslack(P⇾Q)

− − − − − − − �− � � � − − −− − � � � � − − � � � − − − � � �Δ pslack(Q⇾Q)

� − − − − − � −� � � � − − −− � − − − − � � − − − � � � − − −Δ pslack(P⇾Q)

ℓ pP h1 h2 h3

τ3 = γdℓ αt ββ dp τ0 τ1 τ2dh1

t dϱdh2

t dh3

t

Fig. B.1. An example with k = 3 illustrating the proof of Lemma B.1(d), by showing changes
of the pslack() values in an iterated leap step. Here, notations �pslack(P ! Q), �pslack(Q ! Q),
and �pslack(P ! Q) represent the changes of the pslack() in the two substeps (from P to Q and
from Q to Q), and the overall change from P to Q, respectively. Up and down arrows represent
increases and decreases of the values of pslack() in individual slots.

most � does not change, that is, Q[t+ 1,�] = P [t,�] \ {`}. It follows that a 2 P and
its weight and deadline remain the same. We thus have dta = dt+1

a  nextts(Q, ⌧) 
nextts(P, ⌧), so a is considered in the definition of minwt(P, ⌧), which implies wt+1

a =
wt

a � minwt(P, ⌧).
Case 2. ⌧ 2 (�, �]. If a /2 {h1, . . . , hk+1} (in particular, this means that a 6= % =

hk+1), then a is also in P with the same deadline and weight. As nextts(Q, ⌧) 
nextts(P, ⌧), we get dta  nextts(P, ⌧); hence wt+1

a � minwt(P, ⌧) follows as in Case 1.
Next, suppose that a = hi for some i 2 {1, . . . , k} (excluding the case a = hk+1 =

%). Recall that, as a result of changes in line 11 in the algorithm, we have wt+1
a �

minwt(P, ⌧i�1) and dt+1
a = ⌧i�1. The definition of minwt(Q, ⌧) gives us that ⌧i�1 =

dt+1
a = nextts(Q, ⌧), so ⌧ > prevts(Q, ⌧i�1). Thus, since tight slots of P are tight also

in Q, implying prevts(Q, ⌧i�1) � prevts(P, ⌧i�1), we get that ⌧ > prevts(P, ⌧i�1). So ⌧
is in the segment (prevts(P, ⌧i�1), ⌧i�1] of P . By definition, for each segment of P the
value of minwt(P, ⌧ 0) is constant for all ⌧ 0 in this segment. Therefore, minwt(P, ⌧i�1) =
minwt(P, ⌧), and we conclude that wt+1

a � minwt(P, ⌧i�1) = minwt(P, ⌧).
Finally, consider the case when a = %. Recall that wt+1

% = minwt(P, dt%) and
dt% = dt+1

% . We have ⌧ > prevts(Q, dt%), which implies that ⌧ > prevts(P, dt%) =
prevts(P, �). Thus ⌧ is in the segment (prevts(P, �), �] of P , just like %. It follows that
wt+1

% = minwt(P, dt%) = minwt(P, ⌧).
Case 3. ⌧ > �. The set of packets in the plan with deadline strictly after � does

not change, and also their weights and deadlines remain the same. Thus if dta > �,
then using nextts(Q, ⌧)  nextts(P, ⌧) again, we obtain that wt+1

a � minwt(P, ⌧).
Otherwise, dta  �; thus wt+1

a � minwt(Q, �) � minwt(P, �) � minwt(P, ⌧), where the
second inequality follows from Case 2 and the third one from � < ⌧ .

Acknowledgments. This work was done in part while P. Veselý was at the
University of Warwick. We are all grateful to Martin Böhm for useful discussions.

REFERENCES

[1] G. Aggarwal, G. Goel, C. Karande, and A. Mehta, Online vertex-weighted bipartite match-
ing and single-bid budgeted allocations, in Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’11), ACM, New York, SIAM, Philadelphia,
2011, pp. 1253–1264, https://doi.org/10.1137/1.9781611973082.95.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/1.9781611973082.95

A �-COMPETITIVE ALGORITHM FOR SCHEDULING PACKETS 1691

[2] W. A. Aiello, M. Yishay, S. Rajagopolan, and A. Rosén, Competitive queue policies for
di↵erentiated services, J. Algorithms, 55 (2005), pp. 113–141.

[3] N. Andelman, Y. Mansour, and A. Zhu, Competitive queueing policies for QoS switches, in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’03), ACM, New York, SIAM, Philadelphia, 2003, pp. 761–770.

[4] Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi, J. Sgall,

and T. Tichý, Online competitive algorithms for maximizing weighted throughput of unit
jobs, in Proceedings of the 21st Symposium on Theoretical Aspects of Computer Science
(STACS ’04), Lecture Notes in Comput. Sci. 2996, Springer, Berlin, Heidelberg, 2004, pp.
187–198.

[5] M. Böhm, M. Chrobak, L. Jeż, F. Li, J. Sgall, and P. Veselý, Online packet scheduling
with bounded delay and lookahead , Theoret. Comput. Sci., 776 (2019), pp. 95–113.

[6] M. Bienkowski, M. Chrobak, C. Dürr, M. Hurand, A. Jeż, L. Jeż, and G. Stachowiak,
A �-competitive algorithm for collecting items with increasing weights from a dynamic
queue, Theoret. Comput. Sci., 475 (2013), pp. 92–102.

[7] M. Bienkowski, M. Chrobak, C. Dürr, M. Hurand, A. Jeż, L. Jeż, and G. Stachowiak,
Collecting weighted items from a dynamic queue, Algorithmica, 65 (2013), pp. 60–94.

[8] M. Bienkowski, M. Chrobak, and L. Jeż, Randomized competitive algorithms for online
bu↵er management in the adaptive adversary model , Theoret. Comput. Sci., 412 (2011),
pp. 5121–5131.

[9] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, and T. Tichý, On-
line competitive algorithms for maximizing weighted throughput of unit jobs, J. Discrete
Algorithms, 4 (2006), pp. 255–276.

[10] F. Y. L. Chin and S. P. Y. Fung, Online scheduling with partial job values: Does timesharing
or randomization help? , Algorithmica, 37 (2003), pp. 149–164.

[11] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý, Improved online algorithms for bu↵er
management in QoS switches, in Proceedings of the 12th Annual European Symposium
on Algorithms (ESA ’04), Lecture Notes in Comput. Sci. 3221, Springer, Berlin, 2004, pp.
204–215.

[12] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý, Improved online algorithms for bu↵er
management in QoS switches, ACM Trans. Algorithms, 3 (2007), 50.

[13] N. R. Devanur, K. Jain, and R. D. Kleinberg, Randomized primal-dual analysis of RANK-
ING for online bipartite matching , in Proceedings of the 24th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’13), ACM, New York, SIAM, Philadelphia, 2013,
pp. 101–107, https://doi.org/10.1137/1.9781611973105.7.

[14] M. Englert and M. Westermann, Considering suppressed packets improves bu↵er man-
agement in quality of service switches, SIAM J. Comput., 41 (2012), pp. 1166–1192,
https://doi.org/10.1137/110856745.

[15] M. H. Goldwasser, A survey of bu↵er management policies for packet switches, SIGACT
News, 41 (2010), pp. 100–128.

[16] B. Hajek, On the competitiveness of on-line scheduling of unit-length packets with hard dead-
lines in slotted time, in Proceedings of the 35th Conference on Information Sciences and
Systems, 2001, pp. 434–438.

[17] L. Jeż, F. Li, J. Sethuraman, and C. Stein, Online scheduling of packets with agreeable
deadlines, ACM Trans. Algorithms, 9 (2012), 5.

[18] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko,
Bu↵er overflow management in QoS switches, SIAM J. Comput., 33 (2004), pp. 563–583,
https://doi.org/10.1137/S0097539701399666.

[19] F. Li, J. Sethuraman, and C. Stein, An optimal online algorithm for packet scheduling with
agreeable deadlines, in Proceedins of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’05), ACM, New York, SIAM, Philadelphia, 2005, pp. 801–802.

[20] F. Li, J. Sethuraman, and C. Stein, Better online bu↵er management , in Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’07), ACM, New
York, SIAM, Philadelphia, 2007, pp. 199–208.

[21] L. Jeż, A universal randomized packet scheduling algorithm, Algorithmica, 67 (2013), pp. 498–
515.

[22] P. Veselý, Packet scheduling: Plans, monotonicity, and the golden ratio, SIGACT News, 52
(2021), pp. 72–84.

[23] A. Zhu, Analysis of queueing policies in QoS switches, J. Algorithms, 53 (2004), pp. 137–168.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

1/
23

 to
 1

69
.2

35
.2

9.
11

1
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/1.9781611973105.7
https://doi.org/10.1137/110856745
https://doi.org/10.1137/S0097539701399666

	Introduction
	
	

	Preliminaries
	
	

	Plans and their properties
	
	

	Online algorithm
	
	

	Competitive analysis
	
	

	Adversary stash
	

	Backup plan and the potential function
	

	Overview of the analysis
	

	Packet arrivals
	Transmitting a packet
	Adversary step
	Ordinary step
	Leap step: A roadmap
	Leap step: Processing the initial segment
	Processing (beta,gamma '135 in a simple leap step
	Processing (beta,gamma '135 in an iterated leap step

	Final comments
	References

