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Abstract. In the spanning tree congestion problem, given a connected
graph G, the objective is to compute a spanning tree T" in G for which
the maximum edge congestion is minimized, where the congestion of an
edge e of T is the number of vertex pairs adjacent in G for which the
path connecting them in 7" traverses e. The problem is known to be NP-
hard, but its approximability is still poorly understood, and it is not even
known whether the optimum can be efficiently approximated with ratio
o(n). In the decision version of this problem, denoted K —STC, we need
to determine if G has a spanning tree with congestion at most K. It is
known that K —STC is NP-complete for K > 8, and this implies a lower
bound of 1.125 on the approximation ratio of minimizing congestion.
On the other hand, 3—STC can be solved in polynomial time, with the
complexity status of this problem for K € {4,5,6, 7} remaining an open
problem. We substantially improve the earlier hardness result by proving
that K —STC is NP-complete for K > 5. This leaves only the case K = 4
open, and improves the lower bound on the approximation ratio to 1.2.

1 Introduction

Problems involving constructing a spanning tree that satisfies certain require-
ments are among the most fundamental tasks in graph theory and algorithmics.
One such problem is the spanning tree congestion problem, STC for short, that
has been studied extensively for many years. Roughly, in this problem we seek a
spanning tree T of a given graph G that approximates the connectivity structure
of G in the following sense: Embed G into T by replacing each edge (u,v) of G
by the unique u-to-v path in T'. Define the congestion of an edge e of T as the
number of such paths that traverse e. The objective of STC is to find a spanning
tree T' that minimizes the maximum edge congestion.

The general concept of edge congestion was first introduced in 1986, under
the name of load factor, as a measure of quality of an embedding of one graph into
another [3] (see also the survey in [20]). The problem of computing trees with low
congestion was studied by Khuller et al. [12] in the context of solving commodi-
ties network routing problems. The trees considered there were not required to be

M. Chrobak—Research partially supported by National Science Foundation grant
CCF-2153723.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

C.-C. Lin et al. (Eds.): WALCOM 2023, LNCS 13973, pp. 167-178, 2023.
https://doi.org/10.1007/978-3-031-27051-2_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27051-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-27051-2_15

168 H. Luu and M. Chrobak

spanning subtrees, but the variant involving spanning trees was also mentioned.
In 2003, Ostrovskii provided independently a formal definition of STC and estab-
lished some fundamental properties of spanning trees with low congestion [17].
Since then, many combinatorial and algorithmic results about this problem have
been reported in the literature — we refer the readers to the survey paper by
Otachi [18] for complete information, most of which is still up-to-date.

As established by Léwenstein [15], STC is NP-hard. As usual, this is proved
by showing NP-completeness of its decision version, where we are given a graph G
and an integer K, and we need to determine if G has a spanning tree with conges-
tion at most K. Otachi et al. [19] strengthened this by proving that the problem
remains NPP-hard even for planar graphs. In [16], STC is proven to be NP-hard for
chain graphs and split graphs. On the other hand, computing optimal solutions
for STC can be achieved in polynomial time for some special classes of graphs:
complete k-partite graphs, two-dimensional tori [14], outerplanar graphs [5], and
two-dimensional Hamming graphs [13].

In our paper, we focus on the decision version of STC where the bound K
on congestion is a fixed constant. We denote this variant by K —STC. Several
results on the complexity of K—STC were reported in [19]. For example, the
authors show that K —STC is decidable in linear time for planar graphs, graphs
of bounded treewidth, graphs of bounded degree, and for all graphs when K =
1,2,3. On the other hand, they show that the problem is NP-complete for any
fixed K > 10. In [4], Bodlaender et al. proved that K —STC is linear-time solvable
for graphs in apex-minor-free families and chordal graphs. They also show an
improved hardness result of K —STC, namely that it is NP-complete for K > 8,
even in the special case of apex graphs that only have one unbounded degree
vertex. As stated in [18], the complexity status of K—STC for K € {4,5,6,7}
remains an open problem.

Little is known about the approximability of STC. The trivial upper bound
for the approximation ratio is n/2 [18]. As a direct consequence of the NP-
completeness of 8—STC, there is no polynomial-time algorithm to approximate

the optimum spanning tree congestion with a ratio better than 1.125 (unless
P = NP).

Our Contribution. Addressing an open question in [18], we provide an
improved hardness result for K —STC:
Theorem 1. For any fized integer K > 5, K—STC is NP-complete.

The proof of this theorem is given in Sect. 3. Combined with the results
in [19], Theorem 1 leaves only the status of 4—STC open. Furthermore, it also
immediately improves the lower bound on the approximation ratio for STC:

Corollary 1. For ¢ < 1.2 there is no polynomial-time c-approximation algo-
rithm for STC, unless P = NP.

We remark that this hardness result remains valid even if an additive constant
is allowed in the approximation bound. This follows by an argument in [4]. (In
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essence, the reason is that assigning a positive integer weight 0 to each edge
increases its congestion by a factor 3.)

Other Related Work. The spanning tree congestion problem is closely related
to the tree spanner problem in which the objective is to find a spanning tree T’
of G that minimizes the stretch factor, defined as the maximum ratio, over all
vertex pairs, between the length of the path in 7" and the length of the shortest
path in G connecting these vertices. In fact, for any planar graph, its spanning
tree congestion is equal to its dual’s minimum stretch factor plus one [10,19].
This direction of research has been extensively explored, see [6,8,9]. As an aside,
we remark that the complexity of the tree 3-spanner problem has been open since
its first introduction in 1995 [6].

STC is also intimately related to problems involving cycle bases in graphs.
As each spanning tree identifies a fundamental cycle basis of a given graph,
a spanning tree with low congestion yields a cycle basis for which the edge-
cycle incidence matrix is sparse. Sparsity of such matrices is desirable in linear-
algebraic approaches to solving some graph optimization problems, for example
analyses of distribution networks such as in pipe flow systems [1].

STC can be considered as an extreme case of the graph sparsification problem,
where, given a graph G, the objective is to compute a sparse graph H that
captures connectivity properties of G. Such H can be used instead of G for
the purpose of various analyses, to improve efficiency. See [2,11,21] (and the
references therein) for some approaches to graph sparsification.

2 Preliminaries

Let G = (V, E) be a simple graph with vertex set V and edge set E. Consider a
spanning tree ' C E of G. If e = (u,v) € T, removing e from T splits T into two
components. We denote by T, , the component that contains v and by T, ,, the
component that contains v. Let the cross-edge set of e, denoted d¢g r(e), be the
set of edges in E' that have one endpoint in T}, ,, and the other in T}, ,,. In other
words, dg r(e) consists of the edges (u',v") € E for which the unique (simple)
path in T from v’ to v’ goes through e. Note that e € dg r(e). The congestion of
e, denoted by cngg (e), is the cardinality of dg r(e). The congestion of tree T'is
engg(T) = maxeer cngg r(e). Finally, the spanning tree congestion of graph G,
denoted by stc(G), is defined as the minimum value of ecng(7") over all spanning
trees T of G.

The concept of the spanning tree congestion extends naturally to multi-
graphs. For multigraphs, only one edge between any two given vertices can be
in a spanning tree, but all of them belong to the cross-edge set dg r(e) of any
edge e € T whose removal separates these vertices in T' (and thus all contribute
to cngg r(e)). As observed in [19], edge subdivision does not affect the spanning
tree congestion of a graph. Therefore any multigraph can be converted into a
simple graph by subdividing all multiple edges, without changing its minimum
congestion. We use positive integer weights to represent edge multiplicities: an
edge (u,v) with weight w represents a bundle of w edges connecting u to v. While
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we state our results in terms of simple graphs, we use weighted graphs in our
proofs, with the understanding that they actually represent the corresponding
simple graphs. As all weights used in the paper are constant, the computational
complexity of K —STC is not affected.

In fact, it is convenient to generalize this further by introducing edges with
double weights. A double weight of an edge e is denoted w:w’, where w and w’
are positive integers such that w < ', and its interpretation in the context of
K —STC is as follows: given a spanning tree T, if e € E\T then e contributes w
to the congestion cngg 1 (f) of any edge f for which e € dg r(f), and if e € T
then e contributes w’ to its own congestion, cngg (e). The lemma below implies
that including edges with double weights that add up to at most K does not
affect the computational complexity of K —STC, and therefore we can formulate
our proofs in terms of graphs where some edges have double weights.

Lemma 1. Let (u,v) be an edge in G with double weight w:w', where 1 < w < W'
and w + w' < K for some integer K. Consider another graph G’ with vertezx set
V' = VU{w} and edge set E' = EU{(u,w), (w,v)}\{(u,v)}, in which the weight
of (u,w) is w and the weight of (w,v) is w'. Then, stc(G) < K if and only if
ste(G') < K

Proof. (=) Suppose that G has a spanning tree T' with eng(T) < K. We will
show that there exists a spanning tree 7" of G’ with cngq (T”) < K. We break
the proof into two cases, in both cases showing that cngG,,T,( e) < K for each
edge e € T'.

Case 1: (u,v) € T. Let T/ = TU{(u, w), (w, v) \{(w,v)}. T" is clearly a spanning
tree of G'. If (x,y) € E'\{(u,w), (w,v)}, the z-to-y paths in T and T" are the
same, except that if the z-to-y path in T traverses edge (u, v) then the z-to-y path
in 7" will traverse (u, w) and (w,v) instead. Therefore, if e € T"\{(u, w), (w, v)},
Ocr1(e) = da,r(e), so cnggr 1 (e) = cngg r(e) < K. On the other hand, if e €
{(u,w), (w,v)}, ¢ () = Oc,1(u, v)\{(u,v)}U{e}. Then, edge e contributes w
or w’ to cngg, v (e), while (u,v), by the definition of double weights, contributes
w' > w to cngg 1 (u,v). Hence, cnggr 7 () < engg p(u,v) < K.

Case 2: (u,v) ¢ T. Let 7" = T U {(w,v)}, which is a spanning tree of G’
If e € T'\{(w,v)}, we have two subcases. If e is not on the u-to-v path in 7",
dcr 1/ (e) = 0g,r(e), so cnggs 7/ (e) = engg r(e) < K. If e is on the u-to-v path in
T, 0cr 1 (e) = 9g,1(e)U{(u, w) }\{(u,v)}. As (u, w) contributes w to cnggr 1 (e)
and, by the definition of double weights, (u,v) contributes w to cngg (e), we
obtain that cnggr 7 (e) = cngg r(e) < K. In the remaining case, for e = (w,v),
we have Jg' 1(€) = {(u,w), (w,v)}, so enggr 1 (e) = w +w' < K.

(<) Let T” be the spanning tree of G’ with congestion cngq. (T7) < K. We
will show that there exists a spanning tree T of G with cng, (7)) < K. Note that
at least one of edges (u,w) and (v,w) has to be in T’. We now consider three
cases, in each case showing that cngg 7(e) < K for each edge e € T'.

Case 1: (u,w), (v,w) € T'. Let T = T" U {(u,v) }\{(u,w), (w,v)}. T is clearly a
spanning tree of G. The argument for this case is similar to Case 1 in the proof
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for the (=) implication. For each edge e € T\{(u,v)}, its congestion in T is the
same as in 7. The congestion of (u,v) in T is bounded by the congestion of
(w,v) in T’, which is at most K.

Case 2: (v,w) € T and (u,w) ¢ T'. Let T = T"\{(w,v)}. T is a spanning
tree of G. Here again, the argument is similar to the proof for Case 2 in the (=)
implication. For each edge e € T, if e is not on the u-to-v path in 7', its congestion
in T and T is the same. If e is on the u-to-v path in 7', the contributions of
(u,v) and (u,w) to the congestion of e in T and T’ are the same.

Case 3: (u,w) € T" and (v,w) ¢ T'. Consider T = T" U {(v,w) }\{(u,w)},
which is a different spanning tree of G'. It is sufficient to show that cngeq, (T7) <
cnge (T7) because it will imply enge, (") < K, and then we can apply Case 2
to T"”. We examine the congestion values of each edge e € T”. Suppose first
that e # (u,w). If e is not on the u-to-v path in T', g 1 (e) = g 1 (e), so
enggr i (€) = enger v (e). If e is on the u-to-v path in 7", dgr 1 (e) = dgr 7/ (€)U
{(w, w)\{(v,w)}, so enggr n(€) = enggr 1v(€) +w — W' < cnggr 7(e). In the
last case when e = (v, w), enggr rn(e) = w+w' < K.

3 NP-Completeness Proof of K—STC for K > 5

In this section we prove our main result, the NP-completeness of K —STC. Our
proof uses an NPP-complete variant of the satisfiability problem called (2P1N)-
SAT [7,22]. An instance of (2P1N)-SAT is a boolean expression ¢ in conjunctive
normal form, where each variable occurs exactly three times, twice positively
and once negatively, and each clause contains exactly two or three literals of
different variables. The objective is to decide if ¢ is satisfiable, that is if there is
a satisfying assignment that makes ¢ true.

For each constant K, K —STC is clearly in NP. We will present a polynomial-
time reduction from (2P1N)-SAT. In this reduction, given an instance ¢ of
(2P1N)-SAT, we construct in polynomial time a graph G with the following

property:
(%) ¢ has a satisfying truth assignment if and only if stc(G) < K.

/

Throughout the proof, the three literals of z; in ¢ will be denoted by z;, z},
and Z;, where x;, x} are the two positive occurrences of z; and Z; is the negative
occurrence of x;. We will also use notation &; to refer to an unspecified literal
of T, that is .’El € {IZ,SC;,.’EZ}

We now describe the reduction. Set k; = K —i for ¢ = 1,2, 3,4. (In particular,
for K =5, we have k1 = 4, ko = 3, ks = 2, k4 = 1.) G will consist of gadgets
corresponding to variables, with the gadget corresponding to x; having three
vertices x;, x}, and Z;, that represent its three occurrences in the clauses. G will
also have vertices representing clauses and edges connecting literals with the
clauses where they occur (see Fig. 1b for an example). As explained in Sect. 2,
without any loss of generality we can allow edges in G to have constant-valued
weights, single or double. Specifically, starting with G empty, the construction
of G proceeds as follows:
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— Add a root vertex r.

— For each variable x;, construct the z;-gadget (see Fig. 1a). This gadget has
three vertices corresponding to the literals: a negative literal vertex T; and
two positive literal vertices x;,x}, and two auxiliary vertices y; and z;. Its
edges and their weights are given in the table below:

edge | (%i,2) | (zi,2i) | (xi,x) | (r,ah) | (i) | (yiozi) | (93, 2)
Weight 12](?3 12k’3 likz ]{33 k4 k4 likz

— For each clause ¢, create a clause vertex c. For each literal Z; in ¢, add the
corresponding clause-to-literal edge (¢, Z;) of weight 1:ko. Importantly, as all
literals in ¢ correspond to different variables, these edges will go to different
variable gadgets.

— For each two-literal clause ¢, add a root-to-clause edge (r,c) of weight 1:k;.

Fig. 1. (a)The z;-gadget. (b) An example of a partial graph G for the boolean expres-
sion ¢ = (Zy Vaa) A (z1 Ve VT3)A (21 VT2)A---. Here, ¢1 = Ty Va4, co = 21 VT2 VI3,
and c3 = z1 V Ta.

We now show that G has the required property (x), proving the two impli-
cations separately.

(=) Suppose that ¢ has a satisfying assignment. Using this assignment, we
construct a spanning tree T' of G as follows:

— For every x;-gadget, include in T edges (r,z}), (r,y;), and (y;,2;). If 2; = 0,
include in T edges (Z;, z;) and (z;,}), otherwise include in T edges (yi,Z;)
and (z;, ;).

— For each clause ¢, include in T one clause-to-literal edge that is incident to
any literal vertex that satisfies ¢ in our chosen truth assignment for ¢.

By routine inspection, T is indeed a spanning tree: Each z;-gadget is tra-
versed from r without cycles, and all clause vertices are leaves of T'. Figures 2
and 3 show how T traverses an x;-gadget in different cases, depending on whether
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z; = 0 or x; = 1 in the truth assignment for ¢, and on which literals are cho-
sen to satisfy each clause. Note that the edges with double weights satisfy the
assumption of Lemma 1 in Sect. 2, that is each such weight 1:w’ satisfies 1 < w’
and 1+ < K.

We need to verify that each edge in T has congestion at most K. All the
clause vertices are leaves in T', thus the congestion of each clause-to-literal edge
is k2 +2 = K; this holds for both three-literal and two-literal clauses. To analyze
the congestion of the edges inside an x;-gadget, we consider two cases, depending
on the value of x; in our truth assignment.

When z; = 0, we have two sub-cases as shown in Fig. 2. The congestions of
the edges in the x;-gadget are as follows:

— In both cases, engg (1, ;) = k3 + 3.

— In case (a), cngg (7, y:) = ka + 3. In case (b), it is ky + 2.

— In case (a), cngg 7 (yi, 2i) = ka + 4. In case (b), it is ks + 3.
— In case (a), cngg (%, zi) = k3 + 3. In case (b), it is k3 + 2.
— In both cases, engg (i, 7)) = ko + 2.

Fig. 2. The traversal of the x;-gadget by T when x; = 0. Solid lines are tree edges,
dashed lines are non-tree edges. (a) Z; is chosen by clause c. (b) Z; is not chosen by
clause c.

On the other hand, when x; = 1, we have four sub-cases. Figure 2 illustrates
cases (a)—(c). In case (d) (not shown in Fig. 2), none of the positive literal
vertices x;, x} is chosen to satisfy their corresponding clauses. The congestions
of the edges in the x;-gadget are as follows:

— In cases (a) and (b), cngg ¢ (r, ;) = k3 + 3. In cases (c) and (d), it is k3 + 2.
— In cases (a) and (c), ecngg (7, y:) = ka4 +4. In cases (b) and (d), it is kg + 3.
— In cases (a) and (c), engg 7 (yi, 2i) = ks +4. In cases (b) and (d), it is ks + 3.
— In cases (a) and (c), ecngg 7 (i, 2;) = k3 + 3. In cases (b) and (d), it is k3 + 2.

In all cases, engg 7 (yi, Ti) = k2 + 2.

In summary, the congestion of each edge of T is at most K. Thus cng(T') <
K in turn, stc(G) < K, as claimed.
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(a) (b)

[ 1\ Cc e 1\

VAN TAS S (N}

Fig. 3. The traversal of the z;-gadget by T when x; = 1. By ¢, ¢/ and ¢”” we denote
the clauses that contain literals z;, z; and zj, respectively. (a) z; and z; are chosen by
clauses ¢’ and ¢”. (b) z} is chosen by clause ¢’. (c) x; is chosen by clause ¢’

(<) We now prove the other implication in (x). We assume that G has a
spanning tree T with cng(T) < K. We will show how to convert 7' into a
satisfying assignment for ¢. The proof consists of a sequence of claims showing
that T" must have a special form that will allow us to define this truth assignment.

Claim 1. Fach x;-gadget satisfies the following property: for each literal vertex
Z;, if some edge e of T' (not necessarily in the x;-gadget) is on the r-to-&; path in
T, then Og r(e) contains at least two distinct edges from this gadget other than
(is 2i)-

This claim is straightforward: it follows directly from the fact that there are
two edge-disjoint paths from r to any literal vertex Z; € {Z;, z;, 2} that do not
use edge (y;, 2;)-

Claim 2. For each two-literal clause ¢, edge (r,c) is not in T.

For each literal Z; of clause ¢, there is an r-to-¢ path via the z;-gadget, so,
together with edge (r,c¢), G has three disjoint r-to-c¢ paths. Thus, if (r,¢) were
in T, its congestion would be at least k; + 2 > K, proving Claim 2.

Claim 3. All clause vertices are leaves in T'.

To prove Claim 3, suppose there is a clause ¢ that is not a leaf. Then, by
Claim 2, ¢ has at least two clause-to-literal edges in T', say (c,Z;) and (c, ;).
We can assume that the last edge on the r-to-c path in T is e = (¢, &;). Clearly,
r €13, .and T; € T, 3,. By Claim 1, at least two edges of the z;-gadget are in
dc,r(e), and they contribute at least 2 to cngg 1(e). We now have some cases
to consider.

If ¢ is a two-literal clause, its root-to-clause edge (r,c) is also in dg r(e),
by Claim 2. Thus, cngg 7(e) > k2 +3 > K (see Fig. 4a). So assume now that
c is a three-literal clause, and let &; # ;,Z; be the third literal of c. If T'
contains (c,¥;), the x;-gadget would also contribute at least 2 to cngg r(e), so
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engg r(e) > ko +4 > K (see Fig. 4b). Otherwise, (c, ;) ¢ T, and (c, 7;) itself
contributes 1 to cngg r(e), so cngg r(€) > ko +3 > K (see Fig. 4c).

We have shown that if a clause vertex ¢ is not a leaf in T', then in all cases
the congestion of T" would exceed K, completing the proof of Claim 3.

Fig. 4. Illustration of the proof of Claim 3. In (a) c is a two-literal clause; in (b) and (c),
c is a three-literal clause.

Claim 4. For each x;-gadget, edge (r,x}) is in T.

Towards contradiction, suppose that (r,x}) is not in T. Let (2},c) be the
clause-to-literal edge of x}. If only one of the two edges (z},x;),(x},¢) is in
T, making z, a leaf, then the congestion of that edge is ks + k2 + 1 > K.
Otherwise, both (x},;), (x},c) are in T. Because ¢ is a leaf in T" by Claim 3,
e = (z;,7}) is the last edge on the r-to-z path in 7. As shown in Fig. 5a,
cngg r(e) > k3 + kg +2 > K. This proves Clalm 4.

Claim 5. For each x;-gadget, edge (r,y;) is in T.

To prove this claim, suppose (r, y;) is not in T'. We consider the congestion of
the first edge e on the r-to-y; path in T'. By Claims 3 and 4, we have e = (r,z}),
all vertices of the z;-gadget have to be in T, ., and T}/ . does not contain literal
vertices of another variable z; # ;. For cach literal 7 Z; of x;, if a clause-to-literal
edge (c,&;) is in T, then the two other edges of ¢ contribute 2 to cngg r(e),
otherwise (c, ;) contributes 1 to cngg (e). Then, cngg 7(e) > ks + ks +3 > K
(see Fig. 5b), proving Claim 5.

Claim 6. For each x;-gadget, exactly one of edges (z;, x;) and (z;,x}) is in T.

By Claims 4 and 5, edges (r, y;) and (r, ;) are in T'. Since the clause neighbor
¢ of x; is a leaf of T, by Claim 3, if none of (z;,x;), (z;,2;) were in T, x; would
not be reachable from r in T'. Thus, at least one of them is in 7. Now, assume
both (z;,z;) and (z;,x}) are in T (see Fig. 6a). Then, edge (y;,2;) is not in T,
as otherwise we would create a cycle. Let us consider the congestion of edge
e = (r,z;). Clearly, x; and z; are in T/ .. The edges of the two clause neighbors
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(b) T T
ks 7 ks .7
Yi o’ Yi, o~
\ ks , ks
\ /
\ /
\ //
\
7/
\ Z; / Zj
_ ®
I l I I I Bl
c (J/ C// c (/ c//

Fig. 5. (a) Illustration of the proof of Claim 4. (a) Illustration of the proof of Claim 5.
Dot-dashed lines are edges that may or may not be in 7.

¢ and ¢ of z; and 2 contribute at least 2 to cngg r(e), by Claim 3. In addition,
by Claim 1, besides e and (y;, 2;), O¢,r(e) contains another edge of the x;-gadget
which contributes at least another 1 to cngg (e). Thus, cngg r(e) > ka+kz+3 >
K — a contradiction. This proves Claim 6.

Claim 7. For each x;-gadget, edge (y;, z;) is in T.

By Claims 4 and 5, the two edges (r,«}) and (r,y;) are in T. Now assume,
towards contradiction, that (y;, z;) is not in T (see Fig. 6b). By Claim 6, only
one of (z;,x;) and (x;, ;) is in T. Furthermore, the clause neighbor ¢’ of z; is a
leaf of T', by Claim 3. As a result, (z;, x;) cannot be on the y;-to-z; path in T'. To
reach z; from y;, the two edges (v;, Z;), (Z;, 2;) have to be in T'. Let us consider
the congestion of e = (y;, Z;). The edges of the clause neighbor ¢ of Z; contribute
at least 1 to the congestion of e, by Claim 3. Also, by Claim 1, besides e and
(¥4, i), Oc 7(e) contains another edge of the z;-gadget which contributes at least
1 to engg r(e). In total, cngg (e) > ks + ko + 2 > K, reaching a contradiction
and completing the proof of Claim 7.

Fig. 6. (a) Illustration of the proof of Claim 6. (b) Illustration of the proof of Claim 7.
Dot-dashed lines are edges that may or may not be in 7.
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Claim 8. For each x;-gadget, if its clause-to-literal edge (Z;,c) is in T, then its
other two clause-to-literal edges (z;,¢") and (z},c") are not in T.

Assume the clause-to-literal edge (Z;, ¢) of the z;-gadget is in 7. By Claim 7,
edge (yi, 2;) is in T. If (y;,Z;) is also in T, edge (Z;, z;) cannot be in T, and it
contributes 1 to ecngg 7 (yi, Z;). As shown in Fig. 7a, ecngg r(yi, 7)) = k2o +3 > K.
Thus, (yi,Z;) cannot be in T'. Since c is a leaf of T', edge (Z;, ;) has to be in T,
for otherwise Z; would not be reachable from r. By Claim 6, one of edges (z;, x;)
and (z,x7) is in T. If (25, 2;) is in T (see Fig. 7b), engg 7(yi, 2i) > ka +5 > K.

Hence, (z;,2;) is not in T, which implies that (x;,2}) is in 7.

(©)

Fig. 7. Nllustration of the proof of Claim 8. Dot-dashed lines are edges that may or
may not be in T'.

Now, we proceed by contradiction assuming that at least one other clause-
to-literal edge of the z;-gadget is in 7' If edge (z4,c’) is in T, engg (24, 27) >
k2 +3 > K, as shown in Fig. 7c. Similarly, if (z},c¢") is in T, cngg (7, 2}) >
ks+4 > K (see Fig. 7d). So we reach a contradiction in both cases, thus proving
Claim 8.

We are now ready to complete the proof of the (<) implication in the equiv-
alence (x). We use our spanning tree T of congestion at most K to create a truth
assignment for ¢ by setting x; = 0 if the clause-to-literal edge of z; is in T', oth-
erwise z; = 1. By Claim 8, this truth assignment is well-defined. Each clause has
one clause-to-literal edge in T" which ensures that all clauses are indeed satisfied.
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