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Hydrodynamics is a general theoretical framework
for describing the long-time large-distance behaviors of
macroscopic physical systems. It has many important
applications in various branches of physics, from cos-
mic expansion and galaxy/star evolutions at the very
large scales to relativistic nuclear collisions at the very
small scales. The core of hydrodynamics is about physi-
cal quantities protected by exact conservation laws, such
as energy, momentum and conserved charges. Past hy-
drodynamic studies almost entirely focus on the energy-
momentum conservation and charge conservation. Only
very recently, there has been a rapidly increasing interest
in understanding the role of angular momentum conser-
vation in the hydrodynamic context and its implications
for spin transport of underlying constituents. Such inter-
est is strongly fueled by experimental observations of spin
polarization in rotating matter, with examples ranging
from condensed matter flow systems to subatomic fluids
in relativistic nuclear collisions [1–6].

Active efforts are underway to develop a hydrodynamic
theory framework for describing such systems, see e.g.
[7–17]. Important progress has been made along this
direction, while there also appear both conceptual and
technical challenges especially in the relativistic regime
where the separation between spin and orbital compo-
nents becomes subtle and confusions arise about the
property of energy-momentum tensor as well as the hy-
drodynamic gradient expansion.

Let us begin with a conceptual discussion on the hy-
drodynamic description of a general fluid system. One
starts by assuming a separation between the macroscopic
scale L (e.g. the system size) and the microscopic scale
λ, which is determined by underlying dynamical interac-
tions relevant for the thermal relaxation and equilibra-
tion among both spin and orbital angular momentum of
the fluid constituents. This allows introducing an inter-
mediate hydrodynamic scale l for defining local fluid cells,
with λ� l � L, a coarse-graining process as illustrated
in Fig. 1. Each fluid cell is supposed to be close to local
thermal equilibrium and can be represented by locally-
defined hydrodynamic fields/variables such as tempera-
ture T (xµ) (or equivalently energy density ε(xµ)), chem-
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ical potential µ(xµ) (or charge density n(xµ)), pressure
p(xµ), entropy density s(xµ), fluid velocity v(xµ), etc.

Hydrodynamic equations are nothing but macroscopic
conservation laws for such hydrodynamic fields. For ex-
ample, the usual relativistic hydrodynamics consists of
the following equations for energy-momentum tensor Tµν

as well as charge current Nµ:

∂µT
µν = 0, (1)

∂µN
µ = 0, (2)

which are essentially continuity equations for transport
currents pertaining to energy, momentum and charge.
The remaining task then is to obtain constitutive rela-
tions, i.e. to express Tµν and Nµ in terms of various hy-
drodynamic fields (e.g. v, T, n, ...) and their derivatives
in a systematic order-by-order gradient expansion.

FIG. 1. An illustration of the hydrodynamic regime. The
bulk behavior of the system, on the macroscopic scale L,
is described by a set of hydrodynamic fields/variables such
as temperature T (xµ), charge density n(xµ), fluid velocity
v(xµ), etc. Individual fluid cells, on the hydrodynamic scale
l, are considered to be close to local thermal equilibrium.

Along the same line of consideration, let us examine
the inclusion of angular momentum by adding the corre-
sponding conservation equation:

∂µJ
µαβ = 0, (3)
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where the tensor Jµαβ is the local current associated with
angular momentum transport. It should contain all con-
tributions such as spin and orbital angular momentum.

To express the angular momentum carried by a local
fluid cell is however tricky, with two contributions:

Jµαβ =
(
xαTµβ − xβTµα

)
+ Σµαβ , (4)

where both Jµαβ and Σµαβ are anti-symmetric in α↔ β.
The first part, in the parentheses, comes from the an-
gular momentum associated with the orbital motion of
the fluid cell as a “whole object”. Note the Tµν here is
the canonical energy-momentum tensor which could in
principle have both symmetric and antisymmetric com-
ponents: Tµν ≡ Tµν(s) + Tµν(a). The second part, i.e. Σµαβ ,

counts all the internal angular momentum from within
the fluid cell. Microscopically it includes both orbital
and spin contributions from all microscopic constituents
in that cell, as illustrated in Fig. 1.

The conserved quantity related to Σµαβ is introduced
as the antisymmetric tensor field σαβ(xµ) which should
represent the local angular momentum density, akin to
the local charge density. It should also have a corre-
sponding “Lagrangian multiplier”, the angular momen-
tum chemical potential ωαβ(xµ). It shall be noted that
the σαβ and ωαβ(xµ) should not be viewed as just spin
tensor or spin chemical potential.

As is well known, hydrodynamic equations need to be
“closed” with thermodynamic constraints that the hy-
drodynamic variables must satisfy. Including angular
momentum in the same way as other conserved quan-
tities, one arrives at the following generalized conditions
according to the first law of thermodynamics:

ε = −p+ Ts+ µn+ ωαβσ
αβ . (5)

Furthermore, the second law of thermodynamics requires
that the entropy can not decrease, i.e.

∂µS
µ ≥ 0, (6)

where Sµ = pβµ + βνT
µν − αNµ − βωαβΣµαβ is the en-

tropy current. Additionally, one can use the thermody-
namic equation of state to express e.g. ε, p, s, ... in terms
of T, µ, ωαβ .

The next key step is to find the constitutive rela-
tions that specify conserved quantities, i.e. Tµν , Nµ

and Σµαβ in terms of hydrodynamic variables. This can
be done through a systematic gradient expansion. One
starts by assuming perfect local thermal equilibrium to
write down them entirely in terms of local variables and
obtain the ideal hydrodynamics. One next introduces
viscous terms into constitutive relations, involving only
single-derivative terms of hydrodynamic variables to ob-
tain Navier-Stokes type of viscous hydrodynamics. The
procedure can be further carried on by including higher-
order-derivative terms.

In the ideal hydrodynamic limit, all conserved quanti-
ties can be uniquely determined from local variables. The
energy-momentum tensor and charge current are given

by the familiar forms: Tµν(0) = εuµuν−p∆µν , Nµ
(0) = nuµ,

where uµ = (γ, γv) (with γ = 1/
√

1 + v2). For angular

momentum, one similarly obtains Σµαβ
(0) = σαβuµ. Com-

bining this with Eqs. (1,2,3), one thus obtains ideal hy-
drodynamic equation for the angular momentum [7, 8]:

∂µJ
µαβ
(0) = σαβθ +Dσαβ = 0, (7)

where θ = ∂µu
µ and D = uν∂

ν . At this order, the con-
straint (6) is saturated, i.e. ∂µS

µ
(0) = 0 as it should be:

no entropy is generated in ideal hydrodynamics.

The first dissipative corrections can be added by in-
cluding viscous currents constructed from linear order
of gradient terms, a procedure known to become frame-
dependent. In the so-called Eckart frame defined by
charge current Nµ, one can carry out a general and sys-
tematic decomposition of the physical currents Nµ, Tµν

and Σµαβ into longitudinal and transverse components:

Tµν = εuµuν − (p+ Π) ∆µν + 2u(µqν) + πµν , (8)

Nµ = nuµ, (9)

Σµαβ = uµσαβ + 2u[α∆µβ]Φ

+2u[ατ
µβ]
(s) + 2u[ατ

µβ]
(a) + Θµαβ . (10)

In the above, we recognize the familiar bulk viscous pres-
sure Π, shear viscous tensor πµν and the diffusion flux
qµ. Furthermore, there emerge new dissipative quantities
Φ, τµβs , τµβa ,Θµαβ associated with dissipative processes of
angular momentum transport in Eq.(10). These viscous
terms are all considered linear-order terms in gradient
expansion. Note for a pair of Lorentz indices, we use
notation (µ...ν) to indicate symmetrizing while [µ...ν] to
indicate anti-symmetrizing. Later we will also use nota-
tion 〈µ...ν〉 for the symmetric traceless projection.

Finally one considers the constraint Eq. (6) for the en-
tropy current Sµ, the divergence of which must be non-
negative for all possible fluid configurations (aka “entropy
never decreases”). The only way for this to happen is for
all contributing terms to be space-like quadratic terms,
which helps uniquely fixing various viscous terms to lead-
ing order. For energy-momentum and charge current, the
results are similar to conventional Navier-Stokes hydro-
dynamics:

Π = −ζθ, (11)

πµν = 2η∇〈µuν〉, (12)

qµ = κT

(
∇µT
T
−Duµ

)
= −κnT

2

ε+ p

[
∇µ

(µ
T

)
+
σαβ

n
∇µ

(ωαβ
T

)]
, (13)

where the positive coefficients ζ, η, κ are the familiar bulk
viscosity, shear viscosity and heat conductivity, respec-
tively. For the angular momentum part, new results are
obtained for its various viscous components:
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Φ = −χ1u
α∇β

(ωαβ
T

)
, (14)

τµβ(s) = −χ2u
α

[ (
∆βρ∆µγ + ∆µρ∆βγ

)
−2

3
∆µβ∆ργ

]
∇γ

(ωαρ
T

)
, (15)

τµβ(a) = −χ3u
α
(
∆βρ∆µγ −∆µρ∆βγ

)
∇γ

(ωαρ
T

)
, (16)

Θµαβ = −χ4

(
uβuρ∆αδ − uαuρ∆βδ

)
∆µγ∇γ

(ωδρ
T

)
+χ5∆αδ∆βρ∆µγ∇γ

(ωδρ
T

)
. (17)

Here, five new positive transport coefficientsχ1, χ2, χ3, χ4

and χ5 are identified, which quantify the angular momen-
tum diffusion in various modes.

One may notice a nontrivial contribution to the viscous
heat current from the angular momentum gradient term
in (13). It is also evident from (14–16) that temperature
gradient would contribute to the viscous current of angu-
lar momentum transport. An interesting quantity much
discussed in literature is the polarization pseudo-vector,
which may be connected with the angular momentum
current via Πµ ∼ εµνρσΣ0νρT0σ, which would receive vis-
cous contributions from angular momentum and temper-
ature gradients as well as from bulk and shear gradient
terms in the stress tensor. Note that if the Landau frame
or energy frame is used instead of the Eckart frame, one
obtains formally the same expressions for the set of vis-
cous constitutive relations in Eqs.(11–16) albeit with all
quantities defined in the Landau frame.

As of this point, a framework of relativistic viscous hy-
drodynamics with angular momentum is developed as a
most natural extension of the original Navier-Stokes anal-
ysis into a new regime. In particular, the viscous terms
for angular momentum transport have been found with
five pertinent transport coefficients newly introduced.
There remain however a number of highly intriguing con-
ceptual issues that have been investigated in recent liter-
ature and still await a complete understanding.

One subtle question is whether the spin and orbital
components of a fluid cell could be meaningfully sep-
arated thus allowing the spin portion to be treated as
an independent hydrodynamic field. There is an obvi-
ous desire to do so, given that nuclear collision exper-
iments measure the spin polarization of produced par-
ticles. Many studies [9–11, 13, 17] attempt to build the
“spin hydrodynamics” based on such a scenario. The sep-
aration may not be unique with different choices related
to pseudo-guage transformation [10]. Further concerns
arise in the context of hydrodynamic coarse-graining, and
there is no guarantee that the scale of spin tensor vari-
ation could be cleanly separated from microscopic scale
as well as from the scale of fluid orbital motion. In fact,
if spins from different cells could indeed correlate in a
hydrodynamic way, it is difficult to imagine that these

spins would not interact with local orbital motion. Fur-
thermore, one may note that a general hydrodynamics
with angular momentum shall encompass not only quan-
tum field systems with spins but also those without spins
but possessing nonzero angular momentum.

Another tricky question is about the power counting of
newly introduced angular momentum variables like ωαβ
and σαβ . In terms of gradient expansion, the framework
obtained above consistently counts both σαβ and ωαβ as
zeroth order terms. This might not be the only possible
choice. To make an analogy, in the context of magneto-
hydrodynamics, different formulations arise from differ-
ent counting of the magnetic field terms. For the angular
momentum, a number of works (e.g. [9, 10, 13]) treat the
ωαβ as first-order term in gradient expansion, resulting
in different forms of the viscous contributions. On the
other hand, this may cause concern about consistency
with thermodynamic relation Eq. (5), which are meant
to relate locally defined quantities for fluid cells in local
thermal equilibrium. Such quantities are considered as
zeroth order terms in the hydrodynamic context and the
physical meaning is unclear if one were to mix terms of
different orders in this relation.

There are many interesting problems in the further de-
velopment of relativistic viscous hydrodynamics with an-
gular momentum. One obvious example is the construc-
tion of second-order casual framework beyond the Navier-
Stokes analysis above. See recent developments in e.g.
[13, 17, 18], using either macroscopic analysis or micro-
scopic approach. The microscopic approach starts from
transport equations with collisions terms for instance in
[19, 20]. From a microscopic point of view, the dynamics
underlying the conversion between orbital and spin an-
gular momentum can be understood in terms of particle
collisions. The nonlocal collision term is of second order
in ~, which is responsible for the conversion of orbital to
spin angular momentum[14, 19, 20] . Computation of the
newly found transport coefficients here for angular mo-
mentum transport would be desirable and can be done by
starting with e.g. quantum transport theories [11, 12, 14].
Concerning frame choice, the presence of the angular mo-
mentum current brings the possibility of a new choice for
local rest frame and its implication has yet to be under-
stood. Given the new hydrodynamic variables brought
by the angular momentum, various new hydrodynamic
modes akin to usual sound waves are expected and can
be revealed by a linearization analysis of the hydrody-
namic equations involving angular momentum variables.
A fluid system made of massless fermions deserves spe-
cial interest, in which anomalous transport such as chi-
ral magnetic and vortical effects would occur. Such a
system can be described by anomalous viscous hydrody-
namics [12, 21] with possible signatures being searched
for in heavy ion collision experiments [22].

So far the discussions focus on the theoretical frame-
work for describing a relativistic rotating fluid, but the
primary motivation comes from understanding experi-
mental measurements of spin polarization in heavy ion
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collisions, currently being carried out at both the Rel-
ativistic Heavy Ion Collider (RHIC), the Large Hadron
Collider as well as the GSI facility [1–4]. Full develop-
ment of such a framework will help advance phenomeno-
logical studies for interpreting the experimental data. A
recent example is the finding of non-equilibrium contribu-
tion (via thermal shear term) that helps explain puzzling
patterns in the local spin polarization data [15, 16]. Once
a consistent and complete framework up to second-order
viscous terms is established, it can be applied for simula-
tions of angular momentum transport and computations
of various spin polarization observables in heavy ion col-
lisions. A wealth of relevant data are anticipated from
ongoing analyses at STAR, ALICE and HADES as well
as from planned future experiments such as FAIR.

To conclude, investigation of relativistic fluid with an-
gular momentum emerges as a rapidly advancing fron-
tier with considerable progress and ample opportunities
for further developments in theoretical framework, phe-
nomenological modeling as well as experimental measure-
ments. Besides its broad relevance in many-body physics,
studies of such a system in nuclear collisions will pro-
vide unique insights into one of the most fundamental
forces, i.e. the strong interaction as described by Quan-
tum Chromodynamics (QCD). The presence of angular
momentum offers a novel probe to help reveal QCD in-
teractions in the nonperturbative regime. As a famous
example, understanding the ~

2 spin decomposition of a
proton (— a basic building block of the whole atomic

world) in terms of its quark and gluon contents has in-
trigued physicists for nearly four decades and continues
to be a very active area of QCD research. In the case
of a proton, the ratio between angular momentum J and
baryon number B (both being exactly conserved quan-
tities) is just J/B = 1/2, while the strong interaction
matter created in a heavy ion collision has the same ratio
to be several orders of magnitude larger, J/B ∼ 102∼3.
One cannot help but expect fascinating phenomena and
important lessons to be found from the heavy ion system
and help achieving a much deeper understanding of the
“spinning QCD” physics.
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