
A Study of STT-RAM-based In-Memory
Computing Across the Memory Hierarchy

Dhruv Gajaria, Kevin Antony Gomez, and Tosiron Adegbija
Department of Electrical & Computer Engineering

University of Arizona, Tucson, AZ, USA
Email: {dhruvgajaria, kevingomez, tosiron}@arizona.edu

Abstract—In-memory computing (or processing in memory) is
a promising approach to reducing the data transfer bottleneck
in computer systems by bringing computation closer to the
memory. Prior work proposed using Spin-Transfer Torque RAM
(STT-RAM) for in-memory computing to leverage STT-RAM’s
numerous advantages, including non-volatility, near-zero leakage
power, high area density, better endurance than other non-volatile
memory technologies and demonstrated commercial viability.
This paper explores, for the first time, the tradeoffs of STT-RAM
in-memory computing across the memory hierarchy, including
the main memory and cache hierarchy. We explore a system
model in which processing in memory (PiM) occurs in non-
volatile STT-RAM, whereas processing in cache (PiC) occurs in
relaxed retention (volatile) STT-RAM. In relaxed retention STT-
RAM caches, the retention time—the duration for which the
STT-RAM cell retains data—is significantly reduced to mitigate
STT-RAM’s intrinsic write latency and write energy overheads.
Importantly, we also analyze the tradeoffs and overheads of
data movement for PiC vs. write overheads for PiM for STT-
RAMs. The analysis is performed in the context of different
kinds of workloads to explore the impacts of various workload
characteristics (e.g., temporal locality, computational intensity,
CPU-dependent workloads with limited instruction-level paral-
lelism) on PiC/PiM tradeoffs. Using these workloads, we also
evaluate computing in STT-RAM vs. SRAM at different levels of
the cache hierarchy. Our analysis reveals that STT-RAM-based
PiC has promising advantages over PiM in certain workload
contexts and offers solutions to some of the challenges that arise
in implementing PiC-enabled systems.

Index Terms—STT-RAM, relaxed retention time, in-memory
computing, in-cache computing.

I. INTRODUCTION

The growth of data-intensive applications has given rise to
data bottlenecks in computer systems, including stringently
resource-constrained systems like embedded systems, smart-
phones, etc. An increasingly popular approach to addressing
these bottlenecks is to augment the memory with processing
units, often referred to as in-memory computing/processing
or processing in memory (PiM), to mitigate the cost of data
transfers between the processor and the memory. PiM can
enable massive parallelism via memory devices designed with
multiple processing units across memory arrays [1].

Due to massive parallelism and the reduction in data move-
ment, in-memory computing can be used in several applica-
tion domains like scientific computing, healthcare, machine
learning, autonomous driving, etc. Most prior research on in-
memory computing focus on using the memory as an accel-
erator, wherein kernels are fully executed on the in-memory

processing units. However, in many real-world applications,
the processor must also be used, along with in-memory com-
puting, to effectively complete the required execution [2]. This
may lead to additional data movement overhead across the
cache hierarchy [3]. Furthermore, in-memory computing may
have limited applicability when address translation is required,
as address spaces of the main memories may exceed the reach
of the translation lookaside buffer (TLB), resulting in frequent
and expensive page walks [4].

To mitigate these issues, prior work has proposed lever-
aging compute caches [3] or processing in cache (PiC).
PiC involves an architecture in which multiple word-lines
in an SRAM cache are simultaneously activated to sense
the resulting voltage and perform computations on the data.
However, given that SRAM caches typically have high power
and area requirements along with the additional overhead of
augmenting the cache with processing units, SRAM is a less
viable option for PiC implementations, especially in resource-
constrained systems. Additionally, to avoid data corruption in
SRAM during bit-line computing, the word-line voltage must
be lowered, leading to an increase in the cache delay [3], [5].

Spin-Transfer Torque RAM (STT-RAM) is an emerging
non-volatile memory (NVM) alternative to SRAM for im-
plementing caches due to its lower area (40% - 80% less
area) and near-zero leakage power [6]. STT-RAM has shown
commercial viability and better endurance than other NVM
alternatives (such as ReRAMs or SOT-RAM), making it one
of the leading contenders for replacing SRAM. Furthermore,
STT-RAM inherently has a higher write current than read
current, preventing data corruption during bit-line computing
[7]. As such, STT-RAM remains one of the more realistic
technologies to implement caches in emerging computer sys-
tems. However, STT-RAM requires high write latency and
write energy due to its non-volatility (i.e., the long retention
time). To mitigate this overhead, the retention time can be
substantially relaxed (to < 1s) to only satisfy the retention
needs of the execution workloads’ cache blocks [6], [8].

In this paper, we study PiC using relaxed retention STT-
RAM caches. Unlike prior STT-RAM-based in-memory com-
puting research, which has only considered non-volatile STT-
RAM PiM implementations [7], [9], our work considers the
tradeoffs of computing across the memory hierarchy, including
relaxed retention STT-RAM caches and non-volatile STT-
RAM main memories. Relaxed retention STT-RAMs intro-

duce new considerations (e.g., the impact of cache block
lifetimes) that must be taken into account to maximize the
energy benefits of STT-RAM caches. In our study, we explore
different types of workloads to reveal the implications of
various workload characteristics on computation efficiency.
These characteristics include the CPU-dependence (due to
sequential executions and complex computations), temporal
locality/data reuse, and write intensity, all of which have
important implications for the effectiveness of PiC vs. PiM.
We show the kinds of workloads best suited for PiC/PiM,
propose solutions to potential PiC design issues, and analyze
the latency and energy benefits of the proposed solutions in
comparison to the state-of-the-art.

In summary, we make the following key contributions:

• For the first time, we study STT-RAM-based PiC with re-
laxed retention at different cache hierarchy levels (specif-
ically, L1 and L2).

• We explore different types of workloads to analyze the
tradeoffs of computing at different memory hierarchy
levels, including the cache hierarchy and main memory,
using STT-RAM. Our analysis is performed in the con-
text of different workload characteristics that have large
implications for the effectiveness of PiC/PiM.

• We compare the energy and latency benefits of PiC
using STT-RAM vs. SRAM. Experimental results reveal
that STT-RAM achieves significant area savings (up to
79.86% compared to SRAM), energy savings—an aver-
age of 4.18x compared to CPU and 6% (up to 54.5%)
compared to SRAM—with similar latency as SRAM-
based PiC (3x improvement over CPU).

• To improve the execution of CPU-dependent workloads,
for which PiC/PiM is most limited, we propose a simple
optimization called operation chaining that enables better
concurrency of execution between CPU and PiC/PiM
units. The proposed approach achieves 10.19% and
7.83% average latency and energy savings, respectively,
compared to the state-of-the-art.

II. BACKGROUND AND RELATED WORK

STT-RAM’s cell structure consists of a transistor and a
magnetic tunnel junction (MTJ). The MTJ consists of an oxide
layer between two ferromagnetic layers—the free layer and the
hard (or fixed) layer. The magnetization of the free layer can be
changed by passing a current through it, but the magnetization
of the hard layer remains fixed. The direction of the magne-
tization between the ferromagnetic layers determines the bit
stored in the STT-RAM cell: ’0’ (in the parallel state or ’1’ in
the anti-parallel state). Additional details on the characteristics
and workings of STT-RAM cells can be found in prior
work [10]. STT-RAMs have high area density and very low
leakage power but also require high write latency and energy.
This section briefly summarizes the prior work on relaxed
retention STT-RAM—a candidate solution for mitigating the
write latency/energy overheads in cache implementations—
and processing in cache/memory (PiC/PiM).

CPU L1
cache L2 cache Memory

PiC PiC PiM

PiC PiM

Fig. 1: The system model featuring processing in cache (PiC)
implemented in the L1 and L2 caches and processing in
memory (PiM) implemented in the main memory.

A. Relaxed-retention STT-RAM caches

Prior work [8] found that relaxing STT-RAM’s retention
time can significantly reduce the write latency and energy. The
retention time can be relaxed by changing the thickness of the
free layer, magnetization saturation, or the effective anisotropy
field [6], [8]. In this study, we use a technique similar to [6]
to model relaxed retention STT-RAM caches.

Kuan et al. [11] found that relaxed retention STT-RAM
caches can be further optimized for energy efficiency by
closely matching the retention time configuration to work-
loads’ runtime execution requirements. The authors proposed
a logically adaptable retention STT-RAM (LARS) L1 cache
featuring multiple retention time units and used a sampling-
based algorithm to dynamically determine applications’ best
retention times.

B. STT-RAM-based processing in cache/memory (PiC/PiM)

Many prior works have studied PiM using non-volatile
memories (NVM) [7], [12], [13]. For example, Fan et al.
[13] proposed an in-memory AES accelerator using spintronic
devices. They found that, compared to CMOS circuits, spin-
tronic devices achieve 58.6% less energy consumption. Li et
al. [12] also explored bitwise PiM using NVMs like phase-
change memory (PCM) and resistive RAM (ReRAM) for data-
intensive applications. Jain et al. [7] studied reliable PiM under
process variations using STT-RAM. Their work, which we
leverage for our PiM implementation, features an STT-RAM
PiM design that performs logical and addition operations.

While PiC has received much less attention than PiM, prior
work [3] has shown that PiC can mitigate the data transfer
overheads that might be present in PiM for some workload
types. For instance, Aga et al. [3] proposed computation units
within SRAM caches to mitigate data transfer overheads,
improving performance and reducing energy by 1.9x and 2.4x,
respectively, compared to CPU-only computing. Eckert et al.
[14] proposed a Neural Cache that transforms SRAM caches
into parallel compute units for deep neural network inference.
Nag et al. [15] proposed GenCache, which uses SRAM-
based in-cache computing to accelerate the genetic sequence
alignment task. Our work is the first to explore PiC using STT-
RAM and analyze the tradeoffs of STT-RAM-based computing
at different levels of the memory hierarchy.

III. RELAXED RETENTION PROCESSING IN CACHE (PIC)

Figure 1 illustrates the system model considered in our
work. We target a system wherein the computing can be
performed as close to the data as possible. As such, the relaxed

I0-0

I1-0
I1-1

(a) (b) (c)

I0-1

Ior Iand

Oand Onand

IblIand

Oor Onor

IblIor

Fig. 2: The sensing architecture used in our work (similar to
prior work [7]), which works for both relaxed retention and
non-volatile STT-RAM computing. (a) shows the sensed cur-
rent for multiple word-lines and the reference signal position;
(b) and (c) show the logical compute circuits.

OR
NAND

Cin

AND

OR
NOR

AND
NAND

(c)(d)

(a)

BL Logic

Sense Amplifier

BL decoder

W
L

D
ec

od
er

W
or

dl
in

es
(W

L)

Bitlines (BL)Counter Tag Data

Sel2Sel1
Sel3

Sel4

Bitout

Co

000 001 011010

(b)

Fig. 3: (a) shows the high-level structure of a cache block (b)
illustrates the cache block monitor counter implemented using
a finite state machine; (c) shows the subarray of a cache with
computational logic block after the sense amplifier; and (d)
shows the computational logic.

retention STT-RAM L1 and L2 caches are augmented with
computing circuits to enable processing in cache (PiC), while
the non-volatile STT-RAM main memory is augmented to
enable processing in memory (PiM). This paper focuses on
the tradeoffs of computing at different levels of the memory
hierarchy, considering the data movement overheads. This
section describes our PiC architecture, retention time selec-
tion, optimization for CPU-dependent workloads, and design
choices for mitigating process variations.

A. Architecture

STT-RAM offers important advantages over SRAM with
specific implications for PiC. For instance, since STT-RAMs
require higher currents for writes than reads, there is a reduced
chance of accidental writes when multiple word-lines are read
for bit-line computing. As a result, unlike SRAM, multiple
word-lines can be activated easily in STT-RAM without cor-
rupting the data, and this helps mitigate some of the additional
complexity concomitant to SRAM computing. For example,
the cache operating frequency need not be reduced as would
be necessary for SRAM [5].

An STT-RAM cell can be represented as a resistor based
on the direction of the magnetization layers. Bits ’0’ or ’1’,
stored in the STT-RAM cell, can be represented as resistors
with different resistance values RP and RAP, respectively. The
difference in RP and RAP between the stored bits is called
the tunnel magneto-resistance (TMR) ratio. While sensing,
a bit-line will have different current values based on the
stored bit. Similarly, sensing the currents for multiple word-
lines will result in different output current values, as shown
in Figure 2a. Based on bits 1 or 0 in these cells, there
are three possible current values: I0-0, I1-0, or I0-1 and I1-1.

As such, reference currents can be used to directly compute
AND/NAND operations (Figure 2b) or NOR/OR operations
(Figure 2c).
PiC architecture. Figure 3 presents a high-level overview of
our relaxed retention PiC architecture. As seen in Figure 3a,
each cache block has a retention time counter to prevent data
corruption due to data expiry. We incorporated this counter
to prevent data from becoming unstable if the retention time
elapses before the data is evicted. The counter is implemented
as an N -state finite state machine (Figure 3b) that begins at
the initial state when the cache block is written, up-counts
until the retention time is about to expire, and raises a flag
to evict the block or write back to a lower memory level if
dirty. We assume N=4 in our study, resulting in a 2-bit per
block overhead (Figure 3b), with the counter’s clock period
set as 18.75µs [11], [16]. The monitor counter only incurs
a per-block area overhead of 0.78%. Designers can choose
to increase the counter size N to allow for greater precision
control through the same clock input. Increasing the counter
size does not significantly impact the cache’s area, routing
costs, or critical path.

The cache is divided into mats and further into subarrays.
The subarrays in each mat consist of one sense amplifier for a
group of word-lines, and each word-line has one stored array to
perform parallel computations. The architecture activates two
word-lines simultaneously to perform arithmetic or logical op-
erations using the combinational logic shown in Figure 3d. The
architecture supports addition and logical operations, while
complex operations like multiplication are performed on the
CPU for a simpler PiC implementation. Since the operations
implemented are associative, they can be performed by simply
sensing multiple word-lines, and the output of the desired
operation can be selected from multiplexers orchestrated by
the cache controller.
Supporting regular cache operations. Given a PiC-enabled
system, it may still be necessary to perform regular cache
operations for CPU-based computing. To this end, we present
two design choices. The first involves using additional sense
amplifiers to sense bit ’0’ or ’1’ along with the sense amplifiers
described in Figure 2. This additional sense amp will increase
the area overhead but lead to lower access latency since the
compute elements of the PiC operations can be bypassed.
Alternatively, the PiC sense amplifiers ((Figure 2c)), which
have a reference current tuned to read two cache word-lines,
can be used—one word-line is the one being read in the cache
operation, and the second is set as bit ’0’. The sensed output
from the sense amplifier is obtained like an OR output in the
PiC-based computation (i.e., compared to the reference IOR
and read through the multiplexer’s OR output (Figure 2d)) .
While this option might reduce the area overheads, it might
slow down the cache read operations if the compute elements
have a high latency overhead. For our work, we used the latter
design choice, since the compute elements used in this design
are simple and do not impose enough latency overhead to
impact the cache access cycles. The write operations for CPU-
based computing and PiC use the same design circuits since

only one word-line is activated during cache block writes or
while storing the PiC computation results.
Scaling the parallel computations. To increase the number of
parallel units, the number of subarrays and the cache geometry
must be modified. This is relatively straightforward for SRAM
caches, for which the number of subarrays and sense amplifiers
can easily be increased [3]. However, relaxed retention STT-
RAMs must also take into account the cache block monitor
counters, which reset when a write operation occurs. In PiC,
the counter is reset whenever the computed results are stored
in the cache block. If a cache block is partially updated,
the unchanged words in the cache block may expire without
resetting the cache block monitor counter. In such cases, a
complete cache block must be used to store the computed
results to avoid discrepancies in block monitor counter updates
and thus avoid data corruption due to an elapsed retention time.
Therefore, the number of compute units in relaxed retention
STT-RAM PiC must be a multiple of the cache block size.
For example, consider a 64B block cache that can perform 16
parallel 32-bit integer computations. To increase the number
of parallel computations to 32, the cache geometry can be
modified to increase the number of subarrays such that two
cache blocks (128B) are updated simultaneously. As such, the
counter remains simple and seamlessly integrated with relaxed
retention caches for both CPU and PiC operations.

B. Determining the best retention time

In a relaxed retention STT-RAM, it is imperative that the
retention time be sufficient for the cache block lifetimes of the
executing workloads. A longer retention time than necessary
will incur write overheads, while a shorter retention time will
result in premature expiry of data blocks, leading to high miss
rates and data movement overheads. Prior works mapped the
retention time to workloads’ execution characteristics in tra-
ditional CPU-based processing [11]. However, we empirically
found that such a scheme is not needed for PiC. In traditional
computing, the retention time depends on an application’s
average cache block lifetime and how frequently the data
blocks are accessed. For PiC, the cache begins processing as
soon as the data is made available in the cache. Thus, the
retention time requirement for PiC depends on the time taken
to bring the required operands into the cache for computation.
For instance, given a computation c = a + b, the block
containing word a (say, blockA) only needs to remain in the
cache long enough to bring blockB (containing word b) into
the cache to complete the computation. If it takes 100 cycles
(or 50ns at 2GHz) to bring blockB from memory to cache,
then for a 32kB cache size, in the worst-case scenario, a 25.6µs
retention time is required.

To determine the appropriate retention times, we first an-
alyzed the workloads to determine the average miss latency
for each cache hierarchy level. Based on this miss latency, we
selected the retention time such that data block expiration does
not occur during PiC computations. Based on our analysis, we
found that 75µs sufficed for the L1 cache and 10ms sufficed
for the L2 cache in both PiC and CPU-based computing while

0.000

0.050

0.100

0.150

0.200

0.250

0.300

70 120 170

Pr
ob

ab
ilit

y
di

st
rib

ut
io

n
fu

nc
tio

n

Sensing current (uA)

IAP-AP

IAP-P

IP-P

Lowest read
margin

Read margin

Fig. 4: The probability distribution function of the sensing
current for PiC STT-RAM under 5% process variation for
10000 samples.

minimizing the premature expiry of data blocks. Note that
different retention times may be required for different sets of
workloads. For example, workloads with high data reuse may
require data to be fetched more frequently from the cache
rather than from the main memory. In such cases, a shorter
retention time might suffice for PiC. But the choice of specific
retention times is orthogonal to the rest of our analysis.

C. Mitigating the effects of process variation

When performing a read operation, bits 0 and 1 have
different resistance values (TMR ratio), which change the
sense amplifier’s output current. We modeled multiple re-
tention times by varying the STT-RAM cell parameters like
the free layer thickness and anisotropy constant, Hk, while
keeping the TMR ratio constant. This enabled us to use
the same sense amplifier design for all the retention times.
For PiC computations, the sense amplifier must sense three
levels, I0-0, I1-0, or I0-1 and I1-1, as described in Section
III-A. Previous work [7] found that a TMR ratio of 124%
was sufficient for bit-line computing in STT-RAM to perform
reliable read operations for multiple word-lines. However, we
used a TMR ratio of 150%, which we found to further increase
the difference in the sensed current output for bits 0 and 1,
thereby enabling more reliable and distinct current levels.

To study the impact of process variations, we performed
Monte-Carlo simulations [17] for 10000 samples of vary-
ing STT-RAM cell resistance values using SPICE. Figure 4
presents our results on the difference in current levels for STT-
RAM PiC under the process variations. For our experiments,
we set the RAP and RP under 5% process variation similar to
prior work [7]. As seen in the figure, IAP-AP passes through the
highest resistance RAP-AP resulting in a low sensing current.
IAP-AP has a low standard deviation in sensing current under
process variation, resulting in a higher probability distribution.
Similarly, IP-P passes through the lowest resistance RP-P and
has a high standard deviation in the sensing current, result-
ing in the lowest probability distribution function. We also
observed that IAP-AP, IAP-P or IP-AP and IP-P are significantly
distinct even under process variations. The read margin be-
tween IAP-P and IP-P is smaller than the read margin between
IAP-P and IAP-AP. We used the smallest read margin to tune the
TMR ratio to increase the reliability of the sensing operation.

However, a high TMR ratio can increase the switching
energy used to flip the bit of the STT-RAM cell. Prior works
used relaxed retention time to reduce the switching energy

(a) CPU dependence
without optimization

(b) CPU dependence
with optimization

Load Mult Store

Load Mult Store

PIM_compute_ADD

Multiplication ends

Addition

Load Mult StorePIM(0)

Addition(0-n)

CPU PIM CPU PIM

.

Time

. . . .

Load Mult StorePIM(n)

PIM_compute_ADD

Load Mult StorePIM(n +1)

. . . .

Load Mult StorePIM(2n)

. . . .

Fig. 5: Illustration of the program flow for traditional vs.
operation-chained PiC/PiM.

(write energy) of STT-RAM. When the retention time is
relaxed, the switching energy can either be set by reducing
the write current or the write pulse [6], [18]. Prior studies
have found that reducing the write pulse width while keeping
the switching current constant helps mitigate the read/write
errors in relaxed retention STT-RAM [6]. We used a similar
approach to relax the retention time for PiC by keeping a
constant switching current for all the retention times and only
varying the switching pulse of the STT-RAM cell. As such, the
switching current is set much higher than the read current to
mitigate bit-flipping errors when reading multiple word-lines.

D. Operation chaining for CPU-dependent workloads

Given the potential overhead of CPU-dependent workloads,
we sought to improve the parallelism to minimize the over-
head of waiting for results from the CPU. As seen in prior
work [2], traditional PiM divides the program into PiM and
CPU execution portions; the PiM begins only once the CPU
execution is complete. This computation model is depicted
in Figure 5. By analyzing the workloads, we found that
the CPU-dependent workloads could be optimized to better
exploit parallel processing between the PiC/PiM and CPU
execution units. The optimization, called operation chaining, is
inspired by vector chaining architectures [19]. As illustrated in
Figure 5, operation chaining allows interim CPU results to be
used for PiC/PiM computations without introducing additional
memory references. After each computation, the processor
stores the intermediate results in the memory or cache for the
PiC/PiM computations. The CPU communicates via a PiC/PiM
controller using a Compute signal to start the PiC/PiM com-
putations and receives a DONE signal which indicates that the
computations have been successfully completed. With this, the
execution latency of PiC/PiM is effectively hidden behind the
processor’s execution latency.

Operation chaining is enabled by the compiler, which
detects the data dependencies and ensures the absence of
potential hazards. The programs are augmented with new in-
structions: StorePIM (to store data in the appropriate PiC/PiM
location) and Compute Inst PIM (to initiate execution in the
PiC/PiM architecture).

IV. EXPERIMENTS

A. Workloads

To model the behavior of real-world applications, we used
eight workloads with different characteristics. Table I depicts
workloads and their input sizes. For our analysis, we classify

TABLE I: Workloads used in our experiments
Category Kernel Input size

CPU-dependent

Kmeans nearest neighbor (KNN) 105 nodes
2D convolution (conv) 106 samples

Histogram (hist) 106 samples
Root-mean square error (rmse) 106 samples

CPU-independent, high data reuse
Binarized neural network (bnn) 106 samples

Matrix addition (mat add) 106 samples
String Comparison(string) 2,409,780 letters

CPU-independent, low data reuse Carryless multiplication (cmul) 106 samples

the workloads into three groups. CPU-dependent workloads
are those that have large portions with characteristics that
make them more efficiently executed by the CPU. These char-
acteristics include low instruction-level parallelism, pointer-
chasing operations, complex branch conditions, or complex
computations for which the in-memory computing design is
ill-equipped (e.g., multiply operations in our work). CPU-
independent workloads are simple kernels that can run entirely
via PiC/PiM. Prior research on in-memory computing is domi-
nated by these types of workloads [3], [9]. We further grouped
the CPU-independent workloads into high data reuse and low
data reuse, enabling us to evaluate the tradeoffs involving the
data movement overheads for relaxed retention STT-RAM PiC
and non-volatile STT-RAM PiM. The workloads selected are
commonly used in applications like image/signal processing,
data querying, etc.

B. Experimental methodology

To model the PiC/PiM computation logic, we used SPICE
simulations with 22nm CMOS libraries. We used NVSim
[20] to obtain the STT-RAM/SRAM cache and the STT-RAM
memory access latency and energy. We modified gem5 [21] to
implement relaxed retention STT-RAM caches and to model
SRAM caches. The gem5 statistics were then integrated with
McPAT [22] to obtain the total system power. We modeled a
processor like ARM Cortex A72 with a 2GHz clock and 8GB
memory, of which 512MB is used for PiM.

Table II shows the cache and memory configurations, read,
write, and computation latencies for each operation at each
level of the memory hierarchy. The logical operations take
one cycle since they require approximately 120ps to finish
the bitwise logical operations. To save the area and energy
for ADD operations, we use the Ripple Carry Adder design,
which computes one bit at a time and then sends the carry bit
to higher significant bits. STT-RAM requires fewer cycles than
SRAM for ADD operations because of a longer slack within
each STT-RAM read cycle, enabling more bit operations per
cycle. The energy numbers are calculated as the energy needed
to access the subarrays and then the bit-line and cell of
the memory device. Logical and ADD computation energies
include the energy required to access the cache, perform the
required computations, and store the results in a subarray. Like
prior work [3], we assume that the processor’s execution unit
is powered off to conserve power during PiC/PiM.

V. RESULTS AND ANALYSIS

In this section, we first compare operation chaining with
prior PiC/PiM computing and then analyze the tradeoffs of

TABLE II: Cache and memory configurations
Memory hierarchy L1 cache 32kB-64B-4 L2 cache 1MB-64B-8 Memory 512MB size
Memory Device SRAM STT-RAM SRAM STT-RAM STT-RAM
Retention time – 75µs – 75µs 10ms 5years

Read latency (cycles) 1 1 2 2 2 32
Write latency (cycles) 1 2 2 3 4 56

Logical operation (cycles) 3 3 4 5 6 88
Add operation (cycles) 18 15 19 15 16 97

Read energy per bit (in pJ) 0.125 0.086 1.77 0.75 0.75 24.55
Write energy per bit (in pJ) 0.19 4.69 0.62 9.647 15.604 640.89

Logical computation energy per bit (in pJ) 0.915 5.376 2.997 10.997 16.954 666.045
Add computation energy per bit (in pJ) 1.355 5.816 3.437 11.437 17.394 666.49

Leakage power (mW) 43.95 17.63 1168.95 182.8 182.2 222.36

-5.00%
0.00%
5.00%

10.00%
15.00%
20.00%

L1
cache

L2
cache

Memory L1
cache

L2
cache

Memory%
 o

pt
im

iz
at

io
n

KNN Conv Histogram RMSE Average

Latency Energy

Fig. 6: Latency and energy savings of CPU-dependent work-
loads using operation chaining for PiC/PiM at various memory
hierarchy compared to prior work (no operation chaining).

PiC using STT-RAM vs. SRAM. Thereafter, we compare STT-
RAM-based PiC with PiM and describe the overheads. Finally,
we present the PiC and PiM overheads to understand the
tradeoffs of the two approaches.

A. Comparison between operation-chained and traditional
PiC/PiM (prior work)

First, we compare the optimized method for CPU-dependent
workloads, using operation chaining (Figure 5), with the
traditional PiM as done in prior work [2]. The comparison is
performed for different memory hierarchy levels, using STT-
RAMs for the cache hierarchy (L1 and L2) and memory. We
assume that the processor can run simultaneously along with
PiC/PiM elements to fully exploit the benefits of operation
chaining. Although PiC has only previously been implemented
in SRAM [3], [14], we used an STT-RAM PiC implementation
to analyze the benefits of operation chaining. Unlike traditional
PiC/PiM computing, the processor’s execution unit remains
powered on while using operation chaining.

Figure 6 presents the latency and energy savings of the
operation-chained PiC/PiM for L1 cache, L2 cache, and mem-
ory, compared to the traditional PiC/PiM. On average, across
the CPU-dependent workloads, operation chaining improved
the overall latency for computing in L1 cache, L2 cache,
and memory by 10.19%, 5.02%, and 5.82%, respectively. The
traditional PiC involved a lot of data written back to lower
memory levels that had to be reloaded into the cache, while
PiC with operation chaining reduced data movement (by up to
10.21%) and increased compute unit utilization. The highest
latency improvements were observed for RMSE (16.98%,
10.13%, and 10.43% for L1, L2, and memory, respectively),
which required multiple data transfers to the processor for
more complex computations (e.g., square and square root
operations). In the worst case, operation chaining did not offer
any savings for histogram because most of the application
was run on the CPU due to complex or sequential operations.

Operation chaining reduced the energy by 7.83%, 3.45%,
and 2.62%, respectively for L1, L2 cache, and memory,
compared to traditional PiC/PiM. Like the latency, the highest

energy improvement was observed for RMSE, while oper-
ation chaining slightly degraded the energy for histogram
by up to 2.02%. The energy increased because the CPU and
PiC/PiM execution units were simultaneously active and the
latency savings did not offset the extra power incurred by
the PiC/PiM execution units. Given the overall superiority of
the operation-chained PiC/PiM over traditional PiC/PiM, in
what follows, we perform an analysis of computing across the
memory hierarchy using the operation-chained PiC/PiM.

B. Comparison of different PiC candidates

In this subsection, we explore candidates for PiC, including
relaxed retention STT-RAM, an SRAM design used in prior
work with a low-voltage word-line (SRAMlv) [5], and a the-
oretical ideal SRAM cache model (SRAMideal) that achieves
the least data corruption during bit-line computing. SRAMlv

has 50% more delay than SRAMideal, and requires 20%
lower dynamic energy for its operations. Although the 10ms
retention was sufficient for the L2 cache (Section III-B), we
also explored a 75µs L2 cache for additional analysis.

Figure 7a depicts the optimization achieved using different
L1 PiC implementations compared to CPU-only computing
for all the workloads considered. On average, STT-RAM,
SRAMideal and SRAMlv reduced the latency by 2.27x, 2.3x,
and 2.22x, compared to the CPU. SRAMideal had the best
execution time due to low write overheads compared to STT-
RAM. Compared to STT-RAMs, SRAMlv slightly increased
the latency by 1.95% due to longer delays.

STT-RAM PiC performed much better with respect to en-
ergy. STT-RAM, SRAMideal, and SRAMlv reduced the energy
by 2.84x, 2.72x, and 2.68x, respectively, compared to CPU.
STT-RAM outperformed SRAMideal by 4.56%. Although
SRAMlv had lower dynamic power than SRAMideal, it had
a higher total energy because it ran slower. We observed the
highest improvement for matrix addition (Mat add), which
exhibited high data reuse—and more computations per data
movement—during sum accumulation. The L1 cache reduced
the latency for Mat add by 6.58x, 6.819x, and 5.79x, and
reduced the energy by 10.19x, 7.76x, and 6.59x using STT-
RAM, SRAMideal, and SRAMlv , respectively. However, CPU-
dependent workloads had the lowest optimizations due to high
amounts of data movement (55% - 75% of total execution)
and smaller portions of the workloads running on PiC/PiM.
The latency improved for the CPU-dependent workloads by
an average of 1.43x, 1.44x, 1.42x, and energy was reduced by
1.73x, 1.78x, and 1.84x using STT-RAM, SRAM ideal, and
SRAMlv respectively.

We observed higher optimization in L2 PiC than in L1 PiC,
due to more parallel units and lower data movement overheads

0

2

4

6

8

10

12

STT-RAM SRAM
ideal

SRAM lv STT-RAM SRAM
ideal

SRAM lv

O
pt

im
iz

at
io

n
(in

 X
)

BNN CMUL Mat_Add String KNN
Conv Histogram RMSE Geomean

Latency Energy

(a) L1 cache

0

8

16

24

32

40

STT-RAM
75us

STT-RAM
10ms

SRAM
ideal

SRAM lv STT-RAM
75us

STT-RAM
10ms

SRAM
ideal

SRAM lv

O
pt

im
iz

at
io

n
(in

 X
)

BNN CMUL Mat_Add String KNN Conv Histogram RMSE Geomean

Latency Energy

(b) L2 cache
Fig. 7: L1/L2 STT-RAM, ideal SRAM (SRAMideal) and low
voltage word-line SRAM (SRAMlv) compared to CPU.

from memory. As seen in Figure 7b, STT-RAM75µs, STT-
RAM10ms, SRAMideal, and SRAMlv reduced the latency by
3x, 2.98x, 2.959x, and 2.889x, respectively, compared to CPU.
STT-RAMs achieved higher speedup than SRAM for ADD
operations, due to faster read operations that enabled longer
slack to perform more bit additions per cycle. SRAMideal

achieved the fastest speedup for logical instructions as seen
in BNN , CMUL, and String applications due to SRAM’s
faster write operations. For these applications, STT-RAM75µs

and STT-RAM10ms only degraded performance by 0.73% and
1.44%, respectively. SRAMlow achieved low speedup for both
logical and ADD instructions. Compared to SRAMlv , STT-
RAM75µs and STT-RAM10ms reduced the latency by 35.23%
and up to 31.06% for Mat add application.

The energy savings from L2 PiC were similarly quite
substantial, as seen in Figure 7b. The energy savings compared
to CPU-only computing for STT-RAM75µs, STT-RAM10ms,
SRAMideal, and SRAMlv were 4.19x, 4.05x, 4.12x, and
4.05x, respectively. The energy savings were highest for
Mat add 38.38x, 36.94x, 30.19x, and 25.18x with STT-
RAM75µs, STT-RAM10ms, SRAMideal, and SRAMlv , respec-
tively. SRAMideal outperformed STT-RAM10ms because of
the high write energy overheads incurred by STT-RAM’s
higher retention time and SRAMideal’s lower static energy
overhead due to faster program execution. However, STT-
RAM10ms performed marginally better than SRAMlow by an
average of 0.5% indicating that the static energy overhead of
slower SRAMlow is higher than the dynamic energy overhead
of STT-RAMs. These results reveal the superiority of STT-
RAM for PiC and also indicate that a shorter retention time in
the L2 cache suffices for PiC, unlike CPU-based computing,
which requires longer retention times in the L2 cache [6], [23].

C. PiC vs. PiM

We explore the best level of the hierarchy for STT-RAM-
based PiC/PiM. For these experiments, we compare PiC with
75µs retention time for L1/L2 cache, 10ms for L2 cache, and

0

6

12

18

24

30

Sp
ee

du
p

L1 L2 75us L2 10ms Mem-256 Mem-512

(a) Latency

0

10

20

30

40

Sp
ee

du
p

L1 L2 75us L2 10ms Mem-256 Mem-512

(b) Energy
Fig. 8: Relaxed retention STT-RAM PiC and non-volatile STT-
RAM PiM compared to CPU. Memory that does 256 and 512
integer computations is called Mem-256 and Mem-512.

non-volatile PiM. The L1 cache supports 16 32-bit computa-
tions, L2 supports 64 32-bit computations, and we explored
memory with the capability for 256 or 512 32-bit computations
(called Mem-256 and Mem-512, respectively).

Figure 8 presents the latency and energy results for com-
puting across the memory hierarchy. As seen in Figure 8a, L1
cache, L275µs, L210ms, Mem-256, and Mem-512 improved
the latency by 2.26x, 3x, 2.98x, 3.90x, and 5.53x, respec-
tively, compared to CPU-only computing. A closer look at
the workloads showed that different parts of the hierarchy
were preferred for different types of workloads. The aver-
age improvement for CPU-dependent workloads was 1.46x,
1.61x, 1.61x, 1.49x, and 1.52x for L1 cache, L275µs, L210ms,
Mem-256, and Mem-512, respectively. L2 PiC achieved the
highest optimization for CPU-dependent workloads due to
the reduction in data movement overhead from the processor
and a large number of parallel units. However, for CPU-
independent workloads, PiM had the fastest execution due to
low data movement and a large number of parallel units. For
CPU-independent workloads, we observed a speedup of 4.05x,
9.06x, 8.85x, 11.17x, and 21.76x, respectively. This shows that
Pic works best for CPU-dependent workloads, whereas PiM
works best for CPU-independent workloads despite having
high access latency costs, as seen in Table II.

Contrary to latency, the L2 PiC outperformed the PiM
in energy savings, as seen in Figure 8b. On average, L1
cache, L275µs, L210ms, Mem-256, and Mem-512 reduced the
energy by 2.84x, 4.18x, 4.05x, 2.04, and 2.48x, respectively,
compared to CPU. We also observed that even though PiM’s
and PiC’s execution latencies could be hidden behind operation
chaining, the number of computations that are performed
remained the same. This puts PiM at a disadvantage due
to very high write energy overheads. Furthermore, high data
reuse workloads also require additional writes within the
same memory hierarchy level, which greatly increases the
dynamic energy for the non-volatile memory and favors PiC
by increasing the computations per data transferred. PiM only
achieved better energy savings for two applications, BNN and
CMUL, both of which mainly perform logical operations and
feature few write operations.

D. Overhead

The implemented PiC/PiM compute units had a critical
path of 120ps and did not increase any of the cache access
latencies. The energy per bit for logical and ADD operations

was 0.6pJ and 1.04pJ, respectively. For STT-RAM L1, STT-
RAM L2, and STT-RAM memory, the compute elements were
only 11.16%, 3.54%, and 0.55% of the total energy. For a
6T SRAM subarray of size 512x512, the compute unit took
3.7% of the area. For STT-RAMs, which are twice as dense as
SRAM, our compute units required 6.37% of the total subarray
area. The STT-RAM cache consumed 43.47% and 79.86%
less area than SRAM for L1 and L2 cache, respectively.
These area savings by STT-RAMs give greater flexibility to
incorporate more complex computational units in resource-
constrained systems. Furthermore, SRAM-based PiC incurs
additional performance overheads to reduce data corruption
issues [5]; these overheads can also slow down CPU-based
computing. Overall, STT-RAMs represent a more robust and
low-overhead solution for PiC implementations.

VI. CONCLUSION

In this paper, we performed the first study of STT-RAM
cache as a candidate for processing in cache (PiC). We
compared relaxed retention STT-RAM PiC to SRAM and com-
pared STT-RAM PiC with non-volatile STT-RAM processing
in memory (PiM) to analyze the tradeoffs of computing at dif-
ferent memory hierarchy levels. For our analysis, we explored
three types of workload: CPU-dependent, CPU-independent
with low data reuse, and CPU-independent with high data
reuse. Our analysis reveals that STT-RAM offers an excellent
opportunity for energy- and area-efficient PiC while providing
latency benefits similar to those of SRAM. We also found that
the choice of PiC/PiM is impacted by the executing workloads’
characteristics. For instance, STT-RAM PiC outperforms PiM
for latency optimization in CPU-dependent workloads with
low ILP. This study shows that STT-RAM-based PiC offers
much promise and warrants additional studies for effective
implementation in emerging resource-constrained systems.

Future work involves studying the impact of workloads in
which the PiC/PiM bit-line data are not aligned or in the same
subarray. We also plan to explore heterogeneous retention
cache architectures for PiC and develop scheduling algorithms
for multi-application hierarchical PiC/PiM.

ACKNOWLEDGMENT

This work was partly supported by the National Science
Foundation (NSF) under grant CNS-1844952. Any views
expressed in this material are those of the authors and not
necessarily of the NSF.

REFERENCES

[1] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[2] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al., “Google
workloads for consumer devices: Mitigating data movement bottle-
necks,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 316–331.

[3] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2017, pp.
481–492.

[4] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-memory address translation,”
in 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). Ieee, 2017, pp. 303–317.

[5] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm con-
figurable memory (tcam/bcam/sram) using push-rule 6t bit cell enabling
logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4,
pp. 1009–1021, 2016.

[6] Z. Sun, X. Bi, H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu, “Multi
retention level stt-ram cache designs with a dynamic refresh scheme,”
in proceedings of the 44th annual IEEE/ACM international symposium
on microarchitecture, 2011, pp. 329–338.

[7] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483,
2017.

[8] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient stt-ram caches,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture. IEEE, 2011, pp. 50–61.

[9] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hielm: Highly flexible in-
memory computing using stt mram,” in 2018 23rd Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2018, pp. 361–366.

[10] K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H.
Kim, “A scaling roadmap and performance evaluation of in-plane and
perpendicular mtj based stt-mrams for high-density cache memory,”
IEEE journal of solid-state circuits, vol. 48, no. 2, pp. 598–610, 2012.

[11] K. Kuan and T. Adegbija, “Energy-efficient runtime adaptable l1 stt-
ram cache design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 6, pp. 1328–1339, 2019.

[12] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
processing-in-memory architecture for bulk bitwise operations in emerg-
ing non-volatile memories,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1–6.

[13] D. Fan, S. Angizi, and Z. He, “In-memory computing with spintronic
devices,” in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, 2017, pp. 683–688.

[14] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in 2018 ACM/IEEE 45Th annual international
symposium on computer architecture (ISCA). IEEE, 2018, pp. 383–396.

[15] A. Nag, C. Ramachandra, R. Balasubramonian, R. Stutsman, E. Gi-
acomin, H. Kambalasubramanyam, and P.-E. Gaillardon, “Gencache:
Leveraging in-cache operators for efficient sequence alignment,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 334–346.

[16] D. Gajaria and T. Adegbija, “Evaluating the performance and energy of
stt-ram caches for real-world wearable workloads,” Future Generation
Computer Systems, 2022.

[17] R. L. Harrison, “Introduction to monte carlo simulation,” in AIP con-
ference proceedings, vol. 1204, no. 1. American Institute of Physics,
2010, pp. 17–21.

[18] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R.
Das, “Cache revive: Architecting volatile stt-ram caches for enhanced
performance in cmps,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 243–252.

[19] J. J. Dongarra, F. G. Gustavson, and A. Karp, “Implementing linear
algebra algorithms for dense matrices on a vector pipeline machine,”
Siam Review, vol. 26, no. 1, pp. 91–112, 1984.

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd annual ieee/acm international symposium on microarchitecture,
2009, pp. 469–480.

[23] K. Kuan and T. Adegbija, “Halls: An energy-efficient highly adaptable
last level stt-ram cache for multicore systems,” IEEE Transactions on
Computers, vol. 68, no. 11, pp. 1623–1634, 2019.

