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Abstract

We consider the rank of a class of sparse Boolean matrices of size n×n. In particular,
we show that the probability that such a matrix has full rank, and is thus invertible,
is a positive constant with value about 0.2574 for large n.

The matrices arise as the vertex-edge incidence matrix of 1-out 3-uniform hyper-
graphs. The result that the null space is bounded in expectation, can be contrasted
with results for the usual models of sparse Boolean matrices, based on the vertex-edge
incidence matrix of random k-uniform hypergraphs. For this latter model, the expected
co-rank is linear in the number of vertices n, [5], [8].

For fields of higher order, the co-rank is typically Poisson distributed.

General notes for the reviewers

1. Corrections and requests for comments raised by the reviewers (and other corrections)
are shown in red text.

2. The labelling of Lemma 11 onwards has changed, as Remark 11 was redundant and
has been removed.

3. Lemma 6 has been simplified as suggested.

∗Research supported in part by NSF Grant DMS1661063
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4. Lemma 14 (Lemma 15 as was). The notation has been reduced, corrected and made
consistent. The 4 cases in the proof use the corrected notation throughout. Corrections
to notation within the cases are not highlighted in red except for technical errors, or
to improve explanation.

1 Introduction

For positive integers r ≥ 1, s ≥ 2, let M (s, r, n) be the space of n× rn matrices with entries
generated in the following manner. For each i = 1, ..., n there are r columns Ci,j, j = 1, ..., r.
Each column Ci,j has a unit entry in row i, and s−1 other unit entries, in rows chosen
randomly with replacement from [n], or without replacement from [n]−{i}, all other entries
in the column being zero. In general we consider the arithmetic on entries in the matrix,
(and thus the evaluation of linear dependencies), to be over GF (2). If so, in the “with
replacement case”, if two unit entries coincide the entry is set to zero. When r = 1, the
matrix consists of an identity matrix plus s−1 random units in each column. If s = 2, and
entries (and columns Ci,j, j = 1, ..., r) are chosen without replacement, M (2, r, n) is the
space of vertex-edge incidence matrices of the random graphs Gr−out(n).

For fixed integer k, ~Gk−out(n) is a random digraph with vertex set [n]. The k arcs from any
vertex v have terminal vertices chosen uniformly as any of the

(

n−1
k

)

random k-subsets of

[n]\{v}. The multi-graph Gk−out(n) is obtained from ~Gk−out(n) by ignoring the orientation
of the edges. The Gk−out(n) model of random graphs has been extensively studied, see e.g.,
Chapter 16 of [12] for an introduction. It is known to be k-connected for k ≥ 2, Fenner
and Frieze [10], to have a perfect matching for k ≥ 2, Frieze [11], and to be Hamiltonian for
k ≥ 3, Bohman and Frieze [4].

If s ≥ 3, then M ∈ M (s, r, n) is the vertex-edge incidence matrix of a random r-out, s-
uniform hypergraph. Random Boolean matrices based on the vertex-edge incidence matrix
of s-uniform hypergraphs where the columns (edges) are chosen i.i.d. from all columns with s
ones were studied by Cooper, Frieze and Pegden, [8]. A very general paper by Coja-Oghlan,
Ergür, Gao, Hetterich and Rolvien, [5], gives the limiting rank in this latter model for a wide
range of assumptions on the distribution of non-zero entries in the rows and columns. The
fundamental difference between the r-out model of random matrices, and those of [5], [8] is
the presence of an n× n identity matrix as a sub-matrix (in the without replacement case).

We will use ρ to denote the (row) rank of our matrices and then the co-rank is n− ρ. If the
field is GF (2), x ∈ {0, 1}n is a linear dependency (dependency for short) if xM = 0. Let
|x| = | {j : xj = 1} |. We say that a set of rows D ⊆ [n] is a dependency if D = {j : xj = 1}
for some dependency x. An `-dependency is one where |x| = ` or |D| = `. Two sizes of
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dependency occur frequently in our proofs. For brevity we will say a dependency x is small
if |x| ≤ ω where ω → ∞ slowly, and a dependency x is large if |x| = n/2 +O(

√
n log n).

Of particular interest is the case r = 1 which gives n × n Boolean matrices. The space
M (2, 1, n) corresponds to random functional digraphs. The co-rank of these matrices over
GF (2) is well understood, see e.g., [2], [12], so the first extant case is r = 1, s = 3. We
will show that over GF (2), for r = 1, s = 3, the linear dependencies among the rows of M
are w.h.p. either small or large, and the distributions of these dependencies are somewhat
entangled. Estimating the interaction between small and large dependencies in matrices
from M (3, 1, n) is the main problem we solve.

For r = 1, s = 3, define a Poisson parameter φ for small dependencies. The value of φ differs
between the “with replacement” φR, and “without replacement” models φR as follows:

φR =
∑

`≥1

1

`
(2e−2)`

`−1
∑

j=0

`j

j!
, φR =

∑

`≥2

1

`
(2e−2)`

`−2
∑

j=0

`j

j!
. (1)

The numeric values are φR ≈ 0.5215, and φR ≈ 0.1151, where a ≈ b means approximately
equal.

Let

P (σ, λ) =

(

1

2

)λ(λ+σ)
1

∏λ
j=1

(

1−
(

1
2

)j
)

∞
∏

j=1

(

1−
(

1

2

)λ+σ+j
)

. (2)

The quantity P (σ, λ) is the limiting value of P(λ | σ) of the conditional probability of
λ = d−σ given σ, where σ is the dimension of the space induced by small dependencies and
d the dimension of the space induced by all dependencies.

Theorem 1. Let the matrix M be chosen u.a.r. from M (3, 1, n). Let d ≥ 0 be integer.
Over GF (2), the limiting probability that M has co-rank d is given by

lim
n→∞

P(co-rank(M) = d) = e−φ

d
∑

σ=0

φσ

σ!
P (σ, d− σ). (3)

In particular,

P(rank(M) = n) ∼ e−φP (0, 0) = e−φ

∞
∏

j=1

(

1−
(

1

2

)j
)

.

Theorem 1 differs from many previous results on sparse random Boolean matrices. The
co-rank (dimension of the null space) is bounded in expectation, and the matrix is invertible
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with probability e−φP (0, 0) ≈ 0.2574 in the without replacement model. The bounded co-
rank given by Theorem 1 can be contrasted with results for the edge-vertex incidence matrix
of random hypergraphs, ([5], [8]), where the expected co-rank is linear in the number of
vertices n, and the probability of a full rank matrix is exponentially small.

The matrices M (3, 1, n) exhibit a gap in the size of the dependencies (small or large), which
we next explain.

Theorem 2. Let M be chosen u.a.r. from M (3, 1, n), then w.h.p. either (i) a dependency
x is small i.e. |x| ≤ ω where ω → ∞ slowly or (ii) x is large i.e. |x| = n/2 +O(

√
n log n).

A gap property in solutions to random XOR-SAT systems over GF (2) was previously ob-
served by Achiloptas and Molloy [1], and by Ibrahimi, Kanoria, Kraning and Montanari [13].
They found that the Hamming distance between XOR-SAT solutions was either O(log n) or
at least αn; where n is the number of variables. In our case, large dependencies have inter-
section about n/4 (see Section 4), giving a precise value of α.

A dependency x is fundamental if there is no other dependency y 6= x such that y ≤
x, componentwise. We will prove in Section 2 that the number Z of fundamental small
dependencies is asymptotically distributed as Po(φ) i.e. Poisson with mean φ. The quantity
P (σ, λ) in (3) is the limiting probability that small dependencies span a space of dimension
σ, and large dependencies increase the co-rank by λ.

Let π be the probability distribution given by

π(k) =











∏∞
j=1

(

1−
(

1
2

)j
)

k = 0.
∏∞

j=k+1

(

1−( 1
2)

j
)

∏k
j=1

(

1−( 1
2)

j
)

(

1
2

)k2
k ≥ 1.

(4)

Note that π(k) = P (0, k) as given in (2). The probability distribution defined by π was
previously observed in a model of random matrices over GF (2) in which the entries mi,j are
i.i.d. Bernoulli random variables with P(mi,j = 1) = p. For a wide range of p the distribution
of dimension k of the null space is given by π(k). The result was proved by Kovalenko et
al., [14] for p = 1/2, and extended to the range min(p(n), 1 − p(n)) ≥ (log n + c(n))/n,
(where c(n) → ∞ slowly) by Cooper [6]. A similar distributional result holds for the model
of random matrices over the finite field GF (q), see Cooper [7]. Here the non-zero entries
α ∈ GF (q)\{0} are independently and uniformly distributed with P(mi,j = α) = p/(q − 1).
The distribution of co-rank πq(k) equivalent to π(k) = π2(k) in (4) is obtained by replacing
the (1/2) terms in (4) by (1/q).

Finally we mention some related cases for r-out s-uniform hypergraphs. For r = 1 and s = 2,
M has expected rank ∼ n− (log n)/2. This is because the expected number of components
in a random mapping is ∼ (1/2) log n, (see e.g., [12]). Note: For s even, the rows of M add
to zero modulo 2. The following theorem is immediate from the proof of Theorem 1.
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Theorem 3. If r ≥ 2 and s = 2, 3, then M has rank n∗ = n− 1{s=2}, w.h.p.

The proof of Theorem 3, and results for finite fields of character q ≥ 3 can be found in [9].

Notation: Apart from O(·), o(·),Ω(·) as a function of n→ ∞, we use the notation An ∼ Bn

if limn→∞An/Bn = 1. The symbol a ≈ b indicates approximate numerical equality due to
decimal truncation. The notation ω(n) describes a function tending to infinity as n → ∞.
The expression with high probability (w.h.p.), means with probability 1 − o(1), where the
o(1) is a function of n, which tends to zero as n→ ∞.

Outline of the proof for GF (2) with r = 1, s = 3

Because the proofs are rather technical, we give a detailed proof in the “with replacement”
model. For brevity, we omit the proof that the results are also valid in the “without replace-
ment” model in this paper; the proof can be found in [9].

We refer to the rows of M as Mi, i ∈ [n] and to the columns as Cj, j ∈ [n]. By a set of rows
S, we mean the set of rows Mi, i ∈ S. A set of rows with indices L is linearly dependent
(zero-sum) if

∑

i∈LMi = 0 = 0(mod 2). A linear dependence L is small if |L| ≤ ω, where
ω = ω(n) is a function tending slowly to infinity with n. A linear dependence L is large
if |L| = (n/2)(1 + O(

√

log n/n)). As part of our proof, we show that w.h.p. there are no
other sizes of dependency. A set of zero-sum rows L is fundamental, if L contains no smaller
zero-sum set and L is disjoint from all other zero-sum sets. This will be the case for minimal
small dependencies, whereas zero-sum sets of size about n/2 are not disjoint. We count
k-sequences of large dependencies with a property we call simple. Many of the problems
with the proofs arise because large dependencies are not disjoint, and are conditioned by the
simultaneous presence of small dependencies in M .

We next outline the main steps in the proof of Theorem 1.

1. In Section 2 we prove that the number Z of small fundamental dependencies has
factorial moments E (Z)k ∼ φk, where φ is given by (1). Thus Z is asymptotically
Poisson distributed and

P (M has i small fundamental linear dependencies) ∼ φi

i!
e−φ.

2. For M ∈ M (3, 1, n) w.h.p. any fundamental sets of zero-sum rows of M are either
small (of size ` ≤ ω) or large (of size ` = (n/2)(1 + O(

√

log n/n))). This is proved in
Section 3.

3. In Section 5 we discuss simple sequences of large dependencies, and in Section 6 we
estimate the moments of these sequences and determine their interaction with small
dependencies.
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4. In Section 7 we estimate the number of simple sequences, conditional on the the num-
ber of small fundamental dependencies. This leads to an approximate set of linear
equations whose solution completes the proof of Theorem 1.

2 Small dependencies in GF (2): with replacement

Notation For 1 ≤ k ≤ ω, where ω → ∞ arbitrarily slowly with n, let Xk(M) or Yk(M)
denote the number of index sets of k-dependencies in M . A k-dependency is small if k ≤ ω.
To distinguish the cases, we use Yk when k ≤ ω, and use Xk when k > ω. We will show that
for values of k > ω other than k ∼ n/2, Xk = 0 w.h.p. We use Z to denote the number of
small fundamental dependent sets among the rows of M .

We first consider dependencies with s = o(n1/2) rows. For S ⊆ [n], let F(S) denote the
event that the rows corresponding to S are dependent. Let Ys denote the number of s-set
dependencies.

Lemma 4. If |S| = s = o(n1/2) then

P(F(S)) ∼
(

2s

n

)s

e−2s. (5)

If ω → ∞, ω ≤ s = o(n1/2) then Ys = 0 w.h.p.

Proof. Suppose that s = o(n1/2) and S = [s]. Then,

P(F(S)) =

(

2
( s

n

)

(

n− s

n

))s
(

( s

n

)2

+

(

n− s

n

)2
)n−s

∼
(

2s

n

)s

e−2s, using s = o(
√
n). (6)

Explanation: The probability that exactly one of the two random choices in a column of
S lies in a row of S is 2

(

s
n

) (

n−s
n

)

. The probability that both or neither of the two random

choices in a column of [n] \ S lies in a row of S is
(

s
n

)2
+
(

n−s
n

)2
.

This verifies (5). It follows that

EYs ∼
(

n

s

)(

2s

n

)s

e−2s ∼ (2s)se−2s

s!
,

As EYs+1/EYs ∼ 2/e we have that EYω = e−Ω(ω) and so w.h.p. there are no dependencies
with ω ≤ s = o(n1/2).
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Define σs, κs by

σs =
s−1
∑

j=0

sj

j!
, and κs =

(s− 1)!

ss
σs. (7)

For S ⊆ [n], let F∗(S) denote the event that the rows corresponding to S form a fundamental
dependency. The next three lemmas deal with small fundamental dependencies.

Lemma 5. P(F∗(S) | F(S)) = κs.

Proof. With high probability the rows S of a small dependency have the following structure:
suppose that |S| = s. There is an s× s sub-matrix MS,S with unit diagonal entries and one
random entry per column, and a zero (s × n − s) sub-matrix. For i ∈ S, either Mi,i = 1,
and there is a unique entry Mj,i = 1 which gives rise to an edge (i, j), or the random entry
falls in position i in which case Mi,i = 0 and we regard this as a loop (i, i). Thus MS,S is the
incidence matrix of a random functional digraph DS, and S is fundamental iff the underlying
graph of DS is connected. For s ≥ 1, P(DS is connected) = κs (see e.g., [2], Theorem 14.33
or [12], Theorem 15.5).

Lemma 6. Small fundamental dependent sets of M are pairwise disjoint, w.h.p.

Proof. Let S, T be distinct fundamental zero-sum row sets with non-trivial intersection S∩T .
As functional digraphs have out-degree one, it follows that some column of K = S ∪T must
have three non-zero entries in the rows of K. Provided ω = o(log n), the probability of such
an event for |K| ≤ ω is at most

ω
∑

k=2

(

n

k

) k
∑

i=1

(

k

i

)(

k

n

)2i(
2k

n

)k−i

=
O(k4)

n
(2e)k = o(1).

Given this lemma we can now prove a Poisson distribution for Z.

Lemma 7. The number Z of small fundamental dependent sets among the rows of M is
asymptotically Poisson distributed with parameter φR, and thus

P(Z = d) ∼ φd
R

d!
e−φR . (8)

Proof. Fix S ⊆ [n] and let S1, . . . , Sd be a partition of S with |Si| = si, i = 1, 2, . . . , d. Let
P (s1, . . . , sd) be the probability that each Si, i = 1, 2, . . . , d is a fundamental set, given that
S is a dependency. Thus,

P (s1, . . . , sd) =
(s1)

s1 · · · (sd)sd
ss

∏

i=1,...,d

P(DSi
connected) =

1

ss

d
∏

i=1

(si − 1)!σsi .
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Explanation: the factor (s1)s1 ···(sd)sd
ss

is the conditional probability that the random choices
for columns with index in Si are in rows with index in Si.

Thus, using (5), we see that

E (Z)d ∼
∑

s≥1

(2s)s

s!
e−2s

∑

s1+···+sd=s

(

s

s1, . . . , sd

)

P (s1, . . . , sd) (9)

=
∑

s≥1

∑

s1+...+sd=s

d
∏

i=1

(2e−2)si
1

si
σsi

=

(

∑

s≥1

1

s
(2e−2)sσs

)d

=φd
R. (10)

Thus, by the method of moments, the number of small disjoint fundamental zero-sum sets
Z tends tend to a Poisson distribution with parameter φR.

3 Large zero-sum sets: First moment calculations

Define an index set Ja as follows,

Ja = {n/2−
√

an log n ≤ ` ≤ n/2 +
√

an log n} and Ja = [n] \ Ja, a ≥ 0. (11)

Lemma 8. (Large linearly dependent sets.) Let X` denote the number of `-dependencies
among the rows of M .

(i)
∑

`∈J1 EX` ∼ 1.

(ii) Let F = [n]\([ω]∪J1), where ω → ∞ arbitrarily slowly with n. Then
∑

`∈F EX` = o(1).

Proof. From (6), the expected number of dependencies of size ` is

EX` =

(

n

`

)(

2

(

`

n

)(

n− `

n

))`
(

(

`

n

)2

+

(

n− `

n

)2
)n−`

.

We next approximate the expression for EX`. We note the following expansion.

(1+x) log(1−x2)+(1−x) log(1+x2) = −2

(

x3 +
x4

2
+
x7

3
+
∑

k≥4

1{k even}
x2k

k

(

1 +
kx3

k + 1

)

)

.

(12)
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We write EX` =
(

n
`

)

Φn
` , ` = (n/2)(1 + ε), where

Φ` =

(

1− ε2

2

)

(1+ε)
2

(

(

1 + ε

2

)2

+

(

1− ε

2

)2
)

(1−ε)
2

=
1

2
(1− ε2)

(1+ε)
2 (1 + ε2)

(1−ε)
2

=
1

2
exp

{

1

2

(

(1 + ε) log(1− ε2) + (1− ε) log(1 + ε2)
)

}

=
1

2
exp

{

−
(

ε3 +
ε4

2
+
ε7

3
+
∑

k≥4

1{k even}ε
2k

(

1

k
+

ε3

k + 1

)

)}

=
1

2
exp

{

−
(

ε3 +
ε4

2
+ ε7

)}

, (13)

where |ε7| ≤ 2|ε|7/3 for sufficiently small ε.

Also for ` = (n/2)(1 + ε), |ε| < 1,

(

n

`

)

=

(

1 +O

(

1

n

))

2n
√

2πn(1− ε2)
exp

(

−n
(

ε2

2
+
ε4

12
+ ε6

))

, (14)

where |ε6| ≤ |ε|6/10.

Case 1: ` ∈ J1 . From (14) with |ε| = 2
√

(log n)/n we have

1

2n

∑

`/∈J1

(

n

`

)

= O(1/n5/2),

so that
1

2n

∑

`∈J1

(

n

`

)

= 1−O(1/n5/2).

Using (13), for ` ∈ J1, Φ`
n = eΘ(nε3)/2n. Then, as nε3 = O(log3/2 n/

√
n),

∑

`∈J1

EX` =
∑

`∈J1

(

n

`

)

1

2n
eΘ(nε3) = 1 + o(1).
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For future reference, we note that for |ε| < c < 1,

EX` =

(

n

`

)

1

2n
exp

{

−n
(

ε3 +
ε4

2
+ ε7

)}

=
(1 + o(1))

√

2πn(1− ε2)
exp

{

−n
(

ε2

2
+ ε3 +

ε4

2
+
ε4

12
+ ε6 + ε7

)}

=
(1 + o(1))

√

2πn(1− ε2)
exp

{

−nε
2

2

(

(1 + ε)2 +
ε2

6
+O(ε4)

)}

. (15)

Case 2: ` ∈ F . Write F = [n] \ ([ω]∪ J1) as F = F1 ∪F2 ∪F3 where F1 = {ω, . . . , 3n/10},
F2 = {7n/10, . . . , n} and F3 = F \ (F1 ∪ F2). Thus, for ` ∈ F3, ` = (n/2)(1 + ε) where
−2/5 ≤ ε ≤ −

√

(2 log n)/n or
√

(2 log n)/n ≤ ε ≤ 2/5.

Case ` ∈ F1. For sufficiently large n, Stirling’s approximation implies that

(

n

`

)

≤ nn

``(n− `)n−`
,

so for some constant C (in both with and without replacement models)

EX` ≤
Cnn

``(n− `)n−`

(

2

(

`

n

)(

n− `

n

))`
(

(

`

n

)2

+

(

n− `

n

)2
)n−`

. (16)

Continuing with this expression, using ` = λn for λ < 1/2,

EX` ≤C
(

2λ

λλ(1− λ)1−λ
λλ(1− λ)λ(λ2 + (1− λ)2)1−λ

)n

=C

(

2λ(1− λ)λ
(

1− λ+
λ2

1− λ

)1−λ
)n

≤C
(

2λ(1− λ)λe−λ(1−λ)+λ2
)n

=C
(

2(1− λ)e−1+2λ
)λn

=C[g(λ)]λn.

The function g(λ) is strictly concave and has a unique maximum at λ = 1/2 with g(1/2) = 1.
For λ ≤ 3/10, g(λ) ≤ g(3/10) = (7/5)e−2/5 < 1 so that

∑

`∈F1

EX` ≤ C
∑

`∈F1

g(3/10)` = o(1).
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Case ` ∈ F2. Referring to (15), the function h(ε) = (ε2/2)((1+ ε)2 + ε2/6+ ε6 + ε7) satisfies
h(ε) > 2/25 for ε ≥ 2/5, and so

∑

`∈F2

EX` ≤
∑

`∈F2

e−Ω(n) = o(1).

Case ` ∈ F3. For
√

(2 log n)/n ≤ |ε| ≤
√

(25 log n)/n, the function h(ε) ≥ (1−o(1))(log n)/n.
Let F3a be the values of ` in this range

∑

`∈F3a

EX` = O(
√

n log n)/n1−o(1)) = o(1/n1/3).

Let F3b = F3 \F3a. Then ε2/2 ≥ (25/2)(log n)/n, and (1 + ε)2 + ε2/6 + ε6 + ε7 > 9/25.
Referring to (15),

∑

`∈F3b

EX` = O(n)/n4 = o(1/n3).

4 Higher moments of large zero-sum sets: Background

Let A⊕B denote the symmetric set difference of the sets A and B. Thus A⊕B = (A ∪B)\
(A ∩ B) = (A\B) ∪ (B\A). Suppose that, over GF (2), the rows Mi, i ∈ A indexed by A
are zero-sum, thus zA =

∑

i∈AM [i] = 0. Let B be another set such that zB = 0. We can
write zA = zA\B + zA∩B and zB = zB\A + zA∩B. Adding these two sets of rows modulo 2
has the effect of canceling the intersection A ∩ B. Thus (i) zA + zB = 0, whether zA∩B is
itself zero-sum or not; and (ii) zA + zB = zA⊕B.

Recall that a set of zero-sum rows is fundamental if it contains no smaller zero-sum set of
rows. For small sets we were able to count fundamental dependencies directly. We have to
adopt an alternative strategy for large zero-sum sets. We use an approach similar to the one
given in [6]. We count simple sequences of large linearly dependent row sets B = (B1, ..., Bk),
k ≥ 1 constant, and where |Bi| ∈ J1 so that |Bi| ∼ n/2. A k-tuple of large dependent sets
B = (B1, ..., Bk) is simple, if for all sequences (j1 < j2 < ... < jl) and (1 ≤ l ≤ k) the set
differences satisfy

|Bj1⊕Bj2⊕· · ·⊕Bjl | ∈ J1. (17)

For any given matrix M there is a largest k such that B1, ..., Bk are simple. In which case,
we say k is maximal and B1, ..., Bk is a maximal simple sequence.

Let V (M) = {∅} ∪ {B : B is zero-sum in M}, then (V (M),⊕) is a vector space over GF 2

under the convention that 0 · B = ∅, 1 · B = B. In V (M) a simple sequence (B1, ..., Bk) is
an ordered basis for a subspace S of dimension k.

11



Given k linearly dependent sets of rows with index sets B1, · · · , Bk, there are 2
k intersections

of these sets and their complements. For each x = (x1, · · · , xk), x ∈ {0, 1}k we let Ix =

∩i=1,...,kB
(xi)
i where B

(0)
i = Bi = [n] \ Bi and B

(1)
i = Bi. The index sets Ix are disjoint by

definition and their union (including x0 = (0, · · · , 0)) is [n].
Next for x ∈ {0, 1}k let B(x) =

⊕

i:xi=1Bi. Let K = 2k − 1. Let U be a K × K matrix

indexed by x,y ∈ {0, 1}k, x,y 6= 0; with entries U(x,y) = 1 if Iy ⊆ B(x), and U(x,y) = 0
otherwise. In summary,

Row index x = (x1, x2, . . . , xk) is the indicator vector for B(x) =
⊕

i:xi=1
Bi,

Column index y = (y1, y2, . . . , yk) is the indicator vector for Iy =
⋂

i=1,...,k

B
(yi)
i .

The row of U representing the set B(x) is formed by adding the rows of those sets Bi such
that xi = 1 in x; the addition being over GF (2). Thus B(x) is the union of the sets Iy,
where yi = 1 for an odd number of those sets Bi where xi = 1. This can be seen inductively
by generating B1, B1⊕B2, (B1⊕B2)⊕B3 etc. in the given order. In summary U(x,y) = 1
iff both xi = 1 and yi = 1 for an odd number of indices i, and thus, over GF (2),

U(x,y) =
k
∑

i=1

xiyi. (18)

Our aim is to use U , treated as a real matrix to show that w.h.p. |Ix| ∼ n/2k for every
x. We do this by observing that given the characterisation U(x,y) = 1Iy⊆B(x), the vector

(|Ix|, x ∈ {0, 1}k , x 6= 0) is the solution z over the reals of an equation

Uz = b where b ∼ n

2
1, (19)

assuming that B = (B1, ..., Bk) is simple. To prove that |Ix| ∼ n/2k, we prove the properties
of U listed in Lemma 9 below.

Equation (18) implies that by arranging the rows and column indices of U in the same order,
U will be symmetric. We will choose an ordering such the first k rows correspond to Bi, i =
1, ..., k. Thus xi = ei, i = 1, 2, . . . , k where e1 = (1, 0, . . . , 0) etc., and yi = ei, i = 1, 2, . . . , k.
After this we let Q be the k ×K matrix with column indices x made up of the first k rows.
Thus row i represents Bi, i = 1, ..., k and U contains a k × k identity matrix in the first k
rows and columns.

The row indexed by x = (x1, ..., xk) is the linear combination
∑k

i=1 xiri of the rows of Q,
and corresponds to B(x) in the vector space V (M) given above.

Lemma 9. The K ×K matrix U has the following properties:

12



(i) The matrix U is symmetric.

(ii) Every row or column of U has 2k−1 non-zero entries.

(iii) Any two distinct rows of U have 2k−2 common non-zero entries.

(iv) The matrix U is non-singular when the entries are taken to be over the real numbers,
and the matrix S = UU> = U2 = 2k−2(I + J) is symmetric, with inverse S−1 =
(1/2k−2)(I − J/2k); where J is the all-ones matrix.

Proof. (i) This follows immediately from (18), and the above construction.

(ii) Fix x and assume that x1 = 1. There are 2k−1 choices for the values of yi, i = 2, 3, . . . , k.
Having made such a choice, there are two choices for y1, exactly one of which will give
∑k

i=1 xiyi = 1.

(iii) Fix x,x′ and think of rows x,x′,x + x′ as non-empty subsets of [2k]. Then we have
|x| = |x′| = |x\x′|+ |x′ \x| = 2k−1, by (ii). Thus |x|+ |x′|− (|x\x|+ |x′ \x|) = 2|x∩x′| =
2k−1.

(iv) Let u,v be distinct rows of U , then u · u = 2k−1 and u · v = 2k−2. Thus S = UU> =
2k−2(I+J), where J is the all-ones matrix. By [3], Section 1.3, (1.9) and below, det(I+J) =
2k 6= 0, and thus S, U are non-singular. The reader can check that S−1 = 1

2k−2 (I− 1
2k
J).

The definition of a simple k-tuple (B1, ..., Bk) requires that all sets Bi be large and their set
differences to be distinct and of size ∼ n/2. Let (|B1|, . . . , |Bk|) ∼ (n/2)1 be the vector of
these set sizes. Over the reals, solving (19) gives the sizes of the subsets Ix.

Lemma 10. Let (B1, ..., Bk) be a simple sequence. Then for all x ∈ {0, 1}k,

|Ix| =
n

2k

(

1± 4k
√

log n

n

)

. (20)

Proof. Let i = 1, ..., K index the rows of U , and j = 1, ..., K index the columns. Let B(i)
be the set corresponding to the row i of U . Referring to (19), let y = (2/n)z, and Uy = b

where now bi = 2|B(i)|/n = 1 + εi, so that |εi| ≤ 2
√

log n/n. The matrix S = U2, so
Sy = Ub = c where ci = 2k−1(1+ δi) and δi =

∑

j:U(i,j)=1 εj/2
k−1, the summation being over

the 2k−1-subset of non-zero entries of row i of U . Thus, as J is K ×K where K = 2k − 1,

y = S−1c =
1

2k−2

(

I − 1

2k
J

)

2k−1(1+ δ) =
1

2k−1
1+ η,

where |η| ≤ 2k
√

log n/n. It follows that w.h.p. the solution z to (19) over the real numbers

satisfies |Ix| = (n/2k)(1± 4k
√

log n/n) for all x ∈ {0, 1}k.

13



5 Simple sequences of large zero-sum sets

Let B1, B2, . . . , Bk be a simple sequence. In row Mi of the matrix M , there is a 1 in the
diagonal entry Mi,i. As s = 3 there need to be two (random) 1’s in column Ci chosen in a
way to ensure the linear dependence of B1, . . . , Bk. The following lemma describes where
these non-zeros must be placed.

Lemma 11. B1, · · · , Bk are dependencies if and only if the following holds for all i ∈ [n].
Suppose that row i is in Ix, and that the two random non-zeros e1(i), e2(i) in column i are
in Iu, Iv respectively. Then we must have x = u+ v(mod 2).

Proof. Let x = (x1, ..., xk) and consider xm for 1 ≤ m ≤ k. If xm = 0 then i /∈ Bm, so either
none or both of e1(i), e2(i) are in Bm, and so zero or two unit entries in this column are in Bm.
We must therefore have either um = vm = 0 or um = vm = 1 and xm = um + vm. If xm = 1
then i ∈ Bm and so exactly one of e1(i), e2(i) must also be in Bm. Hence um = 1, vm = 0, or
vice versa. Thus in all cases xm = um + vm.

The main result of this section is the following.

Lemma 12. Let k ≥ 1 be a positive integer, and let Xk count the number of simple k-
sequences of large dependencies. Then E (Xk) ∼ 1.

Proof. We have to estimate the expected number of simple sequences (B1, ..., Bk) of large de-
pendencies. By (20) of Lemma 10 the index sets Ix have size |Ix| = (n/2k)(1+O(

√

log n/n)).
Let K = 2k − 1 as above, and let

Ω =

{

h = (h0, h1, ..., hK) : hi satisfies (20),
K
∑

i=1

hi ∈ J1

}

.

Then we define Φ(h, k) by

E (Xk) =
∑

h∈Ω

(

n

h0, h1, . . . , hK

)

∏

x 6=0






2
∑

{u,v}
u+v=x

hu
n

hv
n







hx
(

∑

u

(

hu
n

)2
)h0

(21)

=
∑

h∈Ω

(

n

h0, h1, . . . , hK

)

Φ(h, k). (22)

Explanation of (21). Let hx = |Ix|. The multinomial coefficient
(

n
h0,h1,...,hK

)

counts the
number of choices for the subsets Ix. In the product, in order for B1, ..., Bk to be zero-sum,
for x 6= 0 we need to cancel the diagonal entries Mj,j = 1 of j ∈ Ix within the columns
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indexed by Ix. This is achieved by putting one entry in rows Iu and one in rows Iv where
u+ v = x. The last factor counts the choices for the entries of columns indexed by I0 over
the row index sets Iu, either zero or two in an index set, in order to preserve the zero-sum
property.

Set hx = (n/2k)(1 + εx) where |εx| = O(
√

log n/n). We note that
∑

x εx = 0, implies that

∑

x

hxεx =
n

2k

∑

x

(εx + ε2x) =
n

2k

∑

x

ε2x and
∑

x

hxε
2
x =

n

2k

∑

x

ε2x +O

(

log3/2 n

n1/2

)

.

And then Stirling’s approximation implies that

(

n

h0, h1, . . . , hK

)

∼ nn
√
2πn

∏

x∈{0,1}k((n/2
k)(1 + εx))hx(

√

2πn/2k)2k

= 2kn exp







−
K
∑

x∈{0,1}k
hx

(

εx − ε2x
2

)

+O(log n)







= 2kn exp







− n

2k+1

K
∑

x∈{0,1}k
ε2x +O(log n)







= 2knnO(1).

In addition, by considering random 2k-colorings of [n] we see from the Chernoff bounds that

∑

h∈Ω

(

n

h0, h1, . . . , hK

)

= 2kn(1−O(n−2k/3)). (23)

With respect to (21), using
∑

x εx = 0, we see that





∑

u∈{0,1}k

(

hu
n

)2




h0

=

(

∑

u

1

22k
(1 + 2εu + ε2u)

)h0

=

(

1

2k

)h0
(

1 +
1

2k

∑

u

ε2u

)h0

=

(

1

2k

)h0

exp

{

n

2k
(1 + ε0) log

(

1 +
∑

u

ε2u
2k

)}

=

(

1

2k

)h0

exp

{

n

22k

∑

u

ε2u +O

(

log3/2 n

n1/2

)}

. (24)
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If x 6= 0 then each index z occurs exactly once in
∑

{u,v}
u+v=x

(εu+εv) and so
∑

{u,v}
u+v=x

(εu+εv) =
∑

z εz = 0. Therefore,






2
∑

{u,v}
u+v=x

hu
n

hv
n







hx

=






2
∑

{u,v}
u+v=x

1

22k
(1 + εu + εv + εuεv)







hx

=

(

1

2k

)hx






1 +

1

2k

∑

{u,v}
u+v=x

2εuεv







hx

=

(

1

2k

)hx

exp











n

2k
(1 + εx) log






1 + 2

∑

{u,v}
u+v=x

εuεv
2k

















=

(

1

2k

)hx

exp











n

2k

∑

{u,v}
u+v=x

2εuεv
2k

+O

(

log3/2 n

n1/2

)











.

Note that
Λ =

∑

x 6=0

∑

{u,v}
u+v=x

2εuεv =
∑

u

εu
∑

x+u

x 6=0

εx+u =
∑

u

εu
∑

v 6=u

εv,

gives

Λ +
∑

u

ε2u =

(

∑

u

εu

)2

= 0.

Thus using
∑

x hx = n,

Φ(h, k) =

(

1

2k

)

∑

x
hx

exp











n

22k







∑

u

ε2u +
∑

x 6=0

∑

{u,v}
u+v=x

2εuεv






+O

(

log3/2 n

n1/2

)











=
1

2kn
eO(log3/2 n/

√
n). (25)

It follows from (22), (23) and (25) above that

E (Xk) = 1 +O

(

log3/2 n√
n

)

= 1 + o(1). (26)
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6 Conditional expected number of small zero-sum sets

Let (B1, . . . , Bk) be a fixed sequence of subsets of [n] with |Bi| ∈ J1 for i = 1, 2, . . . , k ≤ ω.
Let B be the event

B = {(B1, ...Bk) is a simple sequence of large row dependencies} . (27)

Lemma 13. Given B and i ∈ Ix, |Ix| = hx, the distribution of the row indices `, `′ of the
other two non-zeros in column i is as follows.
If x 6= 0 then choose u,v such that x = u+ v mod 2 with probability

p(u,v) =
huhv

∑

y+z=x hyhz
,

and then randomly choose ` ∈ Iu, `
′ ∈ Iv. If x = 0 then choose u with probability

p(u,u) =
h2u

∑

y∈{0,1}k h
2
y

,

and then randomly choose `, `′ ∈ Iu.

Proof. This follows from the fact that the non-zeros in each column are independently chosen
with replacement and from the condition given in Lemma 11.

For m ≤ ω, let Sj, j = 1, 2, . . . ,m be pairwise disjoint subsets of the rows of M , where
|Sj| ≤ ω. Let S =

⋃m
j=1 Sj and s = |S|. For j = 1, 2, . . . ,m define the following events

Sj = {Sj is a small zero-sum set}, S∗
j = {Sj is a small fundamental zero-sum set}.

Let

S =
m
⋂

j=1

Sj and S∗ =
m
⋂

j=1

S∗
j .

We need to understand the conditioning imposed by the event B in (27) on the small depen-
dencies.

Lemma 14.
P(S∗ | B) ∼ P(S∗). (28)

Proof. Let Ix, x ∈ {0, 1}k, be as defined in Section 4. Let hx = |Ix|. By Lemma 10 we can
assume that |Ix| = hx ∼ n/2k for all x ∈ {0, 1}k. For j = 1, 2, . . . ,m, let Sj,x = Sj ∩ Ix and
sj,x = |Sj,x|. Similarly, let Sx = S ∩ Ix, sx = |Sx|. These definitions include x = 0, so that
S0 = I0 ∩ S and sj,0 = |Sj,0| etc.
For each i ∈ [n], we consider the probability that column i of M is consistent with S
according to four cases.
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Case 1: i ∈ I0 \S. For each column i ∈ I0\S = I0 \ S0, we must estimate the probability
that the two non-zeros e1(i), e2(i) are in rows consistent with the occurrence of S. Because
i ∈ I0 and B occurs, we know from Lemma 11 that e1(i), e2(i) ∈ Iu for some u ∈ {0, 1}k.
For S to occur, we require that zero or two of e1(i), e2(i) fall in Su, an event of conditional
probability (1− su/hu)

2 + (su/hu)
2.

Let Eu denote the number of non-zero pairs from I0 \ S0 falling in Iu. Then the conditional
probability that the non-zeros of I0 \ S0 are consistent with S is given by

P(I0 \ S0 is consistent S | B) = E





∏

u

(

1− 2
su
hu

+ 2

(

su
hu

)2
)Eu



 . (29)

Given B, we see that Eu is distributed as Bin(h0 − s0, p(u,u)), and has expectation

E (Eu) = (h0 − s0)
h2u

h2
0
+ h21 + · · ·+ (h2k−1)2

∼ h0
2k
.

By Lemma 10 we can assume that h0 ∼ N = n/2k. The Chernoff bounds imply that Eu is
concentrated around its mean (h0 − s0)p(u,u). Thus,

∣

∣

∣

∣

Eu − h0
2k

∣

∣

∣

∣

≤ n2/3 with probability at least 1− e−Ω(n1/3). (30)

Going back to (29) and using (30) gives

P(I0 \ S0 is consistent with the occurrence of S | B) ∼
∏

u

(

1− 2su
N

)N/2k

∼ exp

{

−2
∑

u

su
2k

}

= e−s/2k−1

. (31)

Case 2: i ∈ Ix \ S, x 6= 0. Given B, and i ∈ Ix, we know from Lemma 11 that the non-
zeros e1(i), e2(i) of column i lie in Iu, Ix+u respectively, for some u ∈ {0, 1}k. The probability
of this is p(u,x + u). The number Ex(u,x + u) of such pairs of non-zeros in Iu, Ix+u has
distribution Bin((hx − sx)p(u,x+ u)), and expectation asymptotic to (hx − sx)/2

k−1.

The rows of S1, . . . , Sm have to be zero-sum in this column, so either exactly one non-
zero falls in some Sj,u, Sj,x+u for some 1 ≤ j ≤ m or exactly one non-zero falls in some

18



Iu \ Su, Ix+u \ Sx+u. The conditional probability of this is

P (u,x+ u) =E





(

m
∑

j=1

sj,u
hu

sj,x+u

hx+u

+
hu − su
hu

hx+u − sx+u

hx+u

)Ex(u,x+u)




∼
(

m
∑

j=1

sj,usj,x+u

N2
+
N − su
N

N − sx+u

N

)(N−sx)/2k−1

∼ e−(su+sx+u)/2k−1

.

For a given x there are 2k−1 unordered pairs Su, Sx+u, so

P(Ix \ Sx is consistent with S) ∼ exp







− 1

2k−1

∑

{u,x+u}
(su + sx+u)







= e−s/2k−1

. (32)

Note that, in the sum in (32) su + sx+u and sx+u + su, contribute as one term. Thus

P(Ix \ Sx is consistent with S, ∀x 6= 0) ∼ e−(2k−1)s/2k−1

. (33)

Case 3: i ∈ Sj,x ⊆ Ix, x 6= 0. Suppose that the pair e1(i), e2(i) fall in Iu, Iu+x. For
i ∈ Sj,x, one non-zero needs to be in Sj, and the other to completely avoid S. Let v = x+u.
The probability this happens is

Pj(u,v) ∼
1

2k−1

(

sj,u
hu

hv − sv
hv

+
sj,v
hv

hu − su
hu

)

. (34)

The events {u,x+ u} are disjoint and are an exhaustive dissection of Sj. For a given
i ∈ Sj,x, the probability p(i, j) of success is

p(i, j) =
∑

{u,u+x}
Pj(u,u+ x) ∼ 1

2k−1

∑

u,v=x+u

(

sj,u
N

N − sv
N

+
sj,v
N

N − su
N

)

∼ sj
N2k−1

(

1 +O
( ω

N

))

. (35)

Every column of Sj,x has to succeed or some St is not a small zero-sum set. Thus

P(Sj,x succeeds) ∼
(

sj(1 +O(s/N))

N2k−1

)sj,x

.

As
∑

x 6=0
sj,x = sj − sj,0, the above allows us to calculate

P(Sj,x succeeds ∀x 6= 0) ∼
( sj
N2k−1

)sj−sj,0
. (36)
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Case 4: i ∈ Sj,0 ⊆ I0. In the case that x = 0, and Sj,0 ⊆ I0, the non-zeros in a column of
Sj,0 must both fall in the same index set Iu; one in Sj,u and one in Iu \Sj,u. Thus P (u,u) is
now summed over all Iu, a total of 2k such sets. For i ∈ Sj,0, the probability p(i) of success
is

p(i) =
∑

{u,u}
P (u,u) ∼ 1

2k

∑

u

(

2
sj,u
N

N − sj,u
N

)

∼ sj
N2k−1

(

1 +O
( ω

N

))

.

The final term is the same as in (35), and we obtain

P(Sj,0 succeeds) ∼
( sj
N2k−1

)sj,0
(37)

Using (31), (33), (36) and (37), we obtain

P(S | B) ∼
m
∏

j=1

( sj
N2k−1

)sj
e−(2k−1)s/2k−1

e−s/2k−1

=
m
∏

j=1

(

2sj
n

)sj

e−2s. (38)

Applying (6) to the right hand side of (38) completes the proof of P(S | B) ∼ P(S). To
replace S by S∗ the conditional probability that Sj is fundamental is obtained by multiplying
by κsj of (7). This completes the proof of the lemma.

We can now use inclusion-exclusion to prove the following lemma.

Lemma 15. Let Σσ be the event that there are exactly σ disjoint small fundamental depen-
dencies. Then,

P(Σσ | B) ∼ φσ
Re

−φR

σ!
∼ P(Σσ).

Proof. Let s = s1 + · · ·+ s`, then

T` =
1

`!

∑

1≤s1,...,s`≤ω

∑

|Si|=si,
i=1,...,`

P

(

⋂̀

i=1

S∗
i

∣

∣

∣

∣

B
)

∼ 1

`!

∑

1≤s1,...s`≤ω

∑

|Si|=si,
i=1,...,`

P

(

⋂̀

i=1

S∗
i

)

∼ 1

`!

∑

1≤s1,...,s`≤ω

(

n

s1, . . . , s`, n− s

)

∏̀

i=1

(

2si
n

)si

e−2siκsi ∼
1

`!

∑

1≤s1,...s`≤ω

∏̀

i=1

(2si)
si

si!
e−2siκsi

∼ 1

`!

( ∞
∑

s=1

(2e−2)s

s
σs

)`

∼ φ`
R

`!
.

The first approximation follows from Lemma 14 and the second from (6), (7).
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Using Inclusion-Exclusion, we have

P(Σσ | B) =
∑

`≥σ

(−1)`−σ

(

`

σ

)

T` ∼
∑

`≥σ

(−1)`−σ

(

`

σ

)

φ`
R

`!
=
φσ
Re

−φR

σ!
.

Lemma 7 gives the unconditional probability.

Let Xk count the number of simple k-sequences as in Lemma 12.

Lemma 16. If σ = O(1) then E (Xk | Σσ) ∼ 1.

Proof.

E (Xk | Σσ) =
∑

B=(B1,...,Bk)

P(B | Σσ)

=
∑

B=(B1,...,Bk)

P(Σσ | B)P(B)
P(Σσ)

=
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

`≥σ

(−1)`−σ

(

`

σ

)

T`

=
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

`≥σ

(−1)`−σ

(

`

σ

)

1

`!

∑

1≤s1,...,s`≤ω

∑

|Si|=si,
i=1,...,`

P

(

⋂̀

i=1

S∗
i

∣

∣

∣

∣

B
)

∼
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

∑

`≥σ

(−1)`−σ

(

`

σ

)

1

`!

∑

1≤s1,...,s`≤ω

∑

|Si|=si,
i=1,...,`

P

(

⋂̀

i=1

S∗
i

)

∼
∑

B=(B1,...,Bk)

P(B)
P(Σσ)

P(Σσ)

= E (Xk) ∼ 1.

7 Joint distribution of small and large dependencies

We first state a preparatory lemma. A proof of the next result for ck = 1 can be found in
[6], [7]. We give a full and different proof for completeness.
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Lemma 17. For λ ≥ 0, and k ≥ 0 the solutions to

ck =
∞
∑

λ=k

qλ

k−1
∏

i=0

(2λ − 2i), (39)

are given by

qλ =
∞
∑

k=λ

(−1)k−λ2(
k−λ
2 )
[

k

λ

]

2

ψkck, (40)

where ψk = 1/
(

2(
k
2)
∏k

i=1(2
i − 1)

)

. In particular, if ck = 1, qλ = π(λ) of (4).

Proof. Gaussian coefficients are defined as

[

λ

k

]

z

=

∏k
i=1(z

λ−i+1 − 1)
∏k

i=1(z
i − 1)

. (41)

Using (41) with z = 2, equation (39) can be rewritten as

ck = 2(
k
2)

k
∏

i=1

(2i − 1)
∞
∑

λ=k

qλ

[

λ

k

]

2

. (42)

Put ψk = 1/
(

2(
k
2)
∏k

i=1(2
i − 1)

)

, we see that qλ is the solution to

∞
∑

λ=k

[

λ

k

]

2

qλ = ψkck, k ≥ 0. (43)

Fix δ ≥ 0, multiply equation k ≥ δ in (43) by (−1)k−δ2(
k−δ
2 )[k

δ

]

2
, and sum these equations

over k ≥ δ. This gives

∞
∑

k=δ

(−1)k−δ2(
k−δ
2 )
[

k

δ

]

2

ψkck =
∞
∑

k=δ

∞
∑

λ=k

(−1)k−δ

[

k

δ

]

2

2(
k−δ
2 )
[

λ

k

]

2

qλ (44)

=
∞
∑

k=δ

∞
∑

λ=k

(−1)k−δ

[

λ− δ

k − δ

]

2

2(
k−δ
2 )
[

λ

δ

]

2

qλ

=
∞
∑

λ=δ

[

λ

δ

]

2

qλ

λ
∑

k=δ

(−1)k−δ

[

λ− δ

k − δ

]

2

2(
k−δ
2 ) (45)

= qδ. (46)
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Explanation: (45) to (46): Gaussian coefficients satisfy the identity

(1 + x)(1 + zx) · · · (1 + zr−1x) =
r
∑

`=0

[

r

`

]

z

z(
`
2)x`. (47)

To prove the last summation on the right hand side of (45) is zero for λ > δ, use (47) with

x = −1, z = 2, ` = k − δ and r = λ− δ. This gives
∑λ−δ

`=0

[

λ−δ
`

]

2
2(

`
2)(−1)` = 0 for λ > δ.

For z < 1, taking the limit of (47) gives

∞
∏

`=0

(1 + z`x) =
∞
∑

`=0

z(
`
2)x`

∏`
i=1(1− zi)

. (48)

Replacing δ by λ, and putting ck = 1 in (40), we see that the solution qλ to (39) is

qλ =
∞
∑

k=λ

(−1)k−λ2(
k−λ
2 )−(k2)

∏λ−1
i=0 (2

λ−i − 1)
∏k−1

i=λ (2
k−i − 1)

=

(

1
2

)λ2

∏λ
i=1

(

1−
(

1
2

)i
)

∞
∑

`=0

(−1)`
(

1
2

)(`2) (1
2

)(1+λ)`

∏`
i=1

(

1−
(

1
2

)i
) (49)

=

(

1

2

)λ2
∏∞

i=λ+1

(

1−
(

1
2

)i
)

∏λ
i=1

(

1−
(

1
2

)i
) = π(λ), (50)

where π(λ) is given in (4). To get from (49) to (50), use (48) with z = 1/2 and x =
(−1/2λ+1).

Quotient space argument

Given M , let B = {Bi : i ∈ [N ]} denote the set of large dependencies and S = {Sj : j ∈ [T ]}
denote the set of small dependencies. The following observations complete the proof of
Theorem 1.

P1 Suppose that V, VS are the vector spaces generated by all dependencies, and small de-
pendencies, respectively. Suppose that these spaces have dimensions d, σ respectively.

Let W = V/VS be the quotient space and fS be the canonical map fS : V → W . Thus
fS maps small dependencies to zero and W = {fS(B) : B ∈ B} ∪ {0}. Each vector in
W corresponds to an equivalence class of vectors in V . In terms of dependencies in B,
B ∼ B′ iff B ⊕B′ = S where S ∈ S. As the small dependencies are disjoint, the size of
the equivalence class of B is 2σ.
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P2 Note that dim(W ) = dim(V ) − dim(VS) = d − σ. Let λ denote the maximum number
of independent large dependencies. This will be the same as the maximum length of a
simple sequence. We next prove that λ = dim(W ).

Let bi, i = 1, 2, . . . ,m be a basis of W then Bi ∈ fS
−1(bi), i = 1, 2, . . . ,m form a simple

sequence. If not then for some A ⊆ [m] we have ⊕i∈ABi ∈ VS which implies that
fS (⊕i∈ABi) =

∑

i∈A bi = 0. Conversely, if B1, B2, . . . , Bk is a simple sequence then
bi = fS(Bi), i = 1, 2, . . . , k are independent. If not then for some A ⊆ [k],

∑

i∈A bi = 0
which implies that ⊕i∈ABi ∈ VS.

P3 The first i independent members of a simple sequence generate a vector space Wi of size
2i. The next independent entry of the sequence is chosen from W \Wi, a space of size
2λ − 2i. Each entry is chosen from an equivalence class of size 2σ. It follows that the
number Xk of simple sequences of length k is equal to

k−1
∏

i=0

((2λ − 2i)× 2σ) = 2kσ
k−1
∏

i=0

(2λ − 2i).

P4 Let bt = P(λ = t | σ = s). By Lemma 16, E (Xk | σ = s) ∼ 1, so

1 ∼ E (Xk | σ = s) = 2sk
∞
∑

t=k

k−1
∏

i=0

(2t − 2i)bt. (51)

This can be re-written (with ∼ replaced by =) as,

2−sk = 2(
k
2)

k
∏

i=1

(2i − 1)
∞
∑

t=k

bt

[

t

k

]

2
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By Lemma 17 we find that

bt =
∞
∑

k=t

(−1)k−t2(
k−t
2 )
[

k

t

]

2

ψkck

=
∞
∑

k=t

(−1)k−t2(
k−t
2 )−(

k
2)−ks

∏k
i=1(2

i − 1)

[

k

t

]

2

=
1

(2t − 1) · · · (2− 1)

∑

k≥t

(−1)k−t2(
k−t
2 )−(

k
2)−ks−(k+1−t

2 ) 1
∏k−t

i=1(1− (1/2)i)

=

(

1

2

)t(t+s)
1

∏t
j=1(1− 1/2j)

∑

j≥0

(

1

2

)(j2)
(

−1

(

1

2

)1+s+t
)j

1
∏j

i=1(1− (1/2)i)

=

(

1

2

)t(t+s)
1

∏t
j=1(1− 1/2j)

∞
∏

j=0

(

1−
(

1

2

)(s+t+1)+j
)

=P (s, t),

as given in (2), and where we used (48) with z = 1/2 and x = −(1/2)s+t+1 to replace
the alternating sum.

P5 The P (s, t) only satisfy the solution bt(s) = P(λ = t | σ = s) in (51) asymptotically. So
to prove the lemma, we show that for large K,

∑

t≥K
s≥0

bt(s) ≤ ε, (52)

where ε > 0 is arbitrarily small. For t ≥ k,

k−1
∏

i=0

(2t − 2i) = 2kt
k−1
∏

i=0

(

1− 1

2t−i

)

≥ 2kt

(

1−
k−1
∑

i=0

1

2t−i

)

≥ 2(k−1)t.

It follows that
∑

t≥K
s≥0

bt(s) ≤ 2−K(K−1).

Thus (52) holds if K ≥
√

2 log2 1/ε.
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