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1. Introduction
1.1. The Muskat problem

The Muskat problem describes the evolution of the free boundary between immiscible
and incompressible fluids permeating a porous medium in a gravity field. Each fluid is
assumed to have constant physical properties and their velocities are governed by Darcy’s
law,

%u(z,t) = —Vp(z,t) — pg(0,1), zeR? teRy,

where p, u denote the pressure and velocity of the fluids, p, p are their density and
viscosity, k is the permeability constant of the medium, and g the gravitational constant.
With or without surface tension effects, it has long been known that the problem can be
reduced to an evolution equation for the free interface [23,32,45]. The case of a two-fluid
graph interface

r't) ={(z, f(z,t)) : z € R}

with only gravity effects admits a particularly compact form [23], now called the Muskat
equation:

L[ 9ALS _f@) - fz—a)
e e !

Above, all physical constants have been normalized for notational simplicity. The Muskat
equation is well-posed locally in time for sufficiently smooth initial data, and globally in
time if the initial interface is sufficiently flat [8,20,22-24,45-47]. Most notably, an initially
smooth interface can turn [13] and later lose regularity in finite time [14]. Furthermore,
many other behaviors are possible, with interfaces that turn and then go back to the
graph scenario [25,26]. Thus, finding criteria for global existence became one of the
main questions for the Muskat equation. Since equation (1.1) has a natural scaling given
by

F@t) = A (O At),  A>0,

these criteria are stated in terms of critical regularity, i.e., spaces that scale like W1
In this sense, [21] provides blow-up criteria in terms of the uniform continuity of the
slope. Moreover, having the product of the maximal and minimal slopes strictly less
than 1 is sufficient for global existence [11]. See also [28]. Medium-size initial data in
critical spaces but with uniformly continuous slope guarantees global wellposedness [20].
If the initial data is sufficiently small in H %, then the slope can be arbitrarily large
[27] and even unbounded [5,7]. The result [5] also shows local existence and uniqueness
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in H?%. This is currently the best (lowest) regularity result in terms of the space of
the initial data, which is a problem that has garnered a lot of attention recently (e.g.
[3,6,17,18,21,42—44]).

1.2. Main result

In this paper, we show the existence of self-similar solutions for the Muskat problem.
These solutions correspond to the global-in-time evolution of initially exact corners, and
thus they do not fit into the aforementioned results.'

We can rewrite (1.1) in terms of a closed system for the slope h = 9, f:

o L[ Balsh 2 SO LN
e ”R/lﬂfahvd ”R/(Aah) i+ o, ™™

i (1.2)
][h(x):é / h(z)dz

Plugging the ansatz h(x,t) = k(x/t) in (1.2), we arrive at the equation

B 1 [ Audyk 2 fo ¥ —
0=Sk+ = / T5(F 02 7. k)2doz — ;}!(Aak)z. e k)Q)Qda, S:=y0y, (1.3)

for which we construct a local curve of solutions:

Theorem 1.1. There exists s, > 0 such that for all |s| < s., there exists a self-similar
solution of (1.2) hs(x,t) = ks(x/t) satisfying limy,_, 1 ks(y) = s. In addition, we have
that

2 2
ks (y) — s~ arctan(y) || a1 + [s[l|0sks(y) — — arctan(y) [ < [s*

Remark 1.2. (i) In particular, we see that k, € L>\ H=(R). (ii) In fact, we will compare
ks and (2s/7)arctan((1 + s?/3)y), but one can readily see that the difference between
the two ansétze is O(s?). (iii) Due to the symmetry we can find solutions with negative
s by setting k_;(y) = —ks(y). From now on, we assume s > 0.

Despite the numerous works on the Muskat equation and the mathematically equiva-
lent vertical Hele-Shaw problem, self-similar solutions were only known for the simplified
thin film Muskat [30,33,38]. See also [31] where the authors find traveling solutions for
the Muskat problem with surface tension effects included.

! The results in [12] allow for merely medium size bounded slopes but require sublinear growth of the
profile, while our solutions grow linearly in space.
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From our numerical results, it might look surprising that, no matter how big the slope

4

is, the initial corner instantly smooths out, as opposed to the known “waiting time”
phenomenon in the Hele-Shaw problem [1,9,10,16,19,32,35-37]. We must note however
that those works correspond to a horizontal Hele-Shaw cell (hence without gravity) and
some include fluid injection. Moreover, some of these works are in a one-phase setting,

which even for Muskat significantly changes the possible behaviors [2,4,15,29,34].
1.8. Outline of the paper

The rest of the paper is structured as follows. In Section 2 we summarize the notation
that will be used along the paper. Next, in Section 3, we first extract the quasilinear
structure of (1.3) and rewrite it as a fixed point equation. This section contains the
proof of the main Theorem 1.1 via Proposition 3.3. Section 4 contains the analysis of
all the terms involved in the equation. We will use key cancellations provided by some
“elementary bricks” that we will be able to extract through the symmetrization of the
nonlinear terms. Finally in Section 5 we illustrate our main Theorem by numerically
computing part of the branch of self-similar solutions.

2. Notations
2.1. General notations

In the following, we fix ¢ € C°(—4/3,4/3), a nonnegative even function such that
¢ =1 on [-3/4,3/4]. For simplicity of notation, we let f, . f be an arbitrary function

f fe{f,ff,][f}-

+a,0

among

We will work mostly on the Fourier side. We define the Fourier transform as

o~

F(D© = Fle) = —= [ e
R

We note that the Fourier transform of a real odd function is an odd function taking
purely imaginary values. We define the Fourier multiplier |V| by

~

FAVIfHE) = [El£ ()

Given an operator T', we let
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be its conjugation by the Fourier transform. To avoid functional analytic considerations,
we say that a functional g — N(g) is analytic around a function L if for any choice of
g1, go in the appropriate space (here H') the restricted function

Nglg92 (tlatQ) = N(Ls +t1g1 + t292)

is analytic. In this case, we denote

L Nyo0,0),  Neoly] = N(Ly +9) —~ N(IL) ~ Mifg],
1 (2.2)

N>1lg] == Mg] + N>2g],

Mgl ==

and we observe that

1
d d
N>o(Ls + g2) = Noo(Ls +g1) = / d—hd—tQNgl,grgl(tl’O)dtl

t1=0
1
d2
+ /(I_Q)WNglygz—m(laa)do'
6=0

In these notations, the “center” L, is implicit, but since we will always consider func-
tionals around L defined in (3.11), there should be no ambiguity.

2.2. Algebra of operators

We will use operators of the form

/mfﬂy fﬁffm

associated to some multilinear function f — m(f;«,y) (i.e. multilinear in f for each
fixed «, y) and some numerical analytic function G. For such operators, we compute
that

N /ml g,LS7" Ls7a ?/ S7f S)][ da
d
/mLs,ay *Vg VG sa][ sv][ ° Vg ::(97][97][9

and
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d d

o0
d_tld—tQqu,QQ(tlat2) = (917927Lt1,t27a y Lt1,t27th1,t2’th17t2
=0

[e%

do

+ / ml(gl;Lt1,t2;a7y) 'ng . VG(Ltl,t27th1,t27 ][ Ltl,tg)_

Oé
/ mi gQaLtl tas QY y) Vg, * VG Ltl tz,thl tos ][ Lt1 tg
2 do
+ m Lthtz; «, y) -V G(Lthtw Lt17t27 Lt17t2)[vglvvg2]ga
a=0 a —«

(2.5)
where m1(f,g,...9) = dgmq - f and similarly for m;, and Ly, 4, := Ls + t191 + t2g2.
Similarly

d? da
deQth(]z q1(1 9 / ma 92_91792 glaLeva y Le;][L97][L9

a=0
)
da
+2 ml(gl —917L6§a7y) 'ngfgl VG(LQa LB; L9>_

T do
+ / m(LG; avy) : VQG(L97][L9a ][ LG)[V927917V92791};

a=0

(2.6)
3. Reduction to a fixed point estimate
3.1. Analysis of the quasilinear structure

We can extract the quasilinear part from (1.3). This will be defined in terms of two
main terms. We define the function F' and the operator W as follows

F@)=[1+27,  Wil) =~ (ff;i(lj}) gzyg))iy)%“, (3.1)
R «

and we obtain the following expression:

Lemma 3.1. The self-similar profile k satisfies

IV |k — S%+§]+WW%k=MH+TM, (3.2)
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where the semilinear terms are defined as

(f h)? — h? da
/a {h(y R

Th] = 1L+ h*)T[R];  T[h]:= l/(Ao,h)2 ~F’(][ h)da.

™
R «

Proof of Lemma 3.1. Dividing by 1 + k2, it suffices to show that (1.3) can be rewritten
as

[F(k)|V| — Sk + V[klo.k = F(k)R[k] + T[k],

da (3.4)

The only nontrivial part is the decomposition of the second term in (1.3). We can expand

2 [0,80g)- P(f 9l = —F (@) [Vlg+ = [ 0,809 { F(f 6) = Flo) b ds
R a R

[e3

——F(g)-IVlg+0y900)5 [ {F(f o)~ Flo) P 2

«
R a

_%/8yg(y—a)~ F(][g)—F(g) do
R

«
a

and rearranging the terms, we arrive at (3.4). O
3.2. Study of the linear equation: Duhamel formula
Given a constant x > 0, we now consider the linear adjusted equation from (3.4)
(kIV] = S)k = p1 + Oyp2 (3.5)

for an odd function k. Taking the Fourier transform and using Duhamel’s formula, we
obtain the ODE

0 {gemf@} — lElG, 1 icerl€lp,.

If we assume that fic\(f ) is continuous at the origin, and we integrate from 0, we find that
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¢

) i i
/6~<Inl €Dg(n)dn,  To:g— ne =€ g (n)dn.
=0

¢ ),

H\m

In particular, under our assumptions, the odd solutions to the free equation (k|V|—

0 with the condition lim,_, . k(y) = s are given by
2s
L (y) = — arctan(y/k).
From now on, we shall restrict ourselves to the study of odd solutions.

3.2.1. Operator estimates
It remains to estimate the solution operators from (3.7).

Lemma 3.2. The operators

'S
)
_/e n)dn, Ty:9+— g

defined for functions on L} (0,00) satisfy the boundedness properties

e 178 g(n)dn,

u \m

m \

€T 1llr2srz + | T-1llpssze S 1,

Toll2— L2 + IToll L2 (e2ae) > L2 (e2a0) S 1-
Proof of Lemma 3.2. To control T'_;, we first use Holder’s inequality to bound

1
P

e

Tl <6 (1‘6_“)

which shows the second bound. For the first, we compute by duality that

< / K 5 77 f)dfdﬂ’ K(fﬂ?) = l{ogngg}en(nfg)’

¢
-l
/ f=g(m)|Pdn | < llgllze - min{e" 7,7},

and Schur’s test allows to conclude. This also gives the second estimate on Ty, and the

first one follows a similar proof with kernel K'(&,n) = (n/§)K(§,n). O
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3.8. Fized point formulation

8.8.1. Linearization at self-similar profile

The key observation we will use is that for the solutions of the linearized problem
(3.8), the quasilinear part simplifies significantly since Liﬁ is almost constant away from
a neighborhood of the origin:

Li,n(y) = s +p(y), p(y) = O((m/y)‘l), Li,n = 32Ls,n + (Li,n - 52)Lsyra~
We can now linearize (3.2) at the constant s to get an equation of the form (3.5) with
ko= [147/3] 7 (3.9)

More precisely, we obtain
1
|V|k— [1+s*/3] Sk = 39 [(k* — s*)k] — W[k]Oyk + R[K] + T k],

which we prefer to rewrite via a normal form as

[k|V|— S]h = %QW\ [(k* — s*)k] — kW K]0,k + kR[k] + £T k],
(3.10)
hi=k+ 2k = sk

8.8.2. Fized point formulation
We can now seek solutions of (3.10) as perturbations of (3.8) when s, x are related as
n (3.9). We seek solutions of the form

FO) = Low) +9l), Luly) 1= = arctan(y/s) = s arctan((1 + 52/3)y). (3.1

We note for later use that L, is a smooth function of s and

2

OsLs = —arctan(y/k) + — 3,
7 /R ¥ g T e (3.12)
0.(L2 — 5%) = 25 (s ML)+ arct&n(y/%—wﬁ) '

We define w5 by
7 = (L% — %) L,.

Then, plugging (3.11) into (3.10), we obtain
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h=Ls+ (k/3)ms + (1 + &(L? — s%/3))g + kLeg* + (k/3)g°,
[K|V] = S| h = k?|V| [(1/3)7s + (L2 — 5°/3)g + Lsg” + ¢°/3]
— KW[Ls]OyLs — k (W[Ls + g] = W[Ls]) 9y (Ls + g) — 0y (W[Ls]g)
+ £gOyW L] + k(R[Ls] + Ra[g] + R>2[g] + T[Ls] + Tilg] + T>2[9])-

Thus, using (3.6) and the notation (2.1), we obtain two equations for h (after identifying
the element in the kernel for the second equation from the limit at co):

h= L+ (r/3)ms + {3(1 +5°)/(3+ ") + k(L3 — 5°) } g + K Lsg® + (/3)g
= Ly +rT_1 {(r/3)|V|ms — W[L4]0,Ls + R[Ls] + T[Ls]}
+ KT 1 {k|V|(L] = 5*/3)g — 0, (W[Ly]g) + 90, W [Ls] — Wi[g)d, Ly + Ru[g] + Tilg]
+ KT _1{k|V|(Lsg® + ¢°/3) — W=2[g)dy Ls — Whi[9)0yg — 0, (gW[g]) + 90, W"]g]
+ R>2[g] + T>2[9]},
where Ry, T1, R>a, T>2 follow the convention in (2.2) and W = W' + W"? is a decom-

position later introduced in (4.18). Combining the two equations for h, we arrive at the
fixed-point formulation:

L= Ag + N(g), (3.13)
with forcing term
I := (k/3)ms — (2/3)T 1 [|V|my] + KTy WL, Ly — R[Ly) - TILs)],  (3.14)
linear operator
Ag:=—(1+ il + (L2 — 82)g + KTy [[V(L2 - 57 /3)g]
3+3 (3.15)

+ KT 1 [g0, W L] = W19, Ls + Ralg]] — £To[W L)) + KT 1 [Ti[g]],

and nonlinearity

N(f) = —K(Ls + g/3)g% + K*T_1 [|V|(Lsg® + ¢°/3)]
+ KT 1 [~Wsag)0, Ls — Wilgl0,g — g8, W [g]] — kTolgW[g]]  (3.16)
+ 8T _1 [Rxalg)] + KT 1 [T22[g]],

where we used that T_l[ayf] = ’/I\‘O[f]. In view of this, Theorem 1.1 follows from the
following existence result.
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Proposition 3.3. There exists s, such that for all 0 < s < sy, there exists exactly one
solution gs of (3.13) with (3.14)-(3.16) in a ball in H', By1(0,s.). In addition the
mapping s — g, 15 C1 in H' and

||asgs||H1 5 32‘ (317)

This proposition will be an easy consequence of the following quantitative estimates
proved in the next section.

Lemma 3.4. There holds that
M S 8% [10:10 e S 8%
Lemma 3.5. There holds that
A+ Id|| g1 i S 8%, 10sAll 1o S s
In particular, there exists s; > 0 such that A is invertible in H' for all 0 < s < s1.

Lemma 3.6. There holds that N'(0) = 0 and whenever ||g1 || + ||g2llm: < 1,

IN(g1) = N(g2)lar < llgr — gella - [52 + g1l + H92||?{1] .

Proof of Proposition 3.3. We are now ready to prove Proposition 3.3 via a fixed point
formulation. For € > 0, we consider X := {g € H' : ||g|g» < &} and we want to show
that (3.13) has a unique solution in X, provided that 0 < s < s, is small enough. We
define the mapping

g ATHII-N(g)],

which is well defined on H' since A is invertible for 0 < s < 1 by Lemma 3.5. Using
Lemma 3.5 and Lemma 3.6, we see that ® : X — X provided 0 < € < €, is small enough.
Finally, decreasing ¢, and using Lemma 3.6 again, we see that ® is a contraction on X.
By the Banach fixed point theorem it has a unique fixed point in X.

In addition, we can study the smoothness of s — g. Deriving (3.13), we find that

(A + dgsN) [asgs] = 0,11, — (83A) Js,

and using Lemma 3.4, Lemma 3.5, and Lemma 3.6 again, we deduce that s — g is C!
and we have (3.17). O

It remains to prove Lemma 3.4, Lemma 3.5 and Lemma 3.6. This will be done in the
next section.
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4. Quantitative analysis

4.1. Analysis of the elementary bricks

We need to control many terms. Fortunately, in many of them, the key cancellation
is provided by simple “elementary bricks” which can be analyzed separately. We define

the quadratic expressions for o > 0:

@W@)=¢#@W—pfﬂwﬂ
Jo[R)(y) := ][h(y) —2h%(y) + ][h(y) :

and let §,[f, g] and J,[f, g] denote the bilinear expression obtained by polarization. We

see that d4[f] is odd if f is odd, while J,[f] is even if f is either even or odd.
We start by estimating the key cancellation.

Lemma 4.1. Given d,[f, g| defined in (4.1), y > 0 and a > 0, there holds that

s7?|6a[Ls](y)] S 1{0<a<y}@In{a) - min{y, y T+ 1{0<y<a}y min{a, a '},

57%10y0a[Ls] ()] S 1{o<a<yran{@) - (y — a) " (y) 7 + 1{0<y<a} min{a,a "'},
and
[0alLs, g]| S sllgllp - minfa?,a”2},
18alg, 2| S llgller [1All s min{a?, o=},
In addition,
BalLugll S5 [ (9 +0]+ (@) gty + )]
{It|<a}

. 1 3
0alg1, g2]| < llgallm / min{a™2, a2 }|g1(y + £)|dt,
{lt|I<a}
. 1 3
Hlalw [ minfa™da ) igaly -+ 0l
{lt|<a}
and a derivative brings powers of a1,

(03

|0dyda[Ls, gll(y) < S(IQ(y + o)l + g + gy — )| + é / l9(y + t)ldt)~

t=—a
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Proof of Lemma 4.1. The key observation is that 24,[f, g] = d[f, g] + d[g, f] where

17 17
olf, gl =—— [ fly+t)dt-— [ {g(y+1t)—gly—1t)}dt (4.6)
[ poroa |

We see that the first term in § vanishes to first order for odd f if o > 1, while the second
term contains a difference and vanishes to first order for @ < 1 when ¢ is smooth. The
bounds in (4.2) follow directly from the formula (4.6) and the bounds

[0

é / Lo(y + t)dt| < /() + (),

—x

1 «

s a / {Ls(y +1) = Ls(y — )} dt| S 1go<azyyaln{a) - (y) ™ + Lio<y<ay min{a, 1},
t=0

(4.7)

and

g . . .
s [ 0 S 7 - @) osasy) + (@) 100

51|+ / {Li(y+1t)— Li(y —t)} dt| S amin{y, (y —a) " (y) "} 1{0<a<y)

t=0

Q

+ min{a?, o F1j0<y<ar-
For general odd functions, we obtain that

1 i . 1

o [ oty ] < minf Vi (@) gl
1 «
o [ o -gw-nyal s [ 10+ (@5)
t=0 {lt<a)
1 i . 11
+ [ 1o+ 0 - gty - 0 dt| S minfa gl
t=0

from which we deduce (4.3) and (4.4). In addition, we observe that
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0[0291,92] = 91y ) ;gl(y+o¢) 'é / {2y +1t) — g2y — )} dt,
t=0

[e3%

1
0lg1,0292] = 5 /91(y+t)d

—Q

;. 920y ) = 295(y) + 92(y — @)

)

and using (4.7), we easily arrive at (4.5). O

Lemma 4.2. Let J, be defined as in (4.1). For 1 <p < oo, there holds that

I bl + lo0n | 1) lzzas < Il
J : (4.9)

[ JalP)l|z + |a@aJa Pz < [IhlI7
and for Ls we have the more precise bound,
872|Ja[LS](y)| 5 O(hl<0(> : <y>72l{0§a§y} + min{a27 1}1{0§y§a} § HliIl{O[, 1}7 (410)
while

SHalh LIS [ (hty+ 0]+ W+ o)

<a

= (4.11)
alht,had @ S D lhallze / [[ho(y + )] + [y, (y + t)]] dt.

{a,b)={1,2} i<

Proof of Lemma 4.2. For (4.9), the estimates in f h follow from direct computations.
They directly imply the estimates on J,. To analyze J,, we can rewrite J,[h] = J[h, h]

where?
Jlg,h] = % / (9(y +1) —29(y) + gy —t))dt - é / (h(y +1t) + 2h(y) + h(y — t))dt
t=0 t=0

3l [ewen-g-ma) (L [ oo -nw- o
- = (4.12)

For (4.10), the second term can be estimated using (4.7), while for the first term, we
rewrite

2 Note that since J is not symmetric, Jo[g, h] = J[g, h] + J[h, g].



E. Garcia-Judrez et al. / Advances in Mathematics 399 (2022) 10829/ 15

é /(h(y 1) — 2h(y) + hiy — t))dt = é / (a— [u)®h(y + wdu.  (4.13)

t=0 u=—a«

It remains to check (4.11). For the linear term, this follows from (4.12) and (4.7) for the
second term, while for the first term, we use (4.13) in case g = L, and

e

o [0 -2hw) b - i) < [ ol

t=0 {lt[<a)

else. For the quadratic estimate, we proceed similarly for the first term in (4.12) and we
use (4.8) for the second term. 0O

4.2. Control on the nonlinear operators
In this section, we will upgrade the bounds on the basic bricks in Section 4.1 to bounds
on more complicated operators. Since they will not be multilinear, we will only operate

under the assumption that

lgullar + g2l + lgallar < 1. (4.14)
4.2.1. Symmetrization of the nonlinear operators

We can symmetrize to obtain a key cancellation in the operators involved in (3.2).
The main observation is that one can always extract ¢ defined in (4.6). Using that

f e / (@)~ H (e} 1)

and the symmetrization formulas

F(a) = F(b) = (b° — a®) - F(a)F(b), w1
F(a) + F(b) = (2 + a® + b%) - F(a)F(D),
2(a4by —a-b-) = (a4 —a-)(bs +b-) + (a4 +a-) (b — b-), (4.17)
2(apby +a-b_)=(ay +a_)(by +b_)+ (ar —a_)(by —b_), '

we can rewrite W[g] = Wlg, g; g], where

do
/5 91.9] fgg>-F<fg3>-<1+g§>;
do
/5 91, 92] gs,][g37][g3

Wlg1, g2; 93]
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for some function G analytic in a neighborhood of (0,0,0). In fact, to properly control
the linear part, it will be convenient to decompose further W = W + W’ where

Wh"g1, go; 93] = /5 91, 92 gs,][gs,][gs

(4.18)
da
Wlg1, g2; 93] = /5 91, 92] gs,][gs,][gg )(1 = o) —
4.2.2. Control on symmetrized operators
Lemma 4.3. There holds that for x € {hi,lo},
IW*[Lallze + [[(5) 0y W* [Lo]llL~ S 8%, (4.19)
and
Wi gl + Wi [glllz= + 10, (Wi°[gD) |2 < sllgll - (4.20)
Finally, we have the nonlinear estimates assuming (4.14)
* HWEQEQ]IIL%LOO < lgllzn, (121)
IW2alg1] = Wislgalllie < (s + llgrllar + llg2lla)llgr — g2l m-

Proof of Lemma 4.3. We start from the formula (4.18). For (4.19), it suffices to show
that

|| / alLal| 2 e+ ] / )0 al L) 2 1 S 2, (4.22)

which follows from (4.2) and the bounds
[Lsllzee + 1Y)y Ls|[ Lo < s.

For (4.20), inspecting (2.4), and using (4.9) and (4.22), we see that it suffices to show
that

da da da
I allas gl Elem 1 [ alLasglio(@) ez + 1 [ 103alLar gl = ()
R, R, R

< sllgllms
(4.23)
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a.

nd
do do
I [ alzall | f gl Sl + 1 [ ala) 10y f o0 = o(@)C i S sl
Ry +a R4 +a

We start with the above bound. First, we see from (4.2) that s 1|6, [Ls]| < smin{1,/|a|}
and we compute that

da da
[ alzadl 1 f ale@ Sl 55 [ oty + Olzeete) G at < slgloe
R +a (It <lal<2}

and similarly,

I [ 18alall 18, f ol1 = ola) i
Ry o

do
Ss [ (It allzs +lotlz] 55 < slglee
{a=1/2}

The first term in (4.23) can be controlled through (4.3), the second term can be controlled
through (4.4) and the last term through (4.5).

Finally, we consider (4.21). Inspecting (2.3), (2.5) and (2.6), we see that we need to
show

da
I [ Balor, 2l e S lallm gl

Ry
do <
[ alZoron) - F 0ol llzense sl ool (20
R4 +a,0
do <2
| [ 6alLs]- 1 91- 92|E”L°"NL2 S s7llgllatllgzllmr
Ry +a,0 +a,0

The L bounds follow from (4.3) and (4.22) together with the simple bound ||g||r~ <
llgllzz1- The L? bound follows from (4.4) and (4.3) for the first two estimates while for
the last, we see that

do
Jalrd: f o f @l sninn,
Ry

+a,0 +a,0

Iy é/ Bl -1 (5 -+ )92l + )] S,
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Spi={lul<ft|<a<y},  Syi={luly<[t| <o},
Sz = {lul < Jt| <y < a},

and using (4.2), we can compute that

In(t

[T1ll2 S 8° // t<<>> lg1(y + t)ga(y + w)| L2 dtdu < s*(|g1 | L2[|g2ll 2=,

{lul<]tl}

while

| < s // V2|91 (y + ) gy + u)|dtdu < 52| g2 12 // 3gr(y + t)|dt,

13] < 5% (y) 2 // lg1(y + ) g2y + w)|dudt < s*(y) " gullr2llg2ll e,
(ul<tI <y}

and we see that I and I5 are in L?. This finishes the proof. O
‘We now turn to the first semilinear term.

Lemma 4.4. Assume (4.14) and consider R defined in (3.3). There holds that

< 2
HR[LS]HLs nL2 ~ s° 12119 ]”Ls nL2 S s lgllr, (4.25)

[R>2[91] = R>2[go]llinze S [32 +llgallzn + llg2l7n] llgz — g1l

Proof of Lemma 4.4. From (4.16) and (4.17) we deduce that

Aapbycy —aboc_) = (ay —a_)(by +b_)(cy +c) + (ay +a—)(bs —b_)(cs + )
+ (a4 +a-) (b +b-)(cy — c=)+(ay —a_)(by —b_)(cy — c-).
(4.26)

We can use (4.15), (4.26) and (4.16) to decompose

212 do
# = -1 [ - Yel 220 Lm0,

where R/ = R’[h; h] is given by
da
Rihiiha] = [ 0 {haly+ @) + oy — )} - Jalhal - (o + F-0) 22
Ry

R2lhuiha] = [ 0u{ha(y+ ) = ha(y - )} - Balhal(y) - (14 B8) (FuF)

Ry
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Ruite] = [ 0n {ha(y +0) + ha(y - )} - Bulial ) - (PuP-0)
Ry
with the notation

Fo = F(][hg).

[e3%

From now on, we will denote F, = F(f ., h) without distinction on h.
We start with the first estimate in (4.25). First, using (4.2) we observe that

. _ do _
[R?[Ly; L) + |R[L L] S s / (=) 2balLall S S 85 (427
Ry
In addition, using that

, , 2sk dya
Ly =0) = Ly + o) = o e (s )

and (4.10), we see that

do

s 2 -2, .
(K2 + (y_a)z)(mz T (y+a)2) S HhHL y<y> (4.28)

RM(La; B](y)] < suhn%my/

We now turn to the other estimates in (4.25) and we start with RI[L, 4 g] =
RI[Lg; L + g]. Inspecting (2.4), we see that the linear component follows from (4.27),
(4.28) and from the bound

_ do .
s [ =) balLesglly S Plalln - (),
R,

which follows from (4.3). Similarly, inspecting (2.3) and (2.5)-(2.6), we see that the higher
order terms can be controlled similarly since we can easily estimate

_ da .
s [t ) balonsgell e S slanlln gl - )
Ry
using (4.3) again.
We now consider R7[g1; Ls]. Using Cauchy-Schwarz and (4.2), (4.10), we see that

RY[h] := / Oy {hly+a)—h(y—a)} - JolLs] - (Fo+F_q)- 90(4<y>’104)%a,
R+
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R>%[h] := / Ay {h(y+ ) +h(y—a)}-6a[Ls]- (1 + L) (FaF o) s0(4<y>‘1a)%a,
R+
satisfy
|RY[h]| + |RZ*[A)| < s2(|0yhl 2 - (y)~ 2 Infy), (4.29)

which gives an acceptable contribution. On the other hand, integrating by parts and
using (4.9), we see that

R = [0 {hly+ )+ hly = )} - JalLu] (Fa + Foo) - (1= plafy) o)) s

@
Ry

(&% «

_ —/{h(y+a)+h(y—a)}-aaa {JQ[LS] (Fat Fp)- M} da

Ry
satisfies

3
2

[RY ()| < s* (1Al 2 (y) -

and similarly for R>?. R? can be treated similarly as R?. To finish the proof, it only

remains to show

1R [g1; Ls + 1] — R [g1; Ls] — (R’[g2; Ls + g2] — R [g2; L)) |l a2
S (8% + lgullFn + llg2llzn] llor — g2l m-

We start with the case j = 2. The case j = 3 is similar and will not be detailed. We
decompose

R%[g1; Ls + g2) = R*"°[g1; Ls + g2] + R*"[g1; Ls + g2),

R2Milgy: h] = /(% {01y +a) — g1y — a)} - 8[h, k) (y) - (1 + h?) (FQF,Q).so(a)d_O‘,

@
Ry

Rlgust]i= [ o1y +a) — 01y - 0} - a0 {310, 1100) - (14 1) (FuF-o)
Ry
1—¢p(a) } da

(0% 67

Inspecting (2.3) and (2.5)-(2.6), we see that to control R%" it suffices to show that
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do
[ / 9 (y £ )| - balLsl()lp(@) —llrinrz S sllg1 L2,

do
[ / lg1(y £ a)l - 16192, Ls](y)lp(@)—llL1nr < sllgillzzllgallmr s

do
| / |91 (y £ )| - 10192, 931 () lp(@) iz S 191112 Nl g2 211 gl 22 -

The first estimate follows by Cauchy-Schwarz as in (4.29); the last two follow using (4.3)
and (4.4). Independently,

1
|R%[91; Ls + g2

SY ls+lgles] [lntwza)- || £ 201+ 100, f sl | - 5,
+ R, fo

+a,0

so that this term can easily be handled using (4.9).

It remains to consider R'[g1; Ls + go]. The broad ideas are the same as for R?, but
we need to be slightly more careful because J, has less good properties than ¢, and we
need to take advantage of the difference of derivative in g; to compensate for this.

We claim that it suffices to show that for any dyadic number A > 0, there exists a
decomposition R'[gy; Ls + g2] = R}L{M [91; Ls + g2] + R}L{lo[gl; L + g2] such that

|IRY*[g; Ls + R][| inze S C(x, A, 9) [s° + |B]1 2],
IR *[g; Ls + ha] — R**[g; Ly + ha]l| 1122 S Clx, A, )| (4.30)
— hallgr [s + |hall e + P2l a0],

where
C(hi, A, g) == A"HA) 2 |lg" |2, C(lo, A, g) = Algl|e. (4.31)

Indeed, to obtain (4.25), we only need to replace C(x, A, g) by ||g]|g:. To do this, we
decompose g = Y 5 gp using a Littlewood-Paley projection such that

lgnllcz S min{l, B~ }gllm,  llg5llee S min{B? Blg|m,

and for each gp, we choose A := B’ + B9 for 0 < § < 1/5 and we compute that

> {Cllo, A gp) + C(hi, A, gp)} S Y min{B°, B~ }gllu: < llglla-
B B
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It now remains to prove (4.30)-(4.31). We decompose, for A > 0 dyadic, R'[g1; Ls +

g2] = RS 915 Le + g2] + RY'°[g1; L + g2) where

do

R g1, 1] /{glym iy = )} Jalh] - (Fa+ Fo) - plAa) 2,

(0%

Ry (g1,h) := / {n(y+ ) +91(y —a)} - ada {Ja[h] (Fa+Foa)- L(Aa)} %a-
Ry
(4.32)

For Rllq’hi, using (2.3) and (2.5)-(2.6), it suffices to show that

da
||/ / 19y + 1) -] f 920)] - 9(40) 2 1

R, {|t[<a} +0,0

< A7 1+ A) gl ez lgallan,

da _ _1
1] 16w+ 01 alesgell - (40) 2 linse £ 5471+ 4) g ol
Ry {lt|<a}

1] ot 01 el gl - o400 S s

Ry {[t|<a}
SATN U+ A)72 g |2 g2l llgsl e
The first estimate follows from (4.9) and the bound (4.10). The second and third follow

from (4.9) and (4.11). We now consider the contribution of R%'. Inspecting (4.32), it
suffices to show that

[ 1910 ) f 9200) (L1 + 00 (alLuDl} 2z - (1= pl40)) 5

R4 +a

< SAllgulleellg2ll o

/ I+ a)- | ada fga(y) ValEalllzznzs - (1~ p(A0) 5 < 2 Allgr 122l
R4+ +a

/ lo1(y = @) [1Talg2, 93]l + |0 ulgo, )l 2zs - (1 — p(Aa)) o

Ry

S Allgillzellg2ll s llgsllze,

where in the last estimate we consider g3 = L, or g3 € H'. These estimates all follow
from (4.9) and direct integration. O
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Lemma 4.5. Assume (4.14) and recall T and T defined in (3.3). There holds that

ITE 5. S5 1T, g e S Sl (4.33)

and

ITsalos] - Toslorlll s o S [5% + a2 + loalin] o — . (4.34)
Besides the same bound hold if we replace T[h] by T[h] = (1 + h?)T[h].

Proof of Lemma 4.5. We have that

T[h] = T[h,h; h] = f% /(Aah) (ALh) - ][h : F2(][ h)da,

R a «

and using that
[AaLs| Ss(e) + @)™ |Aagl Smin{a™2, o gl

we see that

V1+y?
V 1 +y2‘T[L87LSa | S 2/ ’ Hg”L‘x’ 5 SQHQHL"‘H

2+2

\/1+y2 . T
V1+ 92T [Ls,g;h(y)| S5 | ———=min{a"?,a" }da-|gllm|h]L=
14+ a2+ y?

S sllgllar Al e In{y),

and we deduce (4.33). For (4.34) it suffices to also show that

I [ 1(Bag) - (Bagolldal 5, Sl ol
R

but this follows from

1 _
Bagw)] < o / S+ D [Dagllzz < ol gllze,
{ItI<]]}
which gives
1(Bag) (Aage) s llga s,

and the proof is complete. 0O
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4.8. Proof of the main estimates for the fixed-point formulation

4.8.1. Proof of Lemma 3.4
Starting from

2 ) 2 1., 4 1. 2 1.,
= arct —1=(1- Zarctan(=))? — 1 = —— arctan(=) + (= arctan(-))2,
(W arctan(z)) ( —arc an(z)) —arc an(z) + (7r arc an(z))
we see that, for z = (14 s2/3)y > 1,
4 2 1 2 1 2
3 3 2
, = —s°—arctan(z) - = arctan(=) + s3(Z arctan(=))? - = arctan(z),
w s°—arc an(z) —arc an(z) +s (7T arc an(z)) —arc an(z)
and in particular, g is C*° and
Ts(y) = Oyso(y)s  105ms(y)] = Oumsoo((y) 71 79).
In particular, we observe that
I7sll e < 8°.
In addition, using (4.19), using (4.25) and (4.33) and direct computations, we see that

”W[LS]ayLSHLlﬂHl + ||R[LS] + ”T[LS]H 4 S 537

HL%QL2 L3NL2 ™~

and using Lemma 3.2, we see that
1B (WILJO,L) i + 1T iR + [T TIL e S 6% O

4.8.2. Proof of Lemma 3.5
The proof follows by Neumann series. Using Lemma 3.2, we see that

(L3 = ") gl + T2 (IVI(L3 = 5°/3)g) | S 82 (|9l -
In addition, using Lemma 3.2, and Lemma 4.3, we see that

ITo[WI[Llgll e S WLl po llgll e + 10, W L]l 22 |l gll <
IT-1[g0,W[Ls|Illzr S gl z2npne= |0y WLl Lz,
[T -1[Wi[g]0y Lsll 2 S [IWalglllpe |0y Ll 12

Finally, using Lemma 4.4 and Lemma 4.5, we see that

IT_[Ralgl e + T [Tilglllre S s2 Mgl
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This gives the estimate of A + Id.
Next, we compute that

0sA[g] = — [125/(3 + 52)% + kO, (L2 — 32)] g+ RQ'/I\‘AHV|(4S/3 +05(L? — 5%))g]
— KTo[gdsWLs)] + KT _1[gds0,W L] — W1[g)0, s Ls — 0, Ls0sW1[g]
+ 0,R1[g]] + T _1[0:Th[g]]

and using that
OsLg=s1Ls+r, 7l < 82,

direct calculations and adaptations of Lemma 4.3, Lemma 4.4 and Lemma 4.5 give the
bound on 0,A. O

4.8.8. Proof of Lemma 3.0
Using the fact that H' is an algebra, we see that

IZsg® [z + g° e + 1T 1 [IVI(Lsg® + 7 /3)] e S I LsllzeNgllz + Nlgldin

and since these expressions are multilinear they extend to differences. In addition, using
Lemma 4.3, we see that

[(W>2lga] = W>2[g1])Oy Ls |l inre S [[Wa2(g2] — Waalgi]llLe [0y Ls|l1nr2
Ss[s®+ ol + lgaln] g2 — gulla,
W>1[g1]0y (92 — g)llLrnrz S (IW>ilga]llL2nre 10y (g2 — g1) 22,
[(W>1[g2] = W>1[91])0y g2l z1nre S [W1lg2] = Wailgi]ll2nze |0y g2ll L2

Similarly, using Lemma 4.4 and Lemma 4.5,

[R>2[g92] — R>2lg1]llLrnre + [ T>2l92] — To2lo]llninze
S[8% + lallFn + lg2liFn] llg2 — gullarn,

and the proof is complete. O
5. Numerical results
In this section, we describe how to numerically compute the branch of solutions k;

starting from the zero solution. Their existence for small s was proved in Theorem 1.1.
See Figs. 1-3 below for different depictions of the solutions.
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z

Fig. 1. Plot of the difference between the numerically computed solutions E(z) and the linear approximation
%sz = %stan(y) for s = 1,2,4,7. The branch continues beyond what is calculated.

Fig. 2. Comparison of the numerically computed solutions k(y), y € [0,10] for s =0.1,0.2,0.4,1,2,4,7. All
functions are normalized to value 1 at infinity. The branch continues beyond what is calculated. The curve
corresponding to s = 0.1 is the lowest one and monotonically increase with s.
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0 N 0
50 0 50 05 0 05
Yy Yy

Fig. 3. Comparison of the numerically computed solutions foy k(s)ds, for s =0.1,0.2,0.4,1,2,4,7. Panel (a):
y € [—50, 50], panel (b): Close-up, y € [—0.5,0.5]. The curves increase with s.

The main advantage of working with the formulation of equation (1.3), as opposed to
a self-similar equation for the function f, is that all the quantities involved are bounded.
Nonetheless there are a few technicalities which we outline below.

The first step consists in changing variables and transforming the infinite domain into
a finite one. We do so by setting y = tan(z) and k(z) := k(tan(z)) = k(y) so that the
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3
successfully for other problems in fluid mechanics (see for example [40] and references

domain of definition is mapped into [—%, ] This change of variables has been used

therein).
Moreover, we exploit the symmetry to gain an extra cancellation at 7. After perform-
ing the change of variables and a lengthy calculation, (1.3) is transformed into

s
2

. 7 1 [ F(2)cos(z)* = K (y) cos(y)®  sec(y)’
0 = sin(z) cos(2)k'(z) + - / tan(z) — tan(y) = (Aylz:(z))Qdy
2 f( R VAR
T 0/ (tan(z) - tan(y)) (14 (A k(2 W) dy
L[ E@eseP - Fwesw? 1
Tz 0/ tan(z) + tan(y) 1+ (A k(2))? ()"dy

tan(z) + tan(y)

2 (Rt ' AkE) o
2 / ( ) T e 5.1)

where

Yy o7
Ayl;;(z) = /—sec(w) k(w) dw. (5.2)
tan(y) — tan(z)
z

We performed continuation in s in increments of As = 0.1 and did 70 iterations, using
as initial guess k = As%z (the linear approximation) at the first iteration, and for the
subsequent ones the result of the previous iteration plus As%z to ensure that the updated
boundary condition at z = 7 is satisfied. In the range we computed, we did not see any
impediment towards advancing in s, other than computation time, although the errors
become bigger as s grows and the algorithm may take one or two more iterations to
converge for s ~ 5 than for s ~ 0.1.

To compute a solution for a fixed s, we used the Levenberg-Marquardt algorithm
[39,41]. Our discretization variables consist on the values of k at gridpoints z; = mi,
where we are using that k is odd to solve for positive z only. Other strategies such as
non-uniform meshes (concentrating points towards 0) or s-dependent compactifications
would perhaps improve the performance for large s since &’(0) grows with s (see Fig. 1),
but we did not explore them here. We took N = 129 and the discrete system we solved
was equation (5.1) evaluated at z;, i = 1,..., N — 1 plus the boundary conditions k(0) =
0,k (%) = s. In order to compute the derivatives we calculated a spline of degree 4
interpolating through the discrete grid and approximated the derivatives of k by the
derivatives of the spline. To perform the integration, we integrated in (5.1) in the variable
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y using trapezoidal integration and a grid of 10N = 1290 points. We also tried finer grids

and saw virtually no difference with respect to the results. In order to get stable results,
5
computing separately the integrand in each of them, carefully computing the limit. For

we took care of splitting the domain into 3 regions (z ~ Z,z ~ y and the rest) and
example, note that despite being bounded at z ~ 7, there is a strong instability coming
from the fact that the integrand is of the form co—oc if not dealt with properly. The inner
integrals in (5.1) (i.e. the A integrals) were computed using an adaptive Gauss-Kronrod
quadrature of 15 points, also taking care of the limits at 7 and at y.
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