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1. Introduction

1.1. The Muskat problem

The Muskat problem describes the evolution of the free boundary between immiscible 
and incompressible fluids permeating a porous medium in a gravity field. Each fluid is 
assumed to have constant physical properties and their velocities are governed by Darcy’s 
law,

μ

κ
u(z, t) = −∇p(z, t) − ρg(0, 1), z ∈ R2, t ∈ R+,

where p, u denote the pressure and velocity of the fluids, ρ, μ are their density and 
viscosity, κ is the permeability constant of the medium, and g the gravitational constant. 
With or without surface tension effects, it has long been known that the problem can be 
reduced to an evolution equation for the free interface [23,32,45]. The case of a two-fluid 
graph interface

Γ(t) = {(x, f(x, t)) : x ∈ R}

with only gravity effects admits a particularly compact form [23], now called the Muskat 
equation:

∂tf = 1
π

ˆ

R

∂xΔαf

1 + (Δαf)2 dα, Δαf(x) = f(x) − f(x − α)
α

, x ∈ R. (1.1)

Above, all physical constants have been normalized for notational simplicity. The Muskat 
equation is well-posed locally in time for sufficiently smooth initial data, and globally in 
time if the initial interface is sufficiently flat [8,20,22–24,45–47]. Most notably, an initially 
smooth interface can turn [13] and later lose regularity in finite time [14]. Furthermore, 
many other behaviors are possible, with interfaces that turn and then go back to the 
graph scenario [25,26]. Thus, finding criteria for global existence became one of the 
main questions for the Muskat equation. Since equation (1.1) has a natural scaling given 
by

f(x, t) → λ−1f(λx, λt), λ > 0,

these criteria are stated in terms of critical regularity, i.e., spaces that scale like Ẇ 1,∞. 
In this sense, [21] provides blow-up criteria in terms of the uniform continuity of the 
slope. Moreover, having the product of the maximal and minimal slopes strictly less 
than 1 is sufficient for global existence [11]. See also [28]. Medium-size initial data in 
critical spaces but with uniformly continuous slope guarantees global wellposedness [20]. 
If the initial data is sufficiently small in Ḣ

3
2 , then the slope can be arbitrarily large 

[27] and even unbounded [5,7]. The result [5] also shows local existence and uniqueness 
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in H
3
2 . This is currently the best (lowest) regularity result in terms of the space of 

the initial data, which is a problem that has garnered a lot of attention recently (e.g. 
[3,6,17,18,21,42–44]).

1.2. Main result

In this paper, we show the existence of self-similar solutions for the Muskat problem. 
These solutions correspond to the global-in-time evolution of initially exact corners, and 
thus they do not fit into the aforementioned results.1

We can rewrite (1.1) in terms of a closed system for the slope h = ∂xf :

0 = ∂th − 1
π

ˆ

R

Δα∂xh

1 + (
ffl

α
h)2 dα + 2

π

ˆ

R

(Δαh)2 ·
ffl

α
h

(1 + (
ffl

α
h)2)2 dα,

 

α

h(x) = 1
α

xˆ

x−α

h(z)dz.

(1.2)

Plugging the ansatz h(x, t) = k(x/t) in (1.2), we arrive at the equation

0 = Sk + 1
π

ˆ

R

Δα∂yk

1 + (
ffl

α
k)2 dα − 2

π

ˆ

R

(Δαk)2 ·
ffl

α
k

(1 + (
ffl

α
k)2)2 dα, S := y∂y, (1.3)

for which we construct a local curve of solutions:

Theorem 1.1. There exists s∗ > 0 such that for all |s| < s∗, there exists a self-similar 
solution of (1.2) hs(x, t) = ks(x/t) satisfying limy→+∞ ks(y) = s. In addition, we have 
that

‖ks(y) − s
2
π

arctan(y)‖H1 + |s|‖∂sks(y) − 2
π

arctan(y)‖H1 � |s|3.

Remark 1.2. (i) In particular, we see that ks ∈ L∞ \Ḣ
1
2 (R). (ii) In fact, we will compare 

ks and (2s/π) arctan((1 + s2/3)y), but one can readily see that the difference between 
the two ansätze is O(s3). (iii) Due to the symmetry we can find solutions with negative 
s by setting k−s(y) = −ks(y). From now on, we assume s ≥ 0.

Despite the numerous works on the Muskat equation and the mathematically equiva-
lent vertical Hele-Shaw problem, self-similar solutions were only known for the simplified 
thin film Muskat [30,33,38]. See also [31] where the authors find traveling solutions for 
the Muskat problem with surface tension effects included.

1 The results in [12] allow for merely medium size bounded slopes but require sublinear growth of the 
profile, while our solutions grow linearly in space.
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From our numerical results, it might look surprising that, no matter how big the slope 
is, the initial corner instantly smooths out, as opposed to the known “waiting time” 
phenomenon in the Hele-Shaw problem [1,9,10,16,19,32,35–37]. We must note however 
that those works correspond to a horizontal Hele-Shaw cell (hence without gravity) and 
some include fluid injection. Moreover, some of these works are in a one-phase setting, 
which even for Muskat significantly changes the possible behaviors [2,4,15,29,34].

1.3. Outline of the paper

The rest of the paper is structured as follows. In Section 2 we summarize the notation 
that will be used along the paper. Next, in Section 3, we first extract the quasilinear 
structure of (1.3) and rewrite it as a fixed point equation. This section contains the 
proof of the main Theorem 1.1 via Proposition 3.3. Section 4 contains the analysis of 
all the terms involved in the equation. We will use key cancellations provided by some 
“elementary bricks” that we will be able to extract through the symmetrization of the 
nonlinear terms. Finally in Section 5 we illustrate our main Theorem by numerically 
computing part of the branch of self-similar solutions.

2. Notations

2.1. General notations

In the following, we fix ϕ ∈ C∞
c (−4/3, 4/3), a nonnegative even function such that 

ϕ ≡ 1 on [−3/4, 3/4]. For simplicity of notation, we let 
ffl

±α,0 f be an arbitrary function 
among

 

±α,0

f ∈ {f,

 

α

f,

 

−α

f}.

We will work mostly on the Fourier side. We define the Fourier transform as

F(f)(ξ) = f̂(ξ) := 1√
2π

ˆ

R

f(y)e−iyξdy.

We note that the Fourier transform of a real odd function is an odd function taking 
purely imaginary values. We define the Fourier multiplier |∇| by

F {|∇|f} (ξ) = |ξ|f̂(ξ).

Given an operator T , we let

T̂ [f ] = F−1T [f̂ ] (2.1)
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be its conjugation by the Fourier transform. To avoid functional analytic considerations, 
we say that a functional g 	→ N (g) is analytic around a function Ls if for any choice of 
g1, g2 in the appropriate space (here H1) the restricted function

Ng1,g2(t1, t2) := N (Ls + t1g1 + t2g2)

is analytic. In this case, we denote

N1[g] := d

dt1
Ng,0(0, 0), N≥2[g] := N (Ls + g) − N (Ls) − N1[g],

N≥1[g] := N1[g] + N≥2[g],
(2.2)

and we observe that

N≥2(Ls + g2) − N≥2(Ls + g1) =
1ˆ

t1=0

d

dt1

d

dt2
Ng1,g2−g1(t1, 0)dt1

+
1ˆ

θ=0

(1 − θ) d2

dθ2 Ng1,g2−g1(1, θ)dθ.

(2.3)

In these notations, the “center” Ls is implicit, but since we will always consider func-
tionals around Ls defined in (3.11), there should be no ambiguity.

2.2. Algebra of operators

We will use operators of the form

N (f)(y) :=
∞̂

α=0

m(f ; α, y) · G(f,

 

α

f,

 

−α

f)dα

α

associated to some multilinear function f 	→ m(f ; α, y) (i.e. multilinear in f for each 
fixed α, y) and some numerical analytic function G. For such operators, we compute 
that

N1[g] =
∞̂

α=0

m1(g, Ls, . . . , Ls; α, y) · G(Ls,

 

α

Ls,

 

−α

Ls)dα

α

+
∞̂

α=0

m(Ls; α, y) · vg · ∇G(Ls,

 

α

Ls,

 

−α

Ls)dα

α
, vg := (g,

 

α

g,

 

−α

g),

(2.4)

and
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d

dt1

d

dt2
Ng1,g2(t1, t2) =

∞̂

α=0

m2(g1, g2, Lt1,t2 ; α, y) · G(Lt1,t2 ,

 

α

Lt1,t2 ,

 

−α

Lt1,t2)dα

α

+
∞̂

α=0

m1(g1, Lt1,t2 ; α, y) · vg2 · ∇G(Lt1,t2 ,

 

α

Lt1,t2 ,

 

−α

Lt1,t2)dα

α

+
∞̂

α=0

m1(g2, Lt1,t2 ; α, y) · vg1 · ∇G(Lt1,t2 ,

 

α

Lt1,t2 ,

 

−α

Lt1,t2)dα

α

+
∞̂

α=0

m(Lt1,t2 ; α, y) · ∇2G(Lt1,t2 ,

 

α

Lt1,t2 ,

 

−α

Lt1,t2)[vg1 , vg2 ]dα

α
,

(2.5)

where m1(f, g, . . . g) = dgm1 · f and similarly for mj , and Lt1,t2 := Ls + t1g1 + t2g2. 
Similarly

d2

dθ2 Ng1,g2−g1(1, θ) =
∞̂

α=0

m2(g2 − g1, g2 − g1, Lθ; α, y) · G(Lθ,

 

α

Lθ,

 

−α

Lθ)dα

α

+ 2
∞̂

α=0

m1(g1 − g1, Lθ; α, y) · vg2−g1 · ∇G(Lθ,

 

α

Lθ,

 

−α

Lθ)dα

α

+
∞̂

α=0

m(Lθ; α, y) · ∇2G(Lθ,

 

α

Lθ,

 

−α

Lθ)[vg2−g1 , vg2−g1 ]dα

α
.

(2.6)

3. Reduction to a fixed point estimate

3.1. Analysis of the quasilinear structure

We can extract the quasilinear part from (1.3). This will be defined in terms of two 
main terms. We define the function F and the operator W as follows

F (t) :=
[
1 + t2]−1

, W [g](y) := 1
π

ˆ

R

(
ffl

α
g(y))2 − g2(y)

1 + (
ffl

α
g(y))2

dα

α
, (3.1)

and we obtain the following expression:

Lemma 3.1. The self-similar profile k satisfies

|∇|k − S

[
k + k3 ]

+ W [k]∂yk = R[k] + T [k], (3.2)

3
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where the semilinear terms are defined as

R[h] := 1
π

ˆ

R

∂α {h(y − α)} ·
(
ffl

α
h)2 − h2

1 + (
ffl

α
h)2

dα

α
,

T [h] := (1 + h2)T [h]; T [h] := 1
π

ˆ

R

(Δαh)2 · F ′(
 

α

h)dα.

(3.3)

Proof of Lemma 3.1. Dividing by 1 + k2, it suffices to show that (1.3) can be rewritten 
as

[F (k)|∇| − S] k + V [k]∂xk = F (k)R[k] + T [k],

V [g](y) := 1
π

ˆ

R

⎧⎨
⎩F (g(y)) − F (

 

α

g(y))

⎫⎬
⎭ dα

α
.

(3.4)

The only nontrivial part is the decomposition of the second term in (1.3). We can expand

1
π

ˆ

R

∂y(Δαg) · F (
 

α

g)dα = −F (g) · |∇|g + 1
π

ˆ

R

∂y(Δαg) ·

⎧⎨
⎩F (

 

α

g) − F (g)

⎫⎬
⎭ dα

= −F (g) · |∇|g + ∂yg(y) 1
π

ˆ

R

⎧⎨
⎩F (

 

α

g) − F (g)

⎫⎬
⎭ dα

α

− 1
π

ˆ

R

∂yg(y − α) ·

⎧⎨
⎩F (

 

α

g) − F (g)

⎫⎬
⎭ dα

α
,

and rearranging the terms, we arrive at (3.4). �
3.2. Study of the linear equation: Duhamel formula

Given a constant κ > 0, we now consider the linear adjusted equation from (3.4)

(κ|∇| − S) k = p1 + ∂yp2 (3.5)

for an odd function k. Taking the Fourier transform and using Duhamel’s formula, we 
obtain the ODE

∂ξ

{
ξeκ|ξ|k̂

}
= eκ|ξ|p̂1 + iξeκ|ξ|p̂2.

If we assume that ξk̂(ξ) is continuous at the origin, and we integrate from 0, we find that
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k̂(ξ) = C
e−κ|ξ|

ξ
+ T−1[p̂1] + T0[p̂2], (3.6)

for some constant C, where the linear operators are given by

T−1 : g 	→ 1
ξ

ξˆ

η=0

eκ(|η|−|ξ|)g(η)dη, T0 : g 	→ i

ξ

ξˆ

η=0

ηeκ(|η|−|ξ|)g(η)dη. (3.7)

In particular, under our assumptions, the odd solutions to the free equation (κ|∇| −S)k =
0 with the condition limy→+∞ k(y) = s are given by

Ls,κ(y) := 2s

π
arctan(y/κ). (3.8)

From now on, we shall restrict ourselves to the study of odd solutions.

3.2.1. Operator estimates
It remains to estimate the solution operators from (3.7).

Lemma 3.2. The operators

T−1 : g 	→ 1
ξ

ξˆ

η=0

eκ(η−ξ)g(η)dη, T0 : g 	→ i

ξ

ξˆ

η=0

ηeκ(η−ξ)g(η)dη,

defined for functions on L2
loc(0, ∞) satisfy the boundedness properties

‖ξT−1‖L2→L2 + ‖T−1‖L3→L2 � 1,

‖T0‖L2→L2 + ‖T0‖L2(ξ2dξ)→L2(ξ2dξ) � 1.

Proof of Lemma 3.2. To control T−1, we first use Hölder’s inequality to bound

|T−1[g](ξ)| ≤ ξ− 1
p

(
1 − e−κξ

κξ

) 1
p′
⎛
⎝ ξˆ

η=0

eκ(η−ξ)|g(η)|pdη

⎞
⎠

1
p

� ‖g‖Lp · min{ξ− 1
p , ξ−1},

which shows the second bound. For the first, we compute by duality that

〈ξT−1[g], h〉 =
¨

K(ξ, η)g(η)h(ξ)dξdη, K(ξ, η) := 1{0≤η≤ξ}eκ(η−ξ),

and Schur’s test allows to conclude. This also gives the second estimate on T0, and the 
first one follows a similar proof with kernel K ′(ξ, η) = (η/ξ)K(ξ, η). �
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3.3. Fixed point formulation

3.3.1. Linearization at self-similar profile
The key observation we will use is that for the solutions of the linearized problem 

(3.8), the quasilinear part simplifies significantly since L2
s,κ is almost constant away from 

a neighborhood of the origin:

L2
s,κ(y) = s2 + p(y), p(y) = O(〈κ/y〉−1), L3

s,κ = s2Ls,κ + (L2
s,κ − s2)Ls,κ.

We can now linearize (3.2) at the constant s to get an equation of the form (3.5) with

κ :=
[
1 + s2/3

]−1
. (3.9)

More precisely, we obtain

|∇|k −
[
1 + s2/3

]
Sk = 1

3S
[
(k2 − s2)k

]
− W [k]∂yk + R[k] + T [k],

which we prefer to rewrite via a normal form as

[κ|∇| − S] h = κ2

3 |∇|
[
(k2 − s2)k

]
− κW [k]∂yk + κR[k] + κT [k],

h := k + κ

3 (k2 − s2)k.

(3.10)

3.3.2. Fixed point formulation
We can now seek solutions of (3.10) as perturbations of (3.8) when s, κ are related as 

in (3.9). We seek solutions of the form

k(y) = Ls(y) + g(y), Ls(y) := 2s

π
arctan(y/κ) = s

2
π

arctan((1 + s2/3)y). (3.11)

We note for later use that Ls is a smooth function of s and

∂sLs = 2
π

arctan(y/κ) + 4
3π

s2y

1 + (y/κ)2 ,

∂s(L2
s − s2) = 2s

(
s−2(L2

s − s2) + 2
π

arctan(y/κ) 4
3π

s2y

1 + (y/κ)2

)
.

(3.12)

We define πs by

πs := (L2
s − s2)Ls.

Then, plugging (3.11) into (3.10), we obtain
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h = Ls + (κ/3)πs + (1 + κ(L2
s − s2/3))g + κLsg2 + (κ/3)g3,

[κ|∇| − S] h = κ2|∇|
[
(1/3)πs + (L2

s − s2/3)g + Lsg2 + g3/3
]

− κW [Ls]∂yLs − κ (W [Ls + g] − W [Ls]) ∂y (Ls + g) − κ∂y (W [Ls]g)

+ κg∂yW [Ls] + κ(R[Ls] + R1[g] + R≥2[g] + T [Ls] + T1[g] + T≥2[g]).

Thus, using (3.6) and the notation (2.1), we obtain two equations for h (after identifying 
the element in the kernel for the second equation from the limit at ∞):

h = Ls + (κ/3)πs +
{

3(1 + s2)/(3 + s2) + κ(L2
s − s2)

}
g + κLsg2 + (κ/3)g3

= Ls + κT̂−1 {(κ/3)|∇|πs − W [Ls]∂yLs + R[Ls] + T [Ls]}

+ κT̂−1{κ|∇|(L2
s − s2/3)g − ∂y (W [Ls]g) + g∂yW [Ls] − W1[g]∂yLs + R1[g] + T1[g]

+ κT̂−1{κ|∇|(Lsg2 + g3/3) − W≥2[g]∂yLs − W hi
≥1[g]∂yg − ∂y(gW lo

≥1[g]) + g∂yW lo[g]

+ R≥2[g] + T≥2[g]},

where R1, T1, R≥2, T≥2 follow the convention in (2.2) and W = W lo + W hi is a decom-
position later introduced in (4.18). Combining the two equations for h, we arrive at the 
fixed-point formulation:

Π = Ag + N (g), (3.13)

with forcing term

Π := (κ/3)πs − (κ2/3)T̂−1[|∇|πs] + κT̂−1 [W [Ls]∂yLs − R[Ls] − T [Ls]] , (3.14)

linear operator

Ag := −(1 + 2s2

3 + s2 + κ(L2
s − s2))g + κ2T̂−1

[
|∇|(L2

s − s2/3)g
]

+ κT̂−1 [g∂yW [Ls] − W1[g]∂yLs + R1[g]] − κT̂0[W [Ls]g] + κT̂−1[T1[g]],
(3.15)

and nonlinearity

N (f) := −κ(Ls + g/3)g2 + κ2T̂−1
[
|∇|(Lsg2 + g3/3)

]
+ κT̂−1

[
−W≥2[g]∂yLs − W hi

≥1[g]∂yg − g∂yW lo
≥1[g]

]
− κT̂0[gW lo

≥1[g]]

+ κT̂−1 [R≥2[g]] + κT̂−1 [T≥2[g]] ,

(3.16)

where we used that T̂−1[∂yf ] = T̂0[f ]. In view of this, Theorem 1.1 follows from the 
following existence result.
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Proposition 3.3. There exists s∗ such that for all 0 < s < s∗, there exists exactly one 
solution gs of (3.13) with (3.14)-(3.16) in a ball in H1, BH1(0, s∗). In addition the 
mapping s 	→ gs is C1 in H1 and

‖∂sgs‖H1 � s2. (3.17)

This proposition will be an easy consequence of the following quantitative estimates 
proved in the next section.

Lemma 3.4. There holds that

‖Π‖H1 � s3, ‖∂sΠ‖H1 � s2.

Lemma 3.5. There holds that

‖A + Id‖H1→H1 � s2, ‖∂sA‖H1→H1 � s.

In particular, there exists s1 > 0 such that A is invertible in H1 for all 0 ≤ s ≤ s1.

Lemma 3.6. There holds that N (0) = 0 and whenever ‖g1‖H1 + ‖g2‖H1 ≤ 1,

‖N (g1) − N (g2)‖H1 � ‖g1 − g2‖H1 ·
[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
.

Proof of Proposition 3.3. We are now ready to prove Proposition 3.3 via a fixed point 
formulation. For ε > 0, we consider X := {g ∈ H1 : ‖g‖H1 ≤ ε} and we want to show 
that (3.13) has a unique solution in X, provided that 0 < s ≤ s∗ is small enough. We 
define the mapping

Φ : g 	→ A−1 [Π − N (g)] ,

which is well defined on H1 since A is invertible for 0 < s � 1 by Lemma 3.5. Using 
Lemma 3.5 and Lemma 3.6, we see that Φ : X → X provided 0 < ε ≤ ε∗ is small enough. 
Finally, decreasing ε∗ and using Lemma 3.6 again, we see that Φ is a contraction on X. 
By the Banach fixed point theorem it has a unique fixed point in X.

In addition, we can study the smoothness of s 	→ gs. Deriving (3.13), we find that

(A + dgs
N )[∂sgs] = ∂sΠs − (∂sA) gs,

and using Lemma 3.4, Lemma 3.5, and Lemma 3.6 again, we deduce that s 	→ gs is C1

and we have (3.17). �
It remains to prove Lemma 3.4, Lemma 3.5 and Lemma 3.6. This will be done in the 

next section.
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4. Quantitative analysis

4.1. Analysis of the elementary bricks

We need to control many terms. Fortunately, in many of them, the key cancellation 
is provided by simple “elementary bricks” which can be analyzed separately. We define 
the quadratic expressions for α ≥ 0:

δα[f ](y) := (
 

α

f(y))2 − (
 

−α

f(y))2,

Jα[h](y) :=

⎛
⎝ 

α

h(y)

⎞
⎠

2

− 2h2(y) +

⎛
⎝ 

−α

h(y)

⎞
⎠

2

,

(4.1)

and let δα[f, g] and Jα[f, g] denote the bilinear expression obtained by polarization. We 
see that δα[f ] is odd if f is odd, while Jα[f ] is even if f is either even or odd.

We start by estimating the key cancellation.

Lemma 4.1. Given δα[f, g] defined in (4.1), y ≥ 0 and α ≥ 0, there holds that

s−2|δα[Ls](y)| � 1{0≤α≤y}α ln〈α〉 · min{y, y−2} + 1{0≤y≤α}y min{α, α−1},

s−2|∂yδα[Ls](y)| � 1{0≤α≤y}α ln〈α〉 · 〈y − α〉−1〈y〉−2 + 1{0≤y≤α} min{α, α−1},
(4.2)

and

|δα[Ls, g]| � s‖g‖H1 · min{α
1
2 , α− 1

2 },

|δα[g, h]| � ‖g‖H1‖h‖H1 min{α
1
2 , α−1}.

(4.3)

In addition,

|δα[Ls, g]| � s

ˆ

{|t|≤α}

[
|g′(y + t)| + 〈α〉−1|g(y + t)|

]
dt,

|δα[g1, g2]| � ‖g2‖H1

ˆ

{|t|≤α}

min{α− 1
2 , α− 3

2 }|g1(y + t)|dt,

+ ‖g1‖H1

ˆ

{|t|≤α}

min{α− 1
2 , α− 3

2 }|g2(y + t)|dt

(4.4)

and a derivative brings powers of α−1,

|α∂yδα[Ls, g]|(y) � s
(

|g(y + α)| + |g(y)| + |g(y − α)| + 1
α

α̂

|g(y + t)|dt
)

. (4.5)

t=−α
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Proof of Lemma 4.1. The key observation is that 2δα[f, g] = δ[f, g] + δ[g, f ] where

δ[f, g] := − 1
α

α̂

−α

f(y + t)dt · 1
α

α̂

t=0

{g(y + t) − g(y − t)} dt. (4.6)

We see that the first term in δ vanishes to first order for odd f if α � 1, while the second 
term contains a difference and vanishes to first order for α � 1 when g is smooth. The 
bounds in (4.2) follow directly from the formula (4.6) and the bounds

s−1

∣∣∣∣∣∣
1
α

α̂

−α

Ls(y + t)dt

∣∣∣∣∣∣ � y/(〈y〉 + 〈α〉),

s−1

∣∣∣∣∣∣
1
α

α̂

t=0

{Ls(y + t) − Ls(y − t)} dt

∣∣∣∣∣∣ � 1{0≤α≤y}α ln〈α〉 · 〈y〉−2 + 1{0≤y≤α} min{α, 1},

(4.7)

and

s−1

∣∣∣∣∣∣
1
α

α̂

−α

L′
s(y + t)dt

∣∣∣∣∣∣ � 〈y〉−1〈y − α〉−11{0≤α≤y} + 〈α〉−11{0≤y≤α},

s−1

∣∣∣∣∣∣
1
α

α̂

t=0

{L′
s(y + t) − L′

s(y − t)} dt

∣∣∣∣∣∣ � α min{y, 〈y − α〉−1〈y〉−2}1{0≤α≤y}

+ min{α2, α−1}1{0≤y≤α}.

For general odd functions, we obtain that

∣∣∣∣∣∣
1
α

α̂

−α

g(y + t)dt

∣∣∣∣∣∣ � min{
√

y + α, 〈α〉− 1
2 }‖g‖H1 ,

∣∣∣∣∣∣
1
α

α̂

t=0

{g(y + t) − g(y − t)} dt

∣∣∣∣∣∣ �
ˆ

{|t|≤α}

|g′(y + t)|dt,

∣∣∣∣∣∣
1
α

α̂

t=0

{g(y + t) − g(y − t)} dt

∣∣∣∣∣∣ � min{α
1
2 , α− 1

2 }‖g‖H1 ,

(4.8)

from which we deduce (4.3) and (4.4). In addition, we observe that
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δ[∂xg1, g2] = g1(y − α) − g1(y + α)
α

· 1
α

α̂

t=0

{g2(y + t) − g2(y − t)} dt,

δ[g1, ∂xg2] = − 1
α

α̂

−α

g1(y + t)dt · g2(y + α) − 2g2(y) + g2(y − α)
α

,

and using (4.7), we easily arrive at (4.5). �
Lemma 4.2. Let Jα be defined as in (4.1). For 1 ≤ p ≤ ∞, there holds that

‖
 

α

h‖L∞
α Lp

y
+ ‖α∂α

⎛
⎝ 

±α

h

⎞
⎠ ‖L∞

α Lp
y
� ‖h‖Lp ,

‖Jα[h]‖L∞ + ‖α∂αJα[h]‖L∞ � ‖h‖2
L∞ ,

(4.9)

and for Ls we have the more precise bound,

s−2|Jα[Ls](y)| � α ln〈α〉 · 〈y〉−21{0≤α≤y} + min{α2, 1}1{0≤y≤α} � min{α, 1}, (4.10)

while

s−1|Jα[h, Ls](y)| �
ˆ

|t|≤α

[|h(y + t)| + |h′(y + t)|] dt,

|Jα[h1, h2](y)| �
∑

{a,b}={1,2}
‖ha‖L∞

ˆ

|t|≤α

[|hb(y + t)| + |h′
b(y + t)|] dt.

(4.11)

Proof of Lemma 4.2. For (4.9), the estimates in 
ffl

α
h follow from direct computations. 

They directly imply the estimates on Jα. To analyze Jα, we can rewrite Jα[h] = J [h, h]
where2

J [g, h] = 1
2α

α̂

t=0

(g(y + t) − 2g(y) + g(y − t))dt · 1
α

α̂

t=0

(h(y + t) + 2h(y) + h(y − t))dt

+ 1
2

⎛
⎝ 1

α

α̂

t=0

(g(y + t) − g(y − t))dt

⎞
⎠ ·

⎛
⎝ 1

α

α̂

t=0

(h(y + t) − h(y − t))dt

⎞
⎠ .

(4.12)

For (4.10), the second term can be estimated using (4.7), while for the first term, we 
rewrite

2 Note that since J is not symmetric, Jα[g, h] = J[g, h] + J[h, g].
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1
α

α̂

t=0

(h(y + t) − 2h(y) + h(y − t))dt = 1
α

α̂

u=−α

(α − |u|)2h′′(y + u)du. (4.13)

It remains to check (4.11). For the linear term, this follows from (4.12) and (4.7) for the 
second term, while for the first term, we use (4.13) in case g = Ls and∣∣∣∣∣∣

1
α

α̂

t=0

(h(y + t) − 2h(y) + h(y − t))dt

∣∣∣∣∣∣ ≤
ˆ

{|t|≤α}

|h′(y + t)|dt

else. For the quadratic estimate, we proceed similarly for the first term in (4.12) and we 
use (4.8) for the second term. �
4.2. Control on the nonlinear operators

In this section, we will upgrade the bounds on the basic bricks in Section 4.1 to bounds 
on more complicated operators. Since they will not be multilinear, we will only operate 
under the assumption that

‖g1‖H1 + ‖g2‖H1 + ‖g3‖H1 ≤ 1. (4.14)

4.2.1. Symmetrization of the nonlinear operators
We can symmetrize to obtain a key cancellation in the operators involved in (3.2). 

The main observation is that one can always extract δ defined in (4.6). Using that
ˆ

R

H(α)dα

α
=

ˆ

R+

{H(α) − H(−α)} dα

α
, (4.15)

and the symmetrization formulas

F (a) − F (b) = (b2 − a2) · F (a)F (b),

F (a) + F (b) = (2 + a2 + b2) · F (a)F (b),
(4.16)

2(a+b+ − a−b−) = (a+ − a−)(b+ + b−) + (a+ + a−)(b+ − b−),

2(a+b+ + a−b−) = (a+ + a−)(b+ + b−) + (a+ − a−)(b+ − b−),
(4.17)

we can rewrite W [g] = W [g, g; g], where

W [g1, g2; g3] = 1
π

ˆ

R+

δα[g1, g2] · F (
 

α

g3) · F (
 

−α

g3) · (1 + g2
3)dα

α

=
ˆ

R+

δα[g1, g2] · G(g3,

 

α

g3,

 

−α

g3)dα

α
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for some function G analytic in a neighborhood of (0, 0, 0). In fact, to properly control 
the linear part, it will be convenient to decompose further W = W lo + W hi where

W hi[g1, g2; g3] =
ˆ

R+

δα[g1, g2] · G(g3,

 

α

g3,

 

−α

g3)ϕ(α)dα

α
,

W lo[g1, g2; g3] =
ˆ

R+

δα[g1, g2] · G(g3,

 

α

g3,

 

−α

g3)(1 − ϕ(α))dα

α
.

(4.18)

4.2.2. Control on symmetrized operators

Lemma 4.3. There holds that for ∗ ∈ {hi, lo},

‖W ∗[Ls]‖L∞ + ‖〈y〉∂yW ∗[Ls]‖L∞ � s2, (4.19)

and

‖W ∗
1 [g]‖L∞ + ‖W hi

1 [g]‖L2 + ‖∂y(W lo
1 [g])‖L2 � s‖g‖H1 . (4.20)

Finally, we have the nonlinear estimates assuming (4.14)

‖W ∗
≥2[g]‖L2∩L∞ � ‖g‖2

H1 ,

‖W ∗
≥2[g1] − W ∗

≥2[g2]‖L∞ � (s + ‖g1‖H1 + ‖g2‖H1)‖g1 − g2‖H1 .
(4.21)

Proof of Lemma 4.3. We start from the formula (4.18). For (4.19), it suffices to show 
that

‖
ˆ

R+

|δα[Ls]|dα

α
‖L∞ + ‖

ˆ

R+

|〈y〉∂yδα[Ls]|dα

α
‖L∞ � s2, (4.22)

which follows from (4.2) and the bounds

‖Ls‖L∞ + ‖〈y〉∂yLs‖L∞ ≤ s.

For (4.20), inspecting (2.4), and using (4.9) and (4.22), we see that it suffices to show 
that

‖
ˆ

R+

|δα[Ls, g]|dα

α
‖L∞ + ‖

ˆ

R+

|δα[Ls, g]|ϕ(α)dα

α
‖L2 + ‖

ˆ

R+

|∂yδα[Ls, g]|(1 − ϕ(α))dα

α
‖L2

� s‖g‖H1 ,

(4.23)



E. García-Juárez et al. / Advances in Mathematics 399 (2022) 108294 17
and

‖
ˆ

R+

|δα[Ls]| · |
 

±α

g|ϕ(α)dα

α
‖L2 + ‖

ˆ

R+

|δα[Ls]| · |∂y

 

±α

g|(1 − ϕ(α))dα

α
‖L2 � s‖g‖L2 .

We start with the above bound. First, we see from (4.2) that s−1|δα[Ls]| � s min{1, 
√

|α|}
and we compute that

‖
ˆ

R+

|δα[Ls]| · |
 

±α

g|ϕ(α)dα

α
‖L2 � s

¨

{|t|≤|α|≤2}

‖g(y + t)‖L2ϕ(α) dα

α
3
2

dt � s‖g‖L2 ,

and similarly,

‖
ˆ

R+

|δα[Ls]| · |∂y

 

±α

g|(1 − ϕ(α))dα

α
‖L2

� s

ˆ

{α≥1/2}

[
‖g(y ∓ α)‖L2

y
+ ‖g(y)‖L2

y

] dα

α2 � s‖g‖L2 .

The first term in (4.23) can be controlled through (4.3), the second term can be controlled 
through (4.4) and the last term through (4.5).

Finally, we consider (4.21). Inspecting (2.3), (2.5) and (2.6), we see that we need to 
show

‖
ˆ

R+

|δα[g1, g2]|dα

α
‖L∞∩L2 � ‖g1‖H1‖g2‖H1 ,

‖
ˆ

R+

|δα[Ls, g1] ·
 

±α,0

g2|dα

α
‖L∞∩L2 � s‖g1‖H1‖g2‖H1 ,

‖
ˆ

R+

|δα[Ls] ·
 

±α,0

g1 ·
 

±α,0

g2|dα

α
‖L∞∩L2 � s2‖g1‖H1‖g2‖H1 .

(4.24)

The L∞ bounds follow from (4.3) and (4.22) together with the simple bound ‖g‖L∞ �
‖g‖H1 . The L2 bound follows from (4.4) and (4.3) for the first two estimates while for 
the last, we see that

ˆ

R+

|δα[Ls] ·
 

±α,0

g1 ·
 

±α,0

g2|dα

α
� I1 + I2 + I3,

Ij :=
˚

|δα[Ls](y)| · |g1(y + t)g2(y + u)|dα

α3 dtdu,
Sj
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S1 := {|u| ≤ |t| ≤ α ≤ y}, S2 := {|u|, y ≤ |t| ≤ α},

S3 := {|u| ≤ |t| ≤ y ≤ α},

and using (4.2), we can compute that

‖I1‖L2 � s2
¨

{|u|≤|t|}

ln〈t〉
t〈t〉2 · ‖g1(y + t)g2(y + u)‖L2

y
dtdu � s2‖g1‖L2‖g2‖L∞ ,

while

|I2| � s2
¨

〈t〉−2|g1(y + t)g2(y + u)|dtdu � s2‖g2‖L2

¨
〈t〉− 3

2 |g1(y + t)|dt,

|I3| � s2〈y〉−2
¨

{|u|≤|t|≤y}

|g1(y + t)g2(y + u)|dudt � s2〈y〉−1‖g1‖L2‖g2‖L2 ,

and we see that I2 and I3 are in L2. This finishes the proof. �
We now turn to the first semilinear term.

Lemma 4.4. Assume (4.14) and consider R defined in (3.3). There holds that

‖R[Ls]‖
L

4
3 ∩L2 � s3, ‖R1[g]‖

L
4
3 ∩L2 � s2‖g‖H1 ,

‖R≥2[g1] − R≥2[g2]‖L1∩L2 �
[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
‖g2 − g1‖H1 .

(4.25)

Proof of Lemma 4.4. From (4.16) and (4.17) we deduce that

4(a+b+c+ − a−b−c−) = (a+ − a−)(b+ + b−)(c+ + c−) + (a+ + a−)(b+ − b−)(c+ + c−)

+ (a+ + a−)(b+ + b−)(c+ − c−)+(a+ − a−)(b+ − b−)(c+ − c−).
(4.26)

We can use (4.15), (4.26) and (4.16) to decompose

R[h] = − 1
π

ˆ

R

h′(y − α) ·
(
ffl

α
h)2 − h2

1 + (
ffl

α
h)2

dα

α
= 1

4π
(R1 − 2R2 − R3),

where Rj = Rj [h; h] is given by

R1[h1; h2] =
ˆ

R+

∂α {h1(y + α) + h1(y − α)} · Jα[h2] · (Fα + F−α)dα

α
,

R2[h1; h2] =
ˆ

∂α {h1(y + α) − h1(y − α)} · δα[h2](y) · (1 + h2
2) (FαF−α) dα

α
,

R+
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R3[h1; h2] =
ˆ

R+

∂α {h1(y + α) + h1(y − α)} · [δα[h2](y)]2 · (FαF−α)dα

α
,

with the notation

Fα := F (
 

α

h2).

From now on, we will denote Fα = F (
ffl

±α
h) without distinction on h.

We start with the first estimate in (4.25). First, using (4.2) we observe that

|R2[Ls; Ls]| + |R3[Ls; Ls]| � s

ˆ

R+

〈y − α〉−2|δα[Ls]|dα

α
� s3〈y〉−1. (4.27)

In addition, using that

L′
s(y − α) − L′

s(y + α) = 2sκ

π

4yα

(κ2 + (y − α)2)(κ2 + (y + α)2) ,

and (4.10), we see that

|R1[Ls; h](y)| � s‖h‖2
L∞y

ˆ
dα

(κ2 + (y − α)2)(κ2 + (y + α)2) � s‖h‖2
L∞ · y〈y〉−2. (4.28)

We now turn to the other estimates in (4.25) and we start with R̃j [Ls + g] :=
Rj [Ls; Ls + g]. Inspecting (2.4), we see that the linear component follows from (4.27), 
(4.28) and from the bound

s

ˆ

R+

〈y − α〉−2|δα[Ls, g]|dα

α
� s2‖g‖H1 · 〈y〉−3/2,

which follows from (4.3). Similarly, inspecting (2.3) and (2.5)-(2.6), we see that the higher 
order terms can be controlled similarly since we can easily estimate

s

ˆ

R+

〈y − α〉−2|δα[g1, g2]|dα

α
� s‖g1‖H1‖g2‖H1 · 〈y〉−3/2

using (4.3) again.

We now consider Rj [g1; Ls]. Using Cauchy-Schwarz and (4.2), (4.10), we see that

R1,a[h] :=
ˆ

∂y {h(y + α) − h(y − α)} · Jα[Ls] · (Fα + F−α) · ϕ(4〈y〉−1α)dα

α
,

R+
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R2,a[h] :=
ˆ

R+

∂y {h(y + α) + h(y − α)} · δα[Ls] · (1 + L2
s)(FαF−α) · ϕ(4〈y〉−1α)dα

α
,

satisfy

|R1,a[h]| + |R2,a[h]| � s2‖∂yh‖L2 · 〈y〉− 3
2 ln〈y〉, (4.29)

which gives an acceptable contribution. On the other hand, integrating by parts and 
using (4.9), we see that

R1,b =
ˆ

R+

∂α {h(y + α) + h(y − α)} · Jα[Ls] · (Fα + F−α) · (1 − ϕ(4〈y〉−1α))dα

α

= −
ˆ

R+

{h(y + α) + h(y − α)} · α∂α

{
Jα[Ls] · (Fα + F−α) · 1 − ϕ(4〈y〉−1α)

α

}
dα

α

satisfies

|R1,b(y)| � s2‖h‖L2〈y〉− 3
2

and similarly for R2,b. R3 can be treated similarly as R2. To finish the proof, it only 
remains to show

‖Rj [g1; Ls + g1] − Rj [g1; Ls] − (Rj [g2; Ls + g2] − Rj [g2; Ls])‖L1∩L2

�
[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
‖g1 − g2‖H1 .

We start with the case j = 2. The case j = 3 is similar and will not be detailed. We 
decompose

R2[g1; Ls + g2] = R2,lo[g1; Ls + g2] + R2,hi[g1; Ls + g2],

R2,hi[g1; h] :=
ˆ

R+

∂α {g1(y + α) − g1(y − α)} · δ[h, h](y) · (1 + h2) (FαF−α) · ϕ(α)dα

α
,

R2,lo[g1; h] :=
ˆ

R+

{g1(y + α) − g1(y − α)} · α∂α

{
δ[h, h](y) · (1 + h2) (FαF−α)

· 1 − ϕ(α)
α

}
dα

α
.

Inspecting (2.3) and (2.5)-(2.6), we see that to control R2,hi, it suffices to show that
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‖
ˆ

R+

|g′
1(y ± α)| · |δα[Ls](y)|ϕ(α)dα

α
‖L1∩L2 � s2‖g′

1‖L2 ,

‖
ˆ

R+

|g′
1(y ± α)| · |δ[g2, Ls](y)|ϕ(α)dα

α
‖L1∩L2 � s‖g′

1‖L2‖g2‖H1 ,

‖
ˆ

R+

|g′
1(y ± α)| · |δ[g2, g3](y)|ϕ(α)dα

α
‖L1∩L2 � ‖g′

1‖L2‖g2‖H1‖g3‖H1 .

The first estimate follows by Cauchy-Schwarz as in (4.29); the last two follow using (4.3)
and (4.4). Independently,

|R2,lo
≥1 [g1; Ls + g2]|

�
∑

±
[s + ‖g2‖L∞ ]

ˆ

R+

|g1(y ± α) ·

⎡
⎣|

 

±α,0

g2(y)| + |α∂α

 

±α

g2(y)|

⎤
⎦ · 1 − ϕ(α)

α2 dα,

so that this term can easily be handled using (4.9).
It remains to consider R1[g1; Ls + g2]. The broad ideas are the same as for R2, but 

we need to be slightly more careful because Jα has less good properties than δα and we 
need to take advantage of the difference of derivative in g1 to compensate for this.

We claim that it suffices to show that for any dyadic number A > 0, there exists a 
decomposition R1[g1; Ls + g2] = R1,hi

A [g1; Ls + g2] + R1,lo
A [g1; Ls + g2] such that

‖R1,∗[g; Ls + h]‖L1∩L2 � C(∗, A, g)
[
s2 + ‖h‖2

H1

]
,

‖R1,∗[g; Ls + h2] − R1,∗[g; Ls + h1]‖L1∩L2 � C(∗, A, g)‖h2

− h1‖H1 [s + ‖h1‖H1 + ‖h2‖H1 ] ,

(4.30)

where

C(hi, A, g) := A−1〈A〉− 1
2 ‖g′′‖L2 , C(lo, A, g) := A‖g‖L2 . (4.31)

Indeed, to obtain (4.25), we only need to replace C(∗, A, g) by ‖g‖H1 . To do this, we 
decompose g =

∑
B gB using a Littlewood-Paley projection such that

‖gB‖L2 � min{1, B−1}‖g‖H1 , ‖g′′
B‖L2 � min{B2, B}‖g‖H1 ,

and for each gB, we choose A := Bδ + B1−δ for 0 < δ < 1/5 and we compute that

∑
{C(lo, A, gB) + C(hi, A, gB)} �

∑
min{Bδ, B−δ}‖g‖H1 � ‖g‖H1 .
B B
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It now remains to prove (4.30)-(4.31). We decompose, for A > 0 dyadic, R1[g1; Ls +
g2] = R1,hi

A [g1; Ls + g2] + R1,lo
A [g1; Ls + g2] where

R1,hi
A [g1, h] :=

ˆ

R+

{g′
1(y + α) − g′

1(y − α)} · Jα[h] · (Fα + F−α) · ϕ(Aα)dα

α
,

R1,lo
A [g1, h] :=

ˆ

R+

{g1(y + α) + g1(y − α)} · α∂α

{
Jα[h] · (Fα + F−α) · 1 − ϕ(Aα)

α

}
dα

α
.

(4.32)

For R1,hi
A , using (2.3) and (2.5)-(2.6), it suffices to show that

‖
ˆ

R+

ˆ

{|t|≤α}

|g′′
1 (y + t)| · |Jα[Ls]| · |

 

±α,0

g2(y)| · ϕ(Aα)dα

α
‖L1∩L2

� s2A−1(1 + A)−1‖g′′
1 ‖L2‖g2‖H1 ,

‖
ˆ

R+

ˆ

{|t|≤α}

|g′′
1 (y + t)| · |Jα[Ls, g2]| · ϕ(Aα)dα

α
‖L1∩L2 � sA−1(1 + A)− 1

2 ‖g′′
1 ‖L2‖g2‖H1 ,

‖
ˆ

R+

ˆ

{|t|≤α}

|g′′
1 (y + t)| · |Jα[g2, g3]| · ϕ(Aα)dα

α
‖L1∩L2

� A−1(1 + A)− 1
2 ‖g′′

1 ‖L2‖g2‖H1‖g3‖H1 .

The first estimate follows from (4.9) and the bound (4.10). The second and third follow 
from (4.9) and (4.11). We now consider the contribution of R1,lo

A . Inspecting (4.32), it 
suffices to show that
ˆ

R+

‖g1(y ± α)
 

±α

g2(y) [|Jα[Ls]| + |α∂α(Jα[Ls])|] ‖L2∩L1 · (1 − ϕ(Aα))dα

α2

� s2A‖g1‖L2‖g2‖H1 ,

ˆ

R+

‖g1(y ± α) ·

⎛
⎝α∂α

 

±α

g2(y)

⎞
⎠ |Jα[Ls]|‖L2∩L1 · (1 − ϕ(Aα))dα

α2 � s2A‖g1‖L2‖g2‖H1 ,

ˆ

R+

‖g1(y ± α) [|Jα[g2, g3]| + |α∂α(Jα[g2, g3])|] ‖L2∩L1 · (1 − ϕ(Aα))dα

α2

� A‖g1‖L2‖g2‖H1‖g3‖L∞ ,

where in the last estimate we consider g3 = Ls or g3 ∈ H1. These estimates all follow 
from (4.9) and direct integration. �
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Lemma 4.5. Assume (4.14) and recall T and T defined in (3.3). There holds that

‖T [Ls]‖
L

4
3 ∩L2 � s3, ‖T1[g]‖

L
4
3 ∩L2 � s2‖g‖H1 , (4.33)

and

‖T≥2[g2] − T≥2[g1]‖
L

4
3 ∩L2 �

[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
‖g2 − g1‖H1 . (4.34)

Besides the same bound hold if we replace T [h] by T [h] = (1 + h2)T [h].

Proof of Lemma 4.5. We have that

T [h] = T [h, h; h] = − 4
π

ˆ

R

(Δαh) · (Δαh) ·
 

α

h · F 2(
 

α

h)dα,

and using that

|ΔαLs| � s(〈α〉 + 〈y〉)−1, |Δαg| � min{α− 1
2 , α−1}‖g‖H1 ,

we see that

√
1 + y2|T [Ls, Ls; g](y)| � s2

ˆ √
1 + y2

1 + α2 + y2 dα · ‖g‖L∞ � s2‖g‖L∞ ,

√
1 + y2|T [Ls, g; h](y)| � s

ˆ √
1 + y2√

1 + α2 + y2
min{α− 1

2 , α−1}dα · ‖g‖H1‖h‖L∞

� s‖g‖H1‖h‖L∞ ln〈y〉,

and we deduce (4.33). For (4.34) it suffices to also show that

‖
ˆ

R

|(Δαg1) · (Δαg2)|dα‖
L

4
3 ∩L2 � ‖g1‖H1‖g2‖H1 ,

but this follows from

|Δαg(y)| ≤ 1
|α|

ˆ

{|t|≤|α|}

|g′(y + t)|dt, ‖Δαg‖L2
y
� |α|−1‖g‖L2 ,

which gives

‖(Δαg1)(Δαg2)‖L1
y∩L2

y
� min{α− 1

2 , α− 3
2 }‖g1‖H1‖g2‖H1 ,

and the proof is complete. �
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4.3. Proof of the main estimates for the fixed-point formulation

4.3.1. Proof of Lemma 3.4
Starting from

( 2
π

arctan(z))2 − 1 = (1 − 2
π

arctan(1
z

))2 − 1 = − 4
π

arctan(1
z

) + ( 2
π

arctan(1
z

))2,

we see that, for z = (1 + s2/3)y ≥ 1,

πs = −s3 4
π

arctan(z) · 2
π

arctan(1
z

) + s3( 2
π

arctan(1
z

))2 · 2
π

arctan(z),

and in particular, πs is C∞ and

πs(y) = Oy→0(y), |∂a
y πs(y)| = Ox→∞(〈y〉−1−a).

In particular, we observe that

‖πs‖H1 � s3.

In addition, using (4.19), using (4.25) and (4.33) and direct computations, we see that

‖W [Ls]∂yLs‖L1∩H1 + ‖R[Ls]‖
L

4
3 ∩L2 + ‖T [Ls]‖

L
4
3 ∩L2 � s3,

and using Lemma 3.2, we see that

‖T̂−1(W [Ls]∂yLs)‖H1 + ‖T̂−1R[Ls]‖H1 + ‖T̂−1T [Ls]‖H1 � s3. �
4.3.2. Proof of Lemma 3.5

The proof follows by Neumann series. Using Lemma 3.2, we see that

‖(L2
s − s2)g‖H1 + ‖T̂−1(|∇|(L2

s − s2/3)g)‖H1 � s2‖g‖H1 .

In addition, using Lemma 3.2, and Lemma 4.3, we see that

‖T̂0[W [Ls]g‖H1 � ‖W [Ls]‖L∞‖g‖H1 + ‖∂yW [Ls]‖L2‖g‖L∞ ,

‖T̂−1[g∂yW [Ls]]‖H1 � ‖g‖L2∩L∞‖∂yW [Ls]‖L2 ,

‖T̂−1[W1[g]∂yLs]‖H1 � ‖W1[g]‖L∞‖∂yLs‖L1∩L2 .

Finally, using Lemma 4.4 and Lemma 4.5, we see that

‖T̂−1[R1[g]]‖H1 + ‖T̂−1[T1[g]]‖H1 � s2‖g‖H1 .
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This gives the estimate of A + Id.
Next, we compute that

∂sA[g] = −
[
12s/(3 + s2)2 + κ∂s(L2

s − s2)
]

g + κ2T̂−1[|∇|(4s/3 + ∂s(L2
s − s2))g]

− κT̂0[g∂sW [Ls]] + κT̂−1[g∂s∂yW [Ls] − W1[g]∂y∂sLs − ∂yLs∂sW1[g]

+ ∂sR1[g]] + κT̂−1[∂sT1[g]]

and using that

∂sLs = s−1Ls + r, ‖r‖H1 � s2,

direct calculations and adaptations of Lemma 4.3, Lemma 4.4 and Lemma 4.5 give the 
bound on ∂sA. �
4.3.3. Proof of Lemma 3.6

Using the fact that H1 is an algebra, we see that

‖Lsg2‖H1 + ‖g3‖H1 + ‖T̂−1
[
|∇|(Lsg2 + g3/3)

]
‖H1 � ‖Ls‖L∞‖g‖2

H1 + ‖g‖3
H1 ,

and since these expressions are multilinear they extend to differences. In addition, using 
Lemma 4.3, we see that

‖(W≥2[g2] − W≥2[g1])∂yLs‖L1∩L2 � ‖W≥2[g2] − W≥2[g1]‖L∞‖∂yLs‖L1∩L2

� s
[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
‖g2 − g1‖H1 ,

‖W≥1[g1]∂y(g2 − g1)‖L1∩L2 � ‖W≥1[g1]‖L2∩L∞‖∂y(g2 − g1)‖L2 ,

‖(W≥1[g2] − W≥1[g1])∂yg2‖L1∩L2 � ‖W≥1[g2] − W≥1[g1]‖L2∩L∞‖∂yg2‖L2 .

Similarly, using Lemma 4.4 and Lemma 4.5,

‖R≥2[g2] − R≥2[g1]‖L1∩L2 + ‖T≥2[g2] − T≥2[g1]‖L1∩L2

�
[
s2 + ‖g1‖2

H1 + ‖g2‖2
H1

]
‖g2 − g1‖H1 ,

and the proof is complete. �
5. Numerical results

In this section, we describe how to numerically compute the branch of solutions ks

starting from the zero solution. Their existence for small s was proved in Theorem 1.1. 
See Figs. 1–3 below for different depictions of the solutions.
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Fig. 1. Plot of the difference between the numerically computed solutions k̃(z) and the linear approximation 
2
π sz = 2

π s tan(y) for s = 1, 2, 4, 7. The branch continues beyond what is calculated.

Fig. 2. Comparison of the numerically computed solutions k(y), y ∈ [0, 10] for s = 0.1, 0.2, 0.4, 1, 2, 4, 7. All 
functions are normalized to value 1 at infinity. The branch continues beyond what is calculated. The curve 
corresponding to s = 0.1 is the lowest one and monotonically increase with s.

Fig. 3. Comparison of the numerically computed solutions 
´ y

0 k(s)ds, for s = 0.1, 0.2, 0.4, 1, 2, 4, 7. Panel (a): 
y ∈ [−50, 50], panel (b): Close-up, y ∈ [−0.5, 0.5]. The curves increase with s.

The main advantage of working with the formulation of equation (1.3), as opposed to 
a self-similar equation for the function f , is that all the quantities involved are bounded. 
Nonetheless there are a few technicalities which we outline below.

The first step consists in changing variables and transforming the infinite domain into 
a finite one. We do so by setting y = tan(z) and k̃(z) := k(tan(z)) = k(y) so that the 
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domain of definition is mapped into 
[
−π

2 , π
2
]
. This change of variables has been used 

successfully for other problems in fluid mechanics (see for example [40] and references 
therein).

Moreover, we exploit the symmetry to gain an extra cancellation at π
2 . After perform-

ing the change of variables and a lengthy calculation, (1.3) is transformed into

0 = sin(z) cos(z)k̃′(z) + 1
π

π
2ˆ

0

k̃′(z) cos(z)2 − k̃′(y) cos(y)2

tan(z) − tan(y)
sec(y)2

1 + (Δ̃yk̃(z))2
dy

− 2
π

π
2ˆ

0

(
k̃(z) − k̃(y)

tan(z) − tan(y)

)2 Δ̃yk̃(z)
(1 + (Δ̃yk̃(z))2)2

sec(y)2dy

+ 1
π

π
2ˆ

0

k̃′(z) cos(z)2 − k̃′(y) cos(y)2

tan(z) + tan(y)
1

1 + (Δ̃−yk̃(z))2
sec(y)2dy

− 2
π

π
2ˆ

0

(
k̃(z) + k̃(y)

tan(z) + tan(y)

)2 Δ̃−yk̃(z)
(1 + (Δ̃−yk̃(z))2)2

sec(y)2dy, (5.1)

where

Δ̃yk̃(z) =
yˆ

z

sec(w)2k̃(w)
tan(y) − tan(z)dw. (5.2)

We performed continuation in s in increments of Δs = 0.1 and did 70 iterations, using 
as initial guess k̃ = Δs 2

π z (the linear approximation) at the first iteration, and for the 
subsequent ones the result of the previous iteration plus Δs 2

π z to ensure that the updated 
boundary condition at z = π

2 is satisfied. In the range we computed, we did not see any 
impediment towards advancing in s, other than computation time, although the errors 
become bigger as s grows and the algorithm may take one or two more iterations to 
converge for s ∼ 5 than for s ∼ 0.1.

To compute a solution for a fixed s, we used the Levenberg-Marquardt algorithm 
[39,41]. Our discretization variables consist on the values of k̃ at gridpoints zi = π

2(N−1) i, 
where we are using that k̃ is odd to solve for positive z only. Other strategies such as 
non-uniform meshes (concentrating points towards 0) or s-dependent compactifications 
would perhaps improve the performance for large s since k̃′(0) grows with s (see Fig. 1), 
but we did not explore them here. We took N = 129 and the discrete system we solved 
was equation (5.1) evaluated at zi, i = 1, . . . , N − 1 plus the boundary conditions k̃(0) =
0, ̃k

(
π
2
)

= s. In order to compute the derivatives we calculated a spline of degree 4 
interpolating through the discrete grid and approximated the derivatives of k̃ by the 
derivatives of the spline. To perform the integration, we integrated in (5.1) in the variable 
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y using trapezoidal integration and a grid of 10N = 1290 points. We also tried finer grids 
and saw virtually no difference with respect to the results. In order to get stable results, 
we took care of splitting the domain into 3 regions (z ∼ π

2 , z ∼ y and the rest) and 
computing separately the integrand in each of them, carefully computing the limit. For 
example, note that despite being bounded at z ∼ π

2 , there is a strong instability coming 
from the fact that the integrand is of the form ∞ −∞ if not dealt with properly. The inner 
integrals in (5.1) (i.e. the Δ̃ integrals) were computed using an adaptive Gauss-Kronrod 
quadrature of 15 points, also taking care of the limits at π

2 and at y.
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