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Abstract— Decentralized team problems where players have
asymmetric information about the state of the underlying
stochastic system have been actively studied, but games between
such teams are less understood. We consider a general model
of zero-sum stochastic games between two competing teams.
This model subsumes many previously considered team and
zero-sum game models. For this general model, we provide
bounds on the upper (min-max) and lower (max-min) values of
the game. Furthermore, if the upper and lower values of the
game are identical (i.e., if the game has a value), our bounds
coincide with the value of the game. Our bounds are obtained
using two dynamic programs based on a sufficient statistic
known as the common information belief (CIB). We also identify
certain information structures in which only the minimizing
team controls the evolution of the CIB. In these cases, we show
that one of our CIB based dynamic programs can be used to
find the min-max strategy (in addition to the min-max value).
We propose an approximate dynamic programming approach
for computing the values (and the strategy when applicable)
and illustrate our results with the help of an example.

I. INTRODUCTION

In decentralized team problems, players collaboratively
control a stochastic system to minimize a common cost.
The information used by these players to select their control
actions may be different. For instance, some of the players
may have more information about the system state than
others [1]; or each player may have some private observations
that are shared with other players with some delay [2]. Such
multi-agent team problems with an information asymmetry
arise in a multitude of domains like autonomous vehicles
and drones, power grids, transportation networks, military
and rescue operations, wildlife conservation [3] etc. Over
the past few years, several methods have been developed to
address decentralized team problems [1], [4]-[7]. However,
games between such teams are less understood. Many of
the aforementioned systems are susceptible to adversarial
attacks. Therefore, the strategies used by the team of players
for controlling these systems must be designed in such a way
that the damage inflicted by the adversary is minimized. Such
adversarial interactions can be modeled as zero-sum games
between competing teams, and our main goal in this paper is
develop a framework that can be used to analyze and solve
them.
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The aforementioned works [1], [4]-[7] on cooperative
team problems solve them by first constructing an auxiliary
single-agent Markov Decision Process (MDP). The auxiliary
state (state of the auxiliary MDP) is the common information
belief (CIB). CIB is the belief on the system state and all the
players’ private information conditioned on the common (or
public) information. Auxiliary actions (actions in the auxil-
iary MDP) are mappings from agents’ private information to
their actions [4]. The optimal values of the team problem and
this auxiliary MDP are identical. Further, an optimal strategy
for the team problem can be obtained using any optimal
solution of the auxiliary MDP with a simple transformation.
The optimal value and strategies of this auxiliary MDP (and
thus the team problem) can be characterized by dynamic
programs (a.k.a. Bellman equations or recursive formulas).
A key consequence of this characterization is that the CIB
is a sufficient statistic for optimal control in team problems.
We investigate whether a similar approach can be used to
characterize values and strategies in zero-sum games between
teams. This extension is not straightforward. In general
games (i.e., not necessarily zero-sum), it may not be possible
to obtain such dynamic programs (DPs) and/or sufficient
statistics [8], [9]. However, we show that for zero-sum games
between teams, the values can be characterized by CIB based
DPs. Further, we show that for some specialized models,
the CIB based DPs can be used to characterize a min-max
strategy as well. A key implication of our result is that
this CIB based approach can be used to solve several team
problems considered before [1], [4], [7] even in the presence
of certain types of adversaries.

A phenomenon of particular interest and importance in
team problems is signaling. Players in a team can agree
upon their control strategies ex ante. Based on these agreed
upon strategies, a player can often make inferences about the
system state or the other players’ private information (which
are otherwise inaccessible to the player). This implicit form
of communication between players is referred to as signaling
and can be vital for effective coordination. While signaling is
beneficial in cooperative teams, it can be detrimental in the
presence of an adversary. This is because the adversary can
exploit it to infer sensitive private information and inflict
severe damage upon the system. A concrete example that
illustrates this trade-off between signaling and secrecy is
discussed is Section V. Our framework can be used optimize
this trade-off in several stochastic games between teams.

a) Related Work on Games: Zero-sum games between
two individual players with asymmetric information have
been extensively studied. In [10]-[15], stochastic zero-sum
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games with varying degrees of generality were considered
and dynamic programming characterizations of the value of
the game were provided. Various properties of the value
functions (such as continuity) were also established and
for some specialized information structures, these works
also characterize a min-max strategy. Linear programs for
computing the values and strategies in certain games were
proposed in [16], [17]; and methods based on heuristic
search value iteration (HSVI) [18] to compute the value of
some games were proposed in [19], [20]. Zero-sum extensive
form games in which a team of players competes against
an adversary have been studied in [21]-[23]. Structured
Nash equilibria in general games (i.e. not necessarily zero-
sum) were studied in [24]-[26] under some assumptions on
the system dynamics and players’ information structure. A
combination of reinforcement learning and search was used
in [27] to solve two-player zero-sum games. While this
approach has very strong empirical performance, a better
analytical understanding of it is needed. Our work is closely
related to [15], [28] and builds on their results. Our novel
contributions in this paper over past works are summarized
below.

b) Contributions: (i) In this paper, we study a general
class of stochastic zero-sum games between two competing
teams of players. Such team vs. team games present novel
features because of the need for coordination and signaling
within a team while preserving secrecy and minimizing
losses against the opposing team. Our general model captures
a variety of team vs team interactions that have not been
studied before. In addition, our model covers previously
considered settings in stochastic teams [1], [5], [7] and zero-
sum games [15], [19], [20]. (ii) For our general model, we
adapt the techniques in [15] to provide bounds on the upper
(min-max) and lower (max-min) values of the game and char-
acterize the value of the game when it exists. These bounds
provide us with fundamental limits on the performance
achievable by either team. Our bounds are obtained using
two dynamic programs (DPs) based on a sufficient statistic
known as the common information belief (CIB). (iii) We also
identify a subclass of game models in which only one of the
teams (say the minimizing team) controls the evolution of
the CIB. In these cases, we show that one of our CIB based
dynamic programs can be used to find the min-max value
as well as a min-max strategy'. (iv) Our result reveals that
the structure of the CIB based min-max strategy is similar
to the structure of team optimal strategies. Such structural
results have been successfully used in prior works [7], [27] to
design efficient strategies for significantly challenging team
problems. (v) Lastly, we discuss an approximate dynamic
programming approach along with key structural properties
for computing the values (and the strategy when applicable)
and illustrate our results with the help of an example.

c) Notation: Random variables are denoted by upper
case letters, their realizations by the corresponding lower

'Note that this characterization of a min-max strategy is not present in
[15]. A similar result for a very specific model with limited applicability
exists in [28]. Our result is substantially more general than that in [28].
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case letters. In general, subscripts are used as time index
while superscripts are used to index decision-making agents.
For time indices t; < t3, Xy, .+, is the short hand notation
for the variables (X;,, Xy, 41, ..., Xt,). Similarly, X2 is the
short hand notation for the collection of variables (X!, X?).
Operators P(-) and E[-] denote the probability of an event,
and the expectation of a random variable respectively. For
random variables/vectors X and Y, P(:|Y = y), E[X|Y = y]
and P(X = 2 | Y = y) are denoted by P(:|y), E[X|y] and
P(x | y), respectively. For a strategy g, we use P9(-) (resp.
E9[-]) to indicate that the probability (resp. expectation)
depends on the choice of g. For any finite set .4, AA denotes
the probability simplex over the set A. For any two sets A
and B, F(A, B) denotes the set of all functions from A to
B. We define RAND to be mechanism that given (i) a finite
set A, (ii) a distribution d over A and a random variable
K uniformly distributed over the interval (0, 1], produces a
random variable X € A with distribution d, i.e.,

X =RAND(A,d, K) ~ d. (1)

The rest of the paper is organized as follows. We formulate
the problem in Section II. In Section III, we construct a
virtual game using which bounds on the upper and lower
values of the original game are characterized. In Section IV,
we consider specialized models in which only the minimizing
team controls the common information belief. For these
models, we provide a tighter characterization of the upper
value and also, a min-max strategy. In Section V, we discuss
a computational approach for solving the dynamic program
and illustrate it with the help of an example. The proofs of
our results are provided in appendices, all of which are in
[29].

II. PROBLEM FORMULATION

Consider a dynamic system with two teams. Team 1 has
N; players and Team 2 has N, players. The system operates
in discrete time over a horizon? T. Let X; € X; be the state
of the system at time ¢, and let U;”’ € U, be the action of
Player j, j € {1,...,N;}, in Team 4, ¢ € {1,2}, at time t.
Let

1 - 1,1 1,N7 . 2 - 2,1 2,N3
Ut—(Ut UL ) Ut_<Ut U )

and U} be the set of all possible realizations of U;. We will
refer to U} as Team ¢’s action at time ¢. The state of the
system evolves in a controlled Markovian manner as

Xiy1 = fi(Xe, UL UZ, WP, 2)

where W is the system noise. There is an observation
process Y;"? € Y, associated with each Player j in Team
1 and is given as
. )
Y;t” - hi](XtaUt—hUt—l’Wt”)v 3)

where W, is the observation noise. Let us define

Ytl - (Y;m’m’YtLNl) ; Yt2 - <Yt2,1,“"Y)-s2,N2) .

2With a sufficiently large planning horizon, infinite horizon problems with
discounted cost can be solved approximately as finite-horizon problems.
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We assume that the sets X, Z/IZ J and :)JZ 7 are finite for all 4, j
and t. Further, the random variables X1, W, W, (referred
to as the primitive random variables) can take finitely many
values and are mutually independent.

Remark 1. An alternative approach commonly used for
characterizing system dynamics and observation models is
to specify the transition and observation probabilities. We
emphasize that this alternative characterization is equivalent
to ours in equations (2) and (3) [30].

a) Information Structure: At time t, Player j in Team
© has access to a subset of all observations and actions
generated so far. Let I,” denote the collection of variables
(i.e. observations and actions) available; to Player j in team
i at time t. Then I}/ C U”{Yf ;Up{_1}. The set of all
possible realizations of I is denoted by Z; J . Examples of
such information structures include I;7 = {Yf’tj,U1 ]
which corresponds to the 1nf0rmat10n structure in Dec-
POMDPs [5] and I}7 = {Y{7/, V{2, UL2 |} wherein
each player’s actions are seen by all the players and their
observations become public after a delay of d time steps.

Information I;”” can be decomposed into common and pri-
vate 1nf0rmat10n ie. I, W=, U P/”?; common information
C is the set of variables known to all players at time ¢. The
private information P, for Player j in Team 4 is defined as
Itl J \ C;. Let

1,N:1
Pt

pl = (Ptl’l,..., ) . P2z (Pf’l,...,Pf’M) .

We will refer to P} as Team i’s private information. Let C;
be the set of all possible realizations of common information
at time ¢, P;” be the set of all possible realizations of
private information for Player j in Team ¢ at time ¢ and
P} be the set of all possible realizations of P/. We make
the following assumption on the evolution of common and
private information. This is similar to Assumption 1 of [15],

[24].

Assumption 1. The evolution of common and private infor-
mation available to the players is as follows: (i) The common
information Cy is non-decreasing with time, i.e. Cy C Cyy;.
Let Zy11 = Cyy1\ Cy be the increment in common informa-
tion. Thus, Cy11 = {C4, Zyy1}. Furthermore,

);

where (yy1 is a fixed transformation. (ii) The private infor-
mation evolves as

2

Zipr = G (P2 U2 Y 4)

tiJrl = §§+1(Pt1:2a Ut1:27 th{k21)7 (5)

where §ti+1 is a fixed transformation and 1 = 1, 2.

As noted in [4], [15], a number of information structures
satisfy the above assumption. Our analysis applies to any
information structure that satisfies Assumption 1 including,
among others, Dec-POMDPs and the delayed sharing infor-
mation structure discussed above.
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b) Strategies and Values: Players can use any infor-
mation available to them to select their actions and we
allow behavioral strategies for all players. Thus, at time ¢,
Player j in Team i chooses a distribution §U;” over its
action space using a control law gy” : I, — AU}, ie.,
U’ = g7 (1;7) = g;7(Cy, P/7). The distrubtion U,
is then used to randomly generate the control action U,”
as follows. We assume that player j of Team ¢ has access
to i.i.d. random variables K7 that are uniformly distributed
over the interval (0, 1]. These uniformly distributed variables
are independent of each other and of the primitive random
variables. The action U;”’ is generated using K,” and the
randomization mechanism described in (1), i.e.,

U} = RAND(UM  6U K1), (6)

The collection of control laws used by the players in Team
i at time ¢ is denoted by g¢ = (i, ..., ¢""™") and is referred
to as the control law of Team ¢ at time ¢. Let the set of all
possible control laws for Team i at time ¢ be denoted by Gi.
The collection of control laws g* = (gi, ..., g%) is referred
to as the control strategy of Team ¢, and the pair of control
strategies (g, g?) is referred to as a strategy profile. Let the
set of all possible control strategies for Team i be G°.

The total expected cost associated with a strategy profile

(g, 9°) is

T
J(g' g% = Z (X, ULUD| .

where ¢; @ X x U} x U} — R is the cost function at time
t. Team 1 wants to minimize the total expected cost, while
Team 2 wants to maximize it. We refer to this zero-sum game
between Team 1 and Team 2 as Game ¥.

Definition 1. The upper and lower values of the game &
are respectively defined as

5*(%) = min max J(g", %), (8)
glegl g2eg?

S1(%4) = max min J(g%, ¢°). )
92662 gleg!

If the upper and lower values are the same, they are referred
to as the value of the game and denoted by S(9). The
minimizing strategy in (8) is referred to as Team 1’s optimal
strategy and the maximizing strategy in (9) is referred to as
Team 2’s optimal strategy’.

A key objective of this work is to characterize the upper
and lower values S*(%) and S'(¢) of Game ¥. To this end,
we will define an expanded virtual game ¢%,.. This virtual
game will be used to obtain bounds on the upper and lower
values of the original game ¢. These bounds happen to be
tight when the upper and lower values of game ¢ are equal.
For a sub-class of information structures, we will show that
the expanded virtual game ¥, can be used to obtain optimal
strategies for one of the teams.

3The strategy spaces G' and G2 are compact and the cost J(-) is
continuous in g', g2. Hence, the existence of optimal strategies can be
established using Berge’s maximum theorem [31].
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Remark 2. An alternative way of randomization is to use
mixed strategies wherein a player randomly chooses a de-
terministic strategy at the beginning of the game and uses
it for selecting its actions. According to Kuhn’s theorem,
mixed and behavioral strategies are equivalent when players
have perfect recall [32].

Remark 3 (Independent and Shared Randomness). In most
situations, the source of randomization is either privately
known to the player (as in (6)) or publicly known to all the
players in both teams. In this paper, we focus on independent
randomization as in (6). In some situations, a shared source
of randomness may be available to all players in Team ¢ but
not to any any of the players in the opposing team. Such
shared randomness can help players in a team coordinate
better. We believe that our approach can be extended to this
case as well with some modifications.

We note that if the upper and lower values of game ¢
are the same, then any pair of optimal strategies (g'*, g>*)

forms a Team Nash Equilibrium4, i.e., for every g1 € G! and
2 2
g° €G-,

J(g", g 9>) < J(g',9%).
In this case, J(g'*,g%**) is the value of the game, i.e.
J(g*, %) = SHY) = S“(¥) = S(¥). Conversely, if a

Team Nash Equilibrium exists, then the upper and lower
values are the same [34].

) < J(g'

ITT. EXPANDED VIRTUAL GAME ¥,

The expanded virtual game ¥, is constructed using the
methodology in [15]. This game involves the same underly-
ing system model as in game ¢. The key distinction between
games ¢ and ¢, lies in the manner in which the actions used
to control the system are chosen. In game ¥, all the players
in each team of game ¥ are replaced by a virtual player.
Thus, game ¥, has two virtual players, one for each team,
and they operate as follows.

a) Prescriptions: Consider virtual player ¢ associated
with Team ¢, ¢« = 1,2. At each time ¢ and for each j
1,...,N;, virtual player ¢ selects a function I';” that maps
pri\{ate information P} to a distribution 6U;’ over the space
U;”’. Thus, 0U;” =Ty’ (P/”). The set of all such mappings
is denoted by Bm = F(P;?, AU;”). We refer to the tuple
ri= (.. F”Nl) of such mappings as virtual player ’s
prescription at time ¢. The set of all possible prescriptions for
virtual player i at time ¢ is denoted by Bi = By’ T X By N
Once virtual player ¢ selects its prescription, the action U,
randomly generated according to the distribution I}’ (Pt” )
More precisely,

U7 = RAND(UY Ty (P]Y), K{7), (10)

where the random variable K,f "/ and the mechanism RAND
are the same as in equation (6).

4When players in a team randomize independently, Team Nash equilirbia
may not exist in general [33].
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b) Strategies: The virtual players in game %, have
access to the common information C; and all the past
prescriptions of both players, i.e., I'}:7 ;. Virtual player i
selects its prescription at time ¢ using a control law Y%, i.e.,
I = (0, T12 ). Let Hi be the set of all such control
laws at time ¢ and H! = 'H’ - X HZ be the set of all
control strategies for virtual player 1. The total cost for a

strategy profile (x!,¥?) is
T

E(X X ) [th Xt,Utl,Uf)
t=1

T X (11)

The upper and lower values in ¥, are defined as
S“(4,) = min max J(x',%?)
KLEH R2PEH?
).

SY(%4.) = max min J(x!
R2EH? XLeH!

)22

The following theorem establishes the relationship be-
tween the upper and lower values of the expanded game ¥,
and the original game ¢ . This result is analogous to Theorem
1 from [15].

Theorem 1 (Proof in App. I). The lower and upper values
of the two games described above satisfy the following:
SUZ) < SUY,) < SUY.) < S“(9). Further, all these in-
equalities become equalities when a Team Nash equilibrium
exists in Game 9.

A. The Dynamic Programming Characterization

We describe a methodology for finding the upper and
lower values of the expanded game ¢, in this subsection.
The results (and their proofs) in this subsection are similar to
those in Section 4.2 of [15]. However, the prescription spaces
Bi in this paper are different (and more general) from those
in [15], and thus our results in this paper are more general.
Our dynamic program is based on a sufficient statistic for
virtual players in game ¥, called the common information
belief (CIB).

Definition 2. At time t, the common information belief (CIB),
denoted by 11,, is defined as the virtual players’ belief on the
state and private information based on their information in
game 9,. Thus, for each x; € X;,p} € P} and p? € P?, we
have

(e, p;?) = P [Xy = @, P2 = p? | Oy, TT 4]

The belief I1; takes values in the set Sy = A(X; X 77,51 X PE)

The following lemma describes an update rule that can be
used to compute the CIB.

Lemma 1 (Proof in App. II). For any strategy profile
(X', X?) in Game 9, the common information based belief
II; evolves almost surely as

Ht+1 :Ft(HbF%:Q?Zt#»l)a (12)

where F} is a fixed transformation that does not depend on
the virtual players’ strategies. Further, the total expected cost
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can be expressed as

T
) E(X X7 [Zét<ntﬂriﬂrg)‘| ’
t=1

where the function ¢, is as defined in equation (58) in
Appendix II.

1 =2
» X

J(X5 X (13)

a) Values in Game ¥,: We now describe two dynamic
programs, one for each virtual player in ¢,. The minimizing
virtual player (virtual player 1) in game ¥, solves the
following dynamic program. Define V}, ,(7ry1) = 0 for
every mr41. In a backward inductive manner, at each time
t < T and for each possible common information belief m;
and prescriptions 7}, vZ, define the upper cost-to-go function
wy' and the upper value function V,* as

wu(ﬂtﬂ’tly%?) (14)
= &(me, v, v;) + ]E[VtH(Ft(Wta% s Ze1) | w2,
Vi*(m¢) = min max wy Uy, yL, ). (15)

t t

The maximizing virtual player (virtual player 2) solves an
analogous max-min dynamic program with a lower cost-to-
go function w! and lower value function V;! (See App. III
for details).

Lemma 2 (Proof in App. II). For each t, there exists a
measurable mapping =} : S; — B} such that V*(m;) =
max.z wy (7, Zf (7775) v2). Similarly, there exists a mea-
surable mapping Z? . S, — B? such that V}(m;)
Inin’ytl wzlf (7Tt> 71&1’ E’% (Wt))'

Theorem 2 (Proof in App. IV). The upper and lower values
of the expanded virtual game 4. are given by S"(%.)
E[V{*(I1)] and S'(%.) = E[V{ (I1,)].

Theorem 2 gives us a dynamic programming characteriza-
tion of the upper and lower values of the expanded game. As
mentioned in Theorem 1, the upper and lower values of the
expanded game provide bounds on the corresponding values
of the original game. If the original game has a Team Nash
equilibrium, then the dynamic programs described above
characterize the value of the game.

b) Optimal Strategies in Game ¥,: The mappings =
and =2 obtained from the dynamic programs described above
(see Lemma 2) can be used to construct optimal strategies
for both virtual players in game ¥, in the following manner.

Definition 3. Define strategies X'* and X** for virtual
players 1 and 2 respectively as follows: for each instance
of common information c, and prescription history vi2_,,
let

1

t Xf*(ctaf}/ll::?—l) = E%(ﬂ't%

(7¢);

where Z} and Z? are the mappings defined in Lemma 2 and
7y (which is a function of cy,yi:2_,) is obtained in a forward
inductive manner using the update rule F} defined in Lemma

1.

)Ztl*(ctvvll::f—l) =2
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Theorem 3 (Proof in App. IV). The strategies X'* and X**
as defined in Definition 3 are, respectively, min-max and
max-min strategies in the expanded virtual game 9,.

IV. ONLY VIRTUAL PLAYER 1 CONTROLS THE CIB

In this section, we consider a special class of instances
of Game ¢ and show that the dynamic program in (15)
can be used to obtain a min-max strategy for Team 1,
the minimizing team in game ¢. The key property of the
information structures considered in this section is that the
common information belief II; is controlled® only by virtual
player 1 in the corresponding expanded game ¥,. This is
formally stated in the following assumption.

Assumption 2. For any strategy profile (X',x?) in Game
9., the CIB I1; evolves almost surely as
o1 = F (14,17, Zosr), (16)

where Fy is a fixed transformation that does not depend on
the virtual players’ strategies.

We will now describe some instances of Game ¢ that
satisfy Assumption 2. We note that two-player zero-sum
games that satisfy a property similar to Assumption 2 were
studied in [13].

A. Game Models Satisfying Assumption 2

a) All players in Team 2 have the same information:
Consider an instance of game ¢ in which every player j
in Team 2 has the following information structure It2 o=
{th, Ui, 1} Further, Team 2’s information is known to
every player in Team 1. Thus, the common information C; =
I %3 Under this condition, players in Team 2 do not have any
private information. Thus, their private information P? =
&. Any information structure satisfying the above conditions
satisfies Assumption 2, see Appendix VI-A for a proof. Since
Team 1’s information structure is relatively unrestricted, the
above model subsumes many previously considered team and
game models. Notable examples of such models include: (i)
all purely cooperative team problems in [1], [4], [7], [35],
and (ii) two-player zero-sum game models where one agent
is more informed than the other [13], [16], [19].

b) Team 2’s observations become common information
with one-step delay: Consider an an instance of game ¥
where the current private information of Team 2 becomes
common information in the very next time-step. More specif-
ically, we have Cii1 2 {Y?,,U%,} and for each Player j in
Team 2, P; 2, YQ’] Note that unlike in [16], [19], players
in Team 2 have some private information in this model.
Any information structure that satisfies the above conditions
satisfies Assumption 2, see Appendix VI-B for a proof.

SNote that the players in Team 2 might still be able to control the state
dynamics through their actions.
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Algorithm 1 Strategy g'/* for Player j in Team 1

Input: = () obtained from DP for all ¢ and all 7
fort=1to T do
Current  information:
{Ci1, Zi}}
Update CIB IT, = F,_1(II,_1,ZL ,(II,_1), Z) {If t =
1, Initialize CIB II; using C;}
Get prescription T} = (T'F*, ..., THM) (11;)
Get distribution 60U, = I'}*/(P!7) and select action
UM = Rranp(UM UM K1)
end for

Cy, PM {where C,

_ =1

==

¢) Games with symmetric information: Consider the
information structure where I;7 = U, ;{Y}"/,U;_} for
every ¢, j. All the players in this game have the same infor-
mation and thus, players do not have any private information.
Note that this model subsumes perfect information games. It
can be shown that this model satisfies Assumption 2 using
the same arguments in Appendix VI-A. In this case, the CIB
is not controlled by both virtual players and thus, we can use
the dynamic program to obtain both min-max and max-min
strategies.
In addition to the models discussed above, there are other
instances of ¢ that satisfy Assumption 2. These are included
in Appendix V.

B. Min-max Value and Strategy in Game ¢

a) Dynamic Program: Since we are considering special
cases of Game ¢, we can use the analysis in Section III to
write the min-max dynamic program for virtual player 1. Be-
cause of Assumption 2, the belief update Fy(m;, 742, z41) in
(14) is replaced by Fy(m¢, 7}, 2¢+1). Using Theorems 2 and
3, we can can conclude that the upper value of the expanded
game S“(¥.) = E[V¥(Il;)] and that the strategy Y'*
obtained from the DP is a min-max strategy for virtual player
1 in Game ¥%,. An approximate dynamic programming based
approach for solving the dynamic programs is discussed in
Appendix VIII. This discussion includes certain structural
properties of the value functions that make their computation
significantly more tractable.

b) Min-max Value and Strategy: The following results
provide a characterization of the min-max value S*“(¥) and a
min-max strategy ¢** in game ¢ under Assumption 2. Note
that unlike the inequality in Theorem 1, the upper values of
games ¢ and ¥, are always equal in this case.

Theorem 4 (Proof in App. VII). Under Assumption 2, we
have S*(9) = S“(9.) = E[V*(I11)].

Theorem 5 (Proof in App. VII). Under Assumption 2, the
strategy g** defined in Algorithm 1 is a min-max strategy for
Team 1 in the original game 9.

V. A SPECIAL CASE AND NUMERICAL EXPERIMENTS

Consider an instance of Game ¢ in which Team 1 has
two players and Team 2 has only one player. At each time ¢,
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Player 1 in Team 1 observes the state perfectly, i.e. Ytl’1 =
X, but the player in Team 2 gets an imperfect observation
Y,? defined as in (3). Player 1 has complete information: at
each time ¢, it knows the entire state, observation and action
histories of all the players. The player in Team 2 has partial
information: at each time ¢, it knows its observation history
Y}, and action histories of all the players. Player 2 in Team
1 has the same information as that of the player in Team 2.
Thus, the total information available to each player at ¢ is as
follows:

1,1 _ 2 1:2 . 1,2 _ 72 _ 2 1:2
It —{Xl:taylztaUlzt—l ) It _It —{Yl:tle:t—l :

Clearly, If - Itl’l. The common and private information for
this game can be written as follows: Cy = I2, P/"' = {X1.,}
and Ptl’2 = P? = @. The increment in common information
at time t is Z; = {Y;2,U}?%}. In the game described above,
the private information in Ptl’1 includes the entire state
history. However, Player 1 in Team 1 can ignore the past
states X1.;—1 without loss of optimality.

Lemma 3 (Proof in App. IX). There exists a min-max
strategy g'* such that the control law gt1 1 at time t uses

only Xy and 12 to select U, e, SUN = gh'™* (X, I2).

The lemma above implies that, for the purpose of charac-
terizing the value of the game and a min-max strategy for
Team 1, we can restrict player 1’s information structure to be
I}'' = {X,,I?}. Thus, the common and private information
become: C; = 12, P! = {X;} and P2 = P! = &. We
refer to this game with reduced private information as Game
. The corresponding expanded virtual game is denoted by
. A general methodology for reducing private information
in decentralized team and game problems can be found in
[36]. The information structure in .7 is a special case of the
first information structure in Section IV-A, and thus satisfies
Assumption 2. Therefore, using the dynamic program in
Section IV-B, we can obtain the value function V{* and the
min-max strategy g'*.

a) Numerical Experiments: We consider a particular
example of game .77 described above. In this example, there
are two entities ([ and r) that can potentially be attacked and
at any given time, exactly one of the entities is vulnerable.
Player 1 of Team 1 knows which of the two entities is
vulnerable whereas all the other players do not have this
information. Player 2 of Team 1 can choose to defend one
of the entities. The attacker in Team 2 can either launch a
blanket attack on both entities or launch a targeted attack
on one of the entities. When the attacker launches a blanket
attack, the damage incurred by the system is minimal if
Player 2 in Team 1 happens to be defending the vulnerable
entity and the damage is substantial otherwise. When the
attacker launches a targeted attack on the vulnerable entity,
the damage is substantial irrespective of the defender’s
position. But if the attacker targets the invulnerable entity, the
attacker becomes passive and cannot attack for some time.
Thus, launching a targeted attack involves high risk for the
attacker. The state of the attacker (active or passive) and all
the players’ actions are public information. The system state
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(b) Prescriptions at ¢ = 1 for Player 1 in Team 1.

Fig. 1. In these plots, the z-axis represents 71(0) and we restrict

our attention to those beliefs where 71(0) + 71(1) = 1, i.e. when the

attacker is active. In Figure 1(b), the blue and red curves respectively depict

the Bernoulli probabilities associated with the distributions 711’1(0) and
1,1 1,1 . s R

~;’" (1), where ;" is Player 1’s prescription in Team 1.

X, thus has two components, the hidden state (I or r) and
the state of the attacker (a or p). For convenience, we will
denote the states (I, a) and (r,a) with 0 and 1 respectively.

The only role of Player 1 in Team 1 in this game is to
signal the hidden state using two available actions « and /3.
The main challenge is that both the defender and the attacker
can see Player 1’s actions. Player 1 needs to signal the hidden
state to some extent so that its teammate’s defense is effective
under blanket attacks. However, if too much information is
revealed, the attacker can exploit it to launch a targeted
attack and cause significant damage. In this example, the
key is to design a strategy that can balance between these
two contrasting goals of signaling and secrecy. A precise
description of this model is provided in Appendix X.

In order to solve this problem, we used the approximate
DP approach discussed in Appendix VIII. The value function
V() thus obtained is shown in Figure 1(a). The tension
between signaling and secrecy can be seen in the shape of the
value function in Figure 1(a). When the CIB 71 (0) = 0.5, the
value function is concave in its neighborhood and decreases
as we move away from 0.5. This indicates that in these belief
states, revealing the hidden state to some extent is preferable.
However, as the belief goes further away from 0.5, the value
function starts increasing at some point. This indicates that
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the adversary has too much information and is using it to
inflict damage upon the system. Figure 1(b) depicts Player
I’s prescriptions leading to non-trivial signaling patterns at
various belief states. Notice that the distributions ~;"*(0)
and 4;'(1) for hidden states 0 and 1 are quite distinct
when 71 (0) = 0.5 (indicating significant signaling) and are
nearly identical when 71(0) = 0.72 (indicating negligible
signaling). A more detailed discussion on our experimental
results can be found in Appendix X.

VI. CONCLUSIONS

We considered a general model of stochastic zero-sum
games between two competing decentralized teams and
provided bounds on their upper and lower values in the
form of CIB based dynamic programs. When game has a
value, our bounds coincide with the value. We identified
several instances of this game model (including previously
considered models) in which the CIB is controlled only
by one of the teams (say the minimizing team). For such
games, we also provide a characterization of the min-max
strategy. Under this strategy, each player only uses the current
CIB and its private information to select its actions. The
sufficiency of the CIB and private information for optimality
can potentially be exploited to design efficient strategies
in various problems. Finally, we proposed a computational
approach for approximately solving the CIB based DPs.
There is significant scope for improvement in our computa-
tional approach. Tailored forward exploration heuristics for
sampling the belief space and adding a policy network can
improve the accuracy and tractability of our approach.
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