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Abstract.— Logical character dependency is a major conceptual and methodological problem 

in phylogenetic inference of morphological datasets, as it violates the assumption of character 

independence that is common to all phylogenetic methods. It is more frequently observed in 

higher-level phylogenies or in datasets characterizing major evolutionary transitions, as these 

represent parts of the tree of life where (primary) anatomical characters either originate or 

disappear entirely. As a result, secondary traits related to these primary characters become 

―inapplicable‖ across all sampled taxa in which that character is absent. Various solutions 

have been explored over the last three decades to handle character dependency, such as 

alternative character coding schemes and, more recently, new algorithmic implementations. 

However, the accuracy of the proposed solutions, or the impact of character dependency 

across distinct optimality criteria, has never been directly tested using standard performance 

measures. Here, we utilize simple and complex simulated morphological datasets analyzed 

under different maximum parsimony optimization procedures and Bayesian inference to test 

the accuracy of various coding and algorithmic solutions to character dependency. This is 

complemented by empirical analyses using a recoded dataset on palaeognathid birds. We find 

that in small, simulated datasets, absent coding performs better than other popular coding 

strategies available (contingent and multistate), whereas in more complex simulations (larger 

datasets controlled for different tree structure and character distribution models) contingent 

coding is favored more frequently. Under contingent coding, a recently proposed weighting 

algorithm produces the most accurate results for maximum parsimony. However, Bayesian 

inference outperforms all parsimony-based solutions to handle character dependency due to 
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fundamental differences in their optimization procedures—a simple alternative that has been 

long overlooked. Yet, we show that the more primary characters bearing secondary 

(dependent) traits there are in a dataset, the harder it is to estimate the true phylogenetic tree, 

regardless of the optimality criterion, owing to a considerable expansion of the tree parameter 

space. 

 

Keywords—character dependency, character coding, performance, phylogenetic accuracy, 

distance metrics, morphological phylogenetics, Bayesian inference, maximum parsimony. 
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 One of the most important assumptions common to all phylogenetic methods, 

regardless of their optimality criteria, is that individual variables within any given dataset 

(e.g., morphological characters or molecular sites) are independent from each other (Farris et 

al. 1970, Felsenstein 2004). In practice, however, there may exist several variables within a 

given data matrix that share some level of dependency among each other. Such dependencies 

can be either logical—the state (or condition) of a variable depending directly on the state of 

another variable—or biological—e.g., evolutionary integration among two or more variables. 

Biological dependencies theoretically occur in molecular and morphological datasets 

(Brazeau et al. 2019), but both types of dependencies are conspicuous only to morphological 

characters (Maddison 1993, Wilkinson 1995, Klingenberg 2008, Goswami and Polly 2010, 

Goswami et al. 2014). This is due to morphological characters being artificial constructs 

derived from anatomical traits and their subsequent translation into a machine-readable 

format. This predominantly human-based and subjective process can lead up to logical 

dependencies among characters that are unobserved in molecular datasets and that may 

introduce important biases in phylogenetic inference (Simões et al. 2017a, 2018a). Despite 

existing guidelines to construct morphological characters while minimizing such logical 

dependencies (Sereno 2007, Simões et al. 2017a), it is almost impossible to completely avoid 

them for most empirical datasets. Consequently, character dependency has a direct and 

pervasive impact in datasets that can only be analyzed with morphological data (e.g., 

paleontological datasets), or which include morphological and molecular data to integrate 

fossils and extant taxa in total evidence phylogenetic inference—e.g., Pyron (2011), Simões 

et al. (2018b), Mongiardino Koch and Thompson (2020), Ballesteros et al. (2022). 

Logical dependency in morphological phylogenetics is usually in the form of 

hierarchical characters—i.e., a set of two or more characters, including one primary character 

(governing the absence or presence of an anatomical structure) and one or more secondary 
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characters (governing various properties of that same structure). For simplicity, hereafter we 

will use the acronym WDSC (with dependent secondary characters) to refer to such primary 

characters. A classic example of this logical dependency was introduced by Maddison (1993) 

and is known as the Red-Blue Tail (RBT) problem. In this problem, tails can be 

absent/present (primary character), but tail color (secondary character) can only be 

determined for species in which the primary character is present, creating a zone of 

contention (Fig. 1). Characters with such hierarchical structure are widespread in 

morphological datasets, especially those designed to assess higher-level phylogenetic 

relationships and/or major evolutionary transitions.  

Some examples of such evolutionary transitions prone to include a large proportion of 

hierarchical characters include: the origin of limbs, which results in all limb related characters 

acting as secondary (dependent) characters for limbs during the fish-tetrapod transition 

(Simões and Pierce 2021); multiple independent limb losses within squamates (Wiens et al. 

2006, Gauthier et al. 2012); the origin of wings in insects, making all wing structures 

dependent on the presence of wings (Wipfler et al. 2019); or the origin of all floral structures 

at the origin of angiosperms (Frohlich and Chase 2007). These secondary characters 

sometimes represent a substantial proportion of the characters related to specific anatomical 

units, especially in big morphological data sets—e.g., 15 secondary characters for the jugal 

and 15 for the squamosal bones (all dependent on the characters for the absence/presence of 

these respective elements) in the squamate dataset of Gauthier et al. (2012). The 

morphological characters for mammals by O'Leary et al. (2013) is another example—22 

secondary characters for the nasal and 24 for the jugal and squamosal bones. The most 

extreme case known to us being represented by the 1,449 dental characters that are dependent 

on the two characters for absence/presence of lower and upper teeth (O'Leary et al. 2013). 

Furthermore, even small datasets (but also encompassing important evolutionary transitions) 
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may be subject to this problem. Such datasets do not usually have a large number of 

secondary characters dependent on a single primary character but may include many primary 

characters with (usually fewer) secondary dependencies. Some examples include datasets 

focusing on early-deriving snakes, in which various cranial, limb, and pectoral girdle 

characters may be either absent or present (Garberoglio et al. 2019), directly impacting all 

secondary characters contingent upon those traits. 

 

“Solutions” to the RBT Problem—a Conceptual Paradox 

There are three pieces of phylogenetic information universally present within primary 

and secondary characters as illustrated by the RBT problem (Fig. 1): i) the primary character 

WDSC (tail) groups all taxa with tails together and those without tails as a second clade; ii) 

the secondary character (tail color) groups red-tailed taxa together and blue-tailed taxa 

together as sub-clades within the clade where the primary character WDSC is present; iii) the 

logical dependency of the secondary character upon the primary character (tail) indicates that 

all aspects of the secondary character (defining the sub-clades with blue or red tail colors) 

should only be applicable to taxa in which the primary character is present (defining the 

larger clade for taxa with tail). Beyond these three aspects, there is no data provided by either 

the primary or secondary characters to inform which tail color evolved first. In fact, this is 

irrelevant for tree inference under either maximum parsimony (MP) or probabilistic methods, 

since reconstructing the direction of character state transformation (i.e., identifying 

synapomorphies) is only performed by MP upon the rooting of the tree once the most 

parsimonious solutions have been found (Nixon and Carpenter 1993, 2012). For probabilistic 

methods (maximum likelihood and Bayesian inference) outgroup comparison and the 

direction of character-state transformation is not taken into consideration during tree 

sampling (Felsenstein 1973, 2004). Therefore, in the absence of additional characters, there is 
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no single solution to the RBT problem as presented in Scenarios 1 and 2. Instead, any coding 

method or inference algorithm should allow the two possible solutions (i.e., red and blue-first 

hypotheses) to be equally likely a priori, and the secondary character (i.e., tail color) should 

only be considered within the clade composed by taxa where the primary character WDSC is 

present (i.e., tail). Therefore, any coding approach or inference method producing logically 

plausible and biologically realistic results must meet the following criteria: 

Corollary 1.—Secondary characters (e.g., tail color) can only evolve within a clade 

where the primary character WDSC is present (e.g., tail is present). This hierarchical 

relationship is important as the inability to recover this hierarchical relationships will 

inevitably lead to the loss of tree resolution (Hawkins et al. 1997).  

Corollary 2.— All known states (e.g., red and blue tails) should be considered as 

equally parsimonious/likely to be the ancestral condition. Under BI, both hypotheses should 

also have similar posterior probabilities.  

In the RBT problem, logically valid approaches based on these corollaries must 

estimate two or more distinct tree topologies, including both valid solutions within the zone 

of contention (e.g., blue-first vs red-first hypotheses). The consensus (strict or majority rule) 

tree estimated from the output trees meeting these criteria will necessarily include all taxa in 

the zone of contention as monophyletic (supported by the primary character WDSC), but with 

no preference for either blue or red evolving first. Hence, the consensus tree should 

necessarily be unresolved—i.e., depicting a polytomic relationship for the taxa within the 

zone of contention. These premises form the basis of our evaluation of our simulated 

approaches, as described below. 
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Available strategies to handle logically dependent (hierarchical) characters 

Over the past three decades, numerous solutions have been proposed to handle this 

simple but pervasive problem, from new character coding strategies (Maddison 1993, 

Hawkins et al. 1997, Strong and Lipscomb 1999, Hawkins 2000, Brazeau 2011, Tarasov 

2019) to new algorithmic solutions (Brazeau et al. 2019, Tarasov 2019, Hopkins and St John 

2021). Alternative coding strategies include contingent, absence, and multi-state coding 

(Table 1). The vast array of character coding schemes, their benefits and limitations, have 

been reviewed in many recent studies (Simões et al. 2017a, Brazeau et al. 2019, Hopkins and 

St John 2021), and we refer the reader to these for further information (and also our 

Supplementary Material). In summary, despite the problems introduced by contingent coding, 

nearly all studies have agreed that it should be preferred over other strategies as it is the least 

spurious solution to the problem of hierarchical characters (e.g., the RBT problem) (Strong 

and Lipscomb 1999, Sereno 2007, Brazeau 2011, Simões et al. 2017a).  

As alternative coding schemes did not provide clear solutions to handle dependent 

characters, there was a recent shift in focus towards new algorithmic solutions rather than 

dataset construction ones. The first proposed solutions are alternatives to the traditional 

(Fitch) maximum parsimony algorithm for discrete characters—referred as MP-F herein. One 

of these, the Morphy maximum parsimony algorithm introduced by Brazeau et al. (2019), 

aims to escape the problem of inapplicable characters in contingent coding by providing a 

distinct treatment of inapplicable scores—referred to as the MP-M algorithm herein. 

Subsequently, Hopkins and St John (2021) suggested down-weighting secondary characters 

relative to primary characters, also using maximum parsimony—referred as MP-HSJ herein. 

More recently, Goloboff et al. (2021) advocated for the usage of Sankoff matrices to model 

character contingency in maximum parsimony.  
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The performance of these recent alternative algorithmic solutions, however, remains 

largely unknown. Simulated datasets, in which the ―true‖ answer is known, have only been 

used once to test phylogenetic accuracy using a small synthetic dataset (with eight taxa) and 

restricted to maximum parsimony optimization approaches (Hopkins and St John 2021). 

Large, simulated datasets are not only more similar in size to most empirical phylogenetic 

studies, but also allow evaluation of how different parameters affect inferences.  These 

include variable levels of homoplasy, character evolutionary rates (contributing to branch 

lengths), tree symmetry (Maddison 1993, O'Reilly et al. 2018, Puttick et al. 2019), the 

proportion of primary and secondary characters (Hopkins and St John (2021), among others). 

Importantly, morphological datasets are now frequently analyzed by 

probabilistic/statistical methods—maximum likelihood and Bayesian inference (BI)—across 

various living and fossil study systems—e.g., Lee et al. (2014), Giles et al. (2017), King et al. 

(2017), Simões et al. (2017b), Paterson et al. (2019), Simões and Pierce (2021). Yet, the 

problem of hierarchical characters has rarely been discussed in the context of probabilistic 

inference methods. One major exception is a recent study suggesting the polymorphic re-

coding of characters following the concept of structured and hidden states Markov models to 

incorporate the hierarchical structure of primary and secondary characters into Bayesian 

inference as a solution to the problem of hierarchical characters (Tarasov 2019). However, no 

study to date has demonstrated if and how the problems introduced by hierarchical characters 

in MP impacts probabilistic phylogenetic algorithms to begin with, despite some previous 

suggestions that they would (Brazeau et al. 2019). At least in principle, theory suggests that 

likelihood-based methods should be less impacted by hierarchical characters. That is because 

all maximum likelihood and BI software implement variations of the Felsenstein likelihood 

optimization algorithm (Felsenstein 1973, 1981), which includes only a ―down-pass‖ phase 

(from tips towards the root) for the calculation of likelihood scores at every node in the tree 
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being reconstructed. The absence of an ―up-pass‖ phase during the optimization of ancestral 

nodes—which is characteristic of maximum parsimony approaches (Brazeau 2011, Brazeau 

et al. 2019)—would suggest, for instance, that the dependency problem introduced by 

inapplicable state scores in contingent character coding should not impact tree inference 

using likelihood optimization procedures. 

Here, we utilized a series of simulations of morphological datasets and one empirical 

dataset to address the following questions: how do different character coding schemes impact 

the relative performance of MP and BI in both simple and complex morphological datasets? 

Under a common coding scheme, how do classical and recently proposed optimization 

algorithms for MP perform relative to each other and to BI in morphological datasets? What 

is the impact of different tree shapes and character models for the performance of each 

method? We find a striking contrast of results between simplistic and complex simulated 

datasets regarding best coding practices and a large disparity in performance among methods 

depending on tree or character distribution structures. Our results indicate that standard BI is 

significantly less impacted by contingent coding, displaying superior performance to all MP 

methods tested here, even those explicitly modelled to handle inapplicable characters. 

 

MATERIALS AND METHODS  

Simulation 1: Simplified Synthetic Datasets 

To make our study directly comparable to previous ones addressing issues of 

character coding, we replicate the simplified synthetic datasets used to exemplify the RBT 

problem of Maddison (1993), which was also used by others (Strong and Lipscomb 1999, 

Tarasov 2019). Specifically, this includes two datasets aimed towards replicating the two 

distinct problematic scenarios introduced by contingent coding and inapplicable character 

states.  
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Dataset 1 (Scenario 1, symmetric trees).— Refers specifically to the RBT example of 

Maddison (1993) with 14 taxa plus 1 outgroup with their internal relationships fully resolved 

and with each internal node supported by one synapomorphy, with the exception of the taxa 

within the so called zone of contention (Fig. 1a). A total of 11 characters were used, which is 

the minimum number of characters to create this symmetric tree topology with one fully 

resolved clade one side of the tree and another clade of unresolved relationships on the other 

side of the tree. Subsequently, one or two extra characters were added to the dataset 

(depending on the coding scheme to be tested). For all coding schemes in which two 

characters are added, ―character 12‖ is the primary character WSDC—(denoting absence and 

presence of tail) and ―character 13‖ (denoting tail color) is the secondary character that is 

dependent on the primary ―character 12‖ (Fig. 1b). Under multistate coding, both characters 

are merged into a single ―character 12‖ (Fig. 1b). The primary character WSDC is 

convergently evolving the ―present state‖ on the both sides of the tree, where the secondary 

character becomes applicable, creating the zone of contention sensu Maddison (1993). The 

basic tree topology (outside the zone of contention) is not impacted by either the primary 

character WDSC or its secondary characters (i.e., characters 12 and 13). 

Dataset 2 (Scenario 2, asymmetric trees).—Simulates the tree example used by Strong 

& Lipscomb (1999, Fig. 12 therein). The objective with this dataset is to explore potential 

biases introduced by primary absences and resulting secondary inapplicable characters at the 

base of the tree. This dataset includes 7 taxa plus 1 outgroup with their internal relationships 

fully resolved and with each internal node supported by one synapomorphy, except for the 

taxa within the zone of contention (Fig. 1f-i). It is the equivalent of only one side of the tree 

in Scenario 1 in order to create tree asymmetry while keeping the same number of taxa 

between the outgroup and the zone of contention. A total of three characters were used, 

which is the minimum number of characters to create this tree topology. The tree topology is 
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strongly asymmetric and includes a single zone of contention. As for Dataset 1, one or two 

characters are added to represent primary and secondary characters for the various coding 

schemes.  

 

Simulation 2: Complex Synthetic Datasets 

It is well-established that number of taxa (Hillis 1996, 1998, Pollock et al. 2002, 

Zwickl and Hillis 2002, Hillis et al. 2003, Heath et al. 2008, Vernygora et al. 2020), number 

of characters (Wright and Hillis 2014, O'Reilly et al. 2016, Puttick et al. 2017, Puttick et al. 

2019)—but see (Keating et al. 2020)—and the relative number of taxa per character 

(taxon:character ratio) (Graybeal 1998) can impact the performance of phylogenetic analyses 

using either morphological or molecular data under different optimality criteria. Therefore, 

we kept the number of taxa, number of characters, and the taxon:character ratio all constant 

to avoid introducing the impact of those extra variables on tree inference accuracy. 

Specifically, we used the following fixed values: 31 taxa (30 ingroup taxa +1 outgroup) and 

60 characters—and thus a fixed taxon:character ratio 1:2 for the ingroup, which approximates 

well the taxon:character ratio in empirical datasets (Scotland et al. 2003, Murphy et al. 2021).  

The approach above gives us the following fixed parameters: T (total number of taxa), 𝐶 (total number of characters), R (taxon/character ratio). Additionally, the total number of 

characters (C) can be represented by: 𝐶 = 𝑃𝑛 + 𝑆𝑛, where 𝑃𝑛 is the total number of primary 

characters and 𝑆𝑛 is the total number of secondary characters. We simulated three groups of 

datasets to cover the large range of proportions of secondary characters found in empirical 

studies. These include low (10%), intermediate (25%), to a high (50%) proportion of 

secondary characters relative to the total number of characters. Given a constant total of 60 

characters, these proportions translate into 𝑆𝑛= 6, 15 and 30 secondary characters, 

respectively (Table 2). 
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Another key factor is how secondary characters are distributed among primary 

characters. For instance, in approaches that down-weight secondary characters (e.g., HSJ), if 

30 secondary characters are dependent upon a single primary character their total weight will 

add up to a maximum of 1 step for the total tree score, and their individual relative weights 

will be of only 1/30 (= 0.03) under HSJ with α =1. However, if these 30 secondary characters 

come from 5 independent primary characters (e.g., 6 from each primary character), then their 

total contribution to the tree score will add up to a maximum of 5, and each secondary 

character‘s relative weight will be five times higher than in the previous example—1/6 (= 

0.167). Therefore, secondary characters may have quite different weights depending on the 

relative distribution of secondary characters among primary characters. To account for this, 

we introduced another variable to our simulations: the number of secondary characters per 

primary characters (𝑆𝑑), with the relationship 𝑆𝑑 =  𝑆𝑛/𝑃𝑠, where 𝑃𝑠 is the number of primary 

characters WDSC. For instance, if we have 30 secondary characters dependent on just one 

primary character—as in all examples from (Hopkins and St John 2021), where all 

secondaries are dependent on a single primary character— that would be a case where: 

            60(𝐶) = 30(𝑃𝑛) + 30(𝑆𝑛)  
and, 

 𝑆𝑛 = 30 and 𝑃𝑠 = 1, then 𝑆𝑑 =  𝑆𝑛/𝑃𝑠 = 30 secondary characters per primary character 

WDSC. 

However, if we have 30 secondary characters dependent upon 5 primary characters: 𝑆𝑛 = 30 and 𝑃𝑠 = 5, then 𝑆𝑑 =  𝑆𝑛/𝑃𝑠 = 6 secondary characters per primary character 

WDSC. 

Therefore, here we simulated three categories for the distribution of secondary 

characters for datasets with 30 secondary characters: 𝑆𝑑 = 6, 15, and 30 secondary characters 

per primary character WDSC (Table 2).  
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Simulated tree construction.—We generated two simulated master (―true‖) trees, one 

fully symmetrical and another with perfectly asymmetrical topology, to test for the impact of 

different tree symmetries on phylogenetic performance. Each tree included 31 taxa (30 

ingroup and 1 outgroup) as defined in the previous section. To emulate the RBT problem, we 

designated 10 ‗crown‘ taxa in each sector of the symmetrical tree (total = 20 taxa) and 10 

‗crown‘ taxa in the asymmetrical tree—therefore fixing to 10 the number of taxa with 

applicable secondary characters forming the zone of contention (Fig. S1). All ‗stem‘ taxa 

lying rootward of the ‗crown‘ were designated to have the primary character WDSC absent, 

thus being inapplicable in respect to secondary characters.  

 

Simulated dataset construction.—We used each simulated tree to generate 100 

replicates of binary morphological data matrices containing 60 characters each distributed 

among the 31 taxa, with the proportion of primary and secondary characters as detailed in 

Table 2 for models M1-M5. We followed the conceptual approach of Puttick et al. (2019) 

known as ―no common evolutionary mechanism‖, which does not use explicit molecular 

substitution models to simulate morphological datasets, as in most previous simulations of 

morphological datasets—e.g., (Wright and Hillis 2014, O'Reilly et al. 2016, Puttick et al. 

2017, O'Reilly et al. 2018, Vernygora et al. 2020). Instead, each individual character is given 

a consistency index (CI governing its degree of homoplasy) based on a probability function 

of character homoplasy derived from an extensive survey of empirical datasets (Goloboff et 

al. 2017, Puttick et al. 2019). This approach is designed to generate morphological characters 

with a model that does not necessarily favor probabilistic inference approaches—in fact, 

possibly favoring MP (Puttick et al. 2019)—for directly comparing the performance of MP 

and probabilistic methods in phylogenetics (Puttick et al. 2019). For our simulated datasets, 
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we set a target CI index for the entire matrix to be within an intermediary CI range, between 

0.4 – 0.5 [bin 5 in (Puttick et al. 2019)].  Therefore, all primary characters (regardless of 

having secondary dependencies) may have character state transitions across all taxa—i.e., in 

both ‗crown‘ and ‗stem‘ taxa—to replicate circumstances found in empirical datasets. 

We generated datasets using a two-step procedure. First, we generated all primary 

characters that were applicable to all taxa. Primary characters WDSC were assigned a 

specific pattern of character state scores: present [char.state = 1] in the ‗crown‘ ten taxa and 

absent [char. state = 0] in the outgroup and ‗stem‘ taxa (Fig. S1). Next, we performed a 

second round of simulations to generate scores for the secondary characters only. These 

simulations used pruned versions of the master trees and only included taxa that were scored 

as having the primary characters WDSC as present. These simulated secondary data matrices 

were then merged with the primary data matrices. Taxa that were scored as ‗absent‘ for the 

primary traits were scored as ‗inapplicable‘ for the secondary characters in the final merged 

datasets using contingent coding. All simulated datasets contained variable characters only, 

which is typical of morphological datasets.  

 

Empirical Dataset 

To assess the impact on tree topology and character evolution from each algorithmic 

alternative in the empirical dataset, we utilized the morphological dataset on Palaeognathae 

(ratites and tinamids) published by Mitchell et al. (2014). This dataset includes several 

desirable properties for our research question, as it has: i) almost exactly the same number of 

taxa as in our complex simulation procedures (30 taxa)—and small enough to not be 

impacted by tree search efficacy of each method being tested;  ii) primary characters with 

secondary dependences scored with the gap symbol (―-‖)  to distinguish it from missing data 

(―?‖); iii) a very small proportion of missing data. Over the last decade, phylogenomic data 
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has revealed the independent loss of flight in palaeognath birds, with tinamids (flight capable) 

inferred as deeply nested within flightless ―ratites‖ (Baker et al. 2014, Mitchell et al. 2014), 

instead of forming their sister clade as traditionally inferred by morphological datasets 

(Worthy and Scofield 2012). This implies either convergence of morphological characters 

towards flightlessness or re-gain of flight in tinamids, resulting in independent losses or gains 

of several characters related to flight and cursoriality. Hence, key characters for the evolution 

of this group follow the scenarios described above (Fig. 1a), in which character hierarchy is 

expected to have the greatest impact on phylogenetic inference. 

We recoded this dataset to match the expectations of contingent coding (see details in 

Supplementary Material) and reanalyzed it using the same analytical procedures tested for 

simulated datasets (MP-F, MP-M, MP-HSJ, and BI). To map the impact of convergent 

evolution on primary and secondary characters associated with flight and cursoriality, we 

conducted a second series of analyses in which we constrained the tree topology to a partial 

molecular backbone (i.e.,tinamids were constrained to be the sister group to moas).  

 

Analyses of Simulated and Empirical Datasets 

MP-F tree searches for the simplified datasets generated by Simulation 1 for distinct 

coding strategies were conducted using the ―Implicit Enumeration‖ algorithm in the software 

TNT v.1.5 (Goloboff and Catalano 2016).  For Simulation 2, tree searches were conducted 

using the phangorn R package (Schliep et al. 2017). For tree searches with MP-M 

optimization we used its implementation in the R package TreeSearch v1.0.1 (Smith 2018), 

which uses MorphyLib (Brazeau et al. 2017) to handle inapplicable data (Brazeau et al. 

2019). For tree searches with MP-HSJ optimization, we used the ―dissimilarity‖ and ― 

hsjScorer‖ R functions from Hopkins and St John (2021), which work in conjunction with the 

branch-swapping functions available in the package TreeSearch v1.0.1 (Smith 2018)—i.e.,  
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―TreeSearch()‖, ―Ratchet()‖, and ―MultiRatchet()‖. For both MP-M and MP-HSJ approaches, 

starting rooted trees were subject SPR and TBR branch swapping operations, the results of 

which were used as starting trees for further analyzes with a series of ratchet iterations 

(functions ―Ratchet‖ and ―pratchet‖), switching to the next run if the best score was hit 10 

times, and stopping all searches if best score from each run was the same for 20 runs. The 

best scoring tree was used as the starting point for multiple ratchet (function ―MultiRatchet‖) 

runs with the same criteria as above to obtain multiple most parsimonious trees. 

For the MP-HSJ optimization, we further tested the performance of distinct α 

rescaling parameter values—for details on its implementation, see (Hopkins and St John 

2021). In summary, when α = 0, secondary characters are disregarded entirely from the 

analysis (weight = 0), and when α = 1, secondary characters will not be further penalized, 

although all characters that are secondary to the same primary character will still have a 

combined maximum score value of 1. To see the impact of different α values on the 

performance of MP-HSJ optimization, we tested a range of three possible α values: 0, 0.5 and 

1.  

Bayesian analyses used the Mk model for morphological characters (Lewis 2001) 

assuming the presence of variable characters only (Mkv model), with rate variation among 

characters sampled from a gamma distribution. Each analysis consisted of two independent 

runs using four chains each, sampling at every 1,000 generation, for a total of 10 million 

generations using the software Mr. Bayes v 3.2.6 (Ronquist et al. 2012). 

Procedures for the empirical analyses were the same as for simulated datasets. 

However, for the second set of analyses on the empirical dataset (with the molecular 

backbone constrain), it was not possible to use MP-HSJ, as the tree search algorithms for this 

method—functions ―TreeSearch()‖, ―Ratchet()‖, and ―MultiRatchet()‖ in the R package 

TreeSearch v1.0.1 (Smith 2018)—do not allow for the constraining of the tree topology. For 
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MP-M, the wrapper function ―MaximizeParsimony()”in TreeSearch v1.0.1 (Smith 2018) was 

used to run parsimony analyses using the MP-M approach with constrained tree topologies to 

match the molecular backbone.  

All most parsimonious trees (MPTs) obtained from each optimization procedure were 

used to calculate a strict consensus tree. Posterior tree samples obtained by BI were used to 

calculate a majority rule consensus tree. Both consensus options were chosen as they are the 

standard output trees for each of those respective optimization procedures in most studies 

using morphological data. Consensus trees were subsequently used for comparison with the 

master trees generated by simulations.  

 

Performance Measures 

We measured accuracy based on the total similarity shared by the inferred trees to the 

generated master trees using both bipartition and quartet tree distance metrics. For bipartition 

comparisons, we used similarity scores based on the Mutual Clustering Information metric 

(MCI) (Smith 2020), an information theory-based metric that shows the amount of mutual 

clustering information shared by all bipartitions in two or more trees. MCI is part of a larger 

class of generalized Robinson-Foulds (RF) distance metrics that overcome the limitations 

from classical implementations of the RF distance, such as quick saturation of distance scores 

(Smith 2020). Quartet similarity is based on the ―tqDist‖ algorithm from (Sand et al. 2014)—

implemented in the R package Quartet (Smith 2019)—to measure the number of shared four-

taxon subtrees between two or more trees.  

Quartet similarity is predicted to outperform bipartition metrics as it better reflects 

phylogenetic patterns at deeper internal nodes, thus better handling poorly resolved nodes 

(Mongiardino Koch et al. 2021)—a problem for previous tree distance metrics, including 

traditional RF and Matching split distances [e.g., (Vernygora et al. 2020)]. Further, quartet 
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similarity has been suggested to be less prone to the influence of wildcard taxa and tree shape 

(Smith 2020, Mongiardino Koch et al. 2021). However, to our knowledge there are no 

quantitative direct comparisons between the two metrics to assess their individual assessment 

of tree topologies in the face of variations in tree resolution. Tree resolution is a frequently 

overlooked component of tree metrics but has a direct impact on the assessment of tree 

performance (Vernygora et al. 2020).  

To address the issue above, we simulated how each metric is impacted by decreased 

tree resolution or increased topological differences to test the precise conditions in which 

these metrics yield different results. For both the asymmetric and the symmetric 30-taxa 

master trees, we randomly collapsed from 1 to 28 internal nodes and calculated MCI and 

Quartet similarity to the starting tree. Similarly, we randomly applied from 1 to 45 nearest-

neighbor interchange (NNI) moves and compared the resulting tree to the starting tree under 

both metrics. For each number of collapsed nodes or NNI moves, we did 50 replicates. 

Finally, we compared both metrics in terms of their sensitivity to the number of collapsed 

nodes (tree resolution) or number of NNI moves (topological differences), and whether tree 

symmetry affected either metric.  

As discussed in detail in our Results, we found a superior performance of quartet 

distances over bipartition metrics (e.g., MCI) in instances of poor node resolution . This 

limits our ability to infer resolution error, since this metric is calculated based on bipartition 

tree distances (Smith 2020). Hence, we only evaluated resolution error when results from 

MCI matched the results obtained by quartet distances. 

Finally, considering the BI is not intended to provide a point tree estimate, we also 

examined the size of the parameter space using different coding schemes for BI results. We 

did that by calculating the mean and variance of RF distances among the post-burnin trees of 

the posterior sample sensu Wright and Lloyd (2020). Since the trees in the posterior sample 
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do not contain polytomies, the RF distance metric is not impacted by differences in tree 

resolution (see Results). This metric provides a perspective on tree disparity in the posterior 

sample (i.e., how loosely or tightly scattered trees are in the posterior distribution). 

 

Statistical Analyses  

To assess if there were significant differences between performance results among 

different tree and character models by inference method type, we conducted nonparametric 

pairwise Wilcoxon rank sum (Mann-Whitney) between all analyses (Supplementary Tables 

1-3). Parametric tests were not possible considering the bimodal distribution of some of the 

results (e.g., Figs 3-5). 

 

RESULTS 

Simplified synthetic datasets 

Fitch MP (MP-F) .—Under MP-F, we find that four combinations of coding schemes/tree 

topologies meet the two corollaries for logically sound resolutions of the RBT problem 

(Table 3). Contingent coding is successful under Scenario 2 (asymmetric trees), but fails 

under Scenario 1 (symmetric trees), as illustrated in Fig. 1 (f-i) and discussed in the 

Supplementary Material. A second coding scheme to meet both corollaries is represented by 

unordered multistate coding under Scenario 1 (symmetric trees), which had been highlighted 

by Maddison (1993) as a solution to the contingent coding problem (Table 3). However, 

multistate coding fails under Scenario 2 as it cannot recover the hierarchical relationship 

between primary and secondary characters— as previously observed by Hawkins et al. 

(1997). This failure results in some taxa (in which the primary character WDSC is absent) to 

be estimated as nested within the zone of contention, and a strict consensus tree with reduced 

resolution relative to other coding schemes (Figs. S2-S7). Finally, all options including 
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character ordering logically prevent the basic assumption set by corollary 2, as the ordering 

scheme will inevitably and arbitrarily predetermine which secondary state (red or blue) will 

evolve first (Figs. S6 and S7, Table 3). 

The only coding approach to successfully meet the conditions set by corollaries 1 and 2 

above under both symmetric and asymmetric trees (Scenarios 1 and 2) is ―absent coding‖ 

(Fig. S8 and S9, Table 3). Despite being briefly discussed in the literature before, absent 

coding was tested only once (Strong and Lipscomb 1999), and its ability to meet both 

corollaries was never previously realized (see further discussion in Supplementary Material). 

 

Morphy MP (MP-M) .—This approach correctly recovers the hierarchical relationship 

between primary and secondary characters as well as correctly finding the blue-first and red-

first hypotheses as equally parsimonious among the MPTs (Figs. S10 and S11, Table 3). This 

matches the expectations of both corollaries, as predicted (Brazeau et al. 2019). 

 

HSJ MP (MP-HSJ) .—As with MP-M, this approach was designed to correctly recover blue-

first and red-first hypotheses as equally parsimonious (Hopkins and St John 2021). As 

expected, it does recover those hypotheses among the MPTs (Figs. S12 and S13, Table 3) and 

the hierarchical relationship between primary and secondary characters is recovered, since 

those must be provided a priori by the user. . 

 

Bayesian Inference-Mkv model (BI) .—We found a substantial contrast of performance 

between scenarios 1 and 2 concerning hierarchy (corollary 1). Regardless of the character 

coding scheme, BI analyses of symmetric trees always inferred the clade defined by the 

presence of the primary character WDSC (i.e., tail) as monophyletic in more than 90% of the 

sampled posterior trees (Figs. S14-S16, Table 3), and the posterior trees sampled successfully 
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converged towards an optimal tree topology solution (Fig. S14-16, c,d). Additionally, 

frequency among posterior trees for the correct inference of the clade defined by the presence 

of the primary character WDSC (i.e., tail) was slightly higher for absent coding (98.7%), 

compared to contingent coding (97%) or multistate (92.9%) coding.  

In contrast, asymmetric trees were much harder to estimate using BI across all coding 

schemes, with the posterior sample of trees not converging towards similar topologies (Fig. 

S17-19) and with the focal clade defined by the primary character WDSC being inferred at 

drastically lower frequencies compared to symmetric trees (Table 3). However, the absent 

coding scheme still was the best performing one relative to competing coding schemes in this 

aspect (ca. 50% compared to 21 and 23% from other schemes). 

Additionally, we expected the frequency of posterior trees inferring red and blue-first 

hypotheses to be similar to each other under corollary 2. We found exactly this pattern with 

almost identical sampling frequencies (<1% of difference) in the frequency of trees with blue 

or red first hypotheses under absent and multistate coding for symmetric trees (Scenario 1) 

(Table 3). We found similar results using absent and contingent coding for asymmetric trees 

(Scenario 2). However, contingent coding in Scenario 1 strongly favored a blue-first 

hypothesis (similarly to MP-F), whereas multistate coding in Scenario 2 favored a red-first 

hypotheses more strongly.  

As with MP-F, absent coding was the overall best performing coding scheme for BI. 

However, whereas for MP-F absent coding met both corollaries for both simulated scenarios, 

in BI absent coding met both corollaries for Scenario 1, but only corollary 1 for Scenario 2. 

 

Complex synthetic datasets 

Performance of tree distance metrics.—We found that both metrics are insensitive to the 

symmetry of the starting tree (Fig. S27). For both MCI and Quartet similarity, similarity 

decreases approximately linearly with the number of NNI moves (Fig. S27a). MCI show 
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signs of saturation earlier than Quartet similarity, with a decreasing slope as NNI moves 

increase, while for Quartet similarity the relationship continues approximately linear even 

when the number of NNI moves is greater than the number of internal nodes in the tree (Fig. 

S27a). However, the two metrics differ more strongly in their response to decreased tree 

resolution. While MCI decreases approximately linearly with the number of collapsed nodes, 

quartet similarity is less sensitive to decreased tree resolution when the number of polytomies 

is small and decreases sharply when trees approach a complete polytomy (Fig. S27b). 

 

Performance across coding and alpha schemes.— Only two methods could be tested for 

different coding schemes (MP-F and BI), since the two other MP methods (MP-M and MP-

HSJ) were designed to handle datasets constructed using contingent coding schemes 

specifically. Additionally, we tested the performance across different weighting schemes for 

secondary characters (α variable) for the MP-HSJ optimization (Hopkins and St John 2021). 

Under MP-F, all coding methods had extremely similar performances regardless of 

the tree distance metric used (Fig 2a). Given the extremely similar results presented by both 

metrics, we evaluated the resolution error incurred by different coding schemes—see 

Methods. Resolution error was also identical across all three coding methods for both Type I 

(incorrectly resolved notes) and Type II (incorrectly unresolved nodes) for all coding 

schemes. 

Under BI, however, mean, median, and modal accuracy values were significantly 

higher for contingent coding relative to absent and multistate coding under both MCI and 

quartets tree distance metrics ( Fig. 2b). Furthermore, resolution error results indicate 

contingent coding induces a slightly lower amount of Type I and II errors compared to absent 

and multistate coding.  
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For the MP-HSJ optimization, quartet distances indicate no substantial difference in 

performance across distinct alpha values, whereas MCI indicates a likely worse performance 

for alpha values of 0 relative to 0.5 and 1, which is induced by higher proportions of Type II 

error ( Fig. 2c). 

 

Performance across methods.—When comparing all methods based on contingent coding—

the best performing coding procedure (Fig. 2a and b) and the only one common to all 

inference methods—MP-F has a significantly worse accuracy compared to all other methods 

(Fig. 3). This result is consistent with predictions in the literature and is consistent regardless 

of accuracy metric (Fig. S20). However, the best solution among the three remaining methods 

depends on the performance metric. Similarity scores based on MCI (Smith 2020) suggest 

MP-HSJ perform the best whereas quartet distances indicate BI performs more accurately 

than other inference methods (Fig. S20). However, quartet distances were found to be more 

robust to variations in tree resolution when compared to bipartition metrics here (Fig. S27)—

an important factor when comparing consensus trees. Considering this, we favor the results 

provided by quartet distances, which suggest BI outperforms all inference methods based on 

MP, even those specifically designed to handle inapplicable characters. 

Performance across tree and character models.—The larger data dispersal and bimodality in 

the results for each inference method (Fig. 3) suggest that other factors influence their 

respective performance, two of which were explicitly modeled here: tree symmetry and 

distribution of secondary characters among primary characters WDSC.  

Using quartets distances, MP-F performs significantly better for asymmetric trees 

compared to symmetric trees (Fig. 4a, Figs. S23 and S24, and Table S2), as predicted by the 

RBT problem (Maddison 1993) and in our simplified synthetic datasets (Fig. 1 and Table 3). 

MP-M performs significantly better than MP-F for both tree models, and with asymmetric 
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trees also significantly more accurately inferred compared to symmetric trees. MP-HSJ and 

BI have significantly greater accuracy relative to MP-M and MP-F ( Fig. 4a, Figs. S25 and 

S26, Table S1). The latter two methods perform relatively similarly for datasets used to 

reconstruct symmetric and asymmetric trees, with a slight advantage for symmetric trees 

(although nonsignificant for MP-HSJ, Table S2). The greatest improvement in performance 

for MP-HSJ and BI relative to MP-F and MP-M is observed on the inference of symmetric 

trees (Fig. 4a,), suggesting they are more capable than MP-M of removing the problems 

introduced by inapplicable characters. 

In contrast, the MCI metric suggests that accuracy in MP-F tree inference is similar 

for symmetric and asymmetric trees (Figs. S23 and S24). This surprising result contrasts with 

previous evidence from the literature and herein indicating symmetric trees (as in Figs. 1a, c-

e) are considerably harder to estimate using MP-F compared to asymmetric trees (as in Fig. 

1f-i) in the presence of inapplicable scores for hierarchical characters. This further suggests 

this metric is not capable of detecting meaningful differences in performances across 

methods. 

The performance of distinct inference methods when considering different primary 

and secondary character distribution models (Table 2) indicates a significant decrease in 

accuracy of MP-F when increasing the number of secondary characters per primary character 

WDSC (i.e from M1 to M2 and M3), or when increasing the number of primary characters 

WDSC (i. e. from M3 to M4 and M5) (Figs. 4b, S25 and S26, and Table S3). Other methods 

show a similar pattern but with more attenuated differences. Model M5, with the largest 

number of primary characters WDSC performs poorly across all methods (Fig. 4b, Table S3).  

When examining the tree-to-tree distances within each posterior sample from the BI 

analyses (Fig. S21), we observed that simulation conditions in which secondary characters 

are spread more evenly among primary characters WDSC showed higher mean RF distances 
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(i.e., models M3, M4, and M5). It should be noted that, unlike in accuracy comparisons 

between methods, a higher RF score does not mean more differences from a ―true‖ simulated 

tree.  This is a metric of within-posterior sample differences. In this case, a higher RF means 

that more different trees are being proposed and evaluated under these simulation 

conditions—i.e., they result in a larger tree parameter space. We confirmed this by 

calculating a per-posterior variance in the RF distance. This measure, too, indicated that 

greater dispersal of secondary characters is associated with exploring more disparate 

phylogenetic trees (Fig. S22). 

 

Empirical dataset results.— Analyses of the recoded dataset for palaeognath birds resulted 

into various differences among their optimal solutions depending on the algorithms used. 

Unconstrained analyses produced the same single MPT under MP-F and MP-HSJ (α=0.5) 

and three MPTs using MP-M (yielding a well resolved strict consensus), which were all 

similar to the results from MP-F and MP-HSJ, except for variations in the placement of a 

Struthio and Rhea+Pterocnemia within the clade they form with casuarids (Figs. S28-S30). 

The MRCT from BI is well resolved and finds a similar topology to MP-F and MP-HSJ, 

except for the more basal placement of kiwis (Apteryx), which is found as the sister group to 

nearly all other ratites, instead of forming a clade with moas and elephant birds as in MP-F 

and MP-HSJ (Fig. S31). These results are all relatively consistent with previous 

morphological analyses of this dataset, especially in finding all ratites as a clade with 

tinamids as their sister group (and a single loss of flight in palaeognaths). 

When constraining the analyses to a molecular backbone to enforce the convergent 

evolution of flightlessness (i.e., tinamous as the sister group to moas instead of a sister group 

to all ratites—Fig. 5, clade Y), MP-F resulted into four most parsimonious trees (MPTs—

e.g., Fig.5a and b) that produce a poorly resolved strict consensus tree (Figs. S32-34). MP-M 
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resulted inferred a single MPT (Fig. S33) and BI produced a well resolved MRCT (Fig. 5c 

and d; Fig. S36). The greatest difference between these results is in the placement of kiwis—

within the clade also formed by casuarids, ostriches, and elephant birds (Fig. 5, clade X) by 

most MPTs from MP-F and also by the MRCT from BI, whereas inferred as the sister clade 

to all other palaeognaths by MP-M (Figs. S34-36).  

When mapping the evolution of anatomical traits evolving convergently among 

flightless lineages (i. e. in the constrained analyses), we observe some patterns which reflect 

our simulated results. The primary character WDSC (absence/presence of a scar for lig. 

Collaterale medialis) evolves the present condition convergently in flightless groups, 

whereas one of its dependent secondary characters (size of the scar—treated as a discrete 

character by this dataset), has variations in one of these groups (clade X, Fig. 5) but not on 

the other flightless group (moas, within clade Y, Fig. 5b and c). The ancestral state 

reconstruction for moas is state 1, seemingly enforcing state 1 as the ancestral state for most 

of the MPTs for clade X (Fig. 5b). This is the case for three out of four MPTs indicating state 

1 evolving first, and a single MPT with ambiguous ancestral state for clade X (Figs. S32-34). 

On the other hand, the consensus tree from BI indicates states 0 and 1 as being equally likely 

to have evolved first (Fig. 5d). The result from MP-M indicates state 1 as the ancestral for 

Clade X (similarly to MP-F), but MP-M does not recover kiwis within clade X, making 

interpretation of this result harder to compare with MP-F and BI. These patterns are in 

general agreement with our predictions from the simulated results, in which MP-F favors 

state 1 evolving first among most of its MPTs, whereas BI results in either state as equally 

likely to have evolved first. 
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DISCUSSION 

Differences between quartet and bipartition metrics to measure method accuracy 

 Here we found that quartet and bipartition metrics favor different inference methods. 

Our simulations show that this is likely due to a difference in the sensitivity of each metric to 

tree resolution in summary trees and topological differences, but not to tree symmetry. MCI 

decreases approximately linearly with tree resolution and small topological differences (Fig. 

S27). As a result, when trees being compared include polytomies (e.g., most summary or 

consensus trees from MP and non-clock BI studies), the underlying cause of distances 

estimated may be ambiguous. Quartet similarity, on the other hand, appears to be less 

sensitive to polytomies except for extreme cases, better reflecting differences in topology. 

When applied only to fully resolved trees, MCI possesses several desirable properties in 

relation to other metrics, including Quartet Similarity (Smith, 2020). When trees vary both in 

topology and resolution, however, interpretation from MCI can be problematic. By using 

both metrics, we are able to find that BI results in more accurate but less resolved trees, while 

MP-HSJ results in trees with higher information content shared with true trees because they 

are better resolved, although less accurate—i.e., include more false positives. Overall, we 

suggest quartet distances should be preferred over bipartition metrics for similar performance 

studies in the future. 

 

Advantages of contingent coding over other coding schemes under MP and BI 

Although contingent coding has traditionally been considered the less spurious 

solution to the problem of dependent characters, all conclusions regarding distinct coding 

strategies come from small, simulated datasets (Strong and Lipscomb 1999, Brazeau et al. 

2019, Hopkins and St John 2021), equivalent in size and scope to our Simulations 1 

(simplified synthetic datasets). By examining both symmetric and asymmetric tree structures 
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for Simulations 1 and ancestral state reconstructions for each of the three optimization 

procedures tested here (contingent, absent, and multistate), we find new results and 

interpretations concerning the utilization of these coding schemes. We find that the problems 

introduced by logical character dependency are most easily avoided by using absent coding, 

the only coding method meeting the assumptions of corollaries 1 and 2 discussed above 

(Table 3, Figs. S8 and 9). The better performance in comparison to contingent or multistate 

coding contradicts previous suggestions concerning this particular coding strategy using 

similarly small synthetic datasets (Strong and Lipscomb 1999, Brazeau et al. 2019, Hopkins 

and St John 2021).  

We attribute some of this difference to the fact that ancestral state reconstructions 

were not conducted for all outputs of distinct coding strategies by Strong and Lipscomb 

(1999), among other issues in the interpretation their results—see Supplementary Material. 

Additionally, the other two studies (Brazeau et al. 2019, Hopkins and St John 2021) used a 

distinct, although analogous, approach to absent coding as defined here, in which 

inapplicable scores were interpreted as a new character state—i.e., gaps (‗-‗) interpreted as a 

third character state for otherwise binary characters. Therefore, some of the difference in 

results may derive from the fact that interpreting inapplicable scores as a distinct third state is 

not, strictly speaking, the same as scoring it with the absent state, as the latter is homologous 

to the absent state on the primary character WDSC. Additionally, the simulations of Hopkins 

and St John (2021) introduced more secondary characters, which might have increased the 

negative impact of overweighting the new character state—a problem also pervasive to 

absent coding, as described below. 

By comparing the results of our Simulations 1 with more complex simulation 

scenarios (Simulations 2) we find important contrasts in our results and to previous 

conclusions using simplified datasets. When simulating larger datasets with explicit tree and 
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character model variations, there is no significant difference in accuracy or resolution error 

among distinct coding strategies for traditional MP (MP-F), regardless of the performance 

metric (Fig. 2). We attribute this difference to the fact that the detected advantages of absent 

coding in simplified simulations is counterbalanced by the negative bias introduced by the 

repeated occurrence of the absent state. As the number of secondary characters increases for 

larger datasets, it also increases the number of secondary characters with the absent 

condition, disproportionally overweighting the absent state. Although we did not explicitly 

test for a variable number of characters, we predict that datasets with a larger number of 

characters analyzed by traditional MP (MP-F) might see an even greater negative impact 

from the overweighting of the absent condition with absent coding, potentially leading 

contingent coding to become the most accurate coding, as previously suggested (Strong and 

Lipscomb 1999, Sereno 2007, Brazeau 2011, Simões et al. 2017a). 

Under BI, contingent coding has a slightly superior performance compared to other 

coding schemes for the complex simulated datasets (Simulations 2) (Fig. 2b). This is 

expected from theory since BI is not as strongly impacted by inapplicable scores introduced 

by contingent coding as the Fitch algorithm for MP (MP-F) due to the absence of an “up-

pass‖ phase in the former. Therefore, the advantages of absent relative to contingent coding 

detected for very small datasets under MP-F are not observed under BI. However, as BI also 

suffers from the biases introduced by the overweighting of the absent condition, there is an 

overall negative balance for the performance of absent coding relative to other coding 

schemes. Overall, absent coding demonstrates to be advantageous only for extremely small 

datasets (e.g., 7-14 tips) characterized by a very low number of secondary characters. 

However, many morphological datasets are around the size of the simulation dataset (Barido-

Sottani et al. 2020)—in which contingent coding performs equally well or better than absent 

coding (Fig. 2). Additionally, considering the ongoing trend towards much larger 
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morphological data sets, contingent coding would provide a better fit for the vast majority of 

morphological datasets. In rare instances where very small datasets are still used (e.g., ca. 15-

20 tips), we suggest users should test between potential topological differences between 

absent vs contingent coding schemes. 

 

Limitations of approaches designed to deal with logical character dependency 

Perhaps the first attempt towards solving the problem of logical character 

dependency, outside the scope of character coding schemes, was the utilization of step-

matrices of costs—or Sankoff matrices—as they could embed hierarchical relationships 

among characters (Forey and Kitching 2000). These have long been criticized for the amount 

of time required to build individual matrices for every collection of primary character WDSC 

and their dependent secondary characters, among other issues—see further discussions in 

Brazeau et al. (2019). Recently, such problems were ameliorated by faster methods to 

construct Sankoff matrices in the program TNT (Goloboff et al. 2021). However, as the 

number of secondary characters increases in a dataset, this solution becomes less practical as 

it surpasses the total possible number of states allowed by TNT (32 states). This creates a 

maximum limit of four binary dependent characters (Goloboff et al. 2021). In addition to this 

limitation, costs of character state transformations are arbitrary and do not include any 

uncertainty measure. Therefore, Sankoff matrices may never be a feasible universal solution 

to the problem of logical character dependency. 

Morphy (MP-M) (Brazeau et al. 2019) is, to our knowledge, the first algorithmic 

attempt to revise traditional parsimony optimization schemes to handle logical dependency 

between phylogenetic characters. Morphy (MP-M) was analyzed conceptually and 

empirically by subsequent studies, which criticized it for not controlling for primary 

characters and their relationship to secondary characters (the same major limitation of the 
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MP-F algorithm), leading to overweighting of absences for primary characters WDSC 

(Hopkins and St John 2021). Moreover, with a large number of secondary characters, both 

MP-M and MP-F approaches result in a larger set of MPTs, including solutions where 

secondary characters are treated as applicable, thus contrary to its primary goal. This 

behavior was not detected for the MP-HSJ method (Hopkins and St John 2021). 

Our results support and expand upon those findings by establishing that MP-M 

optimization can improve on the performance of MP-F in datasets with inapplicable scores 

when reconstructing asymmetric trees (Figs. 4b), but not in symmetric ones (Figs. 4b, S17 

and S23). Accordingly, the negative effects of inapplicable scores for contingent coding are 

expected to be the greatest in symmetric trees (Maddison 1993, Brazeau et al. 2019, Hopkins 

and St John 2021). Additionally, MP-M has greater accuracy across different models of 

primary and secondary character distribution in the dataset compared to MP-F, but MP-HSJ 

and BI are significantly more accurate under these same conditions (Figs. 4b, S23 and S24). 

This disparity in performance to MP-HSJ and BI increases both with the number of 

secondary characters for a single primary character WDSC (models M1-M3), as previously 

suspected (Hopkins and St John 2021), and with increasing the number of primary characters 

WDSC (models M3-M5). 

Among all parsimony-based methods, MP-HSJ is consistently recovered as the best 

performing method, regardless of accuracy metric, tree structure, and character models 

simulated (Figs. 3, 4, S21-S24). We attribute this performance to the fact that this is the only 

approach that specifically identifies primary characters WDSC and each of their secondary 

character dependencies (Hopkins and St John 2021). However, MP-HSJ downweighs 

secondary characters to only a small fraction of the relative weight attributed to primary 

characters. This penalization increases proportionally to the number of secondary characters 

in a dataset and can be further boosted through its α parameter (Hopkins and St John 2021). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
a
d
0
0
6
/7

0
3
4
5
5
4
 b

y
 g

u
e
s
t o

n
 1

1
 F

e
b
ru

a
ry

 2
0
2
3



Acc
ep

ted
 M

an
us

cri
pt

Our tests revealed that performance results under this approach are almost entirely insensitive 

to value of α, including a complete elimination of secondary characters with α = 0 (Fig. 2c). 

Such heavy downweighing of secondary characters may pose a limitation for datasets in 

which those characters are the only ones available to resolve relationships within the zone of 

contention (e.g., Fig. 1). This might be one of the key reasons for the superior performance of 

BI relative to MP-HSJ under the most accurate metric (quartets), even though BI does not 

distinguish primary and secondary characters. 

 

The inapplicable states problem is mostly restricted to MP 

The primary cause for the problem of contingent coding and its impact on tree 

inference relates to the two-steps approach towards the optimization of ancestral state in 

MP—the ―down-pass‖ and ―up-pass‖ phases of the Fitch algorithm (Fitch 1971, Brazeau 

2011). Since BI programs use the Felsenstein optimization (Felsenstein 1973, 1981) when 

calculating likelihoods for internal nodes, which only has a ―down-pass‖ phase, it would be 

expected that the impact of inapplicable characters from contingent coding would be strongly 

reduced, or at least substantially minimized, relative to MP. Our results in Simulations 1 

support our predictions in finding that contingent coding in MP-F will favor a blue-first 

hypothesis 100% of the time and never return any trees with a red-first hypotheses in 

Scenario 1 (Fig. 1, Table 3). On the other hand, BI will favor a similar hypothesis (blue-first 

= 46.1%) but it retrieves the competing hypotheses at frequencies much higher than 0% (i.e., 

red-first = 21%) (Table 3). As expected by their design, both MP-M and MP-HSJ accurately 

find most parsimonious trees with both blue and red-first hypotheses. 

The advantage of BI under Simulations 1 is limited to the better-studied Scenario 1 

(symmetric trees). The difficulty of retrieving hierarchical relationships and reaching 

topological convergence in small asymmetric trees causes BI to fail corollaries 1 and 2 more 
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frequently than MP-F when estimating asymmetric trees (Table 3). Our findings thus 

corroborate previous studies suggesting symmetric trees can be more accurately reconstructed 

than asymmetric trees using phenotypic data under BI (Puttick et al. 2017, Puttick et al. 

2019), although we do not recover such performance disparity for distinct tree models under 

MP-F. The exact cause for this difference in performance between tree symmetries is 

currently unknown. However, in this study the reduced accuracy of BI under Simulations 1 

(Scenario 2) might be simply a result of the smaller size of this dataset compared to Scenario 

1, providing less characters to infer this tree topology, as suggested by the high disparity in 

tree topologies in the posterior sample (Figs. S17-S19). Therefore, we do not see this as 

major limitation of BI, but simply a result of the boundary conditions for this particularly 

simulation scenario (with extremely small-sized datasets for Simulations 1), designed for 

comparison with both historical and recent studies using small datasets to address on the 

problem of logical character dependency, 

Using more complex simulations combining several parameters and larger numbers of 

taxa and characters (Simulation 2), BI consistently recovers more accurate trees than MP 

using the traditional Fitch algorithm (MP-F). When analyzed under the quartet similarity 

metric, which is less influenced by tree resolution (Figs. 3 and 4), BI is also significantly 

more accurate than the two parsimony approaches that correct for inapplicable characters 

(MP-M and MP-HSJ).  

Algorithmic solutions to logical character dependency have also been proposed in the 

context of Bayesian inference in recent years, such as for the utilization of structured (SMM) 

and hidden-state Markov models (HMM) (Tarasov 2019). While these newer methods can 

adequately deal with inapplicable states in dependent characters, no study had ever shown 

whether traditional BI using the Mk model would have a poor performance. Tarasov‘s 

comparison between traditional BI and SMM/HMM models is limited to a 4-taxon case 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
a
d
0
0
6
/7

0
3
4
5
5
4
 b

y
 g

u
e
s
t o

n
 1

1
 F

e
b
ru

a
ry

 2
0
2
3



Acc
ep

ted
 M

an
us

cri
pt

example, which may not generalize well to larger trees. The proposed solution to the RBT 

problem from Tarasov‘s SMM model (2019, Fig. 5 therein)—equivalent to our simplistic 

Simulations 1 herein using a symmetric tree topology—is the result in which red and blue 

tailed clades evolve ―simultaneously‖ and receive similar posterior support in the majority 

rule consensus tree. This is the same result obtained here by using standard MP-F with the 

default collapsing rule in TNT (Fig. 1d), or when using the Mk model for BI under absence 

or unordered multistate coding (Figs, S14-16, Table 3)—the best performing coding strategy 

detected here for such small data sets. As demonstrated above, these results are expected for 

BI analyses due to the way that maximum likelihood optimization operates, and not 

something unique to the SMM or HMM models.  

 

Limitations of BI and suggestions on how to move forward. 

It should be noted that BI performing more accurately than alternative MP approaches 

does not mean it is completely exempt of biases introduced by inapplicable character states in 

contingent coding. The sampling of the posterior distribution via the MCMC algorithm is 

strongly impacted by the number of primary characters WDSC. In simulation models with an 

increasingly larger number of primary characters WDSC  (M4 and M5), there is only a small 

difference in performance of BI relative to MP-M and MP-HSJ, with all three methods 

outperforming MP-F (Fig. 4b).  

Additionally, by quantifying the distribution of posterior trees from BI across the tree 

parameter space (Figs. S20 and S21), we find that the mean RF distance between the 

posterior trees within each simulation for models M1 and M2 is considerably lower than for 

models with a larger proportion of secondary characters (M3) or with more primary 

characters WDSC for each dataset (M4 and M5), irrespective of coding strategy. The total 

variance (or disparity) of RF values is also considerably higher for models M3 to M5, except 
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for contingent coding, which is only higher for symmetric trees under models M3 to M5. 

Overall, this indicates a substantial increase in the size of the tree space when there is a large 

amount of secondary characters in the dataset (50% for models M3-M5), and especially when 

there is an increase in the number of primary characters WDSC within the same dataset 

(models M4-M5). This increase in the tree space (most notably in absent and multistate 

coding) makes it harder for the MCMC to sample across all local optima and reach the global 

optimum, which is the most likely cause further significant reduction in accuracy for models 

M4 and M5.  

 

Our results demonstrate the pervasive and detrimental role of increasing the number 

of primary characters with logically dependent characters in phylogenetic datasets even 

whenthe proportion of secondary characters for each primary character WDSC decreases 

(models M3 to M5). The unfortunate consequence of our findings is that, considering a finite 

number of anatomical structures from which morphological characters can be created, 

increasing the number of morphological characters in a dataset will strongly rely on 

increasing the proportion of secondary characters that are dependent on the presence of these 

anatomical structures (primary characters WDSC). For instance, squamate (lizards and 

snakes) morphological datasets are typically high in the proportion of taxa with inapplicable 

secondary characters, given the high number of clades independently losing their limbs. As a 

result, limb-related characters become inapplicable for a substantial portion of the dataset—

e.g., 71 limb and girdle characters (11.6% of all characters) for 35% of all taxa in Gauthier et 

al. (2012) and 67 limb and girdle characters (19.3% of all characters) for 25% of all 

squamates sampled in Simões et al. (2020). However, these secondary characters are 

important towards resolving relationships in other areas of squamate phylogeny, especially 

among early-branches of squamate evolution (Gauthier et al. 2012, Simões and Pyron 2021). 
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For those reasons, we do not recommend ignoring secondary characters altogether. 

Additionally, the strong negative impact introduced by logically dependent characters 

detected here are a direct result of our simulation parameters. These were explicitly designed 

to replicate the conditions under which logical dependency is expected to cause the greatest 

impact on phylogenetic performance (Fig. 1). How frequently these exact conditions are 

found in empirical datasets is hard to determine and are most likely dataset-dependent.  

Considering the importance of secondary characters, long-term solutions to this issue 

should stem from more efficient exploration of the tree parameter space, either by more 

efficient algorithms [e.g., (Zhang et al. 2020)] and continued expansion of available 

computational power for phylogenetic research. It also may be advisable to conduct analyses 

with BI using Fossilized Birth-Death models, in which tip ages and other evolutionary 

parameters can be used to discriminate among topologies when complex dependencies are 

present. Yet, this remains untested, and the relative performances of competing BI 

approaches in the face of character dependency, including Tarasov (2019) new coding 

method, shall be the focus of future investigations.  

 

CONCLUSIONS 

Here we provide the first comparable benchmarks for recent algorithmic solutions for the 

problem of logical dependency among morphological characters, a relevant issue that remains 

unsolved for nearly three decades (Maddison 1993). We demonstrate that alternative 

maximum parsimony algorithms designed to handle logical character dependency can 

generally produce more accurate results than traditional (Fitch) maximum parsimony, 

especially in cases with symmetric tree topologies and with low numbers of secondary 

characters. The MP-HSJ algorithm is generally more accurate than the competing approach 

MP-M, but undated Bayesian inference is significantly more accurate than all MP 
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approaches. This simple alternative to analyze datasets with dependent secondary characters 

has long been overlooked. Importantly, increasing the proportion of secondary characters and 

of primary characters with dependent secondary characters that become inapplicable 

substantially reduces phylogenetic accuracy regardless of optimality criterion or character 

coding strategy. We expect that the development of more efficient algorithms to explore the 

larger tree parameter space created by secondary characters (especially for BI) might alleviate 

some of the existing limitations demonstrated here.  
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FIGURES CAPTIONS  

 

FIGURE 1. Problems stemming from contingent coding and introduced by inapplicable 

character states. a) Single tree with homoplastic evolution of a primary character WDSC in 

distantly related clades that are separated by intervening taxa in which the primary character 

WDSC is inapplicable. b) Distinct coding schemes for new (tail) characters. c-e) Alternative 

resolutions for the ambiguous node in this case (Scenario 1, symmetric trees): the 

optimization of ancestral nodes on the right side of the tree will determine the ancestral state 

optimization on an unresolved clade (zone of contention) on the opposite side of the tree. 

Although there are three possible resolutions for the taxa in the zone of contention, most 

programs will only infer one of the S1 trees (depending on collapsing rules). One tree (Tree 

S2) will never be inferred by MP. f-i) Alternative resolutions for the ambiguous node in a 

distinct case (Scenario 2, asymmetric trees): when the primary character WDSC is 

inapplicable on the outgroup/earliest evolving taxa. In this case, all three solutions are 

inferred by MP programs, but the third solution (trees A3) can be presented in either one of 

two ways: supporting ambiguous nodes, as set by default in TNT and PAUP (tree A3a) or 

collapsing all nodes with zero branch lengths (‗rule 1‘in TNT) (tree A3b).  

 

FIGURE 2. Accuracy and resolution error for different coding and weighting schemes across 

distinct phylogenetic inference procedures. Results for absent (Abs), contingent (Cont), and 

multistate (Multi) coding schemes for MP using the traditional Fitch optimization—MP-F (a), 

for Bayesian inference—BI (b), and distinct weighting schemes for secondary characters as 

implemented by MP using HSJ optimization—MP-HSJ (c). For each quadrant, accuracy 

measured by MCI similarity (top left, in cyan) and quartets similarity (bottom left, in green), 

followed by resolution error measured by the proportion of incorrectly resolved nodes—Type 
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I error (top right, in orange), and incorrectly unresolved nodes—Type II error (bottom right, 

in red). 

 

FIGURE 3. Overall accuracy of each phylogenetic inference method using the best performing 

accuracy metric (quartets distance) regardless of simulated tree or character models. All 

methods are significantly different in performance based on pairwise Mann-Whitney tests 

(Supplementary Table 1). For method abbreviations, see Methods. 

 

FIGURE 4. Accuracy of each phylogenetic inference method using the best performing 

accuracy metric (quartets distance) for distinct simulated tree and character models. 

Difference in performance between symmetric (Scenario 1) and asymmetric (Scenario 2) tree 

models (a), and between different character models (see Table 2) (b), for distinct 

phylogenetic inference methods. There is a steady increase in accuracy from MP-F (top row) 

to BI (bottom row) for both model classes (a and b). Most results are significantly different in 

performance based on pairwise Mann-Whitney tests (Supplementary Tables 2 and 3), with 

notable exceptions: nonsignificant between tree models for MP-HSJ, and between character 

models M3-M4 for all inference methods. For method abbreviations, see Methods. 

 

FIGURE  5. Results of analyses on empirical dataset (palaeognathid birds) from Mitchell et al. 

(2014), after character recording for the contingent coding scheme. a) Parsimony-based 

ancestral state reconstruction of the primary character 192 WDSC using the first MPT 

produced by MP-F (clade Y constrained—see Methods). b) Same as in (a), but for the 

secondary character 153, which is applicable only when character 192 is present (state 1). c) 

Parsimony-based ancestral state reconstruction of the primary character 192 WDSC using the 
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MRCT produced by BI (clade Y constrained—see Methods). d) Same as in (c), but for the 

secondary character 153, which is applicable only when character 192 is present (state 1). 

Note that all taxa with character 192 as present also represent flightless taxa and all taxa with 

character 192 as absent represent flight capable taxa. This represents just one instance out of 

17 detected in this dataset of logically dependent morphological characters (see additional 

ones in Supplementary Material), some of which are directly related with the convergent 

evolution of flightlessness in this group, and which can be impacted by the treatment of 

logically dependent characters. 
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TABLE1. Character coding strategies to deal with logically dependent characters. See 

Supplementary Material for a detailed discussion on character coding strategies. 

Coding 

Strategy 
Description Advantages Limitations 

Contingent 

Introducing 

inapplicable states in 

secondary characters 

 • Maintains 

hierarchical 

relationships 

 •  Logically dependent 

characters are treated as 

independent 

 • Placement of taxa affected by 

relationships in distant parts of 

the tree 

Absence 

Using ―absent‖ state 

in all primary and 

secondary characters 

 • Maintains 

hierarchical 

relationships 

 • Avoids 

inapplicable states 

 • Overweighting of absent state 

 • Logically dependent characters 

are independent 

Multistate 

Merging primary 

and associated 

secondary characters 

 • Avoids 

inapplicable states 

 • Merges logically 

dependent 

characters 

 • Hierarchical relationships lost 

 • Potentially unfeasible number 

of states 
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TABLE 2. Combinations of characters distribution models. Abbreviations: 𝐶, total number of 

characters; 𝑃𝑛, number of primary characters; 𝑃𝑠, number of primary characters WDSC; 𝑆𝑑, 

number of secondary characters per primary characters; 𝑆𝑛, number of secondary characters. 

Model C 𝑺𝒏(%C) 𝑺𝒏  (absolute) 𝑷𝒏 𝑷𝒔 𝑺𝒅 

M1 60 10 6 54 1 6 

M2 60 25 15 45 1 15 

M3 60 50 30 30 1 30 

M4 60 50 30 30 2 15* 

M5 60 50 30 30 5 6* 

 

*Note that the number of secondary characters per primary character (𝑆𝑑)on models M4 and 

M5 are the same as in models M2 and M1, respectively. However, the secondary characters 

in M4 and M5 are distributed across more primary characters (𝑃𝑠), which will impact the 

final Fitch scores and tree lengths. 

 

 

  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/s

y
s
b
io

/s
y
a
d
0
0
6
/7

0
3
4
5
5
4
 b

y
 g

u
e
s
t o

n
 1

1
 F

e
b
ru

a
ry

 2
0
2
3



Acc
ep

ted
 M

an
us

cri
pt

TABLE 3.  Results for the simplified synthetic datasets using various coding schemes. Coding 

schemes meeting expectations from corollaries 1 and 2 are highlighted with blue background. 

Coding schemes with results pre-established by users (ordered characters) highlighted in 

gray. Results for coding schemes that are not applicable to particular methods are marked 

with ―NA‖. Abbreviations: Abs, absence coding; B, blue tail-first hypothesis; Cont, 

contingent coding; Cor, corollaries; M, method; Multi, multistate coding; P-S, primary and 

secondary character hierarchy; ord, ordered; R, red tail-first hypothesis; unord, unordered. 

  
Scenario 1 (Symmetric/two zones) Scenario 2 (Asymmetric/one zone) 

M Cor 

Abs 

Cont 

Multi Abs 

Cont 

Multi 

Ord Unord Ord Unord Ord Unord Ord Unord 

MP-

F 

1 yes yes yes yes yes yes yes yes yes no 

2 no yes no no yes no yes yes no yes 

MP-

M 

1 NA NA yes NA NA NA NA yes NA NA 

2 NA NA yes NA NA NA NA yes NA NA 

MP-

HSJ 

1 NA NA yes NA NA NA NA yes NA NA 

2 NA NA yes NA NA NA NA yes NA NA 

BI 

1 yes 
yes* 

(98.7%) 
yes * 

(97%) 
yes 

yes * 

(92.9%) 
yes 

no  

(50.2%) 
no  

(21.13%) 
yes 

no  

(23%) 

2 no 
Yes** 

(B-R 

<1%) 

no 

(B-R=26%) 
no 

Yes** 

(B-R <1%) 
no 

yes** 

(B-R <1%) 
Yes** 

(B-R <1%) 
no 

no 

(B-

R=15.7%) 

 

* Yes if >90% of posterior trees infer the focal clade (defined by primary character WDSC 

being present) as monophyletic. 

**Yes if difference in frequency between blue (B) and red (R)-first hypotheses <1%. 
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(ambiguous support; TNT and PAUP default)
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(’rule 1’ in TNT)
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Treelength: 15 steps 

Tail color: 2 steps 

Out A B C D E F G H I J K L M N
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Tail color: 3 steps 
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Tree S1a: Inferred by MP

(‘rule 1’ in TNT)

Tree S1b: Inferred by MP 

(ambiguous support; TNT default)
Tree S2 Never inferred by MP

Absence coding:

Ch 12: tail: absent  (0)/ present (1)

Ch 13: tail color: tail absent (0)/ blue (1)/ red (2)

 

Multistate coding:

Ch. 12: tail: absent (0)/ blue (1)/ red (2) 

Contingent coding:

Ch. 12: tail: absent  (0)/ present (1)

Ch. 13: tail, color: blue (0)/ red (1)
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