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Infrastructure networks offer critical services to modern society. They dynamically interact
with the environment, operators, and users. Infrastructure networks are unique engineered
systems, large in scale and high in complexity. One fundamental issue for their reliability
assessment is the uncertainty propagation from stochastic disturbances across interconnected
components. Monte Carlo simulation (MCS) remains approachable to quantify stochastic dy-
namics from components to systems. Its application depends on time efficiency along with
the capability of delivering reliable approximations. In this paper, we introduce Quasi Monte
Carlo (QMC) sampling techniques to improve modeling efficiency. Also, we suggest a prin-
cipled Monte Carlo (PMC) method that equips the crude MCS with Probably Approximately
Correct (PAC) approaches to deliver guaranteed approximations. We compare our proposed
schemes with a competitive approach for stochastic dynamic analysis, namely the Probability
Density Evolution Method (PDEM). Our computational experiments are on ideal but com-
plex enough source-terminal (S-T) dynamic network reliability problems. We endow network
links with oscillators so that they can jump across safe and failed states allowing us to treat
the problem from a stochastic process perspective. We find that QMC alone can yield prac-
tical accuracy, and PMC with a PAC algorithm can deliver accuracy guarantees. Also, QMC
is more versatile and efficient than the PDEM for network reliability assessment. The QMC
and PMC methods provide advanced uncertainty propagation techniques to support decision
makers with their reliability problems.

1 INTRODUCTION

Infrastructure systems (e.g., water/oil/gas,
communications, power, and roads) are pri-
marily designed to distribute critical services
through interconnected components. Quanti-
fying their reliability under uncertain contin-
gencies is crucial for protective actions, miti-
gation and emergency operations against fail-
ures.

A fundamental issue in evaluating the dy-
namic reliability of infrastructure networks
relates to uncertainty propagation from com-
ponents to system states. Compared to en-
gineered facilities that can be represented by

logical structures of components, there is an
additional dimension of complexity with in-
frastructure which arises from the interde-
pendence among interconnected components
(Zio, 2009). Also, the problem size with
explicit identification of all possible system
states increases exponentially with system
size.

Classic approaches, such as event and fault
trees (Devooght Smidts, 1992) as well as the
Markov process (Papazoglou & Gyftopoulos,
1977), require significant resources for sys-
tem state identification (Siu, 1994). Monte
Carlo simulation (MCS), which directly sim-
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ulates the system’s responses to stochastic dy-
namic perturbations, remains a feasible ap-
proach. However, MCS-based methods may
demand significant computational resources
due to slow convergence, while only furnish-
ing approximations.

In this paper, we will implement Quasi
Monte Carlo (QMC) techniques to signifi-
cantly increase the efficiency of the simu-
lation model. Additionally, we will show
how to equip crude MCS with approximation
algorithms to achieve accuracy guarantees.
Then, we will compare our methods with
emerging alternatives, such as the probability
density evolution method (PDEM) through
computational experiments. Finally, we state
conclusions and offer ideas for future re-
search.

2 METHODOLOGY

2.1 Dynamic reliability analysis through
Monte Carlo simulation

The fundamental issue of dynamic reliabil-
ity evaluation of infrastructure networks is
the non-linear stochastic dynamic analysis of
the system responses against random inputs.
There are two major approaches for stochas-
tic dynamic analysis: the direct approach and
the indirect approach.

The direct approach, developed by Orn-
stein (1919), directly analyzes stochastic dy-
namics based on the governing differential
equation and characterizes the probabilistic
distribution of the stochastic dynamic re-
sponses. It treats the stochastic dynamic anal-
ysis from the Lagrangian perspective, which
follows individual dynamic responses as they
transit over time domain. The indirect ap-
proach, initiated by the work by Einstein
(1905), deals with the diffusion equation gov-
erning the probability density function (PDF)
of the collection of stochastic dynamic re-
sponses. The indirect approach looks at the
random processes from the Eulerian perspec-
tive, which fixates on a particular point in
time domain and records the probabilistic
characteristics of the stochastic dynamic re-

sponses passing through that point. Both
types of approach originally motivated to de-
scribe Brownian movement.
The primary challenge the direct approach

faces is that we can not analytically solve
a stochastic differential equation (SDE). Uh-
lenbeck &Ornstein (1930) developed the idea
of describing the excitation and response in
terms of their probabilistic descriptions in-
stead of explicitly solving the stochastic dy-
namic equation. The innovative use of mo-
ments combined with the development of
auto- (or cross-) spectral densities of station-
ary random processes (Wiener, 1930), paved
the way for modern stochastic dynamic anal-
ysis (Paez, 2011). The most widely studied
random excitation is the stationary Gaussian
process X(t), which excites a linear system
with a response Z(t) (Crandall, 1963):

SZZ(ω) = |H(ω)|2SXX(ω) (1)

where SXX(ω) and SZZ(ω) are the spectral
density of the excitation and the response,
respectively, and H(ω) is the frequency re-
sponse function of the linear system. With
nonlinear systems, we require specialized
analytical approximation treatments such as
statistical linearization (Roberts & Spanos,
2003), equivalent linearization (Proppe et
al., 2003), stochastic averaging (Roberts &
Spanos, 1986), and path integral (Kougioumt-
zoglou & Spanos, 2012). Generally, these ap-
proximation techniques demand prior infor-
mation about the stochastic dynamics to per-
form approximations. Moreover, the input-
output relationship based methods only yield
moments of system response.
Following the work by Einstein (Ein-

stein, 1905), in the field of physics, Fokker
(1914) and Planck (1917) derived the famous
Fokker−Planck equation that describes the
evolution of the PDF of the position and
velocity of a Brownian particle excited by
white noise. The Fokker−Planck equation
is also known as the forward Kolmogorov
equation in the mathematical community be-
cause he independently developed its rigor-
ous mathematical basis (Kolmogorov, 1931).
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The Fokker−Planck−Kolmogorov equation
transforms the problem of stochastic dynamic
analysis into a deterministic partial differen-
tial equation. Although it provides an ele-
gant mathematical framework, its application
to engineering practice is restricted because it
is hard to implement across large size engi-
neering systems. Its computational complex-
ity increases at least exponentially with the
state-space dimension of the system (Proppe
et al., 2003).

MCS remains a feasible method for
stochastic dynamic analysis. We can use
MCS to run possible scenarios of an infras-
tructure network under stochastic dynamic
excitations. For each realization, all of the un-
certain parameters are sampled and fed to the
governing differential equation to compute
the dynamic response of the system. Each
independent system realization represents a
possible response scenario for the system. We
can characterize the probability distribution
of the system response from the assembled
collection of possible outcomes.

MCS also serves as a benchmark method to
verify the accuracy of newly developed tech-
niques in the area of stochastic mechanics
(e.g. Li & Chen, 2004; Kougioumtzoglou &
Spanos, 2012). MCS is versatile for practical
application and insensitive to the number of
dimensionality. Specifically, with infrastruc-
ture networks consist of interconnected com-
ponents, the MCS is an object-oriented ap-
proach that allows explicit propagation of the
uncertainty from excitation inputs to system
response outputs.

The price for versatility and robustness is
that MCS can be very inefficient. The conver-
gence rate of crude MC method is O(N−1/2).
Additionally, the estimation accuracy is not
guaranteed. We should have a stopping rule
for MCS sampling with respect to a certain
level of accuracy.

2.2 Quasi Monte Carlo method

The Monte Carlo (MC) method includes a
broad spectrum of techniques that use ran-
domly drawn input samples to approximate

solutions, particularly in integration and sim-
ulation. Many integration problems can be
reduced to integrals over the unit cube Id =
[0,1]d

I[ f ] =
∫
Id
f (θθθ)dθθθ (2)

and its MC approximation is

Î[ f ] =
1
N

N

∑
n=1

f (θθθ n) (3)

where f is the function for integral, θθθ is ran-
dom variable in random space ΩΩΩd , θθθ n is the
nth random sample. In many cases, the de-
sired result of a simulation problem can be
written as an expectation in the same form
with Equation (3). For example, for the dy-
namic reliability evaluation of an engineered
network G, we can set f (θθθ) to be a Bernoulli
random variable with f (θθθ) = 1(0) represent-
ing a ’safe’ (’failure’) state. Then the network
reliability R can be approximated as the ex-
pectation of f (θθθ). Thus, such expectation ap-
proximation problem can also be reduced to
the general integral by Equation (2). In the
reminder of this paper, we use Equation (3)
as a general formulation for MC approxima-
tion.
The purely random sampling technique

for crude MCS suffers from the problem of
clumping such that samples are concentrated
in a range with high probability density, and
close samples contribute limited credit to the
estimation. Define the approximation error of
Equation (3) relative to Equation (2) as

ε∗[ f ] = |I[ f ]− Î[ f ]| (4)

Sample clumping can be mathematically de-
scribed using the error bound equation invok-
ing the Central Limit Theorem (CLT) (Feller
1971), which states that to ensure the approxi-
mation error being at most ε∗ with confidence
level δ ∗, it requires N samples:

N = (ε∗[ f ])−2σ2[ f ]s(δ ∗) (5)

where s is the confidence function for a nor-
mal random variable, and σ2[ f ] is the vari-
ance of I[ f ],

σ2[ f ] =
∫
Id
( f (θθθ)− I[ f ])2dθθθ (6)
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Equation (5) indicates that ε∗ =
O(σ [ f ]N−1/2).

The Quasi Monte Carlo (QMC) method
improves the scaling exponent −1/2 by re-
placing random samples with quasi-random
points that can provide space uniformity
(Kuipers & Niederreiter, 1974; Hua & Wang,
1981). QMC method uses low-discrepancy
sequences with correlations between the
points to eliminate clumping. A sequence is
low-discrepancy if

DN ≤ c(logN)dN−1 (7)

where c is a constant independent of N, d is
the dimension of the sequence, and DN is dis-
crepancy, a measure of uniformity, for a se-
quence of N points {θθθ n} in the unit cube Id

(Caflisch, 1998). DN is estimated using

DN = supJ∈E |
#{θθθ n ∈ J}

N
−m(J)| (8)

where E is the set of all rectangular sub-
sets, #{θθθ n ∈ J} is the number of points
that lie within J, and m(J) is the exact vol-
ume of J. Low-discrepancy sequences pos-
sess desirable uniformity properties of nu-
merical sequences (Kuipers & Niederreiter,
1974; Hua & Wang, 1981). Examples of
low-discrepancy sequence include the one di-
mensional Van der Corput sequence as well
as its multi-dimensional version, the Halton
sequence (Halton, 1960), Sobol sequences
(Sobol, 1976), and the number theoretical net
(NT-net) (Hua & Wang, 1981).

The error of QMC method is justified by
the Koksma-Hlawka inequality, which states
that for a sequence {θθθ n} and a function f
with bounded variation, the integration error
ε∗[ f ] is bounded as

ε[ f ] =V [ f ]D∗
N (9)

where V [ f ] is the integral variation of f over
the unit cube, for the one dimensional case,

V [ f ] =
∫ 1

0
|d f
dθ

|dθ (10)

or for d dimensions

V [ f ] =
∫
Id
| ∂ d f
∂θ1...∂θd

|dθ1...dθd +
d

∑
i=1

V [ f (i)1 ]

(11)

where f (i)1 is the restriction of the function
f to the boundary θθθ i = 1, D∗

N is defined the
same way with DN , with J ∈ E∗ and E∗ is
the set of all rectangular subsets with one
vertex at 0. The Koksma-Hlawka inequal-
ity provides an upper bound for the estima-
tion error of QMC. Although this bound can
be conservative, the inequality implies that
the integration error has a convergence rate
ofO((logN)dN−1), which is much faster than
crude MC.

2.3 Monte Carlo method with accuracy
guarantees

Mainstream applications of MC method for
reliability evaluation of infrastructure net-
works lack performance guarantees on esti-
mation error. The typical way to determine
the sample size is through a trial and error
process that aims to meet a target empirical
variance measure such as the coefficient of
variation (Paredes et al., 2019). However,
such empirical approaches can be unreliable
(Bayer et al., 2014), especially for reliability
evaluation of systems with significant com-
plexity. Although the Central Limit Theorem
(CLT) (Feller, 1971) gives a relationship to
determine the sample size with approxima-
tion error ε∗ and confidence level δ ∗, Equa-
tion (5) cannot be directly used. The exact
value of the variance σ2[ f ] is unknown. We
need to equip the MCS with accuracy guaran-
tee schemes that deliver principled reliability
approximation (Paredes et al., 2019).
There is a class of Probably Approximately

Correct (PAC) approaches that deliver (ε,δ )
approximations for MC applications (e.g.,
Huber, 2017, Dagum, 2000). The concept
of PAC from artificial intelligence (Valiant,
1984), says that an (ε,δ ) approximation of an
expectation µZ returns an estimator µ̂Z , such
that

P(| µ̂Z

µZ
−1| ≥ ε)≤ δ (12)

There is one PAC approximation for
Bernoulli random variables named Gamma
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Bernoulli approximation scheme (GBAS)
(Huber, 2017). The basic idea of GBAS is
to construct an estimator µ̂Z for the expec-
tation µZ such that µZ/µ̂Z ∼ Gamma(k,k−
1). The desired PAC guarantee given by
Equation (12) is equivalent to P(µZ/µ̂Z <

(1+ ε)−1 or µZ/µ̂Z > (1− ε)−1) ≤ δ . We
can obtain the smallest k that provides such
a guarantee from the Gamma distribution, for
instance, for ε = 0.05,δ = 0.05, the smallest
k is 1550. A more general PAC algorithm is
the Approximation Algorithm (AA) for gen-
eral random variables in [0,1] (Dagum, 2000).
The AA first uses trial MCS experiments to
roughly estimate the expectation and the stan-
dard deviation, and then it determines the de-
sired sample size according to a stopping rule.
The current paper focuses on demonstrating
the implementation of the GBAS.

3 PROBABILITY DENSITY EVOLU-
TION METHOD

A competitive approach for dynamic relia-
bility evaluation of structural and infrastruc-
ture systems is the Probability Density Evo-
lution Method (PDEM) developed by Li &
Chen (2004). PDEM is a general technique
for stochastic dynamic analysis of engineer-
ing systems. It can be regarded as a hybrid
approach that couples both the direct and in-
direct perspectives discussed in section 2.

The theoretical formulation of the PDEM
is in the form of a partial differential equation
that governs the evolution of the joint proba-
bility density function (PDF) of stochastic re-
sponse variable ZZZ and random variable vector
ΘΘΘ:

∂ pZZZ,ΘΘΘ(zzz,θθθ , t)
∂ t

+
d

∑
i=1

żi(θθθ , t)
∂ pZZZ,ΘΘΘ(zzz,θθθ , t)

∂ zi
= 0

(13)

where żi is the velocity of the ith stochastic
response, and d is its dimension. Equation
(13) indicates that the transition of the proba-
bilistic structure of a stochastic system relies
on the change of the physical state of the sys-
tem (Li & Chen, 2006). The joint PDF com-

puted is a Eulerian metric. Also, the PDEM
is derived based on the principle of probabil-
ity preservation and the random event (La-
grangian) description of this principle (Li &
Chen, 2006). In addition, Equation (13) is of-
ten solved in a Lagrangian manner using nu-
merical techniques when it is applied to engi-
neering systems. In the next section, we will
perform computational experiments compar-
ing the performance of PDEM, our proposed
Quasi Monte Carlo (QMC) method, and the
principled Monte Carlo (PMC) method.
Generally, we need to apply numerical

techniques to solve Equation (13) given the
initial condition

pZZZ,ΘΘΘ(zzz,θθθ , t)|t=t0 = δ (zzz− zzz0)pΘΘΘ(θ) (14)

with δ (zzz− zzz0) is the Dirac function, and an
initial value zzz0. pZZZ(zzz, t) is computed by inte-
grating the solved joint PDF pZZZ,ΘΘΘ(zzz,θθθ , t) over
the random space,

pZZZ(zzz, t) =
∫

ΘΘΘ
pZZZ,ΘΘΘ(zzz,θθθ , t)dθθθ . (15)

The implementation of PDEM requires to
feed sampled dynamic responses to Equation
(14) and to use it numerically. It usually
adopts the number theoretical net (NT-net)
developed by Hua &Wang (1981), which is a
QMC sequence, to improve computation effi-
ciency.
Although PDEM is a general framework

for stochastic dynamic analysis of engineer-
ing systems, its application to dynamic reli-
ability problems is somewhat limited. Theo-
retically, we can use PDEM to obtain the tem-
poral PDF pZZZ(zzz, t) and thus get the temporal
reliability R(t) given limit state function g(ZZZ)
of a system. As far as the authors’ knowl-
edge, existing PDEM’s applications to relia-
bility analysis of stochastic dynamic systems
mainly focus on the equivalent static reliabil-
ity over a time period. It transfers the reliabil-
ity evaluation for stochastic dynamic systems
to characterizing distribution of the extreme
value (Chen & Li, 2007). To get the PDF of
the extreme value using the PDEM, a virtual
stochastic process needs to be constructed in
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a way that the extreme value is a temporal
value of the response at a certain instant of
time (Chen & Li, 2007, Liu et al., 2018, Miao
et al., 2020).

The numerical issue associated with solv-
ing Equation (13) is one potential problem
that may hinder the PDEM’s application.
Equation (13) contains the first order devia-
tion of the stochastic response ZZZ(t), which
implies that it can only deal with differen-
tiable stochastic dynamic responses. Addi-
tionally, there are stability issues when solv-
ing Equation (13) with numerical techniques.

4 COMPUTATIONAL EXPERIMENTS

In this section, we implement the Quasi
Monte Carlo method (QMC), the principled
Monte Carlo method (PMC) equipped with a
Probably Approximately Correct (PAC) algo-
rithm, the Gamma Bernoulli approximation
scheme (GBAS), and the Probability Den-
sity Evolution Method (PDEM) to evaluate
the dynamic source-terminal (S-T) connec-
tivity reliability of a hypothetical infrastruc-
ture network (see Figure 1). We will compare
their performance with the results by an exact
method being the baseline.

Figure 1. Layout of the case network.

The hypothetical network is built based
on a benchmark water distribution network
(WDN), Net 3 (USEPA 2016). It consists
of 1 source, 97 nodes, among which 24
are terminals, and 117 links. Each link is

assigned with a hypothetical linear oscilla-
tor with artificial characteristic parameters to
model its dynamic response u(t) to stochas-
tic excitation w(t). Each link has two states,
’safe’(’failure’), when the response u(t) is
less than (is equal to or greater than) its ca-
pacity uc.

In our computational experiments, we
adopt the widely studied linear oscillator with
the stochastic dynamic equation (SDE):

du
dt

+βu= λw(t) (16)

where u is the performance measure, and w(t)
is a truncated Winer process. The Wiener
process is a Gaussian process with the incre-
ment W (t + δ t)−W (t) over any time inter-
val [t, t + δ t],δ t > 0 as a Gaussian variable
with E(W (t+δ t)−W (t))= 0,V (W (t+δ t)−
W (t)) = δ tσ2. Equation (16) originally de-
scribes the velocity of a free particle in Brow-
nian motion in physics, where u is the veloc-
ity of the particle, β is the coefficient of vis-
cous friction, and w(t) is the acceleration in-
duced by the fluctuating force. Uhlenbeck &
Ornstein (1930) obtained the analytical solu-
tion of this equation.
We choose the Wiener process as the

stochastic excitation process because we can
project it to a random space consisting of
a denumerable set of orthogonal random
variables using Karhunen-Loeve expansion
(Ghanem & Spanos, 1991; Masri & Miller,
1982). The expansion has an explicit closed
form over (0,T ):

W (t) =
∞

∑
i=1

vi
sin(πt(i−1/2)/T )

πt(i−1/2)/T
(17)

where {vi} are independent normal variables.
In our experiments, we adopt a truncated
Wiener process over (0,1) with σ2 = 1:

W1(t) =
3

∑
i=1

vi
sinπt(i−1/2)

π(i−1/2)
(18)

We obtain an closed form solution for Equa-
tion (16) with the truncatedWiner process ap-
plying the strategy in Sarkka & Solin (2019)
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(pp. 49−52):

u(t) = e−β tu0+
√
2λ

3

∑
i=1

h(i∗,β , t)vi (19)

with h(i∗,β , t) = sinπti∗−πi∗(e−β t−cosπti∗)
(β 2+π2i∗2)πi∗ , i∗ =

i− 1/2, u0 being the initial value. The solu-
tion u(t) is also a Gaussian process with mean
E(u(t)) = e−β tu0 and variance σ2(u(t)) =
2λ 2∑3

i=1 h
2(i∗,β , t).

4.1 Dynamic S-T connectivity reliability
evaluation

We evaluate the dynamic S-T connectivity re-
liability of the case network when it is under
truncated Winer excitation. Denote the S-T
dynamic reliability for a source terminal pair
st j at time t as R j(t). It is the probability that
at time t the system is at a connected source
terminal pair st j state.

Suitable parameters for each link are
predetermined by sampling from uniform
distributions, with u0 ∼ U(0.8,1.2),β ∼
U(0.08,0.5),λ ∼ U(1.4,3.3). We assume
that each link’s capacity uc equals to its ini-
tial performance measure u0. Also, each link
is assigned a linear oscillator (Equation (16)),
so that each link is resilient and its state can
return back to ’safe’ from ’failure’ at any-
time. The dynamic S-T reliability over [0,1)
for each terminal is evaluated at every instant
{tm = 0.01m}, where m= 0,1,2, . . . , 99.
The Exact method evaluates the dynamic

S-T connectivity reliability from the reliabil-
ity of each link l using a recursive decompo-
sition algorithm (Li & He 2002). All the three
numerical methods, PMC, QMC, and PDEM
have to rely on simulations to obtain real-
izations of each link’s stochastic response.
We use the classic fourth order Runge-Kutta
scheme for dynamic link response computa-
tion.

At each time instant tm, the PMC and QMC
are direct methods that can evaluate the dy-
namic S-T reliability R j(tm) by characterizing
the distribution of the S-T connectivity state
Z j(tm), which is a Bernoulli random variable.

We have the following relationship:

R j(tm) = P(Z j(tm) = 1) = µZ j(tm) (20)

R̂ j(tm) =
1
N

N

∑
i=1

Z j(tm) (21)

To compare the QMC and the PDEM in
the same context, we adopt the framework for
calculating R j(tm) in Liu et al. (2018) for both
methods. The dynamic R j(tm) is estimated
from the distribution of the S-T connectivity
indexCI j(tm)

R j(tm) = P(CI j(tm)≥ 1) (22)

The difference between the QMC and the
PDEM is that QMC approximates the nu-
merical PDF of CI j(tm) directly from the
simulation realizations {CI j,i(tm)} using a
smoothing technique, kernel density estima-
tion, while the PDEM obtains the numerical
PDF ofCI j(tm) by solving Equation (13) with
ZZZ =CI j.

We use the number theoretical net (NT-
net) scheme by Hua & Wang (1981) to gen-
erate QMC samples for v = (v1,v2,v3) in
Equation (18). The basic idea of the NT-
net is to employ an integer generator vector
(N,Q1,Q2, . . . ,Qd) to generate a set of points
over the unit cube Id , where N is the number
of samples. The points are taken using the
following relationship:

PNT = {vi=(vi,1,vi,2, . . . ,vi,d), i= 1,2, . . . ,N}

vi,q=
2iQq−1

2N
−int(

2iQq−1
2N

),q= 1,2, . . . ,d

(23)

We first generate N samples of vvv using NT-
net and substitute them to Equation (18) ob-
taining N excitation samples. Then, we feed
them to Equation (16) and solve response re-
alizations using the fourth order Runge-Kutta
scheme. Finally, we calculate theCI j,i(tm) for
each response i using the connectivity index
algorithm in Liu et al. (2018).
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4.2 Results

Our primary computational experiments re-
sults include: dynamic S-T reliability eval-
uation for a typical S-T pair st20 calcu-
lated by three methods; relative errors ε0
of R20(tm), defined as ε0( j, tm) = (R̂20(tm)−
R20(tm))/R20(tm); and performance compari-
son between the QMC and the PDEM.

Figure 2 illustrates the temporal evolution
trajectories of the dynamic S-T reliability of
S-T pair st20. In the whole time domain,
R̂20 sharply decreases in the beginning and
stays relatively stable afterwards. The sam-
ple size for QMC and PDEM is the same,
N = 418. The sample size of the PMC with
GBAS varies from around three times to five
times of the QMC sample size.

Figure 3 presents the trajectories of ε0 that
reflect quantitative measures of quality. The
ε0 for all approximation schemes is stable and
is within 0.1 in the time range (0.2,1). The
PAC with GBAS yields its expected confi-
dence interval with the fraction that the ab-
solute value of ε0 is larger than 0.05 less than
0.05. With the QMC and the PDEM, ε0 has
a clear trend of decreasing in the time do-
main (0,0.2), and yield higher relative accu-
racy than the PMC with ε = 0.05,δ = 0.05.

Figure 2. Dynamic S-T reliability approximations for
pair st20 (GBAS: ε = 0.05,δ = 0.05).

The early distributions of CI20 in Figure
4 can provide insights about the early large
ε0 with the QMC method and the PDEM. At
t = 0.05, CI20 is close to its initial value 1.0,
and it is narrowly distributed with a small

variance. The QMC method and the PDEM
approximate a PDF with scattered probabil-
ity density values over discretized intervals.
KDE is a smoothing technique, so when its
band width is coarse relative to the spread-
ing of the PDF, over smoothness will occur, as
shown by theCI20 at t = 0.05 in Figure 4. As
for the PDEM, the interval containing the ini-
tial valueCI20 = 1 possesses the concentrated
probability density at t = 0. The probability
density evolves to disperse to adjacent inter-
vals with time. In the time range (0,0.2), the
discretized concentration of probability den-
sity leads to under smoothness of the PDF.

Figure 3. Relative errors ε0 of R̂20 (GBAS: ε =
0.05,δ = 0.05).

Figure 4. Temporal PDF of CI20

5 CONCLUSIONS

We demonstrate that simulation based meth-
ods are most suitable for dynamic reliabil-
ity analysis of infrastructure networks rela-
tive to methods leveraging on statistical de-
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scriptions considering the highly non-linear
behaviors from complex interactions. As a
consequence, we introduce QMC sampling
techniques to improve the computational ef-
ficiency of the simulation based approxima-
tion. We also propose to embed the expec-
tation estimation from MCS into PAC algo-
rithms to deliver guaranteed accuracy of reli-
ability. We demonstrate our proposed meth-
ods on a hypothetical dynamic S-T connec-
tivity reliability problem, and compare it with
an emerging approach, the PDEM.

The QMC sampling technique turns out to
be very effective for improving computation
efficiency. QMC also achieves similar ac-
curacy to that of the PDEM, while the for-
mer is more versatile and efficient for prac-
tical applications. The QMC method di-
rectly uses sample trajectories to approximate
the marginal distribution of a random vari-
able with KDE, while PDEM constructs a
probability density evolution equation using
the sample trajectories and solves it for the
marginal PDF. However, one should be care-
ful with small numbers of QMC samples to
approximate the PDF of a random variable.
For QMC and PDEM, either over smoothness
or under smoothness can occur depending on
the fineness of their numerical discretization.
The Cumulative density function (CDF) may
be a better alternative for reliability evalua-
tion using QMC samples as it does not require
extra smoothness.

The MCS with PAC algorithms is promis-
ing to provide accuracy guarantee for relia-
bility estimation. The PMC method should
replace the crude MCS when rigorous esti-
mation accuracy is desired. Also, the PMC
method is superior than the crude MCS when
serving as a fair baseline comparison. The
PAC algorithm introduced in this paper can
be infeasible for rare-event estimations, new
schemes that combine the efficiency of QMC
and the rigorous accuracy guarantees of PAC
algorithms are desired.

In addition to the stochastic dynamic re-
liability problems, the QMC and the PMC
methods are applicable to other reliability

problems as general techniques for uncer-
tainty propagation quantification. In future
work, the authors will test the robustness of
them with different benchmark problems. We
will develop portfolios of reliability analy-
sis schemes applying advanced uncertainty
quantification and accuracy guarantee tech-
niques for mission-critical applications.
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