- 1 Article Summary Line: By evaluating disease tolerance as a multifaceted host response, we
- 2 find that tissue-specific tolerance (milder pathology) impedes transmission while behavioral
- 3 tolerance (milder anorexia) facilitates transmission of an infectious pathogen.
- 4 Running Title: Disease tolerance alters host competence
- 5 Keywords: disease; infection; transmission; pathology; behavior
- 6 Title: Disease tolerance alters host competence in a wild songbird
- 7 Authors: Rachel M. Ruden and James S. Adelman
- 8 Affiliations:
- 9 Iowa State University, Ames, Iowa, U.S.A. (R. Ruden, J. Adelman)
- 10 Iowa Department of Natural Resources, Des Moines, IA, U.S.A. (R. Ruden)
- 11 University of Memphis, Memphis, TN, U.S.A. (J. Adelman)

Abstract

Individuals can express a range of disease phenotypes during infection, with important implications for epidemics. Tolerance, in particular, is a host response that minimizes the perpathogen fitness costs of infection. Because tolerant hosts show milder clinical signs and higher survival, despite similar pathogen burdens, their potential for prolonged pathogen shedding may facilitate the spread of pathogens. To test this, we simulated outbreaks of mycoplasmal conjunctivitis in house finches, asking how the speed of transmission varied with tissue-specific and behavioral components of tolerance, milder conjunctivitis and anorexia for a given pathogen load, respectively. Because tissue-specific tolerance hinders pathogen deposition onto bird feeders, important transmission hubs, we predicted it would slow transmission. Because behavioral tolerance should increase interactions with bird feeders, we predicted it would speed transmission. Our findings supported these predictions, suggesting that variation in tolerance could help identify individuals most likely to transmit pathogens.

28 Introduction

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Host competence, or the ability to transmit pathogens, is highly variable across individuals [1-4]. This variation can alter the persistence and magnitude of disease outbreaks [5-7], so understanding its underlying causes is crucial for predicting or mitigating epidemics. One obvious driver of competence is the presence of pathogen, but more subtle aspects of clinical presentation, or disease phenotype, also contribute [8, 9]. For example, tolerance describes a spectrum of disease phenotypes that reduce the per-pathogen costs of infection on host fitness [10]. Originally studied in animals as the population-level slope between pathogen load and pathology [11], with a shallower slope indicating higher tolerance, recent work has focused on tolerance in individuals, using pre- and during-infection data to calculate individual slopes [2-4, 12]. Because tolerant individuals experience fewer deleterious impacts of disease, they may contact more susceptible hosts or fomites while infectious. As such, more tolerant hosts could be more competent [2, 4]. However, because clinical signs often aid transmission (e.g., coughing) and tolerant individuals experience milder disease, these hosts may shed fewer pathogens while infectious [8, 9]. As a result, more tolerant hosts could be less competent [12, 13]. We reconcile these contrasting predictions by deconstructing tolerance into two components and evaluating their effects on transmission.

We break tolerance into tissue-specific and behavioral components by measuring two related responses to infection: pathology and sickness behaviors [12]. Pathology describes the immediate costs of infection due to pathogen-induced tissue damage [14], whereas sickness behaviors, like lethargy and anorexia, capture the opportunity costs of becoming diseased [15, 16]. By reducing the magnitude of pathology at a given pathogen load, tissue-specific tolerance preserves physiological function, and thus host fitness [17]. Similarly, by expressing fewer

sickness behaviors at a given pathogen load, behaviorally tolerant hosts can allocate more time to fitness-enhancing activities like foraging [12]. As they relate to host competence, tissue-specific tolerance can alter pathogen shedding from infected tissues, while behavioral tolerance can impact contact rates among individuals.

We explore how tissue-specific and behavioral tolerance alter host competence using a model infectious disease system, house finches (*Haemorhous mexicanus*) infected with *Mycoplasma gallisepticum* (MG). This bacterial pathogen first emerged in songbirds in the early 1990s, presenting as conjunctivitis [18]. Bird feeders serve as critical transmission hubs in this system, congregating individuals and acting as fomites [19, 20].

Although both resistance (clearing pathogens) and tolerance vary across house finch populations [21-23], tolerance may be particularly helpful in predicting competence.

Specifically, we expect tissue-specific tolerance (milder conjunctival pathology for a given pathogen load) to reduce transmission speed because 1) even when controlling for pathogen load, pathology increases pathogen deposition onto bird feeders [24], 2) the amount of pathogen a naïve bird encounters (infectious dose) predicts its probability of infection [25], and 3) pathology increases transmission speed across MG isolates [8, 9]. Notably, this finding across isolates does not exclude pathogen load as a potential driver of competence across individual hosts. Rather, it supports incorporating both pathogen load and pathology (e.g., tissue-specific tolerance) when studying finch competence. In contrast to tissue-specific tolerance, we expect behavioral tolerance (milder anorexia for a given pathogen load) to increase transmission speed because infected finches that spend more time on bird feeders are more likely to transmit [20]. We evaluated these predictions using co-housed pairs of finches, experimentally inoculating one

bird, calculating its tissue-specific and behavioral tolerance, then measuring time until transmission to its cage-mate.

75 Methods

Capture Sites and Initial Housing

We captured house finches using mist nets between 6 July and 17 September, 2017 in Ames, Iowa, USA. We aged birds via plumage and retained hatch-year individuals [26], which are at lowest risk for prior pathogen exposure. After arriving at Iowa State University, birds were housed individually for a minimum 14d quarantine, as in prior studies (see Supplemental Material). After quarantine, 22 of the Twenty-two birds utilized in the experiments below were then housed in mixed-sex randomly assigned 'flocks' of three for a separate experiment (see Supplemental Material), two were housed individually. We and videoed each flock (Action Cameras, YI Technology, Bellevue, WA), using one-hour focal surveys to rank individuals by feeding frequency. An additional two birds were housed individually as sentinels.

Pair-housed transmission experiment

After the aforementioned flock study, twenty-four birds (14 female, 10 male) showed no clinical or serological signs of MG infection and were moved into pairs at different times, as verification of disease status allowed. Seven pairs were established from existing flocks immediately (25d pre-inoculation; 3 female-female and 4 mixed-sex pairs); two five mixed-sex pairs were co-housed between 24 and 17d pre-inoculation (2 mixed-sex pairs); and three pairs were formed 7d pre-inoculation (1 male-male and 2 mixed-sex pairs). If two birds from the same flock showed no signs of MG exposure, they were retained as a pair (n=14); if only one bird from a flock showed no such signs, it was randomly assigned a partner with whom it had not previously been housed (n=10). Cages (76 x 46 x 46 cm) sat on individual racks with plastic

curtains on either side to reduce chances of cross-cage exposure. To minimize transmission variation due to baseline feeding propensity [20], we selected the bird that fed more often for experimental MG-inoculation ("inoculated" bird). For pairs that were housed together previously, we used feeding ranks from the above study; for those not previously housed together, we recorded new one-hour videos.

Prior pilot work suggested that meloxicam, a non-steroidal anti-inflammatory drug, enhanced tissue-specific tolerance, i.e., reduced conjunctivitis without changing pathogen load (RMR, unpublished data). We therefore attempted to enhance tissue-specific tolerance in half of the inoculated birds by treating with $2\mu L/g$ body mass/day oral meloxicam ($0.5\mu g/\mu L$), while other inoculated birds received $2\mu L/g/d$ ay oral water, from 2d pre-inoculation through 21d post-inoculation. Both treatments were chased with $100\mu L$ water to encourage swallowing. Treatment showed no effect on transmission (see Results).

On 11 December, 2017 (day 0), one bird per pair (7 female, 5 male) was inoculated with MG (stock 2006.080-5(4P) 7/26/12, David Ley, North Carolina State University). We applied 25µL of Frey's medium containing 6.25 x 10⁴ color-changing units of MG to each eye via micropipette, with birds maintained in horizontal recumbency until fluid dissipated beneath the eye rim.

To assess feeding behavior, we videoed pairs weekly for one-hour beginning five minutes after lights-on (0600h). For each video, we completed two 10s scan samples every minute, during which birds were assigned a "1" if they fed and a "0" if they did not. Due to limited cameras, we typically split recording across sequential days: 11-12d pre-inoculation and 3-4, 10-11, 17-18 and 32-33d post-inoculation. We recorded the nine earliest-formed pairs 11-12d pre-

<u>All pairs were recorded 3-4, 10-11, 17-18, and 32-33d post-inoculation.</u> We sampled more intensely early in infection because prior experiments found the majority of transmission within 20d post-inoculation [9, 20].

We scored conjunctivitis on a four-point scale from 0 (no pathology) to 3 (severe pathology) per eye [27], summing these for a total eye score. We monitored pathogen load by abducting the lower eye rim with sterile forceps, inserting a sterile cotton swab dipped in tryptose phosphate broth (TPB), and rotating for 5s. For each bird, swabs from both eyes were rung out into one microcentrifuge tube containing 300 μL TPB and stored at -20°C until DNA extraction (DNEasy Blood and Tissue kit, Cat no. 69504/69506, Qiagen, Valencia, CA). We measured pathogen load as the number of copies of the *mgc2* gene, of which each bacterial cell has one copy, via quantitative polymerase chain reaction using previously described conditions and primers [28]. Birds were eye-scored 3x per week for three weeks, then 2x per week afterward. Swabs were collected from non-inoculated birds 2x per week for three weeks, then 1x per week afterward, and from inoculated birds 1x per week throughout. All inoculated birds became infected (maximum log10(load) within individual: mean = 6.18, SD = 0.84, range = 3.65–6.85; maximum eye score within individual: mean = 4.33, SD = 1.49, range = 1–6, Figure S1).

Quantifying tolerance

We calculated inoculated birds' tolerance using two data points per individual, one preinfection and another during a transmission window specific to each pair—between inoculation and the day pathology was first detected in the cage-mate. If the cage-mate showed no pathology, the window ended on the study's final day (43d post-inoculation). For each individual, *i*, we defined tissue-specific tolerance as

$$-\left(\frac{maximum\ eye\ score_{i,transmission\ window}-eye\ score_{i,initial}}{maximum\ pathogen\ load_{i,transmission\ window}-pathogen\ load_{i,initial}}\right) \hspace{1cm} \text{Eq. 1}$$

and behavioral tolerance as

143
$$\frac{lowest\ feeding\ frequency_{i,transmission\ window} - feeding\ frequency_{i,initial}}{maximum\ pathogen\ load_{i,transmission\ window} - pathogen\ load_{i,initial}}$$
 Eq. 2

We use a negative in Eq. 1, but not Eq. 2 so negative values indicate lower tolerance in both cases, simplifying interpretation. This was done because pathology increases during infection, but feeding often decreases (Figure S2).

Among inoculated birds, pre-infection pathogen load was either undetectable (6/12) or <16 copies of the mgc2 gene, excepting one individual (134 copies, or < 1/10,000th the average pathogen load of >10⁶ during peak infection), consistent with negligible prior exposure or environmental contamination. Excluding that individual yielded qualitatively identical results (see Supplemental Materials). Among non-inoculated birds, pre-infection pathogen load was either undetectable (8/12) or <11 copies, excepting one individual (31 copies). Tissue-specific and behavioral tolerance showed no correlation (Pearson's r = -0.08, t10 = -0.26, p = 0.80; Figure S1).

Statistical analysis

We tested how time to transmission varied with tissue-specific and behavioral tolerance using accelerated failure time models in the 'survival' package [29, 30] in R [31]. Such models estimate the time to an event (e.g., transmission, death) from datasets in which the event does not necessarily occur in all cases. First, we fit a maximal model with either Weibull, logistic,

lognormal, loglogistic, or exponential errors, selecting loglogistic via Akaike's Information Criterion for small sample sizes (AICc) [32]. This model included five predictors: tissue-specific and behavioral tolerance, maximum pathogen load during the previous flock study for both inoculated and non-inoculated birds (see Supplemental Material), and NSAID treatment of the inoculated bird. Continuous predictors were standardized to z-scores by taking the difference between an individual observation and the sample mean, then dividing that difference by the sample standard deviation. To avoid over-parameterization, we selected the best-fit of 26 simplified models, including an intercept-only model, each with a maximum of three predictors (Table S1). We also calculated each predictor's relative importance [32].

169 Results

The best-fit model of time to transmission contained three predictors: tissue-specific tolerance, behavioral tolerance, and maximum pathogen load in the inoculated bird during the prior study. Two other models showed $\Delta AICc < 2$ and contained tolerance variables (Table 1). Tissue-specific tolerance showed the highest relative importance (0.98), followed by behavioral tolerance (0.62) and maximum pathogen load in the inoculated birds during the prior study (0.55). Meloxicam treatment status did not appear in any models with $\Delta AICc < 6$.

Based on the best-fit model, for every unit increase in tissue-specific tolerance (milder conjunctival pathology), birds transmitted ~1.8 times more slowly (estimate = 0.57, z = 4.77, p < 0.01; Figure 1A). In contrast, for every unit increase in behavioral tolerance (milder anorexia), birds transmitted ~1.7 times more rapidly (estimate = -0.55, z = -2.97, p < 0.01; Figure 1B). For each unit increase in maximum MG load in the prior study, birds transmitted ~1.4 times more

rapidly, although this effect appeared driven by one bird (estimate = -0.33, z = -4.32, p < 0.01; Figure S2).

183 Discussion

We evaluated how tissue-specific and behavioral components of disease tolerance altered host competence in house finches, measured as time to MG transmission. Consistent with our predictions, birds with higher tissue-specific tolerance were less competent (transmitted more slowly), whereas those with higher behavioral tolerance were more competent (transmitted more rapidly). These results complement the recent finding that MG isolates inducing greater pathology transmit more rapidly [9]. Specifically, we tested inter-host variation, rather than interisolate variation, finding that sickness behaviors may offset transmission-enhancing effects of pathology.

This negative relationship between tissue-specific tolerance and competence is expected when pathology enhances transmission, as in finch MG and numerous other systems [12, 13]. For example, larvae of the trematode *Ribeiroia ondatrae* encyst in the limb buds of tadpoles, resulting in a range of pathologies at metamorphosis that facilitate predation by definitive hosts [33]. But, species that metamorphose later and at larger body sizes show higher tissue-specific tolerance, measured as fewer limb abnormalities for a given parasite load [33]. Such animals should be more adept at escaping predators, meaning tissue-specific tolerance would also reduce competence in that system.

Additionally, the positive relationship between behavioral tolerance and competence is expected when sickness behaviors reduce contact rates [15, 16], thereby impeding transmission. Behavioral tolerance may similarly impact competence in other disease systems, although

specific details will differ. For example, but mortality from White-Nose Syndrome stems in part from increased arousals during torpor, which burn through hosts' energy reserves [34]. Notably, big brown bats (*Eptesicus fuscus*) likely show higher behavioral tolerance, expressing longer bouts of torpor, than little brown bats (*Myotis lucifugus*) [35]. This higher behavioral tolerance (prolonged torpor) may allow the slow-growing, psychrophilic fungus to infect more neighbors at a roost site, facilitating competence.

In addition to the above tolerance metrics, our best-fit model included prior pathogen load in the inoculated bird. However, this variable explained less of the variation in time to transmission than did either tolerance metric, with a smaller absolute value for its parameter estimate and lower relative importance. Additionally, the relationship between prior pathogen exposure and time to transmission was driven by one bird (Figure S2), suggesting a spurious correlation. That individual's pathogen load during the current study was typical for naïve house finches [23], suggesting its prior exposure did not impact its current disease course: it showed fewer than 10 copies of MG at the start of this study and >10⁶ copies three days after inoculation. Thus, in this study, tolerance metrics remain more likely drivers of host competence than does prior exposure.

Although pathology has been the primary proxy for fitness in studies of disease tolerance in animals [10], we found that a more nuanced evaluation of tolerance better informs transmission dynamics. Specifically, we found opposing effects of tissue-specific and behavioral tolerance on host competence in this system, whereby hosts showing higher behavioral and lower tissue-specific tolerance should be most competent (Figure 1, Video S1). However, the contribution of each tolerance component likely varies across pathogen types, transmission modes, and tissue tropisms [12, 13]. In the future, capturing more subtle variations in pathology

(beyond relative severity) may help identify links between tissue-specific tolerance and transmission [36]. Likewise, additional metrics of sickness behavior, like changes in sociality, may refine estimates of how behavioral tolerance alters transmission. Regardless, our results suggest that measuring tissue-specific and behavioral components of tolerance can help us understand its impacts on host competence and epidemic outcomes.

231

226

227

228

229

230

232

233

References

- 1. Gervasi SS, Civitello DJ, Kilvitis HJ, Martin LB. 2015 The context of host competence: a role for plasticity in host-parasite dynamics. *Trends Parasitol.* **31**, 419-425.
- 236 2. Martin LB, Burgan SC, Adelman JS, Gervasi SS. 2016 Host competence: an organismal trait to integrate immunology and epidemiology. *Integrative and Comparative Biology*238 56, 1225-1237.
- 3. Burgan SC, Gervasi SS, Johnson LR, Martin LB. 2019 How individual variation in host tolerance affects competence to transmit parasites. *Physiol. Biochem. Zool.* **92**, 49-57.
- Martin LB, Addison B, Bean AGD, Buchanan KL, Crino OL, Eastwood JR, Flies AS,
 Hamede R, Hill GE, Klaassen M, et al. 2019 Extreme competence: keystone hosts of
- infections. *Trends Ecol. Evol.* **34**, 303-314.
- Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. 2005 Superspreading and the effect of individual variation on disease emergence. *Nature* **438**, 355-359.
- Vale PF, Fenton A, Brown SP. 2014 Limiting damage during infection: lessons from
 infection tolerance for novel therapeutics. *PLoS Biology* 12, e1001769.

- Hall RJ. 2019 Modeling the effects of resource-driven immune defense on parasite
- transmission in heterogeneous host populations. *Integrative and Comparative Biology* **59**,
- 250 1253-1263.
- 8. Williams PD, Dobson AP, Dhondt KV, Hawley DM, Dhondt AA. 2014 Evidence of
- trade-offs shaping virulence evolution in an emerging wildlife pathogen. J. Evol. Biol. 27,
- 253 1271-1278.
- 9. Bonneaud C, Tardy L, Hill GE, McGraw KJ, Wilson AJ, Giraudeau M. 2020
- Experimental evidence for stabilizing selection on virulence in a bacterial pathogen.
- 256 Evolution Letters 4, 491-501.
- 257 10. Råberg L. 2014 How to live with the enemy: understanding tolerance to parasites. *PLOS*
- 258 *Biology* **12**, e1001989.
- 259 11. Råberg L, Sim D, Read AF. 2007 Disentangling genetic variation for resistance and
- tolerance to infectious diseases in animals. *Science* **318**, 812-814.
- 261 12. Adelman JS, Hawley DM. 2017 Tolerance of infection: a role for animal behavior,
- potential immune mechanisms, and consequences for parasite transmission. *Horm.*
- 263 Behav. 88, 79-86.
- Henschen AE, Adelman JS. 2019 What does tolerance mean for animal disease dynamics
- when pathology enhances transmission? *Integrative and Comparative Biology* **59**, 1220-
- 266 1230.
- 267 14. Råberg L, Graham AL, Read AF. 2009 Decomposing health: tolerance and resistance to
- parasites in animals. *Phil. Trans. R. Soc. Lond. B.* **364**, 37-49.
- 269 15. Johnson RW. 2002 The concept of sickness behavior: a brief chronological account of
- four key discoveries. *Vet. Immunol. Immunopathol.* **87**, 443-450.

- Hart BL. 1988 Biological basis of the behavior of sick animals. *Neurosci. Biobehav. Rev.*
- **12**, 123-137.
- 273 17. Medzhitov R, Schneider DS, Soares MP. 2012 Disease tolerance as a defense strategy.
- 274 *Science* **335**, 936-941.
- 275 18. Ley DH, Berkhoff JE, McLaren JM. 1996 Mycoplasma gallisepticum isolated from house
- finches (*Carpodacus mexicanus*) with conjunctivitis. *Avian Dis.* **40**, 480-483.
- 277 19. Dhondt AA, Dhondt KV, Hawley DM, Jennelle CS. 2007 Experimental evidence for
- transmission of *Mycoplasma gallisepticum* in house finches by fomites. *Avian Pathol.* **36**,
- 279 205-208.
- 280 20. Adelman JS, Moyers SC, Farine DR, Hawley DM. 2015 Feeder use predicts both
- acquisition and transmission of a contagious pathogen in a North American songbird.
- 282 *Proc. R. Soc. Lond. B.* **282**.
- 283 21. Bonneaud C, Balenger SL, Russell AF, Zhang J, Hill GE, Edwards SV. 2011 Rapid
- evolution of disease resistance is accompanied by functional changes in gene expression
- in a wild bird. *Proc. Nat. Acad. Sci.* **108**, 7866-7871.
- 286 22. Bonneaud C, Tardy L, Giraudeau M, Hill GE, McGraw KJ, Wilson AJ. 2019 Evolution
- of both host resistance and tolerance to an emerging bacterial pathogen. *Evolution Letters*
- **3**, 544-554.
- 289 23. Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM. 2013 House finch populations differ
- in early inflammatory signaling and pathogen tolerance at the peak of *Mycoplasma*
- 291 *gallisepticum* infection. *American Naturalist* **181**, 674-689.

- 292 24. Adelman JS, Carter AW, Hopkins WA, Hawley DM. 2013 Deposition of pathogenic
- 293 *Mycoplasma gallisepticum* onto bird feeders: host pathology is more important than
- temperature-driven increases in food intake. *Biol. Lett.* **9**, 20130594-20130594.
- 25. Leon AE, Hawley DM. 2017 Host responses to pathogen priming in a natural songbird
- 296 host. *EcoHealth* **14**, 793-804.
- 297 26. Pyle P. 1997 Identification guide to North American birds, Part 1: Columbidae to
- 298 *Ploceidae*. Bolinas, CA, Slate Creek Press; 732 p.
- 299 27. Sydenstricker KV, Dhondt AA, Hawley DM, Jennelle CS, Kollias HW, Kollias GV. 2006
- 300 Characterization of experimental *Mycoplasma gallisepticum* infection in captive house
- 301 finch flocks. *Avian Dis.* **50**, 39-44.
- 302 28. Grodio JL, Dhondt KV, O'Connell PH, Schat KA. 2008 Detection and quantification of
- 303 *Mycoplasma gallisepticum* genome load in conjunctival samples of experimentally
- infected house finches (*Carpodacus mexicanus*) using real-time polymerase chain
- 305 reaction. *Avian Pathol.* **37**, 385-391.
- Therneau TM. 2021. A package for survival analysis in S. R package., v.3.2-10.
- 30. Therneau TM, Grambsch PM. 2000 Modeling Survival Data: Extending the Cox Model.
- New York, Springer.
- 309 31. R Development Core Team. 2020. R: A Language and Environment for Statistical
- 310 Computing, v.4.0.2. R Foundation for Statistical Computing.
- 311 32. Burnham KP, Anderson DR. 2002 Model selection and multimodel inference: A practical
- information-theoretic approach. New York, Springer; 488 p.

313	33.	Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB. 2012				
314		Living fast and dying of infection: host life history drives interspecific variation in				
315		infection and disease risk. Ecol. Lett. 15, 235-242.				
316	34.	Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, Vodzak ME,				
317		Darling SR, Stihler CW, Hicks AC, et al. 2012 Frequent arousal from hibernation linked				
318		to severity of infection and mortality in bats with white-nose syndrome. <i>PLoS ONE</i> 7.				
319	35.	Moore MS, Field KA, Behr MJ, Turner GG, Furze ME, Stern DWF, Allegra PR,				
320		Bouboulis SA, Musante CD, Vodzak ME, et al. 2018 Energy conserving				
321		thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of				
322		white-nose syndrome. Journal of Comparative Physiology B: Biochemical, Systemic, and				
323		Environmental Physiology 188, 163-176.				
324	36.	Ruden RM, Adams DC, Adelman JS. 2021 Using multivariate analyses to explore				
325		disease progression of finch mycoplasmosis. J. Wildl. Dis. 57, 525-533.				
326	Ackno	owledgments				
327		We thank Derek Houston and Grace Vaziri for field support, Christina Hansen for video				
328	analysis, Rachel Schwartzbeck for managing our equipment supply chain, and Sidney Brenkus,					
329	Nathan Cook, Travis Hoffmann, Adam Nash, Amali Stephens, Collin Stratton, Gillian Suhre,					
330	and Sarah Tosh for assistance sampling.					
331	Fundi	ng				

The National Science Foundation supported this work (IOS-1950307 to JSA).

Tables and Figures Captions

332

333

Model	Predictor(s)	AICc	ΔΑΙС	Weight
	Tissue-specific Tolerance, Behavioral			
1	Tolerance, Inoculated Bird Maximum	63.14	0.00	0.36
	Pathogen Load (Prior Study)			
2	Tissue-specific Tolerance, Behavioral Tolerance	64.09	0.96	0.22
3	Tissue-specific Tolerance	64.91	1.78	0.15
3	Tissue-specific Tolerance, Inoculated Bird	65.53	2.40	0.13
4	Maximum Pathogen Load (Prior Study)			
	Tissue-specific Tolerance, Inoculated Bird	66.68	3.55	0.06
_	Maximum Pathogen Load (Prior Study),			
5	Naïve Bird Maximum Pathogen Load (Prior			
	Study)			

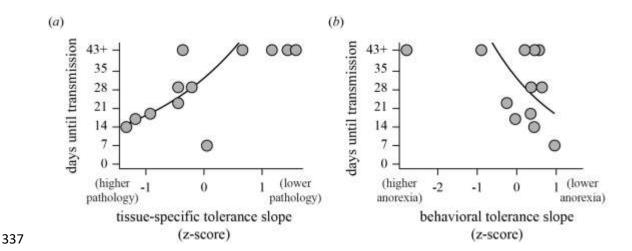


Figure 1. House finches with higher tissue-specific tolerance (milder conjunctivitis) transmitted *Mycoplasma gallisepticum* more slowly (*a*); those with higher behavioral tolerance (milder anorexia) transmitted more rapidly (*b*). Lines show predictions from the top accelerated failure time model with other variables held at their means.