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Abstract

Causal discovery for purely observational, cate-

gorical data is a long-standing challenging prob-

lem. Unlike continuous data, the vast majority of

existing methods for categorical data focus on in-

ferring the Markov equivalence class only, which

leaves the direction of some causal relationships

undetermined. This paper proposes an identifiable

ordinal causal discovery method that exploits the

ordinal information contained in many real-world

applications to uniquely identify the causal struc-

ture. The proposed method is applicable beyond

ordinal data via data discretization. Through real-

world and synthetic experiments, we demonstrate

that the proposed ordinal causal discovery method

combined with simple score-and-search algorithms

has favorable and robust performance compared to

state-of-the-art alternative methods in both ordinal

categorical and non-categorical data. An accompa-

nied R package OCD is freely available at the first

author’s website.

1 INTRODUCTION

Causal discovery [Spirtes et al., 2000, Pearl, 2009] is becom-

ing increasingly more popular in machine learning and finds

numerous applications, e.g., biology [Sachs et al., 2005],

psychology [Steyvers et al., 2003], and neuroscience [Shen

et al., 2020], of which the prevailing goal is to discover

causal relationships of variables of interest. The discovered

causal relationships are useful for predicting a system’s re-

sponse to external interventions [Pearl, 2009], a key step

towards understanding and engineering that system. While

the gold standard for causal discovery remains the con-

trolled experimentation, it can be too expensive, unethical,

or even impossible in many cases, particularly on human

beings. Therefore, inferring the unknown causal structures

of complex systems from purely observational data is often

desirable and, sometimes, the only option.

This paper considers causal discovery for ordinal categorical

data. Categorical data are common across multiple disci-

plines. For example, psychologists often use questionnaires

to measure latent traits such as personality and depression.

The responses to those questionnaires are often categorical,

say, with five levels (5-point Likert scale): "strongly dis-

agree", "disagree", "neutral", "agree", and "strongly agree".

In genetics, single-nucleotide polymorphisms are categori-

cal variables with three levels (mutation on neither, one, or

both alleles). Categorical data also arise as a result of dis-

cretization of non-categorical (e.g., continuous and count)

data. For instance, in biology, gene expression data are often

trichotomized to "underexpression", "normal expression",

and "overexpression" [Parmigiani et al., 2002, Pe’er, 2005,

Sachs et al., 2005] in order to reduce sequencing technical

noise while retaining biological interpretability.

While causal discovery for purely observational categorical

data have been extensively studied, the vast majority of ex-

isting methods [Heckerman et al., 1995, Chickering, 2002]

have exclusively focused on Bayesian networks (BNs) with

nominal (unordered) categorical variables. It has been well

established that a nominal/multinomial BN is generally only

identifiable up to Markov equivalence class in which all BNs

encode the same Markov properties. For example, X → Y

and Y → X are Markov equivalent and also distribution

equivalent [Spirtes and Zhang, 2016] with a multinomial

likelihood; therefore, they are non-identifiable with purely

observational data.

In many real-world applications, categorical data (includ-

ing the aforementioned Likert scale, single-nucleotide poly-

morphisms, and discretized gene expression data) contain

ordinal information. In this paper, we show that this often-

overlooked ordinal information is crucial in causal discovery

for categorical data. We propose an ordinal causal discovery

(OCD) method via an ordinal BN. Assuming causal Markov

and causal sufficiency, we prove OCD to be identifiable
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in general for ordinal categorical data. Score-and-search

BN structure learning algorithms are developed – exhaus-

tive search for small networks (e.g., bivariate data) and

greedy search for moderate-sized networks. Through exten-

sive experiments with real-world and synthetic datasets, we

demonstrate that the proposed OCD is identifiable, robust,

applicable to both categorical and non-categorical data, and

competitive against a range of state-of-the-art causal discov-

ery methods. To the best of our knowledge, we are the first

to exploit the ordinal information for causal discovery in

categorical data. Our major contributions are four-fold.

1. We advocate the usefulness of ordinal information of

categorical data in causal discovery, which has been

overlooked in the literature.

2. We propose the first causal discovery method, OCD,

for ordinal categorical data.

3. We prove that OCD is generally identifiable for bi-

variate data, in contrast to the non-identifiability of

multinomial BNs.

4. We demonstrate the strong utility of OCD by compari-

son with state-of-the-art alternatives using real-world

and synthetic datasets.

1.1 RELATED WORK

For brevity, we review causal discovery methods that are

fully identifiable with observational data.

Non-Categorical Data. Model-based BNs for continuous

data are often represented as additive noise models. Under

such representation, BNs are generally identifiable if the

noises are non-Gaussian [Shimizu et al., 2006], if the func-

tional form of the additive noise model is nonlinear [Hoyer

et al., 2009, Zhang and Hyvärinen, 2009], or if the noise

variances are equal [Peters and Bühlmann, 2014]. Also see

much of the recent literature that focuses on bivariate causal

discovery [Mooij et al., 2010, Janzing et al., 2012, Chen

et al., 2014, Sgouritsa et al., 2015, Hernandez-Lobato et al.,

2016, Marx and Vreeken, 2017, Blöbaum et al., 2018, Marx

and Vreeken, 2019, Tagasovska et al., 2020]. For count

data, Park and Raskutti 2015 proposed a Poisson BN and

showed that it is identifiable based on the overdispersion

property of Poisson BNs. By replacing overdispersion prop-

erty with constant moments ratio property, Park and Park

2019 extended Poisson BNs to the generalized hypergeo-

metric family which contains many count distributions such

as binomial, Poisson, and negative binomial. Recently, Choi

et al. 2020 developed a zero-inflated Poisson BN for zero-

inflated count data.

Categorical Data. For nominal categorical data, causal

identification is possible under certain assumptions [Peters

et al., 2010, Suzuki et al., 2014, Liu and Chan, 2016, Cai

et al., 2018, Compton et al., 2020, Qiao et al., 2021], e.g.,

when the categories admit hidden compact representations

or when data follow a discrete additive noise model. How-

ever, to the best of our knowledge, causal discovery for

ordinal data, which are very common in practice, has not

been studied. Whether a categorical variable is ordinal or

not is, in our opinion, easier to comprehend than the afore-

mentioned assumptions of categorical data (e.g., discrete

additive noise). We remark that a recent paper [Luo et al.,

2021] also considered ordinal data. However, their work is

substantially different from ours. The most prominent dif-

ference is that the causal graph of Luo et al. [2021] is only

identifiable up to Markov equivalence classes whereas the

proposed method is uniquely identifiable, which is proved

for the bivariate case.

Mixed Data. There are recent developments for mixed data

causal discovery [Cui et al., 2018, Tsagris et al., 2018,

Sedgewick et al., 2019], some of which include categorical

data. However, the ordinal nature of the categorical data is

not exploited for causal identification; therefore, these algo-

rithms output Markov equivalent BNs instead of individual

BNs. The latent variable approach by Wei et al. [2018] could

in principle be extended to ordinal data. However, the causal

Markov assumption of latent variables cannot translate to

the observed variables and the inferred causality does not

have direct causal interpretation on the observed variables.

2 BIVARIATE ORDINAL CAUSAL

DISCOVERY

We first introduce the proposed OCD method for bivariate

data, which will be extended to multivariate data in Section

4. Let (X,Y ) ∈ {1, . . . , S} × {1, . . . , L} denote a pair of

ordinal variables with S and L levels, of which the possi-

ble causal relationships, X → Y or Y → X , are under

investigation. Throughout the paper, we make the causal

Markov and causal sufficient assumptions, which are fre-

quently adopted in the causal discovery literature [Pearl,

2009]. The former allows us to interpret the proposed model

causally (beyond conditional independence) whereas the

latter asserts that there are no unmeasured confounders.

The bivariate OCD considers the following probability dis-

tribution for causal model X → Y ,

pX→Y (X,Y ) = p(X)p(Y |X), (1)

where p(X) is a multinomial/categorical distribution with

probabilities π = (π1, . . . , πS) with
∑S

s=1 πs = 1, and

p(Y |X) is defined by an ordinal regression model [Agresti,

2003],

Pr(Y ≤ ℓ|X) = F (γℓ − βX), ℓ = 1, . . . , L, (2)

where βX is a generic notation of β1, . . . , βS for X =
1, . . . , S. Typical choices of the link function F are pro-

bit and inverse logit, which are empirically quite similar;
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hereafter we always use the probit link except for the identi-

fiability theory, which is valid for both link functions. We

fix γ1 = 0 for ordinal regression parameter identifiabil-

ity [Agresti, 2003]. Equation (2) implies the conditional

probability distribution Pr(Y = ℓ|X = s) = F (γℓ −
βs) − F (γℓ−1 − βs) for ℓ = 1, . . . , L and s = 1, . . . , S
where γ0 = −∞ and γL = ∞. Let β = (β1, . . . , βS)
and γ = (γ2, . . . , γL−1). We denote the model pX→Y by

pX→Y (X,Y |π,β,γ). Similarly, we define the probabil-

ity model pY→X as pY→X(Y,X|ρ,α,η). If the maximum

likelihood estimate p̂X→Y given observations of (X,Y ) is

strictly larger than p̂Y→X , then X → Y is deemed a more

likely data generating causal model.

3 IDENTIFIABILITY

We will show that the proposed OCD is generally identifi-

able.

Definition 1 (Distribution Equivalence)

pX→Y (X,Y |π,β,γ) and pY→X(Y,X|ρ,α,η)
are distribution equivalent if for any values of

(π,β,γ) there exist values of (ρ,α,η) such that

pX→Y (X,Y |π,β,γ) = pY→X(Y,X|ρ,α,η) for any

X,Y , and vice versa.

Distribution equivalent causal models are clearly not distin-

guishable from each other by examining their observational

distributions. The well-known multinomial BNs are distri-

bution equivalent as illustrated in the following example.

Example 1 (Multinomial BN) Consider a bivariate multi-

nomial BN of X → Y whose conditional p(Y |X) and

marginal p(X) probability distributions are given in Fig-

ure 1(a), and the joint distribution p(X,Y ) is given in Fig-

ure 1(b). Because of the multinomial assumption, we can

find a set of parameters, i.e., the conditional p(X|Y ) and

marginal p(Y ) probabilities (Figure 1(c)) of the reverse

causal model Y → X , which leads to the same joint dis-

tribution. Therefore, the probability distribution does not

provide information for causal identification.

Incorporating the underappreciated ordinal informa-

tion, we will show that pX→Y (X,Y |π,β,γ) and

pY→X(Y,X|ρ,α,η) are generally not distribution equiva-

lent and are, therefore, identifiable.

Theorem 1 (Identifiability of OCD) Let X ∈ {1, . . . , S}
and Y ∈ {1, . . . , L} where S,L > 2. Suppose X → Y

is the data generating causal model and the observational

probability distribution of (X,Y ) is given by

p(X,Y ) = pX→Y (X,Y |π,β,γ).

For almost all (π,β,γ) with respect to the Lebesgue mea-

sure, the distribution cannot be equivalently represented by

the reverse causal model, i.e., there does not exist (ρ,α,η)
such that,

p(X,Y ) = pY→X(Y,X|ρ,α,η), ∀X,Y.

The proof based on properties of real analytic functions is

provided in the Supplementary Materials. We demonstrate

Theorem 1 by revisiting Example 1.

Example 2 (Ordinal BN) The conditional p(Y |X) and

marginal p(X) probability distributions in Figure 1(a) coin-

cide with those under the ordinal BN pX→Y (X,Y |π,β,γ)
with π = (0.25, 0.25, 0.5), γ = 1, and β = (1,−1, 1).
Given a large enough dataset, the MLE of p(X,Y )
can be arbitrarily close to that in Figure 1(b). How-

ever, there does not exist any set of parameter values

in the reverse causal model pY→X(Y,X|ρ,α,η) that

produces the conditional p(X|Y ) and marginal p(Y )
probability distributions in Figure 1(c). Therefore, the

reverse causal model pY→X(Y,X|ρ,α,η) cannot ade-

quately fit the data generated from pX→Y (X,Y |π,β,γ).
For example, even with 100,000 observations, the MLE

of p(X,Y ) under pY→X(Y,X|ρ,α,η) still has a large

bias (Figure 1(d)), which will never approach 0. There-

fore, pX→Y (X,Y |π,β,γ) can be distinguished from

pY→X(Y,X|ρ,α,η).

Note that Theorem 1 excludes the binary variable case, un-

der which OCD is not identifiable. This is expected because

there is no difference between ordinal and nominal cat-

egorical variables in this case; the latter is known to be

non-identifiable.

4 EXTENSION TO MULTIVARIATE

ORDINAL CAUSAL DISCOVERY

While the vast majority of the existing identifiable causal

discovery methods for categorical data [Peters et al., 2010,

Suzuki et al., 2014, Liu and Chan, 2016, Cai et al., 2018,

Compton et al., 2020] have primarily focused on bivariate

cases, we extend the proposed bivariate OCD to multivari-

ate data. Let X = (X1, . . . , Xq) ∈ {1, . . . , L1} × · · · ×
{1, . . . , Lq} denote q ordinal variables. Let G = (V,E)
denote a causal BN with a set of nodes V = {1, . . . , q}
representing X and directed edges E ⊂ V × V repre-

senting direct causal relationships (with respect to X). Let

pa(j) = {k|k → j} ⊆ V denote the set of direct causes

(parents) of node j in G and let Xpa(j) = {Xk|k ∈ pa(j)}.
Given G, the joint distribution of X factorizes,

p(X|G) =

q∏

j=1

p
(
Xj |Xpa(j)

)
, (3)

where each conditional distribution p
(
Xj |Xpa(j)

)
is an or-

dinal regression model of which the cumulative distribution
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!(#|%) % = 1 % = 2 % = 3

# = 1 0.16 0.84 0.16

# = 2 0.34 0.14 0.34

# = 3 0.50 0.02 0.50

!(%|#) # = 1 # = 2 # = 3

% = 1 0.12 0.29 0.33

% = 2 0.64 0.12 0.01

% = 3 0.24 0.59 0.66

!(%, #) % = 1 % = 2 % = 3

# = 1 0.040 0.210 0.080

# = 2 0.085 0.035 0.170

# = 3 0.125 0.005 0.250

% !(%)

1 0.25

2 0.25

3 0.50

# !(#)

1 0.33

2 0.29

3 0.38

×

×

(a) (b)

(c)

-!(%, #) % = 1 % = 2 % = 3

# = 1 0.104 0.087 0.141

# = 2 0.065 0.071 0.154

# = 3 0.078 0.089 0.211

(d)

Figure 1: Illustration. (a) Conditional p(Y |X) and marginal p(X) probability distributions. They coincide with those

under pX→Y (X,Y |π,β,γ) with π = (0.25, 0.25, 0.5), γ = 1, and β = (1,−1, 1). (b) The joint distribution p(X,Y ) =
p(X)p(Y |X). (c) Conditional p(X|Y ) and marginal p(Y ) probability distributions from the same joint distribution p(X,Y ).
(d) Maximum likelihood estimate of p(X,Y ) under pY→X(Y,X|ρ,α,η) using data generated from p(X,Y ) in (b) with

sample size 100,000.

is given by, for ℓ = 1, . . . , Lj ,

Pr(Xj ≤ ℓ|Xpa(j)) = F


γjℓ −

∑

k∈pa(j)

βjkXk
− αj


 ,

where αj is the intercept and βjkXk
is a generic notation

of βjk1, . . . , βjkLk
for Xk = 1, . . . , Lk. We set γj1 =

βjkLk
= 0 for ordinal regression parameter identifiability

[Agresti, 2003]. The implied conditional probability distri-

bution is given by,

Pr(Xj = ℓ|Xpa(j) = s) = F (γjℓ −
∑

k∈pa(j)

βjkhk
− αj)

−F (γj,ℓ−1 −
∑

k∈pa(j)

βjkhk
− αj),

for ℓ = 1, . . . , Lj and s ∈
∏

k∈pa(j){1, . . . , Lk}. In sum-

mary, the multivariate OCD model is parameterized by

γj = (γj2, . . . , γj,Lj−1), βjk = (βjk1, . . . , βjk,Lk−1), and

αj , for j = 1, . . . , q and k ∈ pa(j).

5 CAUSAL GRAPH STRUCTURE

LEARNING

We develop simple score-and-search learning algorithms to

estimate the structure of causal graphs, which already show

strong empirical performance (see Section 6), although more

sophisticated learning methods such as Bayesian inference

could be adopted to further improve the performance.

Score. We score causal graphs by the Bayesian information

criterion (BIC). We choose BIC over AIC because it favors

a more parsimonious causal graph due to the heavier penalty

on model complexity and generally has a better empirical

performance. Let x = (x1, . . . ,xn) denote n realizations

of X . The score of G (smaller is better) is given by

BIC(G|x) = −2
n∑

i=1

log p̂(xi|G) +K log(n),

where K is the number of model parameters and p̂(xi|G) is

the joint distribution (3) evaluated at xi given the MLE of

model parameters.

Exhaustive Search. For small networks (say q =2 or 3),

we compute the scores for all networks G, and identify

Ĝ = argminG∈G BIC(G|x). While this approach is exact

and useful for bivariate OCD, it becomes computationally

infeasible for moderate-sized networks as the number of

networks |G| grows super-exponentially in q.

Greedy Search. We use a simple iterative greedy search

algorithm [Chickering, 2002, Scutari et al., 2019] for

moderate-sized networks. At each iteration, we score all

the graphs that can be reached from the current graph by an

edge addition, removal, or reversal. We replace the current

graph by the graph with the largest improvement (largest

decrease in BIC) and stop the algorithm when the score

can no longer be improved. The greedy search algorithm is

summarized in Algorithm 1, which is guaranteed to find a

local optimal graph. The algorithm can be improved by tabu

search and random non-local moves [Scutari et al., 2019]

but we do not pursue this direction as the simple greedy

algorithm already yields favorable results against state-of-

the-art alternative methods. The worst per iteration cost is

O(qf(n,m,L)) for q nodes, n observations, m maximum

number of parents, and L = maxj Lj maximum levels,

where f(n,m,L) is the computational complexity of an or-

dinal regression with m regressors. This is because at most

2q score evaluations are required at each iteration [Scutari
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Algorithm 1 Greedy Search

Input: data x, initial empty graph G

Compute BIC(G|x) and set BIC⋆=BIC(G|x).

repeat

Initialize Improvement = false.

for all graphs G′ reachable from G do

Compute BIC(G′|x).

if BIC(G′|x) < BIC⋆ then

Set G = G′ and BIC⋆=BIC(G′|x)

Set Improvement = true.

end if

end for

until Improvement is false

Output: graph G

et al., 2019]. We use polr function in the R package MASS

for ordinal regression which appears to scale linearly in

n,m, and L, empirically.

6 EXPERIMENTS

We evaluate the proposed and state-of-the-art alternative

causal discovery methods with synthetic as well as three

sets of real data. The real data are not categorical and there-

fore allow us to extend our comparison to causal models

designed for continuous data.

6.1 SYNTHETIC ORDINAL DATA

We simulate low-dimensional, higher-dimensional, and bi-

variate (with confounders) synthetic ordinal data.

6.1.1 Low-Dimensional Multivariate Ordinal Data

We consider synthetic ordinal data (n = 500, q = 10).

To mimic survey data with 5-point Likert-scale question-

naires, we simulate data from the proposed OCD model

with Lj = L = 5, ∀j. The true BN is generated randomly

(Figure 2(a)), which has one v-structure (i.e., subgraph

j → k ← i). Its Markov equivalence class, represented

by a completed partially directed acyclic graph (CPDAG),

can be obtained by removing the directionality of the red

dashed edges in Figure 2(a). We consider 6 scenarios with

different levels of signal strength by generating simula-

tion true βjkℓ’s and αj’s independently from N(0, σ2) with

σ = 0.25, 0.5, 0.75, 1, 1.25, 1.5. Parameters γjℓ’s are cho-

sen to have balanced class size for each variable.

Implementations. Standard causal discovery methods for

categorical data are multinomial BNs with BIC or BDe

score, which discard the ordinal information and therefore

only estimate the Markov equivalence classes. They are im-

plemented using model averaging with 500 bootstrapped

samples (page 145, Scutari and Denis 2014). We compare

them with the proposed OCD, all implemented using greedy

search. In addition, we also consider a two-step procedure

[Friedman and Koller, 2003] and a recent ordinal structural

equation model [Luo et al., 2021, OSEM]. The two-step

procedure first learns a causal ordering and then estimates

the causal multinomial BN given the ordering based on

BIC (called "BIC+" hereafter). This procedure outputs an

estimated BN. The OSEM introduces latent Gaussian vari-

ables, on which a structural equation model is imposed. Like

multinomial BNs with BIC or BDe score, OSEM identifies

the Markov equivalence classes. The tuning parameter of

OSEM is set to 1.

Metrics. We compute the structural hamming distance

(SHD) and the structural intervention distance (SID) with

R package SID. The SHD between two graphs is the num-

ber of edge additions, deletions, or reversals required to

transform one graph to the other. The SID measures "close-

ness" between two causal graphs in terms of their implied

intervention distributions (see Peters and Bühlmann 2015

for the formal definition). Note that since multinomial BNs

with BIC and BDe, and OSEM can only identify CPDAG,

the smallest SHD that they can achieve is 5 (the number of

undirected edges in the true CPDAG).

Results. The SHD and SID averaged over 5 repeat simu-

lations are shown in Figure 2(b)-(c) as functions of signal

strength σ. Since multinomial BNs with BDe and BIC, and

OSEM only estimate CPDAGs, we report the lower bounds

of their SID. There are several conclusions that can be drawn.

First, OCD is empirically identifiable because both SHD

and SID quickly approach 0 as signal becomes stronger. Sec-

ond, OCD uniformly outperforms the alternative methods in

both SHD and SID across all signal levels, which suggests

that exploiting the ordinal nature of ordinal categorical data

is crucial for causal discovery. Third, BIC+ is better than

BIC and BDe in SHD but not necessarily in SID, suggesting

the estimated causal ordering from BIC+ is biased. Fourth,

although OSEM also accounts for ordinal data, it is not iden-

tifiable and may be sensitive to the tuning parameter, which

is hard to be objectively tuned. Therefore, we drop OSEM

in the subsequent simulations.

Different Number of Categories. In the Supplementary

Materials, we present additional simulation scenarios with

a different number L = 3 of categories. Similarly to the

scenarios with L = 5, OCD significantly outperforms the

competing methods.

6.1.2 Higher-Dimensional Multivariate Ordinal Data

We fix the sample size n = 500 and the number of categories

L = 5 but vary the number of nodes q = 10, 20, . . . , 100
and the signal strength σ = 0.25, 0.5, 0.75, 1. The graphs

are kept at the same sparsity as in Section 6.1.1 across q
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Figure 2: Synthetic ordinal data. The dashed lines in (c) are the lower bounds of SID of BDe, BIC, and OSEM, which output

CPDAGs instead of BNs. Lower SHD and SID are better.

(denser graphs will be considered later). The SHD is shown

in Figure 3 whereas the SID is provided in the Supplemen-

tary Materials. The proposed OCD uniformly outperforms

the competing methods BDe, BIC, and BIC+ across q and

σ. In general, OCD is quite stable as q increases when the

signal strength is moderate to moderately large σ ≥ 0.5
whereas the competing methods quickly deteriorate with q

regardless of the signal strength.

Scalability. We investigate the scalability of the pro-

posed OCD with respect to n, L, and q. We vary n =
500, 750, · · · , 2750 (keeping q = 10 and L = 5), L =
5, . . . , 14 (keeping n = 500 and q = 10), and q =
10, 20, . . . , 100 (keeping n = 500 and L = 5). The to-

tal CPU times in seconds on a 2.9 GHz 6-Core Intel Core

i9 laptop are provided in the Supplementary Materials. The

greedy search appears to scale linearly in n and L, and

quadratically in q, which agrees with the complexity analy-

sis in Section 5. It is moderately scalable: e.g., for q = 100,

the search completes in about 3 hours.

Denser Graphs. In the Supplementary Materials, we

present additional simulation scenarios with denser graphs

for q = 50 nodes and more v-structures, which lead to sim-

ilar conclusions, i.e., OCD significantly outperforms the

competing methods in SHD and SID.

6.1.3 Bivariate Ordinal Data with Unmeasured

Confounders

While our identifiability theory assumes no unmeasured

confounders, we now empirically test the sensitivity of OCD

to unmeasured confounders for bivariate ordinal data. We

generate trivariate ordinal data (X1, X2, X3) with L = 5
from the following true causal graph,

X1 X2

X3

We hide X3 as a confounder and apply OCD to (X1, X2). In

the simulation truth, we assume βjkℓ, for each ℓ = 1, . . . , L,

to be the same for all j 6= k, i.e., the confounding effect

is the same as the causal effect, which is simulated from

N(0, σ2). We consider different levels of signal strength

σ = 0.25, 0.5, 0.75, 1, 1.25, 1.5 and different sample sizes

n = 100, 200, . . . , 1000. Under each combination of (σ, n),
we repeat the experiment 100 times, and report the average

accuracy (ACC) for forced decisions. The forced decision

forces methods to choose between X1 → X2 and X2 →
X1. The same metric has been used in similar bivariate

causal discovery problems [Mooij et al., 2016, Tagasovska

et al., 2020]. OCD is relatively robust to confounders (Figure

4(a)): it is able to correctly identify the causal direction given

a large enough sample size or when the signal is sufficiently

strong. For comparison, we apply a recent causal discovery

method for bivariate nominal categorical data, HCR [Cai

et al., 2018]. Its average ACC is shown in Figure 4(b). We

find the ACC of HCR is uniformly lower than that of OCD

although we note that HCR is not specifically designed for

this task.

6.2 SACHS’S SINGLE-CELL FLOW CYTOMETRY

DATA

We evaluate the proposed OCD on the well-known single-

cell flow cytometry dataset [Sachs et al., 2005], which con-

tains measurements of q = 11 phosphorylated proteins un-

der different experimental conditions. Sachs et al. 2005 pro-

vided a consensus causal network of these proteins, which

could be used to gauge the performance of causal discovery

algorithms. As in Tagasovska et al. 2020, we consider the

cd3cd28 dataset with 853 cells subject to the same experi-

mental condition.

Implementations. Since the raw measurements are highly

skewed and heavy-tailed, Sachs et al. 2005 discretized the

data into L = 3 levels ("low", "average", and "high") and

fit a multinomial BN based on the BDe score. As we will
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(b) SHD in q (σ = 0.5)
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(c) SHD in q (σ = 0.75)
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Figure 3: SHD (lower is better) for OCD, BDe, BIC, and BIC+ as functions of q in the synthetic ordinal data with the sample

size fixed at n = 500 and different signal strength σ ∈ {0.25, 0.5, 0.75, 1}.
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Figure 4: Synthetic ordinal data with confounders. Average ACC (higher is better) of (a) OCD and (b) HCR under different

sample sizes and levels of signal strength.

see, this approach throws away the ordinal information in-

herent in the raw measurements and hence significantly

underperforms OCD (with greedy search). For compari-

son, we also apply ANM [Hoyer et al., 2009], LiNGAM

[Shimizu et al., 2006], RESIT with the Gaussian process

implementation [Peters et al., 2014], bivariate causal dis-

covery methods (HCR, bQCD [Tagasovska et al., 2020],

GR-AN [Hernandez-Lobato et al., 2016], IGCI with uni-

form measure [Janzing et al., 2012], SLOPE [Marx and

Vreeken, 2017]), and methods inferring Markov equivalence

classes (PC [Spirtes et al., 2000], CPC [Ramsey et al., 2012],

GES [Chickering, 2002], IAMB [Tsamardinos et al., 2003],

multinomial BNs with BIC and BDe), and the mixed data

approach MXM [Tsagris et al., 2018] to the raw continuous

data. For bivariate causal discovery methods, we follow a

similar ad hoc procedure in Tagasovska et al. 2020: first run

CAM [Bühlmann et al., 2014] and then orient the estimated

edges by the bivariate methods. HCR is the closest competi-

tor as it is also designed for categorical data although with

a very different scope (only applicable to bivariate nomi-

nal categorical data and assuming the existence of hidden

compact representations). We still compare the proposed

OCD with OSEM. To address the tuning parameter issue

of OSEM, we tune it in an oracle way on an evenly-spaced

12-grid from 0.5 to 6.0.

Metrics. We use the same SHD and SID metrics as in Sec-

tion 6.1. For methods that output CPDAGs instead of BNs,

we report the lower and upper bounds of SID.

Results. In Table 1, we summarize the SHD and SID. OCD

shows very strong performance comparing to state-of-the-

art alternatives. It has the lowest SHD and the second lowest

SID, which shows benefit of discretization for highly noisy

data. The substantial improvement of OCD from multino-

mial BN with BDe (SHD 14 vs 21) highlights the impor-

tance of exploiting the ordinal information of discrete data

for causal discovery. While there is strong motivation (e.g.,

biological interpretation) to use L = 3 for this dataset, we

test OCD with L up to 10. OCD stays very competitive

within this range: the SID remains 62 for all L whereas

the SHD slightly increases as L increases possibly due to

relatively small sample size, e.g., SHD = 16 for L = 10,

which is still quite competitive (second to SHD = 15 for

bQCD and IGCI). The smallest SHD that OSEM achieves
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over the range of tuning parameter is 18.

Table 1: Sachs’s data. Methods (marked by *) that are

only applicable to bivariate data are combined with CAM.

PC, CPC, GES, IAMB, BIC, BDe, and MXM only learn

CPDAGs; we provide the lower and upper bounds of SID.

Lower SHD and SID are better.

OCD bQCD* IGCI* GR-AN*

SHD 14 15 15 16

SID 62 69 82 80

HCR* SLOPE* ANM LiNGAM

SHD 16 17 17 17

SID 76 86 78 86

PC CPC GES IAMB

SHD 18 18 18 20

SID 50-83 50-80 50-80 79-70

BIC BDe MXM RESIT

SHD 20 21 21 40

SID 53-77 49-104 49-104 45

6.3 CAUSEEFFECTPAIRS (CEP) BENCHMARK

DATA

We consider the CauseEffectPairs (CEP) benchmark data

[Mooij et al., 2016] (version: 12/20/2017), which contain

108 datasets from 37 domains (e.g., biology, economy, engi-

neering, and meteorology). Each dataset contains a pair of

variables (X,Y ) for which the causal relationship is clear

from the context, e.g., older "age" causes higher "glucose".

We retain the same 99 pairs as in Tagasovska et al. 2020 that

have univariate non-binary cause and effect variables.

Implementations. We compare OCD with HCR, bQCD,

IGCI, CAM, SLOPE, LiNGAM, and RESIT. To apply OCD

and HCR, we discretize each variable at L − 1 quantiles

for L ∈ {10, . . . , 20}. All other methods are applied to the

(standardized) continuous data without discretization.

Metrics. We compute the ACC for forced decisions as in

Section 6.1.3 and, additionally, the area under the receiver

operating curve (AUC) for ranked decision. The ranked

decision ranks the confidence of the causal direction [Mooij

et al., 2016, Tagasovska et al., 2020]. The simple heuristic

confidence [Mooij et al., 2016] is adopted here. For instance,

for the proposed OCD, we define the confidence of X → Y

to be CX→Y = BIC(Y → X|x)− BIC(X → Y |x).

Results. In Table 2, we summarize the ACC, AUC, and

CPU times. For OCD and HCR, the average metrics over

L = 10, . . . , 20 as well as their standard errors are reported.

The proposed OCD is highly competitive in all metrics.

OCD has the second highest ACC and AUC, and is fast; it

completes the analysis of 99 datasets in 36 seconds. Only

IGCI, CAM, and LiNGAM are faster but they have worse

ACC and AUC than OCD. SLOPE has slightly higher ACC

and AUC than OCD. However, SLOPE is about 1 or 2 or-

ders of magnitude slower than OCD and relatively sensitive

to small added noise (see the additional experiments that

investigate the "Sensitivity to Small Added Noise" in the

Supplementary Materials). Finally, the small standard er-

rors of the performance metrics of OCD indicate its relative

robustness with respect to the number L of levels of dis-

cretization for the considered datasets and range.

Table 2: CEP data. Metrics of OCD and HCR are averaged

over different values of L = 10, . . . , 20 with standard errors

given within the parentheses. Higher ACC and AUC are

better.

OCD HCR bQCD CAM

ACC 0.73 (0.01) 0.44 (0.02) 0.70 0.58

AUC 0.76 (0.00) 0.56 (0.02) 0.72 0.58

CPU 36s (1.7s) 12m (2.2m) 7m 11s

IGCI SLOPE LiNGAM RESIT

ACC 0.66 0.76 0.42 0.53

AUC 0.51 0.84 0.59 0.56

CPU 1s 24m 3s 12h

6.4 SINGLE-CELL RNA-SEQUENCING DATA

We further validate the proposed OCD with a publicly avail-

able single-cell RNA-sequencing (scRNA-seq) dataset of

2, 717 murine embryonic stem cells [Klein et al., 2015]. We

obtain a list of literature-curated pairs of transcription factor

(X) and its target (Y ) from the TRRUST database [Han

et al., 2018], which provides biological ground truth of the

casual relationships, namely X → Y . We then extract the

corresponding genes from the scRNA-seq dataset. Remov-

ing genes with more than 90% zeros (these genes have very

low statistical variability), we retain 6701 pairs for causal

validation, which still have 62% zeros. The zeros in scRNA-

seq data are either (a) true biological zero counts or (b) small

counts that are too low to detect. In either case, they can be

regarded as "low expression". We compare OCD with the

best performing methods in Section 6.3, bQCD and SLOPE,

as well as the closest competitor HCR. We are not able

to generate results (runtime errors) from CAM, LiNGAM,

and RESIT possibly because of the large percentages of

zeros. To apply OCD and HCR, we trichotomize the data

at 0 and the median of the non-zero expression (i.e., "low",

"average", and "high" expression). ACC and CPU time are

reported in Table 3. OCD is the best and is the only method

that is better than random guess (p-value = 10−75, binomial

test with H0 : p = 0.5 vs Ha : p > 0.5) for this dataset pos-

sibly because of its highly non-standard distribution due to

zero-inflation. Therefore, although discretizing continuous

or count data may lose information, it often improves the ro-

bustness by not having to impose a particular distributional

assumption on the raw data.
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Table 3: Single-cell RNA-seq data. Higher ACC is better.

OCD HCR bQCD SLOPE

ACC 0.61 0.36 0.45 0.50

CPU 19m 22m 3.4h 2h

7 CONCLUSION

There are several limitations of the current work, which we

plan to address in our future work. First, the current score-

and-search algorithm outputs a point estimate of the causal

graph with no uncertainty quantification and no global con-

vergence guarantee. We plan to develop a fully Bayesian ap-

proach by assigning sparse priors (i.e., spike-and-slab priors

on β’s) and carrying out posterior inference via the Markov

chain Monte Carlo. Second, we have empirically assessed

the identifiability of the proposed OCD for multivariate data

and for bivariate data with unmeasured confounders. The

identifiability theory for multivariate categorical data or bi-

variate categorical data with unmeasured confounders is in

general lacking in the causal discovery literature. Third, we

have not explicitly addressed the problem of choosing the

number L of categories in data discretization. We picked

L = 3 for genomic data by convention and assessed its

robustness up to L = 10. For non-genomic data, there is no

obvious/universal choice of L. Instead of picking a specific

L, we have tested the proposed OCD in a range of values.

In the future, we plan to propose data-driven ways (e.g., via

BIC) to objectively choose L.
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