

1
2
3
4 Modulating disease phenotype in a songbird: A role for inflammation in disease tolerance?
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Modulating disease phenotype in a songbird: A role for inflammation in disease tolerance?

Running title: Modulating disease phenotype in a songbird

Rachel M. Ruden^{1,2*}, James S. Adelman^{1,3}

¹ Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, U.S.A.

² Iowa Department of Natural Resources, Ames, IA, U.S.A.

³ Department of Biological Sciences, University of Memphis, Memphis, TN, U.S.A.

* Corresponding author

E-mail: ruden@iastate.edu (RMR)

Abstract

2 Individual animals vary greatly in their responses to infection, either killing off the invading
3 pathogen (resistance) or minimizing the per-pathogen costs of infection on host fitness
4 (tolerance). Though we understand little about the physiological drivers of tolerance in wild
5 animals, phenotypically, it manifests as milder clinical signs of disease. Here, we use a well
6 described disease system, finch mycoplasmosis, to evaluate the role of inflammation in disease
7 tolerance. House finches (*Haemorhous mexicanus*) infected with the bacterial pathogen
8 *Mycoplasma gallisepticum* (MG) develop conjunctival pathology that satisfies the cardinal signs
9 of inflammation. We report on a captive trial performed in 2016 and replicated in 2018 that
10 tested whether chemotherapeutics, specifically non-steroidal anti-inflammatory drugs (NSAIDs),
11 can reduce lesion severity, thus pushing individuals toward more tolerant phenotypes. Though
12 birds treated with NSAIDs in the first trial developed milder pathology per unit pathogen load,
13 we found no effect of treatment in the second trial, perhaps due to natural variation in baseline
14 tolerance within the source population across years. Second-trial control birds developed
15 markedly milder pathology than first-year controls, suggesting that the effect of trial swamped
16 the effect of treatment in this study. Moving forward, using birds from a population in which the
17 disease is absent or only recently emerged—and so tolerance has not yet been selected for—may
18 better elucidate the role of pro-inflammatory mediators in disease tolerance.

19 **Keywords:** disease tolerance, inflammation, non-steroidal anti-inflammatory drugs (NSAIDs),
20 phenotype

21 **Research Highlights:** An individual's disease phenotype reflects how its immune system
22 responds to tissue injury caused by an infectious pathogen. Limiting the pro-inflammatory
23 response may be one way animals express milder clinical signs to disease consistent with disease
24 tolerance. Exogenous treatment with non-steroidal anti-inflammatory drugs may similarly push
25 individuals toward tolerant phenotypes, however, population-level swings in baseline tolerance
26 can mask treatment effects.

29

30

31

32

33

34

Introduction

1 When the immune system detects infection, it can kill the invading pathogen (resistance)
2 or minimize per-pathogen reductions to host fitness (tolerance) (Råberg, 2014). Though
3 resistance permits pathogen clearance with the potential for sterilizing immunity, it also poses a
4 risk for collateral tissue damage ('immunopathology') and exacerbated sickness behaviors that
5 can reduce fitness in the immediate term (Adelman and Hawley, 2017). In contrast, tolerance
6 permits pathogen persistence by minimizing the costs to the host of pathogen invasion and
7 replication. Rather, animals can harbor high pathogen loads while maintaining tissue function
8 and expressing normal, fitness-enhancing behaviors, which may increase the probability of
9 contacting conspecifics and spreading pathogens (Adelman and Hawley, 2017; Burgan, Gervasi,
10 Johnson and Martin, 2019; Martin *et al.*, 2019). Thus, while tolerance may be an adaptive
11 survival strategy for individual hosts, it could also support pathogen fitness via increased
12 transmission to new hosts (Råberg, Graham and Read, 2009; Boots, Best, Miller and White,
13 2009; Sears, Rohr, Allen and Martin, 2011). Identifying the mechanisms that mediate host
14 tolerance at the individual-level can therefore improve our understanding of infectious disease
15 dynamics in the wild.

16 Despite the potential for strong effects on epidemic outcomes, the physiological
17 mechanisms underlying tolerance in animals remain largely unknown (Råberg, 2014). Among
18 vertebrates, one promising mechanism involves dampening the pro-inflammatory response to
19 infection, responsible for local swelling, release of pro-inflammatory cytokines, and production
20 of free radicals (Graham, Allen and Read, 2005; Råberg *et al.*, 2009; Sears *et al.*, 2011). Because
21 these responses can induce significant damage to a host's own tissues, incurring serious fitness
22 costs, reducing such inflammatory mediators could preserve fitness during infection and increase
23 tolerance ('damage limitation,' see Vale, Fenton and Brown, 2014 for review). Of note, tolerance

1 and pathogen clearance need not be mutually exclusive (Restif and Koella, 2003; Restif and
2 Koella, 2004). For instance, a host could still mount a targeted, adaptive immune response in the
3 absence of over-exuberant inflammation, effectively reducing pathogen burden while also
4 minimizing self-harm (Hurtado, 2012; Adelman, Kirkpatrick, Grodio and Hawley, 2013;
5 Bonneaud *et al.*, 2019). In the experiments reported here, we explore the potential for reduced
6 inflammation to enhance tolerance, while still allowing the expression of effective resistance
7 mechanisms. To do so, we test the effect of non-steroidal anti-inflammatory drugs (NSAIDs) on
8 host responses in an ecologically relevant host-pathogen system, house finches (*Haemorhous*
9 *mexicanus*) experimentally infected with *Mycoplasma gallisepticum* (MG).

10 MG is a bacterial pathogen of poultry that was first isolated in North American songbirds
11 in the mid-1990s (Ley, Berkhoff and McLaren, 1996; Delaney *et al.*, 2012). House finches are
12 highly susceptible to infection, and the initial outbreak decimated populations in the eastern
13 United States (Hochachka and Dhondt, 2000). In subsequent decades, MG has become endemic
14 in house finch populations across North America and seasonal epidemics continue annually
15 (Hosseini, Dhondt and Dobson, 2004; Dhondt *et al.*, 2005).

16 Finch isolates of MG have a tropism for the soft tissues surrounding the eye or
17 conjunctiva (Ley *et al.*, 1996). In addition to inducing sickness behaviors like lethargy and
18 anorexia, infection with MG can cause gross pathology that satisfies the cardinal signs of
19 inflammation, including: periocular swelling (*tumor*), increased perfusion leading to erythema
20 (*rubor*) and heat (*calor*), blepharospasm, or squinting, which can be used as a proxy for pain
21 (*dolor*), and impaired vision (*functio laesa*) (Rather, 1971). Infection can also cause tissues to
22 become leaky, or exudative, such that purulent discharge functionally seals the eye (Ley *et al.*,
23 1996). Given the importance of inflammation to disease progression (Luttrell, Fischer,

1 Stallknecht, and Kleven, 1996; Hurtado, 2012; Adelman *et al.*, 2013), finch mycoplasmosis
2 provides an ideal system for exploring its role in tolerant versus resistant disease phenotypes.

3 Here, we test whether a nonsteroidal anti-inflammatory drug (NSAID), meloxicam, can
4 induce tolerant phenotypes during experimental infection. NSAIDs are broadly used in human
5 and veterinary medicine to relieve pain and inflammation caused by noxious stimuli by
6 inhibiting cyclo-oxygenase (COX), a family of enzymes responsible for prostaglandin synthesis
7 and release in target tissues. COX-1 prostaglandins are protective, with constitutive expression in
8 key tissues like the gastric mucosa, kidney, brain, and bloodstream that helps maintain normal
9 physiology (Mitchell, Akarasereenont, Thiemermann, Flower and Vane, 1993). COX-2
10 prostaglandins are reactive and their expression is induced by inflammatory cytokines at the site
11 of tissue injury (Mitchell *et al.*, 1993). They are responsible for signaling pain and further
12 escalating the inflammatory response via recruitment of immune cells (Aoki and Narumiya,
13 2012). Accordingly, we use meloxicam in this study because it is a COX-2 specific inhibitor.

14 Using wild-caught, experimentally-infected house finches, we measured how NSAID
15 therapy impacted disease tolerance. We predicted that daily meloxicam treatment would reduce
16 clinical signs without changing the bacterial burden as compared to untreated, but infected, birds.
17 We tracked eye pathology and pathogen load over twenty-eight days following inoculation with
18 MG. We additionally measured antibody titers to better understand how NSAID treatment
19 affects the activation of adaptive immunity. This study reflects outcomes from two separate
20 trials, the first conducted in 2016 and then replicated in 2018 using the same methods but a
21 unique cohort of hatch-year birds.

1 **Capture Sites and Permits**

2 House finches used in the first trial were captured between 5-15 September, 2016, using
3 mist nets at private residences around Ames, Iowa, USA (42.0254675° N, 93.62688° W). House
4 finches used in the second trial were captured between 23 June and 26 August, 2018 at two
5 private residences in Ames using both mist nets and feeder traps. All procedures were approved
6 under permits from the Iowa Department of Natural Resources (SC1133), the U.S. Geological
7 Survey Bird Banding Lab (23952), the U.S. Fish and Wildlife Service (MB82600B), the
8 Institutional Animal Care and Use Committee at Iowa State University (7-16-8311-Q; 6-17-
9 8543-Q), and the Institutional Biosafety Committee at Iowa State University (Both experiments:
10 17-I-0021-A).

11 **Initial Housing and Quarantine**

12 At capture, birds in the first trial were assigned an eye score (0-3 per eye; Sydenstricker
13 *et al.*, 2006) to assess eye pathology consistent with mycoplasmal conjunctivitis. Eyes that
14 scored “0” were clinically normal, those that scored “1” had mild inflammation, those that scored
15 “2” had moderate inflammation often with conjunctival eversion, and those that scored “3” had
16 severe inflammation with purulent discharge, crusting, and eye spasm. Birds scoring “0” in both
17 eyes were considered eligible for this study and brought into captivity. Birds were dusted with
18 GardenTech Sevin-5 Ready-To-Use 5% Dust (TechPac, LLC., Atlanta, GA) to remove any
19 ectoparasites before entering the captive facility, where they were housed in individual cages (76
20 cm x 46 cm x 46 cm) with access to food and water ad libitum. Birds received a 50:50 mix of
21 black oil sunflower seed and food pellets (Daily Maintenance Nibbles, Roudybush, Inc.,
22 Woodland, CA) throughout the study. Birds were started on a 12 hr Light: 12 hr Dark cycle for
23 the first month in captivity, then transitioned to an 11 hr Light: 13 hr Dark cycle to mimic natural

1 conditions. Day length then remained constant throughout the duration of the study period, and
2 rooms were maintained at 23°C.

3 Birds were monitored every three days for two weeks for clinical signs of disease. A
4 blood sample was taken from the ulnar vein 14 days after capture to test for the presence of anti-
5 MG IgY antibodies using enzyme-linked immunosorbent assay (ELISA, see details in
6 “Sampling, polymerase chain reaction, and serology”). Briefly, the ulnar vein was punctured
7 using a 26G needle and blood was collected in a heparinized microcapillary tube. Blood was then
8 separated by centrifugation and plasma stored at -20°C until the ELISA. Individuals that
9 remained nonclinical and had ELISA sample:positive (S/P) ratios < 0.0229 on light spectroscopy
10 (Hawley, Grodio, Frasca, Kirkpatrick and Ley, 2011) were enrolled in this study and assigned an
11 aluminum leg band with a unique numeric identifier. Birds that did not meet these criteria were
12 released at their original site of capture.

13 Birds in the second trial were processed in the same manner as birds in the first trial,
14 except where detailed below. Birds were maintained on a 12 hr Light: 12 hr Dark cycle
15 throughout the duration of this experiment, with ad libitum access to water, grit, cuttlebone, and
16 a 20:80 mix of black oil sunflower seeds and food pellets (Daily Maintenance Nibbles,
17 Roudybush, Woodland, CA). Due to unexpected mortalities during other experiments in 2017,
18 all birds received a prophylactic for trichomoniasis: 0.025% dimetridazole (Cankerex Plus at
19 0.25 g/L water; Medpet, Benrose, South Africa) in their drinking water for 5 days. Additionally,
20 two birds received a prophylactic for coccidiosis: 2.5% toltrazuril (Endocox at 1.22 g/L water;
21 Jedd’s Fine Avian Products, Anaheim, CA) in their drinking water for 3 consecutive days for 3
22 weeks, followed by 3 days every 2 weeks until recruitment into this trial. Both birds also
23 received probiotics in their drinking water once per week to regulate the intestinal microflora

1 (Bene-Bac Plus Bird and Reptile at 1 g/L water; PetAg, Inc., Hampshire, IL). Anticoccidial
2 treatment was discontinued 15 days before NSAID treatment began, followed by probiotics 6
3 days prior, and these birds were assigned to opposite experimental groups.

4 **NSAID and *Mycoplasma* treatments**

5 Birds were randomly assigned to one of two treatments per trial: oral meloxicam
6 (NSAID) or control (no NSAID). Treatment began one or two days prior to experimental
7 inoculation with MG (Figure 1) to maximize the effect of prophylactic analgesia, the standard of
8 care in pre-operative veterinary patients (Hawkins and Paul-Murphy, 2011). Birds in the first
9 trial received either 1 mg/kg meloxicam plus water for a total fluid volume of 100 μ L (n=8) or
10 100 μ L water with no NSAIDs (n = 10) orally via micropipette each day. Birds in the second
11 trial received either 1 mg/kg meloxicam (n = 8) or 2 μ L/kg water (n = 8) for comparable volume
12 orally via micropipette each day. This equated to 36-44 μ L of fluid volume per treatment for
13 birds of average weight (18-22 g). Dosages were adjusted once per week based on weight.

14 On 21 October 2016 and 14 September 2018 (experimental days 0), birds were inoculated
15 with an expanded 7th generation in vitro passage of finch MG isolate ‘VA1994’ (stock ID 7994-
16 1-7P 2/12/09; D. H. Ley, North Carolina State Univ., College of Veterinary Medicine, Raleigh)
17 suspended in Frey’s medium. A volume of 25 μ L containing a total of 1.88×10^5 color-changing
18 units (CCU) was applied to each eye via micropipette, and birds were maintained in horizontal
19 recumbency until fluid dissipated below the eye rim.

20 **Sampling, polymerase chain reaction, and serology**

21 Eyes were scored three times per week using the same scale applied at initial capture,
22 starting on day -1 (baseline, pre-inoculation, Figure 1) by a single observer who was blind to

1 treatments (J. Adelman). Conjunctival swabs were collected on days -1, 3, 7, 14, and 28 of
2 infection to evaluate pathogen load (Figure 1). To do so, the ventral eyelid margin was abducted
3 using sterile forceps, and a sterile cotton-tipped applicator dipped in tryptose phosphate buffer
4 (TPB) was inserted and rotated for 5s. Swabs were then immersed in dedicated microcentrifuge
5 tubes with 300 μ L TPB, wrung out for 5s, and stored at -20°C.

6 We used the Qiagen DNeasy Blood and Tissue kit (Cat no. 69504/69506, Qiagen,
7 Valencia, CA) to extract DNA from the swab samples suspended in TPB, followed by
8 quantitative polymerase chain reaction (qPCR) targeting the *mgc2* gene, which encodes a well-
9 described cytadhesin-like protein, using previously published conditions and primers (Grodio,
10 Dhondt, O'Connell and Schat, 2008). Blood samples were taken, as described above, on days 14
11 and 28 of infection (Figure 1). Samples were immediately centrifuged to separate the plasma,
12 then stored at -20°C for later serological evaluation using a commercially available ELISA kit,
13 adapted for use in finches (cat # 99-06729, IDEXX Laboratories, Inc., Westbrook, ME; validated
14 in Grodio, Buckles and Schat, 2009). Of note, plasma samples were screened in duplicate and
15 retested, as volume would allow, when their coefficient of variation (CV) exceeded 10%. If the
16 sample's CV on the rerun was <10%, that S/P ratio was used, otherwise the S/P ratios were
17 averaged between original and reruns. Additionally, the blanks on one ELISA plate had negative
18 absorbances resulting in some samples having inflated S/P ratios, calculated as [mean sample
19 absorbance – mean blank absorbance]/[mean positive control absorbance – mean blank
20 absorbance]. However, the trends were qualitatively the same when these samples were omitted
21 (see Appendix).

22 **Data Analysis**

1 Data on eye score, pathogen load, and antibody titers were analyzed with linear mixed-
2 effects models in R, version 3.5.2 (R Development Core Team, 2018) using packages nlme and
3 emmeans (Pinheiro, 2000; Lenth, 2021). The models included day post-inoculation (DPI),
4 treatment-year, and their interaction as fixed effects, as well as bird ID as a random effect. Eye
5 pathology was measured as the sum of left and right eye scores per bird per day. Pathogen load
6 was measured as the number of *mgc2* copies detected per eye per day, which was then summed
7 by individual and \log_{10} transformed to control for non-normality. Antibody titer was again
8 measured as the ratio of sample absorbance to positive control absorbance from ELISA. All
9 models included an AR1 autocorrelation function to control for temporal autocorrelation.
10 Finally, we evaluated differences in clinical outcome between first-trial treated and control birds,
11 second-trial treated and control birds, and control birds across trials, using post-hoc tests with an
12 adjusted p-value based on a multivariate *t* distribution (lsmeans and contrast functions in
13 emmeans; Lenth, 2021).

14 **Quantifying Tolerance**

15 Point tolerance offers a snapshot of disease severity by comparing peak host pathology to
16 peak pathogen burden (Little, Shuker, Colegrave, Day and Graham, 2010). We fit a linear
17 mixed-effects model for pathology using pathogen load, treatment-year, and their interaction as
18 fixed effects with a random effect for bird ID, using pre-infection data (0 pathology, 0 pathogen
19 load) and peak-infection data to compare tolerance slopes. By this method, shallower slopes
20 indicated higher point tolerance, which we evaluated using the specific pairwise comparisons as
21 described above.

22 As an alternative to point tolerance, we created a metric to yield a more continuous range
23 of values for pathology and pathogen load, akin to range tolerance (Little *et al.*, 2010).

1 Specifically, we calculated discrete integrals of pathogen load (\log_{10}) and pathology over time
2 for each individual. We estimated the area under each curve using a series of polygons for which
3 the width equaled the number of days between samples and the height was assumed to change
4 linearly between each time point. Because we collected eye scores three times per week and
5 pathogen load only once per week, this method generated a more fine-scale approximation for
6 pathology (9 polygons) than pathogen load (3 polygons). Of note, we excluded days 0-3 from the
7 integrals of pathogen load as we did not collect conjunctival swabs immediately after inoculation
8 and so did not have a value for pathogen load on day 0. We then fit a linear mixed-effects model
9 predicting the integral of pathology using the integral of pathogen load (\log_{10}), treatment-year,
10 and their interaction as fixed effects and bird ID as a random effect. This dataset included pre-
11 infection integrals (0 units for all birds) and during-infection integrals for each bird. We found
12 that squaring the integral of pathogen load improved model fit by over 2 units of Akaike's
13 Information Criterion for small sample sizes (AICc) (Burnham and Anderson, 2002), and so the
14 final model included the squared integral of pathogen load. As with point tolerance, shallower
15 slopes indicated higher range tolerance over time, which we evaluated using the same pairwise
16 comparisons as above.

17

Results

18 **Pathology**

19 Eye pathology, measured by the sum of left and right eye scores, showed patterns typical
20 of MG infection, increasing and then resolving over the course of 28 days (Figure 2a, LMM:
21 DPI: $F_{9,270} = 22.90, p < 0.001$). Pathology differed by treatment and trial (LMM: treatment-year:
22 $F_{3,30} = 4.60, p = 0.01$; treatment-year x DPI: $F_{27,270} = 2.04, p = 0.002$) and was notably most
23 severe in first-trial control birds, which reached peak-pathology on day 14 post-inoculation with

1 a more than two-fold higher eye score than any other group. Based on Tukey pairwise
2 comparisons, pathology differed by treatment in the first trial (days 10-17, $p \leq 0.02$), but not the
3 second (all days, $p \geq 0.6$). Further, while meloxicam-treated birds developed similar pathology
4 between trials, second-trial control birds showed about half the pathology of first-trial controls
5 (days 5-24, $p \leq 0.05$).

6 **Pathogen Load**

7 The \log_{10} values of pathogen load, summed across both eyes, showed a peak after
8 experimental infection followed by a gradual decline over the study period (Figure 2b, LMM:
9 DPI: $F_{4,120} = 317.73, p < 0.001$). All treatment groups peaked at above 10^5 copies of MG DNA
10 (Figure 2b), and pathogen load did not markedly differ across treatment or trial (LMM:
11 treatment-year: $F_{3,30} = 1.79, p = 0.17$; treatment-year x DPI: $F_{12,120} = 1.19, p = 0.30$). That being
12 said, first-trial control birds maintained the highest pathogen loads and second-trial control birds
13 maintained the lowest pathogen loads, significantly diverging from one another on days 14 and
14 28 ($p < 0.02$). By contrast, meloxicam-treated birds showed nearly uniform pathogen loads
15 between trial years and did not diverge from control birds within either year (all $p > 0.2$, except
16 second-trial birds on day 28 $p = 0.08$).

17 **Point Tolerance**

18 We evaluated point tolerance using a linear function by which peak pathology varied by
19 the \log_{10} of peak pathogen load (Figure 3a; LMM: peak pathogen load: $F_{1,30} = 241.29, p <$
20 0.001). Tolerance slopes differed by treatment and trial, with first-trial control birds showing the
21 lowest tolerance (steepest slope) (LMM: treatment-year: $F_{3,30} = 8.39, p < 0.001$, treatment-year x
22 peak pathogen load: $F_{3,30} = 7.59, p < 0.001$). During the first trial, control birds had steeper

1 slopes of eye score by pathogen load (LMM estimate = 0.81) than meloxicam-treated birds
2 (LMM estimate = 0.55; Figure 3a; adjusted p = 0.05). However, in the second trial, control birds
3 had comparable slopes (LMM estimate = 0.47) to meloxicam-treated birds (LMM estimate =
4 0.36; Figure 3a; adjusted p = 0.65). Thus, the different patterns between trials may actually
5 reflect differences in baseline tolerance, as first-trial control birds had lower point tolerance than
6 second-trial controls (Figure 3a, adjusted p = 0.006).

7 **Range Tolerance**

8 We evaluated range tolerance using a quadratic function whereby the integral of
9 pathology varied by the square of the integral of \log_{10} pathogen load (Figure 3b; LMM: pathogen
10 load integral²: $F_{1,30} = 208.94, p < 0.001$). Again, tolerance slopes differed by treatment and trial,
11 with first-trial control birds showing the least tolerance over time and second-trial meloxicam-
12 treated birds showing the most tolerance over time (LMM: treatment-year: $F_{3,30} = 5.17, p =$
13 0.005; treatment-year x pathogen load integral²: $F_{3,30} = 7.64, p < 0.001$). During the first trial,
14 control birds had steeper slopes of eye score by pathogen load integral² (LMM estimate = $5.4 \times$
15 10^{-3}) than meloxicam-treated birds (LMM estimate = 3.3×10^{-3} ; Figure 3b; adjusted p = 0.02).
16 However, in the second trial, we found no evidence for different slopes between control (LMM
17 estimate = 3.3×10^{-3}) and meloxicam-treated birds (LMM estimate = 2.3×10^{-3} ; Figure 3b;
18 adjusted p = 0.59). As with point tolerance, higher baseline tolerance among birds in the second
19 trial likely contributed to these patterns, although the difference in control birds' range tolerance
20 was less pronounced across trials (Figure 3b, adjusted p = 0.08).

21 **Antibody Response**

1 All birds started with negligible anti-MG IgY antibody titers, consistent with no prior
2 pathogen exposure. Titers then peaked around day 14 and fell as birds recovered (Figure 4,
3 LMM: $DPI: F_{2,60} = 58.09, p < 0.001$). Overall, titers did not differ substantially by treatment or
4 trial (LMM: treatment-year: $F_{3,30} = 1.81, p = 0.17$; treatment-year x DPI: $F_{6,60} = 1.34, p = 0.25$),
5 though meloxicam-treated birds peaked below control birds in the first trial ($p = 0.02$).

6 Discussion

7 The current studies used chemotherapeutics to evaluate whether modulating the pro-
8 inflammatory response to infection could enhance host tolerance in a model wildlife disease
9 system, finch mycoplasmosis. We hypothesized that exogenous treatment with non-steroidal
10 anti-inflammatory drugs (NSAIDs) would significantly reduce conjunctival pathology, shifting
11 the host response toward tolerance (reduced pathology for a given pathogen load). Though birds
12 reached similar peak pathogen loads across trials, NSAID treatment produced mixed results, with
13 treated birds developing milder eye lesions during the first trial but not the second. Thus, clinical
14 outcome appeared to depend more on trial than treatment due to differences in baseline tolerance
15 between study years, complicating the interpretation of NSAID effects.

16 Our study sought to use NSAIDs to damp down the clinical signs of mycoplasmal
17 conjunctivitis. However, in a population with high baseline tolerance, which would show low
18 severity of clinical signs on average, the margin to reduce pathology and thus tease out an effect
19 of treatment from the noise of phenotypic variation shrinks. This provides one explanation why
20 the effect of NSAID treatment was apparent in the first trial, but not the second. Second-trial
21 control birds showed peaks in pathology that were already half that of first-trial controls and as
22 such, may have reached a point beyond which NSAID treatment would further reduce clinical
23 signs. Indeed, control birds in the second trial present much like NSAID-treated birds in both

1 trials.

2 Given the phenotypic variation we observed across trials, future work could manipulate
3 certain aspects of experimental design to better assess the role of pro-inflammatory pathways in
4 disease tolerance. We targeted the COX pathway in these studies using a fairly conservative
5 NSAID dosing regimen. Though higher or more frequent doses of meloxicam have been reported
6 in the literature, they have not been evaluated for long-term treatment up to several weeks
7 duration (Sinclair *et al.*, 2012; Dijkstra *et al.*, 2014). Miller, Hill, Carrasco, and Patterson (2019)
8 additionally found that plasma concentrations dropped below therapeutic targets within 12 hours
9 in zebra finches treated with 1 or 2 mg/kg meloxicam intramuscularly, suggesting that our
10 NSAID treatment may have only exerted any effect on inflammation half of the time. However,
11 we must also consider how this might increase handling time and stress, which could in itself
12 change disease outcomes without developing more discrete methods of delivery, such as
13 medicated water. Regardless of approach, increasing the efficacy of treatment could better
14 control for individual variation but perhaps still not overcome population-level swings in disease
15 tolerance. As such, replicating this study in a population with low standing levels of tolerance
16 (e.g., a naïve population or one in which MG has been established for a shorter time, Adelman *et*
17 *al.*, 2013, Bonneauaud *et al.*, 2019) may better control for this inter-trial noise and allow for a more
18 sensitive evaluation of the role of the COX pathway in disease tolerance.

19 Additionally, there may be other chemotherapeutic regimes that can more effectively
20 modulate disease tolerance. For instance, corticosteroids dampen inflammation by acting on
21 molecules further upstream of those targeted by NSAIDs (Clark-Price, 2013). While there is
22 some evidence that pre-infection baseline corticosterone levels and subsequent conjunctivitis
23 negatively correlate in house finches (Adelman, Moore, and Hawley, 2015), this relationship

1 varies by sex (Love, Foltz, Adelman, Moore, and Hawley, 2016), suggesting a complex role for
2 the hormone in MG pathology. Moreover, because of their broad, systemic effects on host
3 physiology, interpreting the effects of corticosteroid treatment on infection can prove
4 challenging. Rather than suppressing prostaglandin synthesis to induce tolerance, future studies
5 might leverage the natural variation in host tolerance to measure prostaglandin production and
6 help elucidate the role of COX pathways in disease tolerance.

7 **Acknowledgments**

8 We thank Rachel Schwartzbeck for managing our equipment supply chain and Sidney
9 Brenkus, Melody Campbell, Amberleigh Henschen, Derek Houston, Ethan Hulett, Adam Nash,
10 Amali Stephens, Collin Stratton, and Sarah Tosh, and Grace Vaziri for field support and
11 assistance sampling.

12

13

14

15

16

17

18

19

20

21

22

23

References

5 Adelman, J. S. and Hawley, D. M. 2017. Tolerance of infection: A role for animal behavior,
6 potential immune mechanisms, and consequences for parasite transmission. *Horm Behav*,
7 88: 79-86.

8 Adelman, J. S., Kirkpatrick, L., Grodio, J. L. and Hawley, D. M. 2013. House finch populations
9 differ in early inflammatory signaling and pathogen tolerance at the peak of *Mycoplasma*
10 *gallisepticum* infection. *Am Nat*, 181(5): 674-689.

11 Adelman J. S., Moore, I. T., and Hawley, D. M. 2015. House finch responses to *Mycoplasma*
12 *gallisepticum* infection do not vary with experimentally increased aggression. *J Exp Zool*
13 *A Ecol Genet Physiol*, 323: 39-51.

14 Aoki, T. and Narumiya, S. 2012. Prostaglandins and chronic inflammation. *Trends Pharmacol*
15 *Sci*, 33(6): 304-311.

16 Bonneauaud, C., Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J., and Wilson, A. J. 2019.
17 Evolution of both host resistance and tolerance to an emerging bacterial pathogen. *Evol.*
18 *Lett.* 3: 544-554.

19 Boots, M., Best, A., Miller, M. R. and White, A. 2009. The role of ecological feedbacks in the
20 evolution of host defence: what does theory tell us? *Philos Trans R Soc Lond B Biol Sci*,
21 364(1513): 27-36.

22 Burgan, S. C., Gervasi, S. S., Johnson, L. R., Martin, L. B. 2019 How individual variation in host
23 tolerance affects competence to transmit parasites. *Physiol. Biochem. Zool.* 92, 49-57.

1 Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a
2 practical information-theoretic approach. 2nd Ed. New York, NY: Springer-Verlag New
3 York, Inc.

4 Clark-Price, S. (2014) Nonsteroidal Anti-Inflammatory Drugs and Corticosteroids. Pain
5 Management in Veterinary Practice, ed C. M. Egger, L. Love, T. Doherty (John Wiley &
6 Sons, Inc.), 1st Ed, pp 69-84.

7 Delaney, N. F., Balenger, S., Bonneau, C., Marx, C. J., Hill, G. E., Ferguson-Noel, N., Tsai, P.,
8 Rodrigo, A. and Edwards, S. V. 2012. Ultrafast evolution and loss of CRISPRs following
9 a host shift in a novel wildlife pathogen, *Mycoplasma gallisepticum*. *PLoS Genet*, 8(2):
10 e1002511.

11 Dhondt, A. A., Altizer, S., Cooch, E. G., Davis, A. K., Dobson, A., Driscoll, M. J., Hartup, B. K.,
12 Hawley, D. M., Hochachka, W. M., Hosseini, P. R., Jennelle, C. S., Kollias, G. V., Ley,
13 D. H., Swarthout, E. C. and Sydenstricker, K. V. 2005. Dynamics of a novel pathogen in
14 an avian host: Mycoplasmal conjunctivitis in house finches. *Acta Trop*, 94(1): 77-93.

15 Dijkstra, B., Sanchez-Migallon, D., Gustavsen, K., D. Owens, S., Hass, C., H. Kass, P. and Paul-
16 Murphy, J. R. 2015. Renal, gastrointestinal, and hemostatic effects of oral administration
17 of meloxicam to Hispaniolan Amazon parrots (*Amazona ventralis*). *Am J Vet Res*, 76(4):
18 308-317.

19 Graham, A. L., Allen, J. E. and Read, A. F. 2005. Evolutionary causes and consequences of
20 immunopathology. *Annual Review of Ecology, Evolution and Systematics*, 36(1): 373-
21 397.

22 Grodio, J. L., Buckles, E. L. and Schat, K. A. 2009. Production of house finch (*Carpodacus*
23 *mexicanus*) IgA specific anti-sera and its application in immunohistochemistry and in

1 ELISA for detection of *Mycoplasma gallisepticum*-specific IgA. *Vet Immunol*
2 *Immunopathol*, 132(2-4): 288-294.

3 Grodio, J. L., Dhondt, K. V., O'Connell, P. H. and Schat, K. A. 2008. Detection and
4 quantification of *Mycoplasma gallisepticum* genome load in conjunctival samples of
5 experimentally infected house finches (*Carpodacus mexicanus*) using real-time
6 polymerase chain reaction. *Avian Pathol*, 37(4): 385-391.

7 Hawkins, M. G. and Paul-Murphy, J. 2011. Avian analgesia. *Vet Clin North Am Exot Anim*
8 *Pract*, 14(1): 61-80.

9 Hawley, D. M., Grodio, J., Frasca, S., Kirkpatrick, L. and Ley, D. H. 2011. Experimental
10 infection of domestic canaries (*Serinus canaria domestica*) with *Mycoplasma*
11 *gallisepticum*: a new model system for a wildlife disease. *Avian Pathol*, 40(3): 321-327.

12 Hochachka, W. M. and Dhondt, A. A. 2000. Density-dependent decline of host abundance
13 resulting from a new infectious disease. *Proc Natl Acad Sci USA*, 97(10): 5303-5306.

14 Hosseini, P. R., Dhondt, A. A. and Dobson, A. 2004. Seasonality and wildlife disease: how
15 seasonal birth, aggregation and variation in immunity affect the dynamics of *Mycoplasma*
16 *gallisepticum* in house finches. *Proc Biol Sci*, 271(1557): 2569-2577.

17 Hurtado, P. J. 2012. Within-host dynamics of mycoplasma infections: conjunctivitis in wild
18 passerine birds. *J Theor Biol*, 306: 73-92.

19 Lenth, R. V. (2021). emmeans: Estimated Marginal Means, aka Least-Squares Means. R
20 package version 1.7.0. <https://CRAN.R-project.org/package=emmeans>.

21 Ley, D. H., Berkhoff, J. E. and McLaren, J. M. 1996. *Mycoplasma gallisepticum* isolated from
22 house finches (*Carpodacus mexicanus*) with conjunctivitis. *Avian Dis*, 40(2): 480-483.

1 Little, T. J., Shuker, D. M., Colegrave, N., Day, T. and Graham, A. L. 2010. The coevolution of
2 virulence: Tolerance in perspective. *PLoS Pathogens*, 6(9): e1001006.

3 Love, A. C., Foltz, S. L., Adelman, J. S., Moore, I. T., and Hawley, D. M. 2016. Changes in
4 corticosterone concentrations and behavior during *Mycoplasma gallisepticum* infection in
5 house finches (*Haemorhous mexicanus*). *Gen. Comp. Endocrinol.*, 235: 70-77.

6 Luttrell, M.P., Fischer, J.R., Stallknecht, D.E., and Kleven, S.H. 1996. Field investigation of
7 *Mycoplasma gallisepticum* infections in house finches (*Carpodacus mexicanus*) from
8 Maryland and Georgia. *Avian Dis*, 40(2): 335-341.

9 Martin, L.B., Addison, B., Bean, A. G. D., Buchanan, K. L., Crino, O. L., Eastwood, J. R., Flies,
10 A. S., Hamede, R., Hill, G. E., Klaassen, M., Koch, R. E., Martens, J. M., Napolitano, C.,
11 Narayan, E. J., Peacock, L., Peel, A. J., Peters, A., Raven, N., Risely, A, . . . Grogan, L.
12 F. 2019. Extreme competence: keystone hosts of infections. *Trends Ecol. Evol.*, 34(4):
13 303-314.

14 Miller, K.A., Hill, N.J., Carrasco, S.E., and Patterson, M.M. 2019. Pharmacokinetics and safety
15 of intramuscular meloxicam in zebra finches (*Taeniopygia guttata*). *J Am Assoc Lab
16 Anim Sci*, 58(5): 589-593.

17 Mitchell, J. A., Akarasereenont, P., Thiemermann, C., Flower, R. J. and Vane, J. R. 1993.
18 Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and
19 inducible cyclooxygenase. *Proc Natl Acad Sci USA*, 90(24): 11693-11697.

20 Pinheiro, J. C. (2000) Mixed-effects models in S and S-PLUS / José C. Pinheiro, Douglas M.
21 Bates. New York, NY: Springer.

1 Rather, L. J. 1971. Disturbance of function (*functio laesa*): the legendary fifth cardinal sign of
2 inflammation, added by Galen to the four cardinal signs of Celsus. *Bull N Y Acad Med*,
3 47(3): 303-322.

4 Restif, O. and Koella, J. C. 2003. Shared control of epidemiological traits in a coevolutionary
5 model of host-parasite interactions. *Am Nat*, 161(6): 827-836.

6 Restif, O. and Koella, J. C. 2004. Concurrent evolution of resistance and tolerance to pathogens.
7 *Am Nat*, 164(4): E90-102.

8 Råberg, L. 2014. How to live with the enemy: understanding tolerance to parasites. *PLoS Biol*,
9 12(11): e1001989.

10 Råberg, L., Graham, A. L. and Read, A. F. 2009. Decomposing health: tolerance and resistance
11 to parasites in animals. *Philos Trans R Soc Lond B Biol Sci*, 364(1513): 37-49.

12 R Development Core Team. 2018. R: A Language and Environment for Statistical Computing.
13 3.5.2.

14 Sears, B. F., Rohr, J. R., Allen, J. E. and Martin, L. B. 2011. The economy of inflammation:
15 when is less more? *Trends Parasitol*, 27(9): 382-387.

16 Sinclair, K. M., Church, M. E., Farver, T. B., Lowenstein, L. J., Owens, S. D. and Paul-Murphy,
17 J. 2012. Effects of meloxicam on hematologic and plasma biochemical analysis variables
18 and results of histologic examination of tissue specimens of Japanese quail (*Coturnix*
19 *japonica*). *Am J of Vet Res*, 73(11): 1720-1727.

20 Sydenstricker, K. V., Dhondt, A. A., Hawley, D. M., Jennelle, C. S., Kollias, H. W., and Kollias,
21 G. V. 2006. Characterization of experimental *Mycoplasma gallisepticum* infection in
22 captive house finch flocks. *Avian Dis*, 50(1): 39-44.

1 Vale, P. F., Fenton, A. and Brown, S. P. 2014. Limiting damage during infection: lessons from
2 infection tolerance for novel therapeutics. *PLoS Biol*, 12(1): e1001769.

3

4

5

6

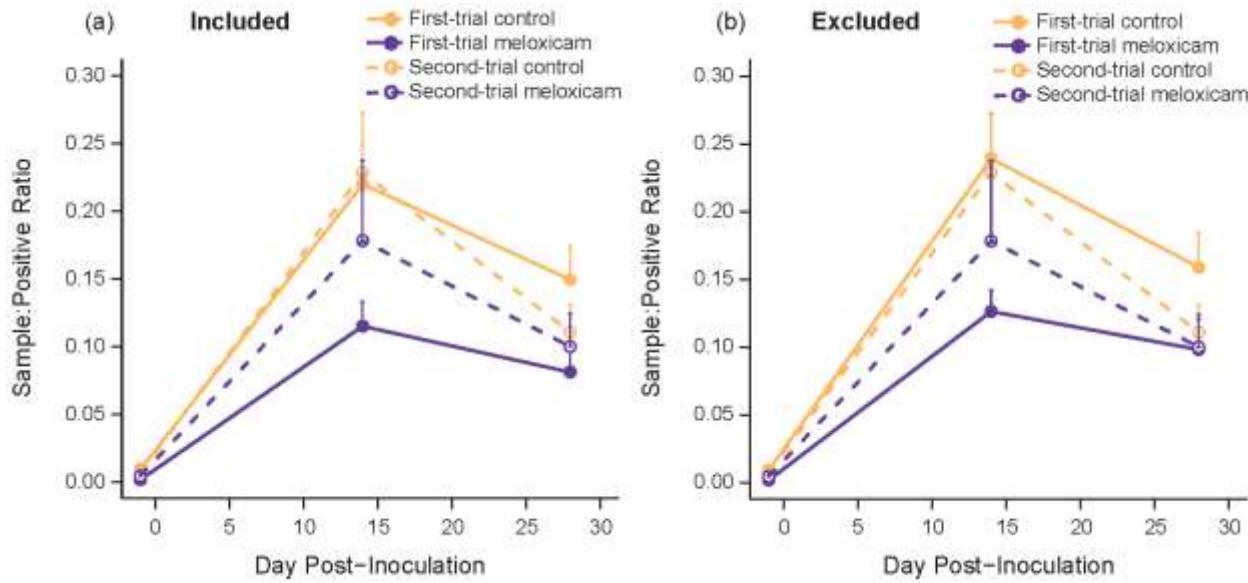
7

8

9 **Figure Legends**

10 **Figure 1** Timeline for both trials included in this study. Treatment with an NSAID or water
11 began 1-2 days prior to experimental inoculation with *Mycoplasma gallisepticum* (MG) on day 0.
12 The sampling regime included collecting eye scores to measure pathology, conjunctival swabs to
13 measure pathogen load, and blood samples to measure MG-specific antibody titers.

14 **Figure 2** NSAID treatment significantly reduced the severity of conjunctivitis (a) in the first
15 trial but not the second. However, with second-trial control birds only developing about half the
16 pathology of first-trial controls, there was a narrower margin for us to measure a treatment effect.
17 Though NSAID treatment had no effect on pathogen load (b) within trials, first-trial control birds
18 had significantly higher pathogen loads than second-trial control birds from day 14 on. Points
19 show group means plus 1 standard error.


20 **Figure 3** NSAID-treated birds showed higher point tolerance (a) than control birds during the
21 first trial but not the second. Similarly, NSAID-treated birds showed higher range tolerance (b)
22 than control birds in only the first trial. Given that second-trial control birds also showed higher
23 tolerance than first-trial controls, differences in baseline tolerance within the source population
24 across years may actually be masking a consistent treatment effect. Points on both plots represent
25 individual birds, with the lines or curves reflecting the fixed effect estimates for each group from
26 the linear mixed-effects models.

27 **Figure 4** NSAID treatment significantly reduced peak (day 14) antibody titers in the first trial
28 but not the second. Points show group means plus 1 standard error.

1
2
3
4
5
6
7

10

Appendix

11

12 The blank wells used to standardize sample:positive ratios had negative absorbances on one
13 enzyme-linked immunosorbent assay plate, leading to somewhat inflated values (a). When

1 plasma samples tested on this plate were removed (b), treatment and trial continued to have a
2 negligible effect on titer (LMM_{included}: treatment-year: $F_{3,30} = 1.81, p = 0.17$; treatment-year x
3 DPI: $F_{6,60} = 1.34, p = 0.25$; LMM_{excluded}: treatment-year: $F_{3,30} = 1.67, p = 0.19$; treatment-year x
4 DPI: $F_{6,54} = 1.26, p = 0.29$).

5

6