

1 **Abstract**

2 1. Although infection often changes an animal's motivation or ability to forage, which
3 should alter rates of contact with uninfected hosts, such links are likely complex and
4 remain poorly understood. Here, we explore relationships among infection, foraging
5 decisions, and contact rates and how these could vary with environmental factors to drive
6 disease transmission.

7 2. Optimal foraging theory predicts that animals should gather the highest quality resources
8 available from a patch, leaving only once the cost of continued foraging begins to
9 outweigh the amount of energy gained. However, an animal's ability to locate and
10 evaluate resource patches will vary with many factors, including disease, temperature,
11 and habitat fragmentation. Although modeling suggests that such variation in foraging
12 decisions can alter contact rates among infected and uninfected hosts, and thus
13 transmission and evolution of infectious agents, empirical studies have only begun to test
14 the direction and strength of such relationships.

15 3. We propose that sickness behaviors (e.g., lethargy and anorexia) will often alter foraging
16 decisions in ways that reduce contact rates among infected and uninfected hosts, while
17 parasite-driven behavioral changes will often do the opposite. Furthermore, we suggest
18 that future studies empirically test how such associations vary with ambient temperature
19 and habitat fragmentation, as human activity continues to alter these and other
20 environmental pressures.

21 4. By revealing how environmental factors impact the links among infection, foraging, and
22 disease transmission, we can improve our understanding and prediction of animal disease
23 dynamics in the face of changing ecosystems.

24

25 **Keywords**

26 contact rate, disease, environmental factors, foraging, sickness behaviors

27 **Introduction**

28 The behavior of sick animals is key to disease transmission. For example, foraging during
29 infection can influence disease transmission by altering the frequency of contact with other hosts,
30 especially in group or social foragers, or at fomites (Bouwman and Hawley, 2010; Dolnik et al.,

31 2010; Moyers et al., 2018; Shocket et al., 2018). While the magnitude of sickness behaviors like
32 lethargy and anorexia can reduce overall foraging, and thus the potential for inter-individual
33 contact (Lopes et al., 2016; Stockmaier et al., 2020), it remains unclear how subtler changes to
34 foraging decisions will alter contact rates and transmission. For example, if infection alters a
35 host's ability to locate resource patches or assess their quality, infected hosts may be less likely
36 to contact healthy individuals than we would otherwise predict. Conversely, infection could alter
37 a host's food preferences, causing infected hosts to forage more intensely at preferred patches
38 and increasing the potential for contact with naïve individuals. Thus, although infection can alter
39 overall foraging ability or time spent foraging, predictions of contact rates based on such metrics
40 alone likely underestimate the impact of infection-induced foraging changes.

41 As a result of either host-driven sickness behaviors or parasite-manipulation, altered
42 motivation to feed likely impacts an animal's ability to detect, assess, or manipulate food
43 resources (Fig. 1). Such changes would impact critical aspects of foraging behavior, including
44 the amount of time an animal spends searching for food (search time; Fig. 1B); the ability to
45 assess the quality of resources in a patch; and the efficiency of resource intake once a patch is
46 located, which will alter the time spent in a given patch and the amount of food remaining when
47 departing (giving up density, GUD, Fig. 1B-C). Further, an infected animals' ability or
48 motivation to move between resource patches likely changes with infection, which could impact
49 the duration of any given visit to a resource. In such scenarios, we expect infected animals to
50 exhibit foraging movements that differ from healthy animals, potentially visiting and remaining
51 in suboptimal resource patches more often than their uninfected counterparts.

52 Revealing how infection alters such foraging decisions will improve our understanding of
53 how the behavior of infected animals drives disease dynamics in the wild. Here we review
54 several mechanisms by which infection can alter foraging decisions, highlight how those
55 decisions should impact inter-host contact rates, and discuss how environmental conditions can
56 modulate the links between foraging decisions and contact rates.

57 **Mechanisms by which infection can affect foraging decisions**

58 The mechanisms by which infection alters host behavior can be classified as host- or
59 parasite-driven. Sickness behaviors, such as lethargy and anorexia, are generally considered host-
60 driven and can aid in overcoming infection (Hart, 1988). Decreasing energy use through reduced
61 movement (lethargy) can promote robust immune defense, whereas fasting (anorexia) can

62 minimize the resources available to parasites (Adelman and Martin, 2009). However, sickness
63 behaviors incur opportunity costs by reducing other fitness-enhancing behaviors, like
64 reproduction, foraging, and predator vigilance. Therefore, the adaptive value of sickness
65 behaviors likely depends on some balance: overexpression of lethargy to the point of prolonged
66 immobility, for example, could completely deplete all stored resources, whereas underexpression
67 of lethargy could limit energy available for immune responses, potentially prolonging infection.
68 Moreover, such balances are context dependent. For example, maternal behavior of lactating
69 mice injected with lipopolysaccharide (LPS) is differentially expressed in response to
70 temperatures. At ambient temperatures of 22°C, pup-retrieval is slower and nest-building activity
71 decreased among LPS- compared to saline-injected mice. In contrast, a 6°C, both pup-retrieval
72 time and nest-building of LPS-injected mice are near control levels (Aubert et al., 1997). While
73 we focus on the importance of context dependence with this example, it also illustrates the
74 potential importance of environmental conditions in shaping relationships between sickness
75 behaviors and foraging (see “Environmental conditions that could affect association between
76 foraging and contact rate,” below).

77 Foraging behaviors, such as search time, giving up density (GUD), and patch quality
78 assessment are linked to—and often negatively affected by—sickness behaviors (Makin et al.,
79 2020; Schwanz et al., 2012). This being said, a lethargic animal might respond differently than
80 an anorexic animal. When looking for food, we can predict that lethargic animals will have
81 greater search times because they are moving slowly. Meanwhile, anorexic individuals might
82 show similar search times to healthy individuals, as their movement is relatively unaffected, but
83 their motivation to find food may reduce their total number of searches. Lethargy and anorexia
84 are both likely to decrease GUD: finding food patches when lethargic is time-intensive (Fig. 1B,
85 D), and motivation to eat is decreased with anorexia (Fig. 1C, D). Regardless, the animal
86 probably stays at a given resource patch longer than it would when healthy. In addition, the
87 impact of patch quality on such foraging decisions is likely less pronounced when animals are
88 expressing sickness behaviors. Because sick animals show a reduced drive to both eat and move,
89 low-quality patches are more likely to satisfy these internal motivations for sick as opposed to
90 healthy animals.

91 Unlike host-driven behavioral changes during infection, parasite-driven behavioral changes
92 should be, by definition, linked to the parasite increasing its own fitness, specifically

93 transmission to new hosts (Moore, 2002). For instance, rabies virus alters neuronal expression of
94 [³H]5-hydroxytryptamine, an important metabolic intermediate in the biosynthesis of serotonin
95 (Bouzamondo et al., 1993; Ceccaldi et al., 1993). By altering the serotonin pathway, rabies
96 changes mammalian hosts' behavior, increasing aggression and hydrophobia (Mallewa et al.,
97 2007; Warrell et al., 1976), which enhance the pathogen's probability of transmission via saliva.
98 In bees, parasite-driven changes in foraging behavior result from chemical changes in floral
99 preference (see Koch et al., 2017), such that floral preference can vary with parasite
100 characteristics. For example, Schmid-Hempel and Schmid-Hempel (1990) found that 62.8% of
101 healthy European honeybees (*Bombus pascuorum*) foraged at *Prunella grandiflora* while 37.2%
102 foraged at *Betonica officinalis* based on availability of the two plants. In contrast, honeybees
103 parasitized by fly larvae (*Sicus ferrugineus* and *Physocephala rufipes*) foraged at *P. grandiflora*
104 28% and *B. officinalis* 72% of the time, thus suggesting a switch in floral preference with
105 infection. In this same host-parasite system, honeybee foraging behavior was further altered
106 alongside parasite stage; honeybees parasitized by third instar larvae, but not first or second
107 instar, were less likely to collect pollen than non-parasitized bees (Schmid-Hempel and Schmid-
108 Hempel, 1991). Such changes in foraging behavior will likely lead to different habitat/resource
109 usage by infected versus uninfected animals, which will have important consequences for contact
110 rates and disease transmission.

111 As with sickness behaviors, parasite-driven changes in behavior can negatively affect search
112 time, GUD, and patch quality assessment (Allan et al., 2010; Fritzsche and Allan, 2012). For
113 example, the fungal pathogen, *Batrachochytrium dendrobatis*, can delay growth and
114 development rates in Fowler's toads (*Anaxyrus fowleri*) likely due to a parasite-driven shortening
115 of search times and reduction in overall foraging efficiency (Fig. 1C–D; Venesky et al., 2009).
116 Predicting the effect of parasite-driven responses on foraging behaviors is complex, as parasite-
117 driven behaviors are likely to vary among specific parasite and host pairs. Some parasites cause
118 their hosts to pursue unconventional resources, essentially overriding traditional foraging theory:
119 search time, GUD, and patch quality become contingent on parasite-driven fitness criteria, rather
120 than host fitness. For example, juvenile hair worms (genus *Chordodes*) that infect several insect
121 species induce hosts to forage for a single resource: water, the essential medium for hairworm
122 reproduction (Schmidt-Rhaesa, 2002; Thomas et al., 2002, 2003). As with host-driven

123 mechanisms, such parasite-driven behavioral changes can induce profound alterations to
124 foraging behavior, with the potential to impact contact rate.

125 **Consequences of changes to foraging behavior on contact rates**
126 **and transmission**

127 Changes to a host's foraging behavior during infection can directly alter intra and
128 interspecific contact rates, with important implications for the spread and potential management
129 of communicable diseases. Compared to healthy individuals, we might predict that sick animals
130 will forage at different locations or consume different foods. For example, wild Taiwan field
131 mice (*Apodemus semotus*) are often infected with gut helminths that are transmitted fecal-orally.
132 A field experiment found that naturally infected mice spent similar amounts of time in feces-
133 contaminated and uncontaminated foraging patches, whereas mice whose infections were
134 reduced with an anthelmintic drug spent less time in feces-contaminated food patches (Hou et
135 al., 2016). Such patterns suggest that altered foraging decisions among infected individuals could
136 reduce contact rates with uninfected conspecifics. Such alterations, however, may be further
137 complicated by interactions with the behavior of healthy hosts. For example, among male house
138 finches, infection with *Mycoplasma gallisepticum* often reduces aggression, which can lead
139 other, healthy males to prefer feeding near infected conspecifics (Bouwman and Hawley, 2010),
140 potentially increasing intraspecific contact rates. This issue could be compounded under
141 conditions of high feeder density, which can increase transmission of conjunctivitis—especially
142 if aggressive interactions can remain low (Moyers et al., 2018).

143 Altered foraging behavior can also be critical for trophic transmission, or transmission
144 from an intermediate host, generally a prey item, to a definitive host, typically a predator
145 (Lafferty, 1992). Parasites that rely on trophic transmission often change the behavior of their
146 intermediate host to increase the likelihood of predation. For example, when infected with the
147 parasitic worm, *Pomphorhynchus laevis*, *Gammarus pulex*, a small algae-feeding crustacean,
148 alters its circadian foraging patterns, drifting in search of food at night when it is more
149 vulnerable to predation by European bullhead (*Cottus gobio*), the parasite's definitive host
150 (Lagrule et al., 2007).

151 Another potential consequence of changes to foraging behavior on contact rates and
152 transmission involves a foraging-mediated “hydra effect” (Penczykowski et al., 2022). Such an

153 effect would occur when sickness-induced foraging depression leads to an increase in resource
154 production and density, thereby increasing the number of organisms that patch can support
155 before degradation. As healthy individuals move to this productive patch, more become infected,
156 continuing this cycle. Using modeling and field data, Penczykowski et al. (2022) documented a
157 foraging-mediated hydra effect in a zooplankton-algal system in which a fungal pathogen
158 virulently depresses host foraging rate. More generally, pathogen-induced sickness behaviors—
159 such as lethargy and anorexia—could reduce foraging rate, thereby increasing the amount of an
160 available food resource in each patch or across a landscape.

161 **Environmental conditions that could affect association between 162 foraging and contact rate**

163 While foraging decisions and their effects on inter- and intraspecific contact rates are
164 likely to be important for pathogen transmission, the nature of such associations will be shaped,
165 at least in part, by environmental conditions. Although myriad environmental factors could
166 impact these relationships, for brevity, we focus on two examples that are critical in the face of
167 anthropogenic climate change and land-use change. Specifically, temperature and resource
168 distribution are changing rapidly in numerous ecosystems, with the potential to alter the links
169 directly and indirectly between foraging decisions and infectious disease dynamics.

170 Temperature is critical when considering foraging behaviors in general. Increased
171 energetic demands brought about by low temperatures can lead to increased time spent foraging
(Persson, 1986; Reiskind and Janairo, 2015). In contrast, increasing ambient temperatures can
173 increase foraging success and resource availability (Avery and Krebs, 1984; Bergman, 1987;
174 Stevens et al., 2002). Ambient temperatures can even change the endogenous rhythms of
175 foraging behaviors: regardless of photoperiod or season, juvenile salmonids are diurnal foragers
176 at temperatures above 10°C, but become nocturnal foragers when temperatures drop below 10°C
177 (Fraser et al., 1993). Temperature can also have profound effects on parasite persistence, as
178 many parasites have lower fitness and decreased transmission probability at temperatures near
179 their thermal maxima when compared to their thermal minima (Dijk and Morgan, 2008; Paull et
180 al., 2012; Sánchez et al., 2021). While temperature is clearly important for foraging behavior and
181 parasite persistence, how temperature effects the interaction between these variables and contact
182 rates remains unclear.

183 To our knowledge, only one study has simultaneously investigated the effect of
184 temperature on disease transmission and foraging behavior, implying an effect on contact rate.
185 Using a freshwater zooplankton-fungus system, Shocket et al. (2018) determined that hosts
186 (*Daphnia dentifera*) increased their foraging rate at warmer temperatures, thereby increasing
187 their contact rates and facilitating larger epidemics. Although warmer temperatures often reduce
188 parasite fitness (see above), in this scenario the resulting increase in foraging rate outweighed
189 these negative effects. This suggests that rising temperature due to climate change could prove
190 important in shaping linkages between foraging behavior and pathogen transmission.

191 In addition to effects of temperature, habitat fragmentation, and its inverse, connectivity
192 can help shape foraging behaviors and disease dynamics. Habitat fragmentation and connectivity
193 have complex interactions with host foraging behaviors. For example, in southern Mexico,
194 howler monkeys (*Alouatta palliata mexicana*) in a large (>600 ha) preserved forest forage over a
195 wide area for *Ficus* spp. seeds, likely reducing contact rates. In a small, disturbed (i.e.,
196 fragmented) area, howler monkeys are restricted to clumps of trees where they must repeatedly
197 forage, resulting in localized foraging and likely increasing contact rates (Serio-Silva and Rico-
198 Gray, 2002). Similarly, female lesser horseshoe bats (*Rhinolophus hipposideros*) in a highly
199 fragmented landscape exhibit spatially clustered foraging activity, albeit over a greater absolute
200 area than the howlers discussed above (Reiter et al., 2013).

201 The influence of habitat fragmentation on disease dynamics is similarly complex and can
202 vary by spatiotemporal scale. This complexity is exemplified by Lyme disease transmission from
203 ticks to other hosts. At a regional scale, Lyme disease risk is highest in areas of ‘intermediate
204 fragmentation’ (Diuk-Wasser et al. 2021; Jackson et al., 2006), but at a local scale, Lyme disease
205 risk increases with increasing patch size (i.e., decreasing fragmentation; Diuk-Wasser et al.,
206 2021; Moon et al., 2019). These patterns can be related to the density, distribution, and thus
207 probability of contacting, competent hosts, specifically white-tailed deer, which are positively
208 associated with tick density in suburban environments (Brownstein et al., 2005; Stafford et al.,
209 2003). It will be important to monitor these links in the future, as the pace of urbanization
210 continues to accelerate.

211 Urbanization is a growing ecological problem that can compound the effects of
212 fragmentation and temperature by altering animal behaviors, disease risk, and health either
213 directly or indirectly, and at multiple scales (i.e., individual–population; Pinter-Wollman et al.,

214 2018). For example, some bat species respond positively to urbanization, with human-made
215 water serving to attract the insectivores and buildings serving as roosting locations. For other
216 species, however, these urban environments might be “ecological traps”, environments that are
217 detrimental to reproduction and survival, yet preferred by organisms (Russo and Ancillotto,
218 2015). With features that attract animals despite limited or low-quality resources, such
219 environments can increase population densities, augmenting contact rates and the potential to
220 spread pathogens. Such environments could even facilitate foraging-mediated hydra effects (see
221 above). Further, urbanization exposes animals to novel stressors, such as light and sound
222 pollution, pesticides, and urban predators, all of which can alter microbiota and increase
223 susceptibility to infection (Furst et al., 2018; Russo and Ancillotto, 2015). Lastly, because urban
224 areas generally have higher temperatures than their rural counterparts (“urban heat islands”, Kim,
225 1992) and temperature is an important factor in shaping foraging decisions, such environments
226 could exacerbate the links among temperature, foraging behaviors, and contact rates.

227 Finally, recent theoretical models have examined the effects of resource density or spatial
228 heterogeneity on disease prevalence (Hall et al., 2007) and links among sickness-induced
229 lethargy, host contact rates, and pathogen spread (Franz et al., 2018). Notably, in landscapes with
230 limited, patchily distributed water resources, Franz and colleagues (2018) found that sickness
231 behaviors can actually increase host-host contact rates and promote disease spread. In this
232 scenario, infected hosts exhibit decreased foraging behaviors and rarely leave a given water
233 source, enhancing contact rates with healthy hosts who must also visit water. This model
234 highlights the potential for interactions between host foraging motivation and landscape features
235 (highly fragmented resources) to shape contact rates. Moreover, this framework can predict the
236 evolution of pathogen virulence, which increased in the above water-limited example (Franz et
237 al., 2018).

238 Conclusions and Future Directions

239 Infection can dramatically influence foraging behaviors and contact rates, thereby
240 altering dynamics of parasite transmission. For brevity, we focused here on the effects of
241 sickness behaviors and parasite-driven host responses on search time, patch quality assessment,
242 and GUD/departure times, but such linkages are by no means constrained to these foraging
243 behavior metrics. Infection could alter additional traits related to foraging, including food
244 preference, ability to locate patches, and perceived distance to nearest patch. We also noted how

245 temperature, habitat fragmentation/connectivity, and urbanization can affect the associations
246 between foraging behavior and contact rate. These environmental conditions, however, are only
247 a small subset of factors that may shape the links between foraging and infectious disease
248 dynamics.

249 Overall, the effect of foraging behaviors on disease transmission is multifactorial: no
250 single factor will drive contact rates and precise relationships will differ among host-parasite
251 systems. Still, theoretical work has shown that links among foraging decisions, contact rates, and
252 landscape features can predict not only the transmission of parasites, but also the evolution of
253 their virulence (Franz et al. 2018). However, little empirical work exists to refine the
254 parameterization of such models or test their predictions. We therefore recommend that future
255 empirical studies focus on not only how foraging decisions change with infection, but also how
256 such changes shape intra- and inter-specific contact rates. Such studies would be especially
257 valuable when incorporating heterogeneous environmental conditions and/or testing differences
258 between host-driven (sickness behaviors) and parasite-driven alterations to foraging. Because
259 human-driven climate change and land-use change continue to shape environmental factors that
260 can affect the links among foraging behavior, contact rates, and infectious disease dynamics,
261 such studies have never been more relevant.

262 References

263 Adelman, J. S., & Martin, L. B. (2009). Vertebrate sickness behaviors: Adaptive and integrated
264 neuroendocrine immune responses. *Integrative and Comparative Biology*, 49(3), 202–214.
265 <https://doi.org/10.1093/icb/icp028>

266 Allan, B. F., Varns, T. S., & Chase, J. M. (2010). Fear of parasites: Lone star ticks increase
267 giving-up densities in white-tailed deer. *Israel Journal of Ecology and Evolution*, 56(3–4),
268 313–324. <https://doi.org/10.1560/IJEE.56.3-4.313>

269 Aubert, A., Goodall, G., Dantzer, R., & Gheusi, G. (1997). Differential effects of
270 lipopolysaccharide on pup retrieving and nest building in lactating mice. *Brain, Behavior,
271 and Immunity*, 11(2), 107–118. <https://doi.org/10.1006/bbri.1997.0485>

272 Avery, M. I., & Krebs, J. R. (1984). Temperature and foraging success of great tits *Parus major*
273 hunting for spiders. *Ibis*, 126(1), 33–38. <https://doi.org/10.1111/j.1474-919X.1984.tb03661.x>

274 Bergman, E. (1987). Temperature-dependent differences in foraging ability of two percids,
275 *Perca fluviatilis* and *Gymnocephalus cernuus*. *Environmental Biology of Fishes*, 19(1), 45–
276 53. <https://doi.org/10.1007/BF00002736>

277 Bouwman, K. M., & Hawley, D. M. (2010). Sickness behaviour acting as an evolutionary trap?
278 Male house finches preferentially feed near diseased conspecifics. *Biol Lett*, 6(4), 462–465.
279 <https://doi.org/10.1098/rsbl.2010.0020>

280 Bouzamondo, E., Ladogana, A., & Tsiang, H. (1993). Alteration of potassium-evoked 5-HT
281 release from virus-infected rat cortical synaptosomes. *Neuroreport*, 4(5), 555–558.
282 <https://doi.org/10.1097/00001756-199305000-00023>

283 Brownstein, J. S., Skelly, D. K., Holford, T. R., & Fish, D. (2005). Forest fragmentation predicts
284 local scale heterogeneity of Lyme disease risk. *Oecologia*, 146(3), 469–475.
285 <https://doi.org/10.1007/s00442-005-0251-9>

286 Ceccaldi, P.-E., Fillion, M.-P., Ermine, A., Tsiang, H., & Fillion, G. (1993). Rabies virus
287 selectively alters 5-HT1 receptors subtypes in rat brain. *European Journal of Pharmacology: Molecular Pharmacology*, 245(2), 129–138. [https://doi.org/10.1016/0922-4106\(93\)90120-X](https://doi.org/10.1016/0922-4106(93)90120-X)

288 Dijk, J. van, & Morgan, E. R. (2008). The influence of temperature on the development, hatching
289 and survival of *Nematodirus battus* larvae. *Parasitology*, 135(2), 269–283.
290 <https://doi.org/10.1017/S0031182007003812>

291 Diuk-Wasser, M. A., VanAcker, M. C., & Fernandez, M. P. (2021). Impact of land use changes
292 and habitat fragmentation on the eco-epidemiology of tick-borne diseases. *Journal of Medical Entomology*, 58(4), 1546–1564. <https://doi.org/10.1093/jme/tja209>

293 Dolnik, O. V., Dolnik, V. R., & Bairlein, F. (2010). The effect of host foraging ecology on the
294 prevalence and intensity of coccidian infection in wild passerine birds. *Ardea*, 98(1), 97–103.
295 <https://doi.org/10.5253/078.098.0112>

296 Franz, M., Kramer-Schadt, S., Greenwood, A. D., Courtiol, A., & Pedersen, A. (2018). Sickness-
297 induced lethargy can increase host contact rates and pathogen spread in water-limited
298 landscapes. *Functional Ecology*, 32(9), 2194–2204. <https://doi.org/10.1111/1365-2435.13149>

299 Fraser, N. H. C., Metcalfe, N. B., & Thorpe, J. E. (1993). Temperature-dependent switch
300 between diurnal and nocturnal foraging in salmon. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 252(1334), 135–139.
301 <https://doi.org/10.1098/rspb.1993.0057>

305 Fritzsche, A., & Allan, B. F. (2012). The ecology of fear: Host foraging behavior varies with the
306 spatio-temporal abundance of a dominant ectoparasite. *EcoHealth*, 9(1), 70–74.
307 <https://doi.org/10.1007/s10393-012-0744-z>

308 Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N., & Thorne, L. H. (2018). Effects of urbanization on
309 the foraging ecology and microbiota of the generalist seabird *Larus argentatus*. *PLOS ONE*,
310 13(12), e0209200. <https://doi.org/10.1371/journal.pone.0209200>

311 Hall, S. R., Sivars-Becker, L., Becker, C., Duffy, M. A., Tessier, A. J., & Cáceres, C. E. (2007).
312 Eating yourself sick: Transmission of disease as a function of foraging ecology. *Ecology*
313 Letters, 10(3), 207–218. <https://doi.org/10.1111/j.1461-0248.2007.01011.x>

314 Hart, B. L. (1988). Biological basis of the behavior of sick animals. *Neuroscience &*
315 *Biobehavioral Reviews*, 12(2), 123–137. [https://doi.org/10.1016/s0149-7634\(88\)80004-6](https://doi.org/10.1016/s0149-7634(88)80004-6)

316 Hou, C.-H., Shaner, P.-J. L., Hsiao, C.-J., & Lin, Y.-T. K. (2016). Environmental parasitism risk
317 and host infection status affect patch use in foraging wild mice. *Ethology*, 122(9), 717–725.
318 <https://doi.org/10.1111/eth.12521>

319 Jackson, L. E., Hilborn, E. D., & Thomas, J. C. (2006). Towards landscape design guidelines for
320 reducing Lyme disease risk. *International Journal of Epidemiology*, 35(2), 315–322.
321 <https://doi.org/10.1093/ije/dyi284>

322 Kim, H. H. (1992). Urban heat island. *International Journal of Remote Sensing*, 13(12), 2319–
323 2336. <https://doi.org/10.1080/01431169208904271>

324 Koch, H., Brown, M. J., & Stevenson, P. C. (2017). The role of disease in bee foraging ecology.
325 *Current Opinion in Insect Science*, 21, 60–67. <https://doi.org/10.1016/j.cois.2017.05.008>

326 Lafferty, K. D. (1992). Foraging on prey that are modified by parasites. *The American*
327 *Naturalist*, 140(5), 854–867. <https://doi.org/10.1086/285444>

328 Lagrue, C., Kaldonski, N., Perrot-Minnot, M. J., Motreuil, S., & Bollache, L. (2007).
329 Modification of hosts' behavior by a parasite: Field evidence for adaptive manipulation.
330 *Ecology*, 88(11), 2839–2847. <https://doi.org/10.1890/06-2105.1>

331 Lopes, P. C., Block, P., & König, B. (2016). Infection-induced behavioural changes reduce
332 connectivity and the potential for disease spread in wild mice contact networks. *Scientific*
333 *Reports*, 6(1), 31790. <https://doi.org/10.1038/srep31790>

334 Makin, D. F., Kotler, B. P., Brown, J. S., Garrido, M., & Menezes, J. F. S. (2020). The enemy
335 within: How does a bacterium inhibit the foraging aptitude and risk management behavior of

336 Allenby's gerbils? *The American Naturalist*, 196(6), 717–729.
337 <https://doi.org/10.1086/711397>

338 Mallewa, M., Fooks, A. R., Banda, D., Chikungwa, P., Mankhambo, L., Molyneux, E.,
339 Molyneux, M. E., & Solomon, T. (2007). Rabies encephalitis in malaria-endemic area,
340 Malawi, Africa. *Emerging Infectious Diseases*, 13(1), 136–139.
341 <https://doi.org/10.3201/eid1301.060810>

342 Moon, K. A., Pollak, J., Poulsen, M. N., Hirsch, A. G., DeWalle, J., Heaney, C. D., Aucott, J. N.,
343 & Schwartz, B. S. (2019). Peridomestic and community-wide landscape risk factors for
344 Lyme disease across a range of community contexts in Pennsylvania. *Environmental
345 Research*, 178, 108649. <https://doi.org/10.1016/j.envres.2019.108649>

346 Moore, J. (2002). *Parasites and the behavior of animals*. Oxford University Press, USA.

347 Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A., & Hawley, D. M. (2018). Feeder
348 density enhances house finch disease transmission in experimental epidemics. *Philos Trans R
349 Soc Lond B Biol Sci*, 373(1745). <https://doi.org/10.1098/rstb.2017.0090>

350 Paull, S. H., LaFonte, B. E., & Johnson, P. T. J. (2012). Temperature-driven shifts in a host-
351 parasite interaction drive nonlinear changes in disease risk. *Global Change Biology*, 18(12),
352 3558–3567. <https://doi.org/10.1111/gcb.12018>

353 Penczykowski, R. M., Shocket, M. S., Ochs, J. H., Lemanski, B. C. P., Sundar, H., Duffy, M. A.,
354 & Hall, S. R. (2022). Virulent disease epidemics can increase host density by depressing
355 foraging of hosts. *The American Naturalist*, 199(1), 75–90. <https://doi.org/10.1086/717175>

356 Persson, L. (1986). Temperature-induced shift in foraging ability in two fish species, roach
357 (*Rutilus rutilus*) and perch (*Perca fluviatilis*): Implications for coexistence between
358 poikilotherms. *Journal of Animal Ecology*, 55(3), 829–839. <https://doi.org/10.2307/4419>

359 Pinter-Wollman, N., Jelić, A., & Wells, N. M. (2018). The impact of the built environment on
360 health behaviours and disease transmission in social systems. *Philosophical Transactions of
361 the Royal Society B: Biological Sciences*, 373(1753), 20170245.
362 <https://doi.org/10.1098/rstb.2017.0245>

363 Reiskind, M. H., & Janairo, M. S. (2015). Late-instar behavior of *Aedes aegypti* (Diptera:
364 Culicidae) larvae in different thermal and nutritive environments. *Journal of Medical
365 Entomology*, 52(5), 789–796. <https://doi.org/10.1093/jme/tjv088>

366 Reiter, G., Pölzer, E., Mixanig, H., Bontadina, F., & Hüttmeir, U. (2013). Impact of landscape
367 fragmentation on a specialised woodland bat, *Rhinolophus hipposideros*. *Mammalian*
368 *Biology*, 78(4), 283–289. <https://doi.org/10.1016/j.mambio.2012.11.003>

369 Russo, D., & Ancillotto, L. (2015). Sensitivity of bats to urbanization: A review. *Mammalian*
370 *Biology*, 80(3), 205–212. <https://doi.org/10.1016/j.mambio.2014.10.003>

371 Sánchez, C. A., Ragonese, I. G., de Roode, J. C., & Altizer, S. (2021). Thermal tolerance and
372 environmental persistence of a protozoan parasite in monarch butterflies. *Journal of*
373 *Invertebrate Pathology*, 183, 107544. <https://doi.org/10.1016/j.jip.2021.107544>

374 Schmid-Hempel, P., & Schmid-Hempel, R. (1990). Endoparasitic larvae of conopid flies alter
375 pollination behavior of bumblebees. *Naturwissenschaften*, 77, 450–452.

376 Schmid-Hempel, R., & Schmid-Hempel, P. (1991). Endoparasitic flies, pollen-collection by
377 bumblebees and a potential host-parasite conflict. *Oecologia*, 87(2), 227–232.
378 <https://doi.org/10.1007/BF00325260>

379 Schmidt-Rhaesa, A. (2002). Two dimensions of biodiversity research exemplified by
380 Nematomorpha and Gastrotricha. *Integrative and Comparative Biology*, 42(3), 633–640.
381 <https://doi.org/10.1093/icb/42.3.633>

382 Schwanz, L. E., Previtali, M. A., Gomes-Solecki, M., Brisson, D., & Ostfeld, R. S. (2012).
383 Immunochallenge reduces risk sensitivity during foraging in white-footed mice. *Animal*
384 *Behaviour*, 83(1), 155–161. <https://doi.org/10.1016/j.anbehav.2011.10.020>

385 Serio-Silva, J. C., & Rico-Gray, V. (2002). Interacting effects of forest fragmentation and howler
386 monkey foraging on germination and dispersal of fig seeds. *Oryx*, 36(3), 266–271.
387 <https://doi.org/10.1017/S0030605302000480>

388 Shocket, M. S., Strauss, A. T., Hite, J. L., Šljivar, M., Civitello, D. J., Duffy, M. A., Cáceres, C.
389 E., & Hall, S. R. (2018). Temperature drives epidemics in a zooplankton-fungus disease
390 system: A trait-driven approach points to transmission via host foraging. *The American*
391 *Naturalist*, 191(4), 435–451. <https://doi.org/10.1086/696096>

392 Stafford, K. C., III, Denicola, A. J., & Kilpatrick, H. J. (2003). Reduced abundance of *Ixodes*
393 *scapularis* (Acari: Ixodidae) and the tick parasitoid *Ixodiphagus hookeri* (Hymenoptera:
394 Encyrtidae) with reduction of white-tailed deer. *Journal of Medical Entomology*, 40(5), 642–
395 652. <https://doi.org/10.1603/0022-2585-40.5.642>

396 Stevens, A. J., Welch, Z. C., Darby, P. C., & Percival, H. F. (2002). Temperature effects on
397 Florida applesnail activity: Implications for snail kite foraging success and distribution.
398 *Wildlife Society Bulletin* (1973-2006), 30(1), 75–81.

399 Stockmaier, S., Bolnick, D. I., Page, R. A., Josic, D., & Carter, G. G. (2020). Immune-
400 challenged vampire bats produce fewer contact calls. *Biology Letters*, 16(7), 20200272.
401 <https://doi.org/10.1098/rsbl.2020.0272>

402 Thomas, F., Schmidt-Rhaesa, A., Martin, G., Manu, C., Durand, P., & Renaud, F. (2002). Do
403 hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial
404 hosts? *Journal of Evolutionary Biology*, 15(3), 356–361. <https://doi.org/10.1046/j.1420-9101.2002.00410.x>

405


406 Thomas, F., Ulitsky, P., Augier, R., Dusticier, N., Samuel, D., Strambi, C., Biron, D. G., &
407 Cayre, M. (2003). Biochemical and histological changes in the brain of the cricket *Nemobius*
408 *sylvestris* infected by the manipulative parasite *Paragordius tricuspidatus* (Nematomorpha).
409 *International Journal for Parasitology*, 33(4), 435–443. [https://doi.org/10.1016/S0020-7519\(03\)00014-6](https://doi.org/10.1016/S0020-7519(03)00014-6)

410

411 Venesky, M. D., Parris, M. J., & Storfer, A. (2009). Impacts of *Batrachochytrium dendrobatidis*
412 infection on tadpole foraging performance. *Ecohealth*, 6(4), 565–575.
413 <https://doi.org/10.1007/s10393-009-0272-7>

414

415 Warrell, D. A., Davidson, N. McD., Pope, H. M., Bailie, W. E., Lawrie, J. H., Ormerod, L. D.,
416 Kertesz, A., & Lewis, P. (1976). Pathophysiologic studies in human rabies. *The American
Journal of Medicine*, 60(2), 180–190. [https://doi.org/10.1016/0002-9343\(76\)90427-7](https://doi.org/10.1016/0002-9343(76)90427-7)

417 **Figures**

418

419 Figure 1. Generally, uninfected animals (A) should forage more efficiently (i.e., gather more
 420 resources per unit time) than infected conspecifics expressing sickness behaviors that increase
 421 travel and/or search time only (B), decrease foraging efficiency only (C), or increase travel
 422 and/or search time and decrease foraging efficiency (D). The intersection between the dashed
 423 line and solid curve indicates the point of diminishing returns, and thus the optimal time of
 424 departure from a given patch (shown by the horizontal arrow). In such cases, infected animals
 425 are predicted to spend more time in a given resource patch than uninfected animals. Depending
 426 on landscape characteristics and resource quality, this could increase or decrease contact rates
 427 between infected and uninfected hosts (see main text).

428