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Abstract 1 

1. Although infection often changes an animal’s motivation or ability to forage, which 2 

should alter rates of contact with uninfected hosts, such links are likely complex and 3 

remain poorly understood. Here, we explore relationships among infection, foraging 4 

decisions, and contact rates and how these could vary with environmental factors to drive 5 

disease transmission. 6 

2. Optimal foraging theory predicts that animals should gather the highest quality resources 7 

available from a patch, leaving only once the cost of continued foraging begins to 8 

outweigh the amount of energy gained. However, an animal’s ability to locate and 9 

evaluate resource patches will vary with many factors, including disease, temperature, 10 

and habitat fragmentation. Although modeling suggests that such variation in foraging 11 

decisions can alter contact rates among infected and uninfected hosts, and thus 12 

transmission and evolution of infectious agents, empirical studies have only begun to test 13 

the direction and strength of such relationships.  14 

3. We propose that sickness behaviors (e.g., lethargy and anorexia) will often alter foraging 15 

decisions in ways that reduce contact rates among infected and uninfected hosts, while 16 

parasite-driven behavioral changes will often do the opposite. Furthermore, we suggest 17 

that future studies empirically test how such associations vary with ambient temperature 18 

and habitat fragmentation, as human activity continues to alter these and other 19 

environmental pressures. 20 

4. By revealing how environmental factors impact the links among infection, foraging, and 21 

disease transmission, we can improve our understanding and prediction of animal disease 22 

dynamics in the face of changing ecosystems. 23 
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Introduction 27 

The behavior of sick animals is key to disease transmission. For example, foraging during 28 

infection can influence disease transmission by altering the frequency of contact with other hosts, 29 

especially in group or social foragers, or at fomites (Bouwman and Hawley, 2010; Dolnik et al., 30 
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2010; Moyers et al., 2018; Shocket et al., 2018). While the magnitude of sickness behaviors like 31 

lethargy and anorexia can reduce overall foraging, and thus the potential for inter-individual 32 

contact (Lopes et al., 2016; Stockmaier et al., 2020), it remains unclear how subtler changes to 33 

foraging decisions will alter contact rates and transmission. For example, if infection alters a 34 

host’s ability to locate resource patches or assess their quality, infected hosts may be less likely 35 

to contact healthy individuals than we would otherwise predict. Conversely, infection could alter 36 

a host’s food preferences, causing infected hosts to forage more intensely at preferred patches 37 

and increasing the potential for contact with naïve individuals. Thus, although infection can alter 38 

overall foraging ability or time spent foraging, predictions of contact rates based on such metrics 39 

alone likely underestimate the impact of infection-induced foraging changes. 40 

As a result of either host-driven sickness behaviors or parasite-manipulation, altered 41 

motivation to feed likely impacts an animal’s ability to detect, assess, or manipulate food 42 

resources (Fig. 1). Such changes would impact critical aspects of foraging behavior, including 43 

the amount of time an animal spends searching for food (search time; Fig. 1B); the ability to 44 

assess the quality of resources in a patch; and the efficiency of resource intake once a patch is 45 

located, which will alter the time spent in a given patch and the amount of food remaining when 46 

departing (giving up density, GUD, Fig. 1B-C). Further, an infected animals’ ability or 47 

motivation to move between resource patches likely changes with infection, which could impact 48 

the duration of any given visit to a resource. In such scenarios, we expect infected animals to 49 

exhibit foraging movements that differ from healthy animals, potentially visiting and remaining 50 

in suboptimal resource patches more often than their uninfected counterparts. 51 

Revealing how infection alters such foraging decisions will improve our understanding of 52 

how the behavior of infected animals drives disease dynamics in the wild. Here we review 53 

several mechanisms by which infection can alter foraging decisions, highlight how those 54 

decisions should impact inter-host contact rates, and discuss how environmental conditions can 55 

modulate the links between foraging decisions and contact rates. 56 

Mechanisms by which infection can affect foraging decisions 57 

The mechanisms by which infection alters host behavior can be classified as host- or 58 

parasite-driven. Sickness behaviors, such as lethargy and anorexia, are generally considered host-59 

driven and can aid in overcoming infection (Hart, 1988). Decreasing energy use through reduced 60 

movement (lethargy) can promote robust immune defense, whereas fasting (anorexia) can 61 
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minimize the resources available to parasites (Adelman and Martin, 2009). However, sickness 62 

behaviors incur opportunity costs by reducing other fitness-enhancing behaviors, like 63 

reproduction, foraging, and predator vigilance. Therefore, the adaptive value of sickness 64 

behaviors likely depends on some balance: overexpression of lethargy to the point of prolonged 65 

immobility, for example, could completely deplete all stored resources, whereas underexpression 66 

of lethargy could limit energy available for immune responses, potentially prolonging infection. 67 

Moreover, such balances are context dependent. For example, maternal behavior of lactating 68 

mice injected with lipopolysaccharide (LPS) is differentially expressed in response to 69 

temperatures. At ambient temperatures of 22˚C, pup-retrieval is slower and nest-building activity 70 

decreased among LPS- compared to saline-injected mice. In contrast, a 6˚C, both pup-retrieval 71 

time and nest-building of LPS-injected mice are near control levels (Aubert et al., 1997). While 72 

we focus on the importance of context dependence with this example, it also illustrates the 73 

potential importance of environmental conditions in shaping relationships between sickness 74 

behaviors and foraging (see “Environmental conditions that could affect association between 75 

foraging and contact rate,” below). 76 

Foraging behaviors, such as search time, giving up density (GUD), and patch quality 77 

assessment are linked to—and often negatively affected by—sickness behaviors (Makin et al., 78 

2020; Schwanz et al., 2012). This being said, a lethargic animal might respond differently than 79 

an anorexic animal. When looking for food, we can predict that lethargic animals will have 80 

greater search times because they are moving slowly. Meanwhile, anorexic individuals might 81 

show similar search times to healthy individuals, as their movement is relatively unaffected, but 82 

their motivation to find food may reduce their total number of searches. Lethargy and anorexia 83 

are both likely to decrease GUD: finding food patches when lethargic is time-intensive (Fig. 1B, 84 

D), and motivation to eat is decreased with anorexia (Fig. 1C, D). Regardless, the animal 85 

probably stays at a given resource patch longer than it would when healthy. In addition, the 86 

impact of patch quality on such foraging decisions is likely less pronounced when animals are 87 

expressing sickness behaviors. Because sick animals show a reduced drive to both eat and move, 88 

low-quality patches are more likely to satisfy these internal motivations for sick as opposed to 89 

healthy animals. 90 

Unlike host-driven behavioral changes during infection, parasite-driven behavioral changes 91 

should be, by definition, linked to the parasite increasing its own fitness, specifically 92 
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transmission to new hosts (Moore, 2002). For instance, rabies virus alters neuronal expression of 93 

[3H]5-hydroxytryptamine, an important metabolic intermediate in the biosynthesis of serotonin 94 

(Bouzamondo et al., 1993; Ceccaldi et al., 1993). By altering the serotonin pathway, rabies 95 

changes mammalian hosts’ behavior, increasing aggression and hydrophobia (Mallewa et al., 96 

2007; Warrell et al., 1976), which enhance the pathogen’s probability of transmission via saliva. 97 

In bees, parasite-driven changes in foraging behavior result from chemical changes in floral 98 

preference (see Koch et al., 2017), such that floral preference can vary with parasite 99 

characteristics. For example, Schmid-Hempel and Schmid-Hempel (1990) found that 62.8% of 100 

healthy European honeybees (Bombus pascuorum) foraged at Prunella grandiflora while 37.2% 101 

foraged at Betonica officinalis based on availability of the two plants. In contrast, honeybees 102 

parasitized by fly larvae (Sicus ferrugineus and Physocephala rufipes) foraged at P. grandiflora 103 

28% and B. officinalis 72% of the time, thus suggesting a switch in floral preference with 104 

infection. In this same host-parasite system, honeybee foraging behavior was further altered 105 

alongside parasite stage; honeybees parasitized by third instar larvae, but not first or second 106 

instar, were less likely to collect pollen than non-parasitized bees (Schmid-Hempel and Schmid-107 

Hempel, 1991). Such changes in foraging behavior will likely lead to different habitat/resource 108 

usage by infected versus uninfected animals, which will have important consequences for contact 109 

rates and disease transmission. 110 

As with sickness behaviors, parasite-driven changes in behavior can negatively affect search 111 

time, GUD, and patch quality assessment (Allan et al., 2010; Fritzsche and Allan, 2012). For 112 

example, the fungal pathogen, Batrachochytrium dendrobatidis, can delay growth and 113 

development rates in Fowler’s toads (Anaxyrus fowleri) likely due to a parasite-driven shortening 114 

of search times and reduction in overall foraging efficiency (Fig. 1C–D; Venesky et al., 2009). 115 

Predicting the effect of parasite-driven responses on foraging behaviors is complex, as parasite-116 

driven behaviors are likely to vary among specific parasite and host pairs. Some parasites cause 117 

their hosts to pursue unconventional resources, essentially overriding traditional foraging theory: 118 

search time, GUD, and patch quality become contingent on parasite-driven fitness criteria, rather 119 

than host fitness. For example, juvenile hair worms (genus Chordodes) that infect several insect 120 

species induce hosts to forage for a single resource: water, the essential medium for hairworm 121 

reproduction (Schmidt-Rhaesa, 2002; Thomas et al., 2002, 2003). As with host-driven 122 



5 

 

mechanisms, such parasite-driven behavioral changes can induce profound alterations to 123 

foraging behavior, with the potential to impact contact rate. 124 

Consequences of changes to foraging behavior on contact rates 125 

and transmission 126 

Changes to a host’s foraging behavior during infection can directly alter intra and 127 

interspecific contact rates, with important implications for the spread and potential management 128 

of communicable diseases. Compared to healthy individuals, we might predict that sick animals 129 

will forage at different locations or consume different foods. For example, wild Taiwan field 130 

mice (Apodemus semotus) are often infected with gut helminths that are transmitted fecal-orally. 131 

A field experiment found that naturally infected mice spent similar amounts of time in feces-132 

contaminated and uncontaminated foraging patches, whereas mice whose infections were 133 

reduced with an anthelminthic drug spent less time in feces-contaminated food patches (Hou et 134 

al., 2016). Such patterns suggest that altered foraging decisions among infected individuals could 135 

reduce contact rates with uninfected conspecifics. Such alterations, however, may be further 136 

complicated by interactions with the behavior of healthy hosts. For example, among male house 137 

finches, infection with Mycoplasma gallisepticum often reduces aggression, which can lead 138 

other, healthy males to prefer feeding near infected conspecifics (Bouwman and Hawley, 2010), 139 

potentially increasing intraspecific contact rates. This issue could be compounded under 140 

conditions of high feeder density, which can increase transmission of conjunctivitis—especially 141 

if aggressive interactions can remain low (Moyers et al., 2018).  142 

Altered foraging behavior can also be critical for trophic transmission, or transmission 143 

from an intermediate host, generally a prey item, to a definitive host, typically a predator 144 

(Lafferty, 1992). Parasites that rely on trophic transmission often change the behavior of their 145 

intermediate host to increase the likelihood of predation. For example, when infected with the 146 

parasitic worm, Pomphorhynchus laevis, Gammarus pulex, a small algae-feeding crustacean, 147 

alters its circadian foraging patterns, drifting in search of food at night when it is more 148 

vulnerable to predation by European bullhead (Cottus gobio), the parasite’s definitive host 149 

(Lagrue et al., 2007). 150 

Another potential consequence of changes to foraging behavior on contact rates and 151 

transmission involves a foraging-mediated “hydra effect” (Penczykowski et al., 2022). Such an 152 



6 

 

effect would occur when sickness-induced foraging depression leads to an increase in resource 153 

production and density, thereby increasing the number of organisms that patch can support 154 

before degradation. As healthy individuals move to this productive patch, more become infected, 155 

continuing this cycle. Using modeling and field data, Penczykowski et al. (2022) documented a 156 

foraging-mediated hydra effect in a zooplankton-algal system in which a fungal pathogen 157 

virulently depresses host foraging rate. More generally, pathogen-induced sickness behaviors—158 

such as lethargy and anorexia—could reduce foraging rate, thereby increasing the amount of an 159 

available food resource in each patch or across a landscape. 160 

Environmental conditions that could affect association between 161 

foraging and contact rate 162 

While foraging decisions and their effects on inter- and intraspecific contact rates are 163 

likely to be important for pathogen transmission, the nature of such associations will be shaped, 164 

at least in part, by environmental conditions. Although myriad environmental factors could 165 

impact these relationships, for brevity, we focus on two examples that are critical in the face of 166 

anthropogenic climate change and land-use change. Specifically, temperature and resource 167 

distribution are changing rapidly in numerous ecosystems, with the potential to alter the links 168 

directly and indirectly between foraging decisions and infectious disease dynamics. 169 

Temperature is critical when considering foraging behaviors in general. Increased 170 

energetic demands brought about by low temperatures can lead to increased time spent foraging 171 

(Persson, 1986; Reiskind and Janairo, 2015). In contrast, increasing ambient temperatures can 172 

increase foraging success and resource availability (Avery and Krebs, 1984; Bergman, 1987; 173 

Stevens et al., 2002). Ambient temperatures can even change the endogenous rhythms of 174 

foraging behaviors: regardless of photoperiod or season, juvenile salmonids are diurnal foragers 175 

at temperatures above 10˚C, but become nocturnal foragers when temperatures drop below 10˚C 176 

(Fraser et al., 1993). Temperature can also have profound effects on parasite persistence, as 177 

many parasites have lower fitness and decreased transmission probability at temperatures near 178 

their thermal maxima when compared to their thermal minima (Dijk and Morgan, 2008; Paull et 179 

al., 2012; Sánchez et al., 2021). While temperature is clearly important for foraging behavior and 180 

parasite persistence, how temperature effects the interaction between these variables and contact 181 

rates remains unclear. 182 



7 

 

To our knowledge, only one study has simultaneously investigated the effect of 183 

temperature on disease transmission and foraging behavior, implying an effect on contact rate. 184 

Using a freshwater zooplankton-fungus system, Shocket et al. (2018) determined that hosts 185 

(Daphnia dentifera) increased their foraging rate at warmer temperatures, thereby increasing 186 

their contact rates and facilitating larger epidemics. Although warmer temperatures often reduce 187 

parasite fitness (see above), in this scenario the resulting increase in foraging rate outweighed 188 

these negative effects. This suggests that rising temperature due to climate change could prove 189 

important in shaping linkages between foraging behavior and pathogen transmission. 190 

In addition to effects of temperature, habitat fragmentation, and its inverse, connectivity 191 

can help shape foraging behaviors and disease dynamics. Habitat fragmentation and connectivity 192 

have complex interactions with host foraging behaviors. For example, in southern Mexico, 193 

howler monkeys (Alouatta palliata mexicana) in a large (>600 ha) preserved forest forage over a 194 

wide area for Ficus spp. seeds, likely reducing contact rates. In a small, disturbed (i.e., 195 

fragmented) area, howler monkeys are restricted to clumps of trees where they must repeatedly 196 

forage, resulting in localized foraging and likely increasing contact rates (Serio-Silva and Rico-197 

Gray, 2002). Similarly, female lesser horseshoe bats (Rhinolophus hipposideros) in a highly 198 

fragmented landscape exhibit spatially clustered foraging activity, albeit over a greater absolute 199 

area than the howlers discussed above (Reiter et al., 2013). 200 

The influence of habitat fragmentation on disease dynamics is similarly complex and can 201 

vary by spatiotemporal scale. This complexity is exemplified by Lyme disease transmission from 202 

ticks to other hosts. At a regional scale, Lyme disease risk is highest in areas of ‘intermediate 203 

fragmentation’ (Diuk-Wasser et al. 2021; Jackson et al., 2006), but at a local scale, Lyme disease 204 

risk increases with increasing patch size (i.e., decreasing fragmentation; Diuk-Wasser et al., 205 

2021; Moon et al., 2019). These patterns can be related to the density, distribution, and thus 206 

probability of contacting, competent hosts, specifically white-tailed deer, which are positively 207 

associated with tick density in suburban environments (Brownstein et al., 2005; Stafford et al., 208 

2003). It will be important to monitor these links in the future, as the pace of urbanization 209 

continues to accelerate. 210 

Urbanization is a growing ecological problem that can compound the effects of 211 

fragmentation and temperature by altering animal behaviors, disease risk, and health either 212 

directly or indirectly, and at multiple scales (i.e., individual–population; Pinter-Wollman et al., 213 
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2018). For example, some bat species respond positively to urbanization, with human-made 214 

water serving to attract the insectivores and buildings serving as roosting locations. For other 215 

species, however, these urban environments might be “ecological traps”, environments that are 216 

detrimental to reproduction and survival, yet preferred by organisms (Russo and Ancillotto, 217 

2015). With features that attract animals despite limited or low-quality resources, such 218 

environments can increase population densities, augmenting contact rates and the potential to 219 

spread pathogens. Such environments could even facilitate foraging-mediated hydra effects (see 220 

above). Further, urbanization exposes animals to novel stressors, such as light and sound 221 

pollution, pesticides, and urban predators, all of which can alter microbiota and increase 222 

susceptibility to infection (Fuirst et al., 2018; Russo and Ancillotto, 2015). Lastly, because urban 223 

areas generally have higher temperatures than their rural counterparts (“urban heat islands”, Kim, 224 

1992) and temperature is an important factor in shaping foraging decisions, such environments 225 

could exacerbate the links among temperature, foraging behaviors, and contact rates. 226 

Finally, recent theoretical models have examined the effects of resource density or spatial 227 

heterogeneity on disease prevalence (Hall et al., 2007) and links among sickness-induced 228 

lethargy, host contact rates, and pathogen spread (Franz et al., 2018). Notably, in landscapes with 229 

limited, patchily distributed water resources, Franz and colleagues (2018) found that sickness 230 

behaviors can actually increase host-host contact rates and promote disease spread. In this 231 

scenario, infected hosts exhibit decreased foraging behaviors and rarely leave a given water 232 

source, enhancing contact rates with healthy hosts who must also visit water. This model 233 

highlights the potential for interactions between host foraging motivation and landscape features 234 

(highly fragmented resources) to shape contact rates. Moreover, this framework can predict the 235 

evolution of pathogen virulence, which increased in the above water-limited example (Franz et 236 

al., 2018). 237 

Conclusions and Future Directions 238 

Infection can dramatically influence foraging behaviors and contact rates, thereby 239 

altering dynamics of parasite transmission. For brevity, we focused here on the effects of 240 

sickness behaviors and parasite-driven host responses on search time, patch quality assessment, 241 

and GUD/departure times, but such linkages are by no means constrained to these foraging 242 

behavior metrics. Infection could alter additional traits related to foraging, including food 243 

preference, ability to locate patches, and perceived distance to nearest patch. We also noted how 244 
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temperature, habitat fragmentation/connectivity, and urbanization can affect the associations 245 

between foraging behavior and contact rate. These environmental conditions, however, are only 246 

a small subset of factors that may shape the links between foraging and infectious disease 247 

dynamics. 248 

Overall, the effect of foraging behaviors on disease transmission is multifactorial: no 249 

single factor will drive contact rates and precise relationships will differ among host-parasite 250 

systems. Still, theoretical work has shown that links among foraging decisions, contact rates, and 251 

landscape features can predict not only the transmission of parasites, but also the evolution of 252 

their virulence (Franz et al. 2018). However, little empirical work exists to refine the 253 

parameterization of such models or test their predictions. We therefore recommend that future 254 

empirical studies focus on not only how foraging decisions change with infection, but also how 255 

such changes shape intra- and inter-specific contact rates. Such studies would be especially 256 

valuable when incorporating heterogeneous environmental conditions and/or testing differences 257 

between host-driven (sickness behaviors) and parasite-driven alterations to foraging. Because 258 

human-driven climate change and land-use change continue to shape environmental factors that 259 

can affect the links among foraging behavior, contact rates, and infectious disease dynamics, 260 

such studies have never been more relevant. 261 
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Figures 417 

 418 

Figure 1. Generally, uninfected animals (A) should forage more efficiently (i.e., gather more 419 

resources per unit time) than infected conspecifics expressing sickness behaviors that increase 420 

travel and/or search time only (B), decrease foraging efficiency only (C), or increase travel 421 

and/or search time and decrease foraging efficiency (D). The intersection between the dashed 422 

line and solid curve indicates the point of diminishing returns, and thus the optimal time of 423 

departure from a given patch (shown by the horizontal arrow). In such cases, infected animals 424 

are predicted to spend more time in a given resource patch than uninfected animals. Depending 425 

on landscape characteristics and resource quality, this could increase or decrease contact rates 426 

between infected and uninfected hosts (see main text). 427 

 428 


