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Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing 
stress response. Bean plants, an important legume for human consumption, are often grown in regions 
with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We 
assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- 
and tower-based hyperspectral remote sensing (400 to 2,400  nm and 400 to 900  nm, respectively) 
measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 
3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression 
models predicted these physiological traits (R2 = 0.20 to 0.55; root mean square percent error 16% to 
31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic 
drought responses similar to the physiologically based ranks. This study demonstrates applications of 
high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response 
across genotypes for vegetation monitoring and breeding population screening.

Introduction

Climate adaptation necessitates breeding for crop varieties with 
better yields, stress tolerance, and water-use efficiency [1,2]. 
Therefore, high-throughput phenotyping tools are needed to 
cost effectively and quickly screen physiological and biochem-
ical characteristics across genotypes and environmental condi-
tions [3–6]. Physiological variables such as stomatal conductance 
and leaf water potential (LWP) are indicators of plant water 
status and often used for evaluating drought tolerance [7,8]. 
However, monitoring plant water status requires extensive phys-
ical labor (i.e., personnel and time) and can be both subjective 
and destructive. Thus, remote sensing tools are being explored 
for objective high-throughput phenotyping applications.

Proximal remote sensing offers a powerful tool for high-
throughput phenotyping of plant physiology [9–11]. Remote 
sensing techniques such as thermal-based [12,13], lidar-based 
[14,15], and optical-based [16] methods have shown promise 
for assessing plant water status. Sensors can be deployed on 
various platforms that include handheld instruments, ground-
based vehicles, towers, unoccupied aerial vehicles, piloted 
aircraft, and satellites, all with different spatial and temporal 
trade-offs [4]. Hyperspectral data offer the most flexibility for 
assessing an array of physiological variables and structural 
plant traits, whereas thermal and lidar data are more narrowly 
suited for assessing evapotranspiration and canopy structure, 

respectively [17–19]. The advantage of hyperspectral reflec-
tance data is their sensitivity to variation in pigments, water 
content, and leaf and canopy structure [20–22]. Thus, hyper-
spectral data may be used to remotely capture variation in plant 
physiology and structure across a range of timescales.

Traditionally, simple remotely sensed vegetation indices 
exploit variations in specific spectral bands to act as proxies 
of canopy structure and functions such as absorbed photosyn-
thetically active radiation, leaf area index, and photosynthetic 
activity [23,24]. Beyond simple vegetation indices, full range 
visible (VIS)–near infrared (NIR) hyperspectral data enable 
machine-learning techniques such as partial least squares re
gression (PLSR) [25,26] to predict specific biochemical and 
physiological traits [27–32]. These models adjust weights ap
plied to each spectral region to optimize model calibration for 
each trait. For example, the VIS region (400 to 700 nm) is sen
sitive to chlorophyll and carotenoid pigments and is often used 
as a proxy of photosynthetic activity [22]; the red edge (680 to 
740 nm) is sensitive to chlorophyll content [33]; the NIR (740 
to 900 nm) is sensitive to canopy structure and phenology [34]; 
and the shortwave near infrared (SWIR; 900 to 2,400 nm) is 
sensitive to water content and foliar biochemistry such as 
nitrogen and cellulose [35,36]. Therefore, with proper PLSR 
model calibration, remotely sensed hyperspectral data may be 
optimized using specific spectral regions to assess plant water 
status across genotypes.
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The objective of this study was to utilize hyperspectral data 
from a ground-based handheld instrument and a tower-based 
system for PLSR modeling of 2 physiological traits—stomatal 
conductance and LWP—across a diverse array of beans (n = 16 
genotypes; 12 common beans [Phaseolus vulgaris L.] and 4 
tepary beans [Phaseolus acutifolius A. Gray]). The common 
bean genotypes represent populations varying in drought tol-
erance from different origins including eco-geographic race 
Mesoamerica, dry highland adapted accessions, and arid north-
ern Mexican highland accessions [37]. Tepary beans, native to 
semiarid and arid environments, are generally more drought 
tolerant than common beans [38]. We explore these common 
and tepary bean genotypes in a field experiment with irrigated 
(control) and terminal drought treatments. The PLSR models 
were calibrated using hyperspectral data in the visible and 
NIR from 400 to 900 nm (tower- and ground-based) and full 
range hyperspectral data in the visible, NIR, and SWIR from 
400 to 2,400 nm (ground-based) to explore the impacts of spa
tial scaling and spectral range on PLSR model performance. 
Finally, we apply the PLSR model predictions to phenotype 
and identify genotypic variation in drought response.

Methods

Study site
The experimental design consisted of a diverse multiparent 
breeding population of 300 common bean (P. vulgaris L.) [37] 
and 20 tepary bean (P. acutifolius A. Gray) genotypes, the latter 
generally being considered more drought tolerant [38]. Each 
genotype was represented by 3 randomly located replicate plots 
for a total of 960 plots per treatment. From the 320 genotypes, 
a subset of 16 genotypes (12 common and 4 tepary beans) were 
selected for intensive direct physiological measurements using 
traditional techniques (i.e., stomatal conductance and LWP), 
resulting in 96 measured plots across genotypes, replicates, 
and treatments. The common bean genotypes included the 
8 parents of a multiparent (MAGIC) population and 4 progeny 
lines in this population. The 8 parents were chosen based on 
prior whole-plant phenotypic evidence of drought tolerance 
[37]. They represented a broad diversity of the Mesoamerican 
domesticated gene pool, including representation of the 3 major 
eco-geographic races [39].

All genotypes were grown in the field at the Plant Sciences 
Field Facility of the University of California, Davis (38.534°N, 
121.775°W) from 2021 June to October in designated irrigated 
(control) and terminal drought treatments with 3 replicate 
plots per genotype. Seeds were planted on June 4. Each plot 
was 3.05 m long (N–S) and 1.52 m wide (E–W) with 2 planted 
rows spaced 66 cm apart separated from adjacent plots by un
planted rows (bare soil) 1.22 m long (N–S) or 1.52 m wide (E–W). 
Planting included a buffer row along the border of the field to 
account for border effects. During initial growth, both treat-
ments were watered using aboveground drip irrigation, then 
switched to subsurface drip (50 cm deep) irrigation after stand 
establishment. We applied terminal drought by stopping ir
rigation to the drought treatments on July 26. To dry down 
the plants for harvest, irrigation was also terminated for the 
control plots on September 1.

Ground-based physiological measurements (stomatal con-
ductance, predawn and midday LWP, ground-based hyperspec
tral, and soil moisture) were collected during 3 field campaigns. 

Campaign 1 occurred from July 5 to July 9 to provide a baseline 
comparison before ceasing irrigation to the drought plots; 
Campaign 2 occurred 2 weeks after terminal drought was ini-
tially imposed, from August 9 to August 13; and Campaign 
3 occurred 4 weeks after terminal drought, from August 23 to 
August 26.

Soil moisture neutron probe
In each plot of the 16 genotypes, we installed 1.5-m-long access 
tubes, made from galvanized steel electrical conduit with plas-
tic end caps at the bottom end, into the ground prior to ger-
mination. We assessed soil moisture at 20-, 50-, 80-, 100-, 120-, 
and 140-cm depths using a neutron backscatter detector soil 
moisture probe (503 ELITE Hydroprobe, InstroTek Inc., 
Raleigh, NC, USA). We measured the baseline standard count 
above ground level at 1 m. Then, the neutron probe was in
serted into the access tube to each depth and neutron counts 
were recorded. We determined relative soil moisture by cal-
culating the ratio between soil counts and standard count; 
higher ratios indicated higher soil moisture contents. For each 
campaign, measurements were completed in 1 day between 
10 and 13 h.

Stomatal conductance
We measured leaf stomatal conductance (gs) on one leaf per 
plant for 5 to 8 plants per plot, at 8, 10, 12 and 14 h (measuring 
approximately one-fifth of all plots per day in each 5-day cam-
paign), using a Delta-T AP4 porometer (Delta-T Devices Ltd, 
London, UK), calibrated before each measurement cycle.

Leaf water potential
We measured LWP for 2 leaves per plot, collected at predawn 
(within 30 min prior to sunrise) and midday (between 13 and 
14 h) using a Scholander pressure chamber (PMS Instrument 
Company, Albany, OR, USA). Within 2 s of excision with sharp 
secateurs, each leaf was placed in a Ziploc bag (which had pre-
viously been breathed into for humidification), and the bag was 
flattened to remove excess air and then sealed and immediately 
enclosed in a cooler filled with ice, followed by transport to the 
laboratory for measurement within 3 h.

Drone imagery
Unoccupied aerial vehicles (or drones) were used to system-
atically measure canopy volume, normalized difference vege-
tation index (NDVI), and canopy temperature across all field 
plots during each field campaign. Drone methods and hard-
ware were modified from Parker et al. [40]. Using the differ-
ence between canopy digital surface models and soil digital 
surface models, and vegetation canopy area and height, canopy 
volume was estimated [40]. A Micasense RedEdge-M mul-
tispectral camera (now AgEagle Aerial Systems Inc., Wichita, 
KS, USA) and a Zenmuse XT-R thermal camera were mounted 
onto a DJI Matrice 100 (DJI Inc., Shenzhen, China) to collect 
field imagery. Flight plans for data collection were programmed 
and uploaded to the aircraft using DJI Ground Station Pro. 
Flights were conducted at an altitude of 30 m for volume and 
NDVI measurements, and 60 m for thermal imagery. A min-
imum of 80% front and side overlap was used between images, 
which were processed into field-scale orthomosaics using 
Pix4Dmapper Pro v4.6.4. Data extraction was done using the 
Create Grid and Raster Layer Zonal Statistics functions of 
QGIS v3.10.14.
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Ground-based hyperspectral reflectance
A ground-based handheld instrument (HR-1024i, Spectra 
Vista Corporation, Poughkeepsie, NY, USA) was used to mea
sure reflectance spectra from 400 to 2,400 nm (3.3 to 9.5 nm 
full width at half maximum) at every subset plot from 11 to 
13 h, once per week from July 12 to October 4, beginning 
1 week after Campaign 1 and continuing through and beyond 
Campaigns 2 and 3. Measurement dates were all completed 
under clear sunny sky conditions. We used a fiber optic with 
a 4° field of view to measure the top of the canopy from a 
distance of 1 m. Three representative reflected radiance meas-
urements were obtained per plot. An irradiance measurement 
was made by pointing the foreoptic at a 99.9% reflective 
upward-facing white reference panel (Spectralon), and was 
made every ~15 plots (~10 min). To calculate reflectance, re
flected radiance from vegetation was divided by the preceding 
white reference scan (irradiance). Spectral regions were filtered 
out from 990 to 1,020 nm due to instrument-specific hot pixels, 
and from 1,340 to 1,445 nm and 1,790 to 1,955 nm for atmo
spheric water absorption.

Tower-based hyperspectral reflectance: PhenoSpec
A tower-based remote sensing system, PhenoSpec, was used 
to continuously monitor hyperspectral reflectance (400 to 
900 nm; 1.34 nm full width at half maximum) from July 16 
to October 15. The PhenoSpec is described in detail in Wong 
et al. (in review). This system was set up with a 10-m-tall 
tower located approximately in the middle of the field. We 
limited the viewing radius of the system to 72.7 m (250 ft) to 
maintain sufficient viewing angles for optical data quality and 
spatial coverage. This enabled the measurement of 672 plot 
targets (336 per treatment) with 178 genotypes represented 
in both treatments, including 27 of the 96 plots selected for 
intensive direct physiological measurements of stomatal con-
ductance and LWP. At the top of the tower, PhenoSpec con-
sists of an RGB (red, green, blue) camera (AXIS Q8685-E PTZ 
Network Camera, Axis Communications AB, Lund, Sweden) 
to target specific bean plots with a 360° pan, a ground-to-sky 
view from −45° to 90°, and 30× optical zoom. Mounted on 
top of the camera was an enclosed colocated 2D scanning 
telescope unit (Thorlabs Inc., NJ, USA) for simultaneous spec-
tral reflectance measurements with a 0.7° field of view, spot 
targeting 12 to 86 cm diameter (depending on distance). The 
telescope was connected to a fiber optic cable extending to 
the base of the tower into a temperature-controlled enclosure 
that housed the spectrometer for hyperspectral radiance 
(FLAME, Ocean Insights, FL, USA). With a total of 723 scans 
(including both target and sky references), minimum 5 s each, 
a complete target cycle took about 3 h. Sky irradiance refer-
ence scans were acquired every 15 targets (within ~40 s of 
target scans), during which a diffuser (~12% transmission 
efficiency) was used to increase the field of view to 180°.

To calculate reflectance, target radiance was divided by the 
nearest-in-time sky irradiance reference scan (within ~40 s 
of target scans). To screen out plots that did not germinate 
well due to herbivory, we used the NDVI calculated using 
(R800 − R680) / (R800 + R680), where R800 and R680 are reflec-
tances at 800 and 680 nm, respectively; NDVI is an indicator 
of greenness of the bean plots. An NDVI threshold of 0.8 was 
used during Campaign 2, to exclude poorly germinated plots 
containing soil background in the spectral signature from all 
analysis. Only midday spectra obtained from 11 to 15 h were 

used for analysis to minimize diurnal variation and sun-sensor 
geometry on the spectral signal (Wong et al., in review). Fi
nally, reflectance spectra were averaged over 4 to 5 days from 
the duration of each campaign to ensure adequate representa-
tion of the plot spectral signature during the campaigns.

Partial least squares regression
To predict midday stomatal conductance (from 12 h measure-
ment cycle) and predawn and midday LWP, we used hyper-
spectral data from the ground-based handheld instrument and 
PhenoSpec (Fig. 1), henceforth referred to as ground and 
tower, respectively, with PLSR modeling. PLSR modeling was 
performed in R [41] using the “pls” package [42]. PLSR models 
were calibrated following the recommendations of Burnett 
et al. [43]. For ground-based PLSR, we used data from all 
3 campaigns for model calibration (Fig. 1A and C). For tower-
based PLSR, only Campaign 2 and 3 data were used (Fig. 1B 
and D), as plants were early in development during Campaign 
1, resulting in soil background signals in the PhenoSpec spec-
tra. With the ground-based instrument, we randomly split the 
data into model calibration and model validation 70/30% 
(n = 168 calibration and 72 validation points). For the tower-
based instrument, due to limited sample size of validation plots 
within the tower field of view (n = 29 plots), data splitting 
was not possible, so all data were used for model calibration/
validation. From the validation dataset, we determined the 
coefficient of determination (R2) and root mean square percent 
error (RMSPE) compared with ground-based physiological 
data for model performance evaluation. For the ground-based 
spectra, 2 PLSR models were used, one using the full range 
(400 to 2,400 nm; GroundFullrange) and the other using a con-
strained range matching the tower-based instrument (400 to 
900 nm; GroundVISNIR).

Assessing genotypic drought response
To phenotype drought response across genotypes, we calcu-
lated the genotype mean from replicate plots per treatment 
and campaign. We then calculated relative percent difference 
as 100 * (D − C) / [(D + C) / 2], where D and C represent 
measurements from drought and control treatments, respec-
tively, for a given genotype. Heatmaps were created using the 
observed values (stomatal conductance, LWP, drone-based 
NDVI, canopy temperature, and canopy volume) and PLSR 
predicted values from the GroundVISNIR PLSR model, which 
was generally the best-performing. Tower-based PLSR models 
were not used due to limited sample size representing the sub-
set genotypes (n = 29). Physiology and genotype clustering 
was completed per heatmap (campaigns, and observed- vs. 
PLSR-based).

Results

Physiological and structural response to drought
Relative soil moisture, measured by the neutron backscatter 
probe, was similar between treatments and depths during Cam
paign 1, but differed between treatments and depths in Cam
paigns 2 and 3 (Fig. 2A). Stomatal conductance also differed 
between treatments in Campaigns 2 and 3, especially at 12 and 
14 h, being lower in the drought treatment (Fig. 2B). Both 
predawn and midday LWPs were more negative in the drought 
treatment in Campaigns 2 and 3 (Fig. 2C); midday LWP also 
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showed greater variation across genotypes within both treat-
ments, compared to predawn LWP (Fig. 2C). Drone-based 
NDVI, canopy temperature, and canopy volume data revealed 
similar patterns, with no difference in Campaign 1 and treat-
ment differences in Campaign 2 and 3 (Fig. 2D to F). Most 
parameters had larger variation in the drought treatment com-
pared to the control in Campaigns 2 and 3.

Hyperspectral PLSR predictions of plant traits
PLSR predictions using hyperspectral reflectance best pre-
dicted stomatal conductance (R2 = 0.21 to 0.55; RMSPE 16 to 
23%), followed by predawn LWP (R2 = 0.20 to 0.37; RMSPE 
19 to 29%), and midday LWP (R2 = 0.25 to 0.42; RMSPE 17 
to 31%) (Fig. 3). Compared to the tower, the ground-based 
method (GroundVISNIR and GroundFullrange) generally performed 
better for all 3 traits based on R2. There were notable differences 
in performance for both GroundVISNIR and GroundFullrange, 
depending on the predicted trait, suggesting that the full spec-
trum (400 to 2,400 nm) does not necessarily improve predic-
tions. The GroundVISNIR model performed better for predawn 
water potential (Fig. 3B), while the GroundFullrange model per-
formed better for midday LWP (Fig. 3C). Both models per-
formed similarly for stomatal conductance (Fig. 3A).

Phenotyping drought response
Using heatmap clustering, we phenotype drought responses 
(drought relative to control treatments) for each genotype based 
on observed physiology (Fig. 4A to C) and PLSR predicted 

physiology (Fig. 4D to F). These heatmaps highlight drought 
response where more negative values represent larger reduc-
tion of drought treatment relative to the control treatment; thus, 
a relative percent difference closer to zero represents minimal 
drought response suggesting higher tolerance. For the observed 
physiology, similar genotype and physiology clustering is 
shown in Campaigns 2 and 3. Stomatal conductance, predawn 
LWP, and canopy volume showed the greatest genotypic var-
iation in terms of relative percent difference. For Campaign 3, 
a cluster of genotypes near the top of the heatmap, where rel-
ative percent difference is close to zero, includes a combination 
of common (M3.94 and Pinto San Rafael) and tepary bean 
genotypes (G40068, TEP 22, and Big Fields White) (Fig. 4C). 
The PLSR model heatmaps highlight stomatal conductance 
as having the largest genotypic variation of relative percent 
difference followed by predawn LWP (Fig. 4E and F). The PLSR 
model for Campaign 3 shows similar clustering of genotypes, 
compared to the observed heatmap, where relative percent 
difference is closer to zero but includes additional common 
(L88-63 and SER 118) and tepary bean genotypes (G40158) 
(Fig. 4E and F).

Discussion

In this study, we utilized remotely sensed hyperspectral reflec-
tance data from ground- and tower-based instruments in 
PLSR models to assess plant water status and drought re
sponse across a subset of 16 diverse bean genotypes, varying 

Fig. 1. Hyperspectral reflectance of beans from (A and C) ground-based and (B and D) tower-based instruments for control (blue) and drought (red) treatments. Data shown 
are from the field campaigns; for the tower, only Campaigns 2 and 3 are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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in drought tolerance. We showed that ground-based PLSR mod
els were effective in predicting stomatal conductance and pre
dawn LWP. The tower-based models were limited by sample 
size (overlapping validation plots) but highlighted promise 
for up-scaling to a tower-based system for automated and con
tinuous monitoring of hyperspectral data. Moreover, we phe-
notyped drought response using observed water status and 
PLSR predicted values and found similar clustering, suggesting 
that hyperspectral PLSR models are a promising high-throughput 
phenotyping tool for physiology-based selection in breeding 
programs.

PLSR predictions of plant water status
Hyperspectral reflectance with PLSR modeling takes advan-
tage of sensitive spectral regions for predicting an array of 
plant characteristics including photosynthetic parameters, 
pigment content, and leaf biochemistry across species and 
transgenic lines [28,30]. To phenotype drought response, we 
directly measured stomatal conductance and LWP, which are 
sensitive to plant water content and stress [44,45], and pre-
dicted these measurements using PLSR models driven by 
hyperspectral data. Our ground-based PLSR models predicted 
stomatal conductance well (Fig. 3A), similar to past studies in 
soybean and wheat [32,46 ,47]. Spectral regions of importance 
based on variable importance in projection (VIP) scores reveal 
that the green, red-edge, and NIR regions were important in 
model calibration (Fig. S7). These spectral regions are associ-
ated with variation of pigments (chlorophyll and carotenoids) 
and canopy structure [22,33 ,48]. While spectral variation 
is not directly sensitive to leaf gas exchange and therefore 

stomatal conductance, PLSR models exploit variation in chlo-
rophyll pools, carotenoid composition, and structural ef
fects such as leaf angle/wilting that may covary with stomatal 
conductance.

In contrast, remotely assessing LWP has historically proven 
challenging [49], as LWP arises from several disparate influ-
ences, including plant hydraulics, transpiration rate, and soil 
moisture [50]. Recent studies have demonstrated the potential 
of PLSR modeling for predicting LWP [51,52]. Our ground-
based PLSR results support the potential of PLSR predictions 
of LWP, albeit with weaker performance when compared to 
stomatal conductance (Fig. 3). For predawn LWP, spectral data 
were acquired at a different time (noon). This decoupling may 
suggest that the spectral variation that predicted predawn LWP 
captures physiological properties that do not differ strongly 
between predawn and midday; alternatively, it may merely 
result from the biophysical correlation between predawn and 
midday water potentials. VIP scores for predawn LWP, while 
similar to those for stomatal conductance, show higher peaks 
in the green and lower peaks in NIR regions (Fig. S7), likely 
exploiting variation in pigment pools (chlorophyll and carot-
enoids) more than canopy structure compared to the stomatal 
conductance model. In contrast, midday LWP and spectral 
reflectance were acquired at similar times of day. Interestingly, 
this was the only variable for which the GroundFullrange PLSR 
model outperformed the GroundVISNIR PLSR model. Here, VIP 
scores greatly favored the NIR regions, with the GroundFullrange 
PLSR model taking advantage of the SWIR regions, suggesting 
that PLSR models exploited variation in canopy structure and 
perhaps mesophyll structure [22,24]. We note that RMSPE was 

Fig. 2. Boxplots showing the median and range across campaigns and treatments for (A) relative soil moisture, (B) stomatal conductance (gs), (C) predawn and midday leaf 
water potential (6 and 13 h refer to predawn and midday measurements, respectively), (D) drone-based NDVI, (E) canopy temperature, and (F) canopy volume. P value codes 
represent the t test significant mean difference (ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001) between control and drought treatments per campaign. 
Campaigns represent predrought baseline (First), and 2 and 4 weeks after terminal drought application (Second and Third, respectively). For genotype-specific variation, see 
Figs. S1 to S6.
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relatively high for midday LWP (27% to 31%). We suspect that 
model calibration was limited as midday LWP did not vary 
much across genotypes and treatments (Fig. 2C). This was 
likely due to high midday temperature (generally >35 °C in 
California's Central Valley) and low ambient vapor pressure 
causing high evaporative demand and low water potential in 
both control and drought treatment plants.

Comparing the different PLSR models between GroundVISNIR, 
GroundFullrange, and Tower reveals the potential and limitations 
of different spectral regions and their upscaling potential (Fig. 
3). Generally, the GroundVISNIR PLSR model performed best 
(except for midday LWP, where the GroundFullrange PLSR model 
performed best) (Fig. 3C). This suggests that the benefit of 
SWIR in the PLSR model calibration is variable dependent 
[30] and that physiological variables more directly linked to 
water status will benefit from SWIR inclusion. Comparing the 
GroundVISNIR PLSR model to the tower-based PLSR model 
highlights potential upscaling from observation distances of 
1 m to 10 m. Unfortunately, the tower footprint with matching 
subset genotype plots was limited (n = 29), resulting in weaker 
model calibration. However, given the overlapping lines of best 
fit with the other models, the tower model shows promise for 
predicting plant traits in comparison to the ground-based 
instrument (Fig. 3), which could be further explored with a 
larger sample size of validation plots within the tower field of 
view. Interestingly, when comparing VIP scores, the ground-
based models had higher VIP weights in the visible spectral 
regions, in contrast to the tower-based model which favored 
the NIR (Fig. S8). This is indicative of the sensitivity of the 
spectra across spatial scales; the tower-based PLSR model is 
likely more sensitive to canopy structure in the NIR [27], com-
pared to the 1-m distance of the ground-based PLSR models 
capturing variation in chlorophyll and carotenoid dynamics in 
the visible region.

Phenotyping genotypic drought response
Genotype-specific drought response was assessed using direct
ly measured physiological and drone-based variables (Fig. 4). 

Stomatal conductance, predawn LWP, and canopy volume 
captured large genotypic variation in drought response relative 
to control treatments (Fig. 2). The heatmap clustering, largely 
based on these parameters, identified genotypic groupings 
for drought response. In Campaign 2, which represents the 
pod filling stage (R8: [53]), we identified 3 genotypic group-
ings (Fig. 4B). The first group, representing lower physiological 
drought response (i.e., smaller percent difference), included 
3 eco-geographic race Mesoamerica (humid lowlands; [39]) 
common beans bred for drought tolerance (L88-63, SER 118, 
and SEA 5), a MAGIC population progeny (M3.94), and a 
tepary accession (G40068) [54,55]. The second group, represen
ting larger physiological drought response (i.e., larger percent 
difference), consisted of 4 dry-highland-adapted accessions 
(eco-geographic race Durango; [39]) and 3 MAGIC progeny 
genotypes. Finally, the third group, also representing low phys-
iological drought response, included 3 tepary beans (Big Fields 
White, G40159, and TEP 22) and a common bean cultivar 
(Pinto San Rafael) adapted to arid northern Mexican highlands 
[56]. In Campaign 3, which represents the maturation stage 
(R9: [53]), 2 main genotypic groupings were identified (Fig. 
4C). The lower physiological drought response group included 
3 tepary beans (G40068, Big Fields White, and TEP 22), the 
cultivar Pinto San Rafael, and the MAGIC progeny M3.94. The 
second group represented higher physiological drought 
response as indicated mainly by stomatal conductance, canopy 
volume, and predawn LWP. Overall, across the 2 post-drought 
campaigns, our results confirmed that tepary bean is generally 
more drought tolerant than common bean—sustaining higher 
gas exchange rates, greater predawn water potential, and can-
opy volume under drought. Compared to common beans, 
tepary bean is native to semiarid and arid environments, and 
is considered—on average—highly resistant to drought, rely-
ing on drought avoidance and tolerance mechanisms [38,57]. 
For example, tepary beans have fine root systems for soil pen-
etration to access limited soil water reserves [58]. Interestingly, 
a few common bean lowland breeding lines (race Mesoamerica: 
SER 118, SEA 5, and M3.94) and the common bean cultivar 
(Pinto San Rafael) resemble tepary bean physiological responses, 

Fig. 3. PLSR modeling of (A) midday stomatal conductance (gs), (B) predawn leaf water potential (LWP), and (C) midday LWP between GroundVISNIR (gray), GroundFullrange (blue), 
and tower-based (yellow) PLSR models with respective coefficient of determination (R2) and root mean square percent error (RMSPE). Closed symbols represent control 
treatment and open symbols represent drought treatment plots. P value codes represent the R2 significance (ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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which supports breeding efforts for increased terminal drought 
tolerance in common and tepary bean. However, yield quan-
tification will be needed to determine if physiological drought 
response represents a benefit or limitation to fitness under 
drought conditions; we were unable to measure bean yield in 
this study due to an early heavy rain event, which prevented 
field access and caused bean spoilage. Furthermore, the influ-
ence of genotypic variation in phenology (i.e., timing of matu-
rity and flowering) should be further explored as phenology 

may influence part of the drought response. We attempted to 
minimize this influence by timing Campaigns 2 and 3 accord-
ing to general pod filling and maturation stages, respectively.

Hyperspectral PLSR modeling of stomatal conductance and 
water potential with heatmap clustering identified similar gen-
otypic groupings as the observed data (Fig. 4E and F). The 
lower physiological drought response group included tepary 
(G40068, Big Fields White, and TEP 22) and common (Pinto 
San Rafael, SER 118, and M3.94) bean genotypes, which matches 

Fig.  4.  Heatmaps showing the relative percent difference of drought relative to control treatments across genotypes (purple: common bean; green: tepary bean), plant 
physiology, and field campaigns. (A) to (C) represent measured traits and (D) to (F) represent PLSR predicted traits from ground hyperspectral data. Parameter subscript for 
stomatal conductance (gs) represents hour of day. Black cells represent unavailable data. Canopy temperature relative % difference was multiplied by −1. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the observed data heatmaps. Campaign 2 included additional 
common and tepary bean genotypes in the drought response 
groupings (Fig. 4E). This may be attributed to differences in 
drought stress severity between Campaigns 2 and 3, with the 
Campaign 2 exhibiting less spectral differentiation due to 
drought response influencing PLSR model performance. 
Overall, our results suggest that hyperspectral data and PLSR 
modeling may be used for phenotyping an array of traits for 
identifying drought-tolerant species and genotypes. Accuracy 
may be improved by incorporating additional traits associ-
ated with drought response and increasing sample size for im
proved model calibration. A balance between population size 
and ground validation sample size must be considered with 
available resources and acceptable error rates [59]. Tower-based 
remote sensing for high-throughput phenotyping may extra
polate to the full genotype population beyond our subset 16 
from ground-based spectra, which could be explored in the 
future.

Extrapolating PLSR predictions
A key benefit of remote sensing is its ability to screen a number 
of plots relatively quickly, therefore enabling data collection at 

higher temporal frequencies. Combined with intensive obser-
vation campaigns where physiological data are collected, re
motely sensed PLSR models may be used to extrapolate beyond 
campaign dates and subset genotypes [60]. In this study, ground-
based remote sensing was collected at the weekly timescale. 
In Fig. 5, we extrapolate the PLSR models to predict weekly 
stomatal conductance and water potential for the full growing 
season from mid-July to October. Stomatal conductance and 
predawn LWP show strong divergence between treatment plots 
starting in August after terminal drought (Fig. 5A and B). 
Midday leaf water showed less treatment divergence, following 
the observed data (Figs. 2C and 4C). Additionally, because the 
spectral data go well beyond the validation campaigns, much 
of the end-of-season data, which include some senescence, are 
beyond the means of our model calibration, and there is greater 
variability in predicted plant traits (Fig. 5). Therefore, Fig. 5 
predictions should be taken as an example for future prospects 
of continuous (i.e., daily) remotely sensed monitoring of phys-
iology with high uncertainty beyond September [61,62]. Inte
restingly, beyond September, with the PLSR stomatal conductance 
model, a decline was captured in the control treatment (after 
irrigation was terminated in the control plots), despite the PLSR 
model not being trained during these dates.

Fig. 5. Extrapolating GroundVISNIR PLSR models to the weekly timescale for (A) stomatal conductance, (B) predawn leaf water potential, and (C) midday leaf water potential. 
Lines represent plot-specific PLSR extrapolations; boxplot represents observed data from the field campaigns; gray bars represent Campaigns 1, 2, and 3 for ground truthing 
and model calibration, and vertical black lines represent the dates where irrigation was terminated for the drought (dashed) and control treatment plots (dotted).
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High-throughput phenotyping using hyperspectral remote 
sensing can provide a scalable, objective approach for quickly 
screening an array of plant traits over a diverse population, 
aiding in management strategies and breed selection. Our study 
highlights applications for remotely sensed hyperspectral data 
for assessing plant physiology related to water status in drought 
stress conditions to ultimately phenotype for drought response. 
By predicting multiple water status variables (stomatal con-
ductance and water potential) with good accuracy using PLSR 
modeling, we identified potentially drought-tolerant common 
and tepary bean genotypes validated with in situ physiological 
measurements. An advantage of hyperspectral PLSR models is 
that they enable remotely sensed data to extrapolate predictions 
beyond the scope of direct measurements used to calibrate 
them, including to larger populations and beyond individual 
field campaigns. Hyperspectral PLSR models (and other 
machine learning techniques) can be calibrated across an array 
of plant traits, including biochemical and physiological traits 
[28,30], offering powerful remote sensing applications in pre-
cision agriculture and ecological monitoring.
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Fig. S5. Genotype-specific drought response of midday drone-
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Fig. S6. Genotype-specific drought response of midday drone-
based canopy volume across 3 field campaigns.
Fig. S7. Variable importance in projection (VIP) of each PLSR 
model across data source: tower-based (left column), GroundVISNIR 
(middle column), and GroundFullrange models (right column); 
and predicted parameter: stomatal conductance (top row), 

predawn leaf water potential (middle row), and midday leaf 
water potential (bottom row).
Fig. S8. Comparison of the tower and handheld instrument 
PLSR model VIP from Fig. 4 for (A) stomatal conductance, (B) 
predawn water potential, and (C) midday water potential.
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