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Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing
stress response. Bean plants, an important legume for human consumption, are often grown in regions
with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We
assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground-
and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively)
measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across
3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression
models predicted these physiological traits (R* = 0.20 to 0.55; root mean square percent error 16% to
31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic
drought responses similar to the physiologically based ranks. This study demonstrates applications of
high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response
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across genotypes for vegetation monitoring and breeding population screening.

Introduction

Climate adaptation necessitates breeding for crop varieties with
better yields, stress tolerance, and water-use efficiency [1,2].
Therefore, high-throughput phenotyping tools are needed to
cost effectively and quickly screen physiological and biochem-
ical characteristics across genotypes and environmental condi-
tions [3-6]. Physiological variables such as stomatal conductance
and leaf water potential (LWP) are indicators of plant water
status and often used for evaluating drought tolerance [7,8].
However, monitoring plant water status requires extensive phys-
ical labor (i.e., personnel and time) and can be both subjective
and destructive. Thus, remote sensing tools are being explored
for objective high-throughput phenotyping applications.
Proximal remote sensing offers a powerful tool for high-
throughput phenotyping of plant physiology [9-11]. Remote
sensing techniques such as thermal-based [12,13], lidar-based
[14,15], and optical-based [16] methods have shown promise
for assessing plant water status. Sensors can be deployed on
various platforms that include handheld instruments, ground-
based vehicles, towers, unoccupied aerial vehicles, piloted
aircraft, and satellites, all with different spatial and temporal
trade-offs [4]. Hyperspectral data offer the most flexibility for
assessing an array of physiological variables and structural
plant traits, whereas thermal and lidar data are more narrowly
suited for assessing evapotranspiration and canopy structure,
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respectively [17-19]. The advantage of hyperspectral reflec-
tance data is their sensitivity to variation in pigments, water
content, and leaf and canopy structure [20-22]. Thus, hyper-
spectral data may be used to remotely capture variation in plant
physiology and structure across a range of timescales.

Traditionally, simple remotely sensed vegetation indices
exploit variations in specific spectral bands to act as proxies
of canopy structure and functions such as absorbed photosyn-
thetically active radiation, leaf area index, and photosynthetic
activity [23,24]. Beyond simple vegetation indices, full range
visible (VIS)-near infrared (NIR) hyperspectral data enable
machine-learning techniques such as partial least squares re-
gression (PLSR) [25,26] to predict specific biochemical and
physiological traits [27-32]. These models adjust weights ap-
plied to each spectral region to optimize model calibration for
each trait. For example, the VIS region (400 to 700 nm) is sen-
sitive to chlorophyll and carotenoid pigments and is often used
as a proxy of photosynthetic activity [22]; the red edge (680 to
740 nm) is sensitive to chlorophyll content [33]; the NIR (740
to 900 nm) is sensitive to canopy structure and phenology [34];
and the shortwave near infrared (SWIR; 900 to 2,400 nm) is
sensitive to water content and foliar biochemistry such as
nitrogen and cellulose [35,36]. Therefore, with proper PLSR
model calibration, remotely sensed hyperspectral data may be
optimized using specific spectral regions to assess plant water
status across genotypes.
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The objective of this study was to utilize hyperspectral data
from a ground-based handheld instrument and a tower-based
system for PLSR modeling of 2 physiological traits—stomatal
conductance and LWP—across a diverse array of beans (n = 16
genotypes; 12 common beans [Phaseolus vulgaris L.] and 4
tepary beans [Phaseolus acutifolius A. Gray]). The common
bean genotypes represent populations varying in drought tol-
erance from different origins including eco-geographic race
Mesoamerica, dry highland adapted accessions, and arid north-
ern Mexican highland accessions [37]. Tepary beans, native to
semiarid and arid environments, are generally more drought
tolerant than common beans [38]. We explore these common
and tepary bean genotypes in a field experiment with irrigated
(control) and terminal drought treatments. The PLSR models
were calibrated using hyperspectral data in the visible and
NIR from 400 to 900 nm (tower- and ground-based) and full
range hyperspectral data in the visible, NIR, and SWIR from
400 to 2,400 nm (ground-based) to explore the impacts of spa-
tial scaling and spectral range on PLSR model performance.
Finally, we apply the PLSR model predictions to phenotype
and identify genotypic variation in drought response.

Methods
Study site

The experimental design consisted of a diverse multiparent
breeding population of 300 common bean (P. vulgaris L.) [37]
and 20 tepary bean (P, acutifolius A. Gray) genotypes, the latter
generally being considered more drought tolerant [38]. Each
genotype was represented by 3 randomly located replicate plots
for a total of 960 plots per treatment. From the 320 genotypes,
a subset of 16 genotypes (12 common and 4 tepary beans) were
selected for intensive direct physiological measurements using
traditional techniques (i.e., stomatal conductance and LWP),
resulting in 96 measured plots across genotypes, replicates,
and treatments. The common bean genotypes included the
8 parents of a multiparent (MAGIC) population and 4 progeny
lines in this population. The 8 parents were chosen based on
prior whole-plant phenotypic evidence of drought tolerance
[37]. They represented a broad diversity of the Mesoamerican
domesticated gene pool, including representation of the 3 major
eco-geographic races [39].

All genotypes were grown in the field at the Plant Sciences
Field Facility of the University of California, Davis (38.534°N,
121.775°W) from 2021 June to October in designated irrigated
(control) and terminal drought treatments with 3 replicate
plots per genotype. Seeds were planted on June 4. Each plot
was 3.05 m long (N-S) and 1.52 m wide (E-W) with 2 planted
rows spaced 66 cm apart separated from adjacent plots by un-
planted rows (bare soil) 1.22 m long (N-S) or 1.52 m wide (E-W).
Planting included a buffer row along the border of the field to
account for border effects. During initial growth, both treat-
ments were watered using aboveground drip irrigation, then
switched to subsurface drip (50 cm deep) irrigation after stand
establishment. We applied terminal drought by stopping ir-
rigation to the drought treatments on July 26. To dry down
the plants for harvest, irrigation was also terminated for the
control plots on September 1.

Ground-based physiological measurements (stomatal con-
ductance, predawn and midday LWP, ground-based hyperspec-
tral, and soil moisture) were collected during 3 field campaigns.
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Campaign 1 occurred from July 5 to July 9 to provide a baseline
comparison before ceasing irrigation to the drought plots;
Campaign 2 occurred 2 weeks after terminal drought was ini-
tially imposed, from August 9 to August 13; and Campaign
3 occurred 4 weeks after terminal drought, from August 23 to
August 26.

Soil moisture neutron probe

In each plot of the 16 genotypes, we installed 1.5-m-long access
tubes, made from galvanized steel electrical conduit with plas-
tic end caps at the bottom end, into the ground prior to ger-
mination. We assessed soil moisture at 20-, 50-, 80-, 100-, 120-,
and 140-cm depths using a neutron backscatter detector soil
moisture probe (503 ELITE Hydroprobe, InstroTek Inc.,
Raleigh, NC, USA). We measured the baseline standard count
above ground level at 1 m. Then, the neutron probe was in-
serted into the access tube to each depth and neutron counts
were recorded. We determined relative soil moisture by cal-
culating the ratio between soil counts and standard count;
higher ratios indicated higher soil moisture contents. For each
campaign, measurements were completed in 1 day between
10 and 13 h.

Stomatal conductance

We measured leaf stomatal conductance (g,) on one leaf per
plant for 5 to 8 plants per plot, at 8, 10, 12 and 14 h (measuring
approximately one-fifth of all plots per day in each 5-day cam-
paign), using a Delta-T AP4 porometer (Delta-T Devices Ltd,
London, UK), calibrated before each measurement cycle.

Leaf water potential

We measured LWP for 2 leaves per plot, collected at predawn
(within 30 min prior to sunrise) and midday (between 13 and
14 h) using a Scholander pressure chamber (PMS Instrument
Company, Albany, OR, USA). Within 2 s of excision with sharp
secateurs, each leaf was placed in a Ziploc bag (which had pre-
viously been breathed into for humidification), and the bag was
flattened to remove excess air and then sealed and immediately
enclosed in a cooler filled with ice, followed by transport to the
laboratory for measurement within 3 h.

Drone imagery

Unoccupied aerial vehicles (or drones) were used to system-
atically measure canopy volume, normalized difference vege-
tation index (NDVI), and canopy temperature across all field
plots during each field campaign. Drone methods and hard-
ware were modified from Parker et al. [40]. Using the differ-
ence between canopy digital surface models and soil digital
surface models, and vegetation canopy area and height, canopy
volume was estimated [40]. A Micasense RedEdge-M mul-
tispectral camera (now AgEagle Aerial Systems Inc., Wichita,
KS, USA) and a Zenmuse XT-R thermal camera were mounted
onto a DJI Matrice 100 (DJI Inc., Shenzhen, China) to collect
field imagery. Flight plans for data collection were programmed
and uploaded to the aircraft using DJI Ground Station Pro.
Flights were conducted at an altitude of 30 m for volume and
NDVI measurements, and 60 m for thermal imagery. A min-
imum of 80% front and side overlap was used between images,
which were processed into field-scale orthomosaics using
Pix4Dmapper Pro v4.6.4. Data extraction was done using the
Create Grid and Raster Layer Zonal Statistics functions of
QGIS v3.10.14.
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Ground-based hyperspectral reflectance

A ground-based handheld instrument (HR-1024i, Spectra
Vista Corporation, Poughkeepsie, NY, USA) was used to mea-
sure reflectance spectra from 400 to 2,400 nm (3.3 to 9.5 nm
tull width at half maximum) at every subset plot from 11 to
13 h, once per week from July 12 to October 4, beginning
1 week after Campaign 1 and continuing through and beyond
Campaigns 2 and 3. Measurement dates were all completed
under clear sunny sky conditions. We used a fiber optic with
a 4° field of view to measure the top of the canopy from a
distance of 1 m. Three representative reflected radiance meas-
urements were obtained per plot. An irradiance measurement
was made by pointing the foreoptic at a 99.9% reflective
upward-facing white reference panel (Spectralon), and was
made every ~15 plots (~10 min). To calculate reflectance, re-
flected radiance from vegetation was divided by the preceding
white reference scan (irradiance). Spectral regions were filtered
out from 990 to 1,020 nm due to instrument-specific hot pixels,
and from 1,340 to 1,445 nm and 1,790 to 1,955 nm for atmo-
spheric water absorption.

Tower-based hyperspectral reflectance: PhenoSpec
A tower-based remote sensing system, PhenoSpec, was used
to continuously monitor hyperspectral reflectance (400 to
900 nm; 1.34 nm full width at half maximum) from July 16
to October 15. The PhenoSpec is described in detail in Wong
etal. (in review). This system was set up with a 10-m-tall
tower located approximately in the middle of the field. We
limited the viewing radius of the system to 72.7 m (250 ft) to
maintain sufficient viewing angles for optical data quality and
spatial coverage. This enabled the measurement of 672 plot
targets (336 per treatment) with 178 genotypes represented
in both treatments, including 27 of the 96 plots selected for
intensive direct physiological measurements of stomatal con-
ductance and LWP. At the top of the tower, PhenoSpec con-
sists of an RGB (red, green, blue) camera (AXIS Q8685-E PTZ
Network Camera, Axis Communications AB, Lund, Sweden)
to target specific bean plots with a 360° pan, a ground-to-sky
view from —45° to 90°, and 30X optical zoom. Mounted on
top of the camera was an enclosed colocated 2D scanning
telescope unit (Thorlabs Inc., NJ, USA) for simultaneous spec-
tral reflectance measurements with a 0.7° field of view, spot
targeting 12 to 86 cm diameter (depending on distance). The
telescope was connected to a fiber optic cable extending to
the base of the tower into a temperature-controlled enclosure
that housed the spectrometer for hyperspectral radiance
(FLAME, Ocean Insights, FL, USA). With a total of 723 scans
(including both target and sky references), minimum 5 s each,
a complete target cycle took about 3 h. Sky irradiance refer-
ence scans were acquired every 15 targets (within ~40 s of
target scans), during which a diffuser (~12% transmission
efficiency) was used to increase the field of view to 180°.

To calculate reflectance, target radiance was divided by the
nearest-in-time sky irradiance reference scan (within ~40 s
of target scans). To screen out plots that did not germinate
well due to herbivory, we used the NDVT calculated using
(R800 — R680) / (R800 + R680), where R800 and R680 are reflec-
tances at 800 and 680 nm, respectively; NDVI is an indicator
of greenness of the bean plots. An NDVT threshold of 0.8 was
used during Campaign 2, to exclude poorly germinated plots
containing soil background in the spectral signature from all
analysis. Only midday spectra obtained from 11 to 15 h were
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used for analysis to minimize diurnal variation and sun-sensor
geometry on the spectral signal (Wong et al., in review). Fi-
nally, reflectance spectra were averaged over 4 to 5 days from
the duration of each campaign to ensure adequate representa-
tion of the plot spectral signature during the campaigns.

Partial least squares regression

To predict midday stomatal conductance (from 12 h measure-
ment cycle) and predawn and midday LWP, we used hyper-
spectral data from the ground-based handheld instrument and
PhenoSpec (Fig. 1), henceforth referred to as ground and
tower, respectively, with PLSR modeling. PLSR modeling was
performed in R [41] using the “pls” package [42]. PLSR models
were calibrated following the recommendations of Burnett
et al. [43]. For ground-based PLSR, we used data from all
3 campaigns for model calibration (Fig. 1A and C). For tower-
based PLSR, only Campaign 2 and 3 data were used (Fig. 1B
and D), as plants were early in development during Campaign
1, resulting in soil background signals in the PhenoSpec spec-
tra. With the ground-based instrument, we randomly split the
data into model calibration and model validation 70/30%
(n = 168 calibration and 72 validation points). For the tower-
based instrument, due to limited sample size of validation plots
within the tower field of view (n = 29 plots), data splitting
was not possible, so all data were used for model calibration/
validation. From the validation dataset, we determined the
coefficient of determination (R*) and root mean square percent
error (RMSPE) compared with ground-based physiological
data for model performance evaluation. For the ground-based
spectra, 2 PLSR models were used, one using the full range
(400 to 2,400 nm; Groundg,,ng.) and the other using a con-
strained range matching the tower-based instrument (400 to
900 nm; Groundygr)-

Assessing genotypic drought response

To phenotype drought response across genotypes, we calcu-
lated the genotype mean from replicate plots per treatment
and campaign. We then calculated relative percent difference
as 100 * (D — C) / [(D + C) / 2], where D and C represent
measurements from drought and control treatments, respec-
tively, for a given genotype. Heatmaps were created using the
observed values (stomatal conductance, LWP, drone-based
NDVI, canopy temperature, and canopy volume) and PLSR
predicted values from the Groundy; gz PLSR model, which
was generally the best-performing. Tower-based PLSR models
were not used due to limited sample size representing the sub-
set genotypes (n =29). Physiology and genotype clustering
was completed per heatmap (campaigns, and observed- vs.
PLSR-based).

Results

Physiological and structural response to drought

Relative soil moisture, measured by the neutron backscatter
probe, was similar between treatments and depths during Cam-
paign 1, but differed between treatments and depths in Cam-
paigns 2 and 3 (Fig. 2A). Stomatal conductance also differed
between treatments in Campaigns 2 and 3, especially at 12 and
14 h, being lower in the drought treatment (Fig. 2B). Both
predawn and midday LWPs were more negative in the drought
treatment in Campaigns 2 and 3 (Fig. 2C); midday LWP also
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Fig.1.Hyperspectral reflectance of beans from (A and C) ground-based and (B and D) tower-based instruments for control (blue) and drought (red) treatments. Data shown
are from the field campaigns; for the tower, only Campaigns 2 and 3 are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

showed greater variation across genotypes within both treat-
ments, compared to predawn LWP (Fig. 2C). Drone-based
NDVI, canopy temperature, and canopy volume data revealed
similar patterns, with no difference in Campaign 1 and treat-
ment differences in Campaign 2 and 3 (Fig. 2D to F). Most
parameters had larger variation in the drought treatment com-
pared to the control in Campaigns 2 and 3.

Hyperspectral PLSR predictions of plant traits

PLSR predictions using hyperszpectral reflectance best pre-
dicted stomatal conductance (R° = 0.21 to 0.55; RMSPE 16 to
23%), followed by predawn LWP (R* = 0.20 to 0.37; RMSPE
19 to 29%), and midday LWP (R* = 0.25 to 0.42; RMSPE 17
to 31%) (Fig. 3). Compared to the tower, the ground-based
method (Groundy gy and Groundguirange) generally performed
better for all 3 traits based on R*. There were notable differences
in performance for both Groundy gz and Groundyj,snge
depending on the predicted trait, suggesting that the full spec-
trum (400 to 2,400 nm) does not necessarily improve predic-
tions. The Groundy g g model performed better for predawn
water potential (Fig. 3B), while the Groundg, ;g model per-
formed better for midday LWP (Fig. 3C). Both models per-
formed similarly for stomatal conductance (Fig. 3A).

Phenotyping drought response

Using heatmap clustering, we phenotype drought responses
(drought relative to control treatments) for each genotype based
on observed physiology (Fig. 4A to C) and PLSR predicted
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physiology (Fig. 4D to F). These heatmaps highlight drought
response where more negative values represent larger reduc-
tion of drought treatment relative to the control treatment; thus,
arelative percent difference closer to zero represents minimal
drought response suggesting higher tolerance. For the observed
physiology, similar genotype and physiology clustering is
shown in Campaigns 2 and 3. Stomatal conductance, predawn
LWP, and canopy volume showed the greatest genotypic var-
iation in terms of relative percent difference. For Campaign 3,
a cluster of genotypes near the top of the heatmap, where rel-
ative percent difference is close to zero, includes a combination
of common (M3.94 and Pinto San Rafael) and tepary bean
genotypes (G40068, TEP 22, and Big Fields White) (Fig. 4C).
The PLSR model heatmaps highlight stomatal conductance
as having the largest genotypic variation of relative percent
difference followed by predawn LWP (Fig. 4E and F). The PLSR
model for Campaign 3 shows similar clustering of genotypes,
compared to the observed heatmap, where relative percent
difference is closer to zero but includes additional common
(L88-63 and SER 118) and tepary bean genotypes (G40158)
(Fig. 4E and F).

Discussion

In this study, we utilized remotely sensed hyperspectral reflec-
tance data from ground- and tower-based instruments in
PLSR models to assess plant water status and drought re-
sponse across a subset of 16 diverse bean genotypes, varying
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in drought tolerance. We showed that ground-based PLSR mod-
els were effective in predicting stomatal conductance and pre-
dawn LWP. The tower-based models were limited by sample
size (overlapping validation plots) but highlighted promise
for up-scaling to a tower-based system for automated and con-
tinuous monitoring of hyperspectral data. Moreover, we phe-
notyped drought response using observed water status and
PLSR predicted values and found similar clustering, suggesting
that hyperspectral PLSR models are a promising high-throughput
phenotyping tool for physiology-based selection in breeding
programs.

PLSR predictions of plant water status

Hyperspectral reflectance with PLSR modeling takes advan-
tage of sensitive spectral regions for predicting an array of
plant characteristics including photosynthetic parameters,
pigment content, and leaf biochemistry across species and
transgenic lines [28,30]. To phenotype drought response, we
directly measured stomatal conductance and LWP, which are
sensitive to plant water content and stress [44,45], and pre-
dicted these measurements using PLSR models driven by
hyperspectral data. Our ground-based PLSR models predicted
stomatal conductance well (Fig. 3A), similar to past studies in
soybean and wheat [32,46 ,47]. Spectral regions of importance
based on variable importance in projection (VIP) scores reveal
that the green, red-edge, and NIR regions were important in
model calibration (Fig. S7). These spectral regions are associ-
ated with variation of pigments (chlorophyll and carotenoids)
and canopy structure [22,33 ,48]. While spectral variation
is not directly sensitive to leaf gas exchange and therefore
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stomatal conductance, PLSR models exploit variation in chlo-
rophyll pools, carotenoid composition, and structural ef-
fects such as leaf angle/wilting that may covary with stomatal
conductance.

In contrast, remotely assessing LWP has historically proven
challenging [49], as LWP arises from several disparate influ-
ences, including plant hydraulics, transpiration rate, and soil
moisture [50]. Recent studies have demonstrated the potential
of PLSR modeling for predicting LWP [51,52]. Our ground-
based PLSR results support the potential of PLSR predictions
of LWP, albeit with weaker performance when compared to
stomatal conductance (Fig. 3). For predawn LWP, spectral data
were acquired at a different time (noon). This decoupling may
suggest that the spectral variation that predicted predawn LWP
captures physiological properties that do not differ strongly
between predawn and midday; alternatively, it may merely
result from the biophysical correlation between predawn and
midday water potentials. VIP scores for predawn LWP, while
similar to those for stomatal conductance, show higher peaks
in the green and lower peaks in NIR regions (Fig. S7), likely
exploiting variation in pigment pools (chlorophyll and carot-
enoids) more than canopy structure compared to the stomatal
conductance model. In contrast, midday LWP and spectral
reflectance were acquired at similar times of day. Interestingly,
this was the only variable for which the Groundy,;,,,e PLSR
model outperformed the Groundy g ;r PLSR model. Here, VIP
scores greatly favored the NIR regions, with the GroundFullrange
PLSR model taking advantage of the SWIR regions, suggesting
that PLSR models exploited variation in canopy structure and
perhaps mesophyll structure [22,24]. We note that RMSPE was
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relatively high for midday LWP (27% to 31%). We suspect that
model calibration was limited as midday LWP did not vary
much across genotypes and treatments (Fig. 2C). This was
likely due to high midday temperature (generally >35 °C in
California's Central Valley) and low ambient vapor pressure
causing high evaporative demand and low water potential in
both control and drought treatment plants.

Comparing the different PLSR models between Groundy gy,
Groundgy;,nge» and Tower reveals the potential and limitations
of different spectral regions and their upscaling potential (Fig.
3). Generally, the Groundy gz PLSR model performed best
(except for midday LWP, where the Groundy;,,,c PLSR model
performed best) (Fig. 3C). This suggests that the benefit of
SWIR in the PLSR model calibration is variable dependent
[30] and that physiological variables more directly linked to
water status will benefit from SWIR inclusion. Comparing the
Groundygyr PLSR model to the tower-based PLSR model
highlights potential upscaling from observation distances of
1 m to 10 m. Unfortunately, the tower footprint with matching
subset genotype plots was limited (1 = 29), resulting in weaker
model calibration. However, given the overlapping lines of best
fit with the other models, the tower model shows promise for
predicting plant traits in comparison to the ground-based
instrument (Fig. 3), which could be further explored with a
larger sample size of validation plots within the tower field of
view. Interestingly, when comparing VIP scores, the ground-
based models had higher VIP weights in the visible spectral
regions, in contrast to the tower-based model which favored
the NIR (Fig. S8). This is indicative of the sensitivity of the
spectra across spatial scales; the tower-based PLSR model is
likely more sensitive to canopy structure in the NIR [27], com-
pared to the 1-m distance of the ground-based PLSR models
capturing variation in chlorophyll and carotenoid dynamics in
the visible region.

Phenotyping genotypic drought response
Genotype-specific drought response was assessed using direct-
ly measured physiological and drone-based variables (Fig. 4).
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Stomatal conductance, predawn LWP, and canopy volume
captured large genotypic variation in drought response relative
to control treatments (Fig. 2). The heatmap clustering, largely
based on these parameters, identified genotypic groupings
for drought response. In Campaign 2, which represents the
pod filling stage (R8: [53]), we identified 3 genotypic group-
ings (Fig. 4B). The first group, representing lower physiological
drought response (i.e., smaller percent difference), included
3 eco-geographic race Mesoamerica (humid lowlands; [39])
common beans bred for drought tolerance (L88-63, SER 118,
and SEA 5), a MAGIC population progeny (M3.94), and a
tepary accession (G40068) [54,55]. The second group, represen-
ting larger physiological drought response (i.e., larger percent
difference), consisted of 4 dry-highland-adapted accessions
(eco-geographic race Durango; [39]) and 3 MAGIC progeny
genotypes. Finally, the third group, also representing low phys-
iological drought response, included 3 tepary beans (Big Fields
White, G40159, and TEP 22) and a common bean cultivar
(Pinto San Rafael) adapted to arid northern Mexican highlands
[56]. In Campaign 3, which represents the maturation stage
(R9: [53]), 2 main genotypic groupings were identified (Fig.
4C). The lower physiological drought response group included
3 tepary beans (G40068, Big Fields White, and TEP 22), the
cultivar Pinto San Rafael, and the MAGIC progeny M3.94. The
second group represented higher physiological drought
response as indicated mainly by stomatal conductance, canopy
volume, and predawn LWP. Overall, across the 2 post-drought
campaigns, our results confirmed that tepary bean is generally
more drought tolerant than common bean—sustaining higher
gas exchange rates, greater predawn water potential, and can-
opy volume under drought. Compared to common beans,
tepary bean is native to semiarid and arid environments, and
is considered—on average—highly resistant to drought, rely-
ing on drought avoidance and tolerance mechanisms [38,57].
For example, tepary beans have fine root systems for soil pen-
etration to access limited soil water reserves [58]. Interestingly,
a few common bean lowland breeding lines (race Mesoamerica:
SER 118, SEA 5, and M3.94) and the common bean cultivar
(Pinto San Rafael) resemble tepary bean physiological responses,
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Fig. 4. Heatmaps showing the relative percent difference of drought relative to control treatments across genotypes (purple: common bean; green: tepary bean), plant
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which supports breeding efforts for increased terminal drought ~ may influence part of the drought response. We attempted to

tolerance in common and tepary bean. However, yield quan- ~ minimize this influence by timing Campaigns 2 and 3 accord-
tification will be needed to determine if physiological drought  ing to general pod filling and maturation stages, respectively.
response represents a benefit or limitation to fitness under Hyperspectral PLSR modeling of stomatal conductance and

drought conditions; we were unable to measure bean yield in ~ water potential with heatmap clustering identified similar gen-
this study due to an early heavy rain event, which prevented  otypic groupings as the observed data (Fig. 4E and F). The
field access and caused bean spoilage. Furthermore, the influ-  lower physiological drought response group included tepary
ence of genotypic variation in phenology (i.e., timing of matu- ~ (G40068, Big Fields White, and TEP 22) and common (Pinto
rity and flowering) should be further explored as phenology  San Rafael, SER 118, and M3.94) bean genotypes, which matches
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Fig. 5. Extrapolating Groundy,syr PLSR models to the weekly timescale for (A) stomatal conductance, (B) predawn leaf water potential, and (C) midday leaf water potential.
Lines represent plot-specific PLSR extrapolations; boxplot represents observed data from the field campaigns; gray bars represent Campaigns 1, 2, and 3 for ground truthing
and model calibration, and vertical black lines represent the dates where irrigation was terminated for the drought (dashed) and control treatment plots (dotted).

the observed data heatmaps. Campaign 2 included additional
common and tepary bean genotypes in the drought response
groupings (Fig. 4E). This may be attributed to differences in
drought stress severity between Campaigns 2 and 3, with the
Campaign 2 exhibiting less spectral differentiation due to
drought response influencing PLSR model performance.
Overall, our results suggest that hyperspectral data and PLSR
modeling may be used for phenotyping an array of traits for
identifying drought-tolerant species and genotypes. Accuracy
may be improved by incorporating additional traits associ-
ated with drought response and increasing sample size for im-
proved model calibration. A balance between population size
and ground validation sample size must be considered with
available resources and acceptable error rates [59]. Tower-based
remote sensing for high-throughput phenotyping may extra-
polate to the full genotype population beyond our subset 16
from ground-based spectra, which could be explored in the
future.

Extrapolating PLSR predictions
A key benefit of remote sensing is its ability to screen a number
of plots relatively quickly, therefore enabling data collection at
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higher temporal frequencies. Combined with intensive obser-
vation campaigns where physiological data are collected, re-
motely sensed PLSR models may be used to extrapolate beyond
campaign dates and subset genotypes [60]. In this study, ground-
based remote sensing was collected at the weekly timescale.
In Fig. 5, we extrapolate the PLSR models to predict weekly
stomatal conductance and water potential for the full growing
season from mid-July to October. Stomatal conductance and
predawn LWP show strong divergence between treatment plots
starting in August after terminal drought (Fig. 5A and B).
Midday leaf water showed less treatment divergence, following
the observed data (Figs. 2C and 4C). Additionally, because the
spectral data go well beyond the validation campaigns, much
of the end-of-season data, which include some senescence, are
beyond the means of our model calibration, and there is greater
variability in predicted plant traits (Fig. 5). Therefore, Fig. 5
predictions should be taken as an example for future prospects
of continuous (i.e., daily) remotely sensed monitoring of phys-
iology with high uncertainty beyond September [61,62]. Inte-
restingly, beyond September, with the PLSR stomatal conductance
model, a decline was captured in the control treatment (after
irrigation was terminated in the control plots), despite the PLSR
model not being trained during these dates.
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High-throughput phenotyping using hyperspectral remote
sensing can provide a scalable, objective approach for quickly
screening an array of plant traits over a diverse population,
aiding in management strategies and breed selection. Our study
highlights applications for remotely sensed hyperspectral data
for assessing plant physiology related to water status in drought
stress conditions to ultimately phenotype for drought response.
By predicting multiple water status variables (stomatal con-
ductance and water potential) with good accuracy using PLSR
modeling, we identified potentially drought-tolerant common
and tepary bean genotypes validated with in situ physiological
measurements. An advantage of hyperspectral PLSR models is
that they enable remotely sensed data to extrapolate predictions
beyond the scope of direct measurements used to calibrate
them, including to larger populations and beyond individual
field campaigns. Hyperspectral PLSR models (and other
machine learning techniques) can be calibrated across an array
of plant traits, including biochemical and physiological traits
[28,30], offering powerful remote sensing applications in pre-
cision agriculture and ecological monitoring.
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Fig. S1. Genotype-specific relative soil moisture content at 20-,
40-, 80-, 120-, and 140-cm depths across 3 field campaigns.
Fig. S2. Genotype-specific drought response of stomatal con-
ductance from 8, 10, 12, and 14 h across 3 field campaigns.
Fig. S3. Genotype-specific drought response of leaf water po-
tential from predawn (6 h) and midday (13 h) across 3 field
campaigns.

Fig. S4. Genotype-specific drought response of midday drone-
based normalized difference vegetation index across 3 field
campaigns.

Fig. S5. Genotype-specific drought response of midday drone-
based canopy temperature across 3 field campaigns.

Fig. S6. Genotype-specific drought response of midday drone-
based canopy volume across 3 field campaigns.

Fig. S7. Variable importance in projection (VIP) of each PLSR
model across data source: tower-based (left column), Groundy; g
(middle column), and Groundg,,,,,. models (right column);
and predicted parameter: stomatal conductance (top row),
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predawn leaf water potential (middle row), and midday leaf
water potential (bottom row).

Fig. S8. Comparison of the tower and handheld instrument
PLSR model VIP from Fig. 4 for (A) stomatal conductance, (B)
predawn water potential, and (C) midday water potential.
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