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With the rapid accumulation of plant trait data, major opportunities have arisen
for the integration of these data into predicting ecosystem primary productivity
across a range of spatial extents. Traditionally, traits have been used to explain
physiological productivity at cell, organ, or plant scales, but scaling up to the
ecosystem scale has remained challenging. Here, we show the need to combine
measures of community-level traits and environmental factors to predict ecosystem
productivity at landscape or biogeographic scales. We show how theory can extend
the production ecology equation to enormous potential for integrating traits into
ecological models that estimate productivity-related ecosystem functions across
ecological scales and to anticipate the response of terrestrial ecosystems to global
change.

The promise of integrating traits into prediction of ecosystem productivity

For decades, plant functional traits have been used for mechanistic analysis and prediction of
processes at a wide range of ecological scales, from organs to species to ecosystems [1-5].
Plant functional traits are defined as properties that influence growth, reproduction, and survival
at the individual level [6-8] and are frequently used for predicting plant species responses to
changing environments [9-11]. As plants contribute the bulk of ecosystem carbon fluxes, effect
traits (i.e., traits that determine the effects of plants on ecosystem functioning [12,13]) in combi-
nation with environmental factors can influence ecosystem functioning, such as gross primary
productivity (GPP) and net primary productivity (NPP), and therefore modulate the global terres-
trial carbon cycle and its responses to climate change [14-16].

Indeed, understanding how plant functional traits modulate primary productivity has attracted
wide interest for almost two decades [17-21]. Previous studies have established correlative
links between the productivity of natural ecosystems and leaf functional traits averaged across
the constituent species [19,20]. However, how best to relate the traits of individual plants or
plant species to the functioning of whole ecosystems has remained an open question [9,22].
One major challenge is the need to model ecosystem functions on the basis of land area, as for
GPP and NPP, which are considered on that basis from eddy-flux observations and remote
sensing [23-25]. Yet, currently, differences in annual GPP among ecosystems are determined
primarily by the quantity of photosynthetic tissue and the intensity and seasonality of its activity,
not taking into account a wide range of other available traits. While efforts have been made to
directly scale up from individual plant traits and community-scale traits to ecosystem productivity,
and traits have been used as inputs into dynamic vegetation models to determine photosynthesis
and thereby ecosystem productivity, new approaches are needed to incorporate the wide range
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of all available effect traits. This more comprehensive approach, along with taking into account
environmental factors, should allow for determining the variation in productivity within and
among natural ecosystems.

Gaps and potential for linking functional traits and ecosystem productivity

Substantial gaps have existed in the ability to link plant traits with productivity in a meaningful way.
Although a number of hypotheses exist for relating functional traits to ecosystem productivity
(Box 1), challenges arise when trying to generalize these ideas. First, there is no consensus on
how the productivity of naturally assembled or experimental systems (such as plantations and
crop fields) depends on traits that would contribute to growth [26]. For example, the growth
rate hypothesis of stoichiometric ecology postulates that higher productivity would arise from a
lower N:P ratio (i.e., a higher concentration of phosphorus) in agricultural fields or controlled
experiments due to the increased demand for rRNA production needed to sustain rapid growth,
yet no evidence has supported this hypothesis in naturally assembled communities [27,28].
Indeed, tropical forests generally have both higher GPP and N:P ratio than cool temperate forests
[28], and grasslands, typically less productive than forests, also have higher leaf N:P [29].
Evidently, in natural communities, dominant species, which contribute strongly to GPP, may
have moderate or high N:P ratios but prevail due to stress tolerance, in contrast with agricultural
fields and experimental plantations, in which the fastest growing species, with low N:P, would
dominate, as these systems are under continuous management and/or protection from drought,
competition, pests, and other stresses. Therefore, it remains unclear if there is a general applica-
tion of stoichiometric principles to derive trait—productivity relationships. Second, the scaling of
traits from organ and even species to ecosystem scales often runs into challenging and complex
transmutation problems. It is self-evident that a combination of a large number of traits will
influence productivity, and, as highlighted by the Jensen’s inequality, the average of a function
is not the function of the average due to the perturbation of nonlinearity and variation [30]. Yet,
as many studies found that the net assimilation rate of leaves is highly correlated across
species with traits such as specific leaf area (SLA) and mass-based leaf nitrogen concentration
(N, mg g~ ) [31-33], such univariate relationships have inspired many studies to treat complex

Box 1. The basic concepts of the major hypotheses for trait-based ecosystem function

Vegetation, as the primary producer, plays a dominant role in shaping ecosystem function. There are five major
hypotheses in trait-based ecology for the role of plants in driving ecosystem functions.

()  The mass ratio hypothesis, also known as the dominance hypothesis [83], holds that the traits of the dominant
species are more important than species richness per se, in determining ecosystem processes, and thus predictions
should be made on the basis of scaling the species’ trait values by their contribution to vegetation biomass, often by
calculating a CWM [6].

(i)~ The functional complementarity hypothesis holds that the difference in trait values among the organisms in a
community influences ecosystem processes through mechanisms such as complementary resource use. Thus,
positive relationships are expected between ecosystem functions and indices capturing the community func-
tional diversity [84], including single-trait indicators (1D indices), such as FD,, (functional logarithmic variance)
and multiple-trait indicators (multidimensional indices), such as FDq (Rao’s quadratic entropy) [85].

(i) The growth rate hypothesis predicts that organisms with higher growth rate (the rate of change in biomass per
unit biomass) also have higher P concentration and lower C:P and N:P ratios [27,28].

(iv) The vegetation quantity hypothesis (also known as the green soup hypothesis) holds that productivity is mainly
driven by vegetation biomass, regardless of traits; that is, vegetation ‘quantity’ is more important than ‘quality’
[45]. This idea has also been referred to as a trait-based approach, if biomass is considered a performance
trait [86].

(v)  The ecosystem allometry approach also does not consider plant traits and only biomass, placing an emphasis on the
size distribution of individual plants within communities [7,87], and predicting NPP = 5 (o ny x B x M54, where n s the
number of individuals present per m? in the size class k, and [y is an allometric coefficient (as a constant regardless of
species) linking the absolute growth rate of the whole plant with its total biomass (M7), and the 3/4 scaling exponent is
attributed to constraints imposed by resource distribution within cells and plants [88].
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plant communities as a simple big-leaf model (averaging the properties of all leaves) or a multilayer
model (treating sunlit and shaded leaves in each layer separately) to scale linearly from organ and
leaf levels to processes occurring at the level of groups of leaves or canopies and thereby simulate
primary productivity at the ecosystem level [34-36]. This direct upscaling of leaf biochemical traits
has not generally been validated, and the associated uncertainty increases with the spatial scale
considered (Figure 1) [30]. For example, the optimal temperature for the parameters of leaf pho-
tosynthetic physiology, such as electron transport rate and maximum rate of carboxylation by
Rubisco, does not predict those considered at the ecosystem level [37]. Indeed, for ecosystems
across elevation gradients, leaf-level photosynthetic parameters, such as the maximum rates of
carboxylation of Rubisco (Vemax) and electron transport (Jmax), do not decline with elevation and
may even increase, whereas ecosystem-level productivity (such as GPP and NPP) declines
with elevation [38]. These challenges point to the necessity for clear matching of processes
and scales when estimating ecosystem processes from traits [39], though such matching has
not been applied in many recent studies that found weak relationships between ecosystem pro-
cesses and single traits or finding relationships but of unclear causality [40,41]. Overall, optimism
in using this reductionist approach must be tempered.

In particular, scaling up from traits to ecosystem functions requires adequate consideration of
matching size and units. For a long time, the weighted average of individual traits within a commu-
nity based on the mass ratio hypothesis has been tacitly adopted to represent community-level
traits. Indeed, the community-weighted mean (CWM) trait value reflects the central behavior of
species; for example, higher CWM leaf nutrient concentrations, in particular nitrogen, typically
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Figure 1. Scaling from traits to ecosystem function, with traits based on characteristics at different scales from
gene to ecosystem. Traits can be used to predict high-level processes such as gross primary productivity (GPP), net
primary productivity (NPP), or water use efficiency (WUE) in natural ecosystems; the trait-based productivity (TBP)
framework predicts ecosystem function from community-level traits (blue arrow), by contrast with previous approaches
that directly relate function to the traits of cells, organs, and species (red arrows) (A); the black arrows represent
biochemical approaches to tree genetics and breeding, such as improving productivity through genetic engineering
(molecular methods). The difficulty of representative trait measurements increases at larger spatial scales (B), whereas the
accuracy of prediction may sharply decrease with increasing differences in scales considered (C). The development of
TBP to predict primary productivity (GPP, NPP) in natural ecosystems must meet these challenges.
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Table 1. Leaf traits scaled to community level

No. Trait at organ level Community-scale trait™

1 Leaf chlorophyll concentration (Chl, %) Chl.c(@m™)

2 Leaf nitrogen concentration (N, %) N.c(@m?

3 Leaf phosphorus concentration (P, %) P.c@m®

4 Leaf size (leaf, cm?) Leaf area index (LAI, cm? m™)

2Community-level traits are defined on a ground-area basis.

indicate a community dominated by individuals of fast-growing acquisitive species with higher
light-saturated photosynthetic rates [7,42], and with a relatively high ecosystem (production) effi-
ciency [6,10]. Nonetheless, high light-saturated photosynthetic rates per unit leaf area or mass
provide limited information about the carbon uptake of the entire plant under typical conditions
[43,44], let alone the carbon capture capacity of the ecosystem considered per land area.
Meanwhile, both the vegetation quantity hypothesis and the metabolic scaling theory based on
allomorphic growth consider biomass as a proxy for community size, an approach supported
by a large body of empirical evidence for predicting productivity-related ecosystem functions
[45-48]. Nevertheless, the complexity of trait variation and of the ecosystems themselves render
them not immediately amenable to the simple reductionist approach of scaling up directly from
biomass (Box 1). Furthermore, it is unclear how to scale up from biomass for the prediction of
ecosystem function while integrating multiple leaf traits and environmental variables, which a
rich body of evidence indicates would influence ecosystem properties. New ways to integrate
plant traits and community or ecosystem contextual information are necessary.

As a new approach to predict ecosystem function from underlying processes (Box 1), the calcu-
lation of ‘ecosystem traits’ (‘community traits’) was recently proposed [9] (Table 1 and Box 2).
Calculation of plant community traits involves scaling-up and scale-matching traits measured at
the organ level to derive a trait value per land area; these plant community traits can then be
tested for correlation with ecosystem functioning across natural ecosystems [9,49]. Such
scaled-up versions of ‘effect traits’ [50] have strong promise for predicting ecosystem productiv-
ity, especially given the increasing availability of plant trait data based on remote sensing [24,51].
For example, hyperspectral approaches in remote sensing provide an opportunity to retrieve
plant functional traits, such as pigment and mineral nutrient concentrations, and derived func-
tional parameters for improved estimation of vegetation processes, including photosynthetic
rate [52,53]. Meanwhile, trait databases based on field investigations, such as TRY [54] and
BIEN [55], are rapidly expanding, allowing the synthesis of community-level traits [56-58]. How-
ever, species occurrence biases are a concern when one uses plant trait data to infer ecosystem
function. Studies have shown that in multiple dimensions, including taxonomy, space, and time,
there is widespread bias and uncertainty in plant occurrence information [59-61]. This uncertainty
will affect the accuracy in calculating community-level traits, especially in extreme habitats [62].
Therefore, even relatively widely used plant occurrence databases, such as GBIF, should be
checked thoroughly at the species level to ensure the accuracy of subsequent calculations of
community-level traits. Trait values for specific extreme habitats should be carefully treated and
retrieved from the corresponding regional database [62]. Setting up or capturing data from multiple
plots for the same habitat to minimize the impact of outliers is also encouraged.

Integrating plant traits to the prediction of productivity-related ecosystem functions
To explicitly integrate the influence of community-level traits on ecosystem productivity, we con-
sider an analogy to an engine (Figure 2). Engine power (in kilowatts) is mainly determined by the
amount of fuel, engine capacity, utilization efficiency of fuel, and working time. Clearly, natural
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Box 2. Normalizing plant traits per unit land area as potential drivers of ecosystem function

Ecosystem traits represent the capacity for resource uptake and carbon fixation, calculated as an intensity (or density) nor-
malized per unit land area [9]. We focus on plants, as the major determinant of terrestrial ecosystem productivity is leaf pho-
tosynthesis, and thus ecosystem traits may also be referred to as plant community traits. Leaf traits can be converted to
plant community traits and thereby considered as drivers of ecosystem function, including leaf traits that are area-based,
mass-based, or ratios [7,8]. Plant community traits can be derived directly from the traits at the individual or species level,
or from the CWM trait value (Traiteym) [84]:

(i) For mass-based traits:

B -
Traitscosystom = Z/; Trait; x LMl; = Z/; Trait; x S ! 5 % % = Traitopmypee X LMI 0]
=1 Oi

where i and n are the species i and the number of species in the community, respectively; B; is the biomass of species /, S is
community or plot area, LMl is the leaf mass index, that is, the leaf mass per unit land area (unit: kg m~2). Notably, community
weighting can be performed on the basis of biomass (Traitewm piomass), OF, alternatively, abundance (A;; Traitowm abundance)-

(i) For area-based traits:

LA LA
Traltecosysien = Y ., Trait; x LAl =Y " Trait; x i i A

Sy o = Traltaum,,e x LAI [
i=1 LA

where LAl is the leaf area index, that is, the leaf area per unit land area (unit: m? m);

(iii)  For ratio traits (taking specific leaf area [SLA= leaf area/ leaf mass] as an example):

B 0 (LA M, ST LA
SLA NV siAx_2F _ i i _ 2=t 1l
e =10 YL B ZH <Mr‘ ) YL Mi S M; e

SLAecosystem = 27:1 LAf/Z/’7:1Mf = SLACWM [|V]

where Trait; represents a specific trait of the ith species; B;, LA;, and M; represent, respectively, the biomass, leaf area, and
leaf mass of all individuals of the species i in the community; and n is the total number of species present in the community.
Thus, when Traitecosystem IS @ ratio of other traits (e.g., SLA, N:P ratio, etc.), it is equivalent to the Trait.,,. The above
formula is similar to the derivation of traits from species to community-aggregated level, which is logically consistent [8].

plant communities are far more complex than mechanical engines, yet this analogy is applicable
to the scaling of productivity from the traits of individual plants and species to the ecosystem
(Figure 2). Indeed, this analogy is formalized in the production ecology equation [63-66]:
Production = Resource supply x Proportion of supply captured x Production efficiency,
which has also been applied in agriculture as the ‘harvest equation’ [67,68]: Wy, = & x & x Sy, in
which the accumulation of energy in plant biomass (W},) is determined by the ‘use efficiency’ that
intercepted radiation is converted to biomass energy (&), the efficiency of light interception by
the canopy (&), and total incident solar radiation (S). Yet, a weakness of these simple formulations
is that the ‘use efficiency’ term masks many interacting physiological effects. Production is often
strongly co-limited by multiple resources, of which the most important across the world’s dominant
ecosystems are light, water, and soil nutrients, and given traits will often influence the acquisition
and retention of different resources. Thus, a new generation of approaches is needed to estimate
trait-based productivity (TBP), enabling the prediction and partitioning of ecosystem or community
productivity with respect to plant community traits in addition to climate factors and nutrient inputs
(Figures 2 and 3). To llustrate an approach for considering productivity as a function of multiple lim-
itations, we provide a simple model-based analysis in which these limitations are approximately
separable from one another [69], the ‘inverse production equation’:

1 1 1 1

1 . 1
P~ Py-ay Pra Pg [
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Figure 2. The theoretical basis for the use of plant community traits to predict ecosystem productivity in natural
ecosystems by analogy to an engine. Different from the complex process model [82], we adopt an emergent approach
to view the entire ecosystem as a whole based on the plant community traits [9] and apply the production ecology equation
[63] or harvest equation [68] to formulate the trait-based productivity (TBP) theory, which can be conceptualized by analogy
to an engine. In the formula, P,,, P,, and P; represent maximum production limited only by water, nitrogen, and irradiance,
respectively, that is, potential production in the absence of other limitations (e.g., P, is the maximum production possible
when nitrogen and light are available in infinite supply, and water uptake and transport and stomatal resistance do not limit
the acquisition and use of water for production). &, &, and & represent resource acquisition efficiencies — the fractions of
each available resource actually captured by the plant community.

Where P is production (i.e., GPP or NPP or another production-related variable); P, P, and P;
represent maximum production limited only by water, nitrogen, and irradiance, respectively
(i.e., potential production in the absence of other limitations; e.g., P, is the maximum production
possible when nitrogen and light are available in infinite supply); and &,, &, and & represent resource
acquisition efficiencies, that is, the fractions of each available resource actually captured by the plant
community. The inverse production function can be derived from a model of photosynthesis and gas
exchange, with some minor simplifications, providing insights into how traits will influence productivity
(see Appendix 1 in Supplementary Materials in the supplemental information online).

/lv - c;—I’ (ED (K(wsjiw,eaf)>+ (rca + M) <X/1\/o (%) " i (i)) ) )

which is Equation 1, but where the terms on the right-hand side are expressed in relation to underlying
environmental variables or plant traits:

Eo (Ca_l—) _ K(WSOIY_WIeaf)

PW = 16D 5 Ew Eo bl [3]
_( Ca T N
Pn = (m))(/\/men Ny’ (4]
Ca—I )
P = (/’C:W) Qlo, 6 = fpar. [5]

where ¢, is ambient CO, molar fraction, I is the photosynthetic CO, compensation point, D is the
leaf-to-air water vapor molar fraction difference, £, is precipitation, K is plant hydraulic conductance,
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Figure 3. Integrating plant traits into the prediction of ecosystem functioning. Plant community traits are drivers of
productivity in the trait-based productivity theory. Abiotic factors, such as light, temperature, precipitation, and soil nutrients,
and biotic factors, such as herbivory, would not only directly affect productivity but also interact with traits and, in addition,
influence traits and thus take on an additional indirect influence on the gross primary productivity (GPP) and net primary
productivity (NPP).

Wsoi 1S SOIl watter potential, ey is leaf water potential, r is the average ratio of intercellular to ambient
COs concentrations (about 0.7 for C3 plants and 0.4 for C4 plants [70]). M is an effective average
Michaelis constant for the effect of CO, on photosynthetic rate, N, is total ecosystem nitrogen, N is
total plant nitrogen, ¢ is the quantum yield of electrons, iy is the irradiance above the canopy, and
Toar I8 the fraction of i, that is absorbed by the canopy.

This illustrative heuristic model shows how the essential simplicity of the traditional production-
function approach can be retained yet can integrate separate influences of multiple environ-
mental and endogenous factors. Importantly, this formulation addresses the major weakness
of the traditional approach, that is, its focus on a single resource (commonly light) — and result-
ing conflation of several different limitations in the ‘use efficiency’ term — by separating the three
dominant photosynthetic resource limitations using a process-based framework based on
‘acquisition efficiencies’. Acquisition efficiencies, as defined here, are the fractions of each
resource actually captured by the plant community; for example, &, is the ratio of actual tran-
spiration rate [K(Wsoil — Wiear)] 10 the maximum transpiration rate theoretically possible (the
rate of water inputs or precipitation, E,). Most important, because the production potentials
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(Pw, Pn, and P;) and acquisition efficiencies are traceable to a simple process-based model,
they offer clear logical hypotheses regarding where in the model to incorporate data for various
traits. For example, hydraulic traits would affect ¢, light-interception traits would affect ¢, and
nutrient-capture traits would affect &,. The role of acquisition efficiencies highlights the impor-
tance of plant structural traits scaled to the ecosystem. For example, f,4, is determined largely
by leaf area index, N/N, by belowground carbon investment, and K by investment in below-
and aboveground water transport. Many key leaf traits that regulate photosynthesis and deter-
mine ecosystem productivity can be incorporated by considering their influence on equation
parameters, including leaf chlorophyll and nutrient concentrations, leaf size, specific leaf area,
and many more. Notably, the parameters of Equation 1, including the environmental input
variables, will all differ, depending on time scales and could in principle be defined for durations
ranging from minutes to hours, to growing seasons, to years.

We note that this illustrative formulation is one of many possibilities, emphasizing mechanistic
processes. Phenomenological approaches may also be used to scale from traits to productivity;
for example, Bayesian models of tree growth have considered that a species’ trait values may
modulate the coefficients of the growth responses to environmental variables [71,72], an
approach that may also be extended to considering ecosystem productivity.

Implications and future perspectives of TBP

We propose that efforts to integrate increasing numbers of plant traits to explain and predict
GPP, NPP, and other ecosystem-scale parameters will streamline the current theory and provide
novel applications in ecology and earth system science, including better constrained and
parameterized dynamic vegetation models, and greater resolution of the influence of vegetation
change on fluxes under climate change (Figures 2 and 3). Notably, environmental factors such
as irradiance, temperature, precipitation, and soil nutrients not only directly influence productivity
but their influence also may interact with that of traits. Furthermore, over longer time scales,
environmental factors influence ecosystem structure and plant traits, thus taking on a further
indirect influence on productivity. Statistical methods, such as structural equation modeling,
can be used to probe indirect effects and further refine the TBP framework in future studies.
Furthermore, taxonomic, phylogenetic, and functional diversity may influence ecosystem produc-
tivity by optimizing resource uptake efficiencies, a hypothesis to be tested in the future and, if
supported, integrated into the TBP framework.

Notably, the role of ecosystem structure is fundamental in influencing productivity, given that plant
community traits are determined by the species and the structure of the ecosystem (Figure 3). For
incorporation into predictive equations such as Equation 1, the CWM for leaf traits is multiplied by
measures of stand structural density, that is, the leaf area index (LAl), defined as the total one-
sided area of leaf tissue per unit land surface area, equivalent to the numbers of layers of leaves
[73,74] or the leaf mass index, that is, the leaf dry matter mass per unit land area (LMI; Box 2).
Previous analyses of variation across ecosystems in productivity per unit land area have often fo-
cused on LAl, which is a key driver of biogeochemical cycles in ecosystems, as it influences the
within- and below-canopy microclimate and the interception of light and water and carbon gas
exchange [75]. Mass-based leaf traits can be multiplied by the LMI to predict productivity per
unit land area (Box 2). Similar logic can be extended for traits in other plant organs, such as
roots. In addition, intraspecific variation can also be included in the derivation of plant community
traits by considering in their estimation different trait values for the individuals of given species.
Furthermore, tissue-level traits can vary with tissue and plant age [76], and these dynamics
would scale up to ecosystem-level traits, and thereby ecosystem productivity, an avenue for
future research.
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Concluding remarks and future perspectives

Traditional analyses have shown that physiological productivity correlates with traits at the cellular
and leaf levels, but recent work shows that the concept of ‘traits per unit land area’ should be
considered when scaling up to canopy or ecosystem carbon fluxes. The TBP framework pro-
vides a novel approach to explain ecosystem productivity according to its influence by plant traits
and climate, including their direct and indirect effects. The TBP approach can be further devel-
oped in several key ways. First, the approach can be informed by the increasingly large amount
of trait data available, through rapid assessment of CWMs of leaf functional traits [77-79], espe-
cially given the standardization of trait measurement protocols. Second, TBP theory may be inte-
grated into ecological models to replace the widespread use of plant functional types in ecological
models. Unlike the traditional big-leaf and multilayer models that directly scale up from cell and
individual-leaf level traits to predict processes occurring at the level of groups of leaves or cano-
pies [75,80,81], the TBP approach matches traits to canopy or landscape-scale processes. The
range of applications of TBP will expand our ability to explain and predict the responses of these
terrestrial ecosystems to global change at the wide range of spatial and temporal scales (see
Outstanding questions).
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Outstanding questions

What is the relationship between the
maximum productivity of an ecosystem
and its actual productivity under the
combined constraints imposed by
multiple environmental factors, such
as water, nutrients, and radiation?

To what extent do plant community
traits affect the key parameters of
resource acquisition efficiencies,
and how do these differ across
ecosystems?

What role in determining ecosystem
productivity can be attributed
environmental factors, including
climate, relative to plant community
traits?

How do different types of traits, such
as economic traits and size traits,
modulate ecosystem productivity, and
do their roles shift with changing
climate?
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