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Symplectic embeddings of four-dimensional

polydisks into half integer ellipsoids

L. Digiosia, J. Nelson, H. Ning, M. Weiler, Y. Yang

Abstract. We obtain new sharp obstructions to symplectic embed-
dings of four-dimensional polydisks P(a,1) into four-dimensional ellip-
soids E(bc,c) when 1 < a < 2 and b is a half-integer. When 1 <
a < 2—0(b™') we demonstrate that P(a, 1) symplectically embeds into

E

(be,¢) if and only if a + b < be. Our results show that inclusion is

optimal and extend the result by Hutchings [Hul6] when b is an integer.
Our proof is based on a combinatorial criterion developed by Hutchings
[Hul6] to obstruct symplectic embeddings.
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1. Introduction

Embedded contact homology (ECH) is useful for obtaining obstructions of
symplectic embeddings of four dimensional toric domains with contact type
boundary. When considering embeddings of poydisks into balls and ellip-
soids, ECH capacities do not tend to give very good obstructions. Hutchings
introduced a combinatorial criterion using embedded contact homology in a
more refined way than ECH capacities [Hul6], which has led to considerable
progress in understanding the problem of symplectically embedding one con-
vex toric domain into another. This criterion is stated in terms of convex
generators, which are integral paths in the plane whose vertices are lattice
points with additional restrictions on the edges. Hutchings showed that the
boundary of any convex toric domain can be perturbed so that the generators
of the ECH chain complex correspond to convex generators (for an induced
contact form and up to large symplectic action). The generators of ECH are
multisets of closed periodic orbits of the Reeb vector field associated to the
contact form.

By studying the combinatorial data more closely, in Section 2 we are
able to obtain new sharp obstructions to symplectic embeddings of four-
dimensional polydisks P(a, 1) into four-dimensional ellipsoids E(bc, ¢) when
1 <a<2and b is a half-integer p/2. When 1 <a <2 —¢and p > O(e™ 1)
we demonstrate that P(a, 1) symplectically embeds into E(be, ¢) if and only
if a+b < be. Our results show that inclusion is optimal and extend the result
by Hutchings when b is an integer [Hul6, Thm. 1.5].

In Section 3 we elucidate the combinatorial subtleties of natural classes
of minimal convex generators associated to ellipsoids in applying the Hutch-
ings criterion. We classify all minimal convex generators associated to an
ellipsoid, providing a converse to [Hul6, Lem. 2.1(a)], and demonstrate the
limitations of the simplest, and often most natural, class of convex gener-
ators used in the Hutchings criterion to provide obstructions to symplectic
embeddings. We provide further computations of the combinatorial ECH in-
dex associated to minimal convex generators, which may provide a future
means of obtaining ECH based obstructions to symplectic embeddings.

1.1. Embeddings of four-dimensional polydisks into ellipsoids
In this paper we investigate the question of when one convex toric symplectic
four-manifold can be symplectically embedded into another. In particular,
we demonstrate that inclusion is optimal for symplectic embeddings of four-
dimensional polydisks P(a, 1) into ellipsoids E(bc,c) when 1 < a < 2 —¢ and
b is a half-integer p/2 such that p > O(¢71).

Four dimensional toric domains are defined as follows:

Definition 1.1. Let © be a domain in the first quadrant of the plane R2.
The toric domain Xq associated to €2 is defined to be

Xo={(21,22) € C? ‘ (m|z1)?, 7| 22)?) € Q},
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with the restriction of the standard symplectic form on C2, namely
2

w= dei A dy;.
i=1

When the symplectic form is understood we drop it from our notation.
In addition, if
Q={(z,y)[0<2<A0<y< fla)},

where f :[0,A] — [0,00) is a nonincreasing function, then we say Xq (and
Q) is convez if f is concave, and Xq (and Q) is concave if f is convex with

F(A) =0.

Example 1.2. If Q is the triangle with vertices (0, 0), (a,0), and (0,b), then
Xq is the ellipsoid

E(a,b)z{(zl,zﬁe@ +— <1

Note that when a = b, we obtain the closed four-ball B(a) = E(a,a). An
ellipsoid is both a convex and a concave toric domain. If € is the rectangle
with vertices (0, 0), (a,0), (0,b), and (a,b), then Xq is the polydisk

P(a,b) = {(21,20) € C? }7T|21|2 < a,7r|22|2 <b},

mlal? | el }

which is a convex toric domain with f(z) = b on the interval [0, al.

In dimension four, substantial progress has been made on understanding
the nature of symplectic embeddings between symplectic four-manifolds with
contact type boundary by way of embedded contact homology (ECH). Hutch-
ings used ECH to define the ECH capacities of any symplectic four-manifold
in [Hull]. The ECH capacities of (X,w) are a sequence of real numbers ¢,
with

0=co(X,w) < c1(X,w) <c2(X,w) < -+ < 00,
such that if (X, w) symplectically embeds into (X’,w’) then
ek (X,w) < cep(X' ") for all k. (1)

Choi, Cristofaro-Gardiner, Frenkel, Hutchings, and Ramos [CCHFHR14] com-
puted ECH capacities of all concave toric domains, yielding sharp obstruc-
tions to certain symplectic embeddings involving concave toric domains. Cristofaro-
Gardiner [CG19] proved that the ECH capacities give sharp obstructions to

all symplectic embeddings of concave toric domains into convex toric do-
mains, generalizing the results of McDuff [McD09, Mc11] and Frenekl-Miiller
[FM15].

Remark 1.3. When studying symplectic embeddings of convex toric do-
mains, such as polydisks, however, ECH capacities do not always yield sharp
obstructions. For instance, while ECH capacities imply that if the polydisk
P(2,1) symplectically embeds into B(c) then ¢ > 2 [Hull], Hind and Lisi
[HL15] were able to improve the bound on ¢ to 3. This bound on ¢ is optimal,
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in the sense that 2 is the largest value of a such that P(a,1) symplectically
embeds into B(c) if and only if ¢ > a + 1. A more detailed comparison be-
tween the results of this paper and the obstructions from ECH capacities are
given in Section 1.2.

The method of symplectic folding is used to construct countless exam-
ples of nontrivial embeddings X3 < X, including many cases of the form
X1 = P(a,b). The following remark elucidates that long polydiscs (a > 2)
fold nicely, and in a sense, the longer the polydisc, the better it folds. The
results in this paper prohibit the possibility of embedding short polydiscs
(a < 2) into ellipsoids, and hence address embedding questions disjoint from
those answered by symplectic folding.

Remark 1.4. If a > 2, then folding P(a,1) once provides a symplectic
embedding into the ball B(2 + a/2 + ¢) ([Sc05, §4.3.2]). Multiple symplectic
foldings may be used to produce better embeddings into balls when a > 6;
a multiple folding of P(7,1) provides an embedding into B(21/4 +¢) ([Sc05,
Prop. 4.10]), which is stronger than the embedding into B(11/2+-¢), provided
by folding P(7,1) only once. Conversely, if 1 < a < 2, multiple symplectic
foldings can not provide a stronger embedding result than the one provided
by the inclusion of P(a,1) into B(1 + a) ([Sc05, §4.3]).

Hutchings [Hul6] subsequently studied the information coming from
embedded contact homology in a more refined way to provide a combinatorial
means for finding better obstructions to embeddings of convex toric domains.
In particular, Hutchings reproved the result of Hind-Lisi and extended it to
obstruct symplectic embeddings of other polydisks into balls. Subsequent

work by [CN18], extended the “sharp” range of a to 2.4 < a < % :

Theorem 1.5. ([Hul6, Thm. 1.3], [(N18, Thm. 1.4]) Let 2 < a < Y=L ~

2.54858. If P(a,1) symplectically embeds into B(c) then ¢ > 2+ a/2.

We now turn our attention to when the target is an ellipsoid, rather than
a ball. Our first result is the following extension of [Hul6, Thm. 1.5], con-
cerning symplectic embeddings of polydisks P(a, 1) into the ellipsoid E(be, ).
Hutchings proved that if 1 < a < 2 and b is a positive integer then P(a, 1)
symplectically embeds into E(be,¢) if and only if a + b < be. We note that
a + b < be holds precisely when P(a,1) C E(bc,c) C C2. We extend this
result to allow b to be a half integer, under additional mild assumptions, as
follows:

Theorem 1.6. Let dy > 3 be a prime number. Let 1 < a < (2dy—1)/dy, ¢ > 0
and b = p/2 for some odd integer p > 4dy + 1. Then P(a,1) symplectically
embeds into E(be, c) if and only if a +b < be.

Remark 1.7. Our hypothesis imposes restrictions on the values of a that
relate to the restriction on b = p/2. As p increases, Theorem 1.6 works for
larger a values, approaching a = 2. When taking dyg = 3, the result is for
1 <a <5/3 and odd integers p > 13.
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For smaller values of p, we are able to extract refined information from
the combinatorics driving the proof of Theorem 1.6. We obtain:

Theorem 1.8. Let1 <a <4/3,¢>0 andb=p/2 for some odd integer p >
2. Then P(a,1) symplectically embeds into E(bc,c) if and only if a+b < be.

Theorem 1.9. Let1 <a <3/2,¢> 0 and b= p/2 for some odd integer p >
7. Then P(a,1) symplectically embeds into E(be,c) if and only if a + b < be.

Remark 1.10. Theorem 1.6 does not provide any information for embed-
dings featuring p < 13. The following examples demonstrate some of the
different ground covered between Theorems 1.6, 1.8, and 1.9:

e Given a symplectic embedding P(4/3,1) — FE(3¢/2,c), Theorem 1.8
guarantees that ¢ > 17/9 whereas Theorems 1.6 and 1.9 provide no
restriction on c.

e Given a symplectic embedding P(3/2,1) — E(7¢/2,c¢), Theorem 1.9
guarantees that ¢ > 10/7 whereas Theorems 1.6 and 1.8 provide no
restriction on c.

e Given a symplectic embedding P(5/3,1) — FE(13¢/2,c¢), Theorem 1.6
guarantees that ¢ > 49/13 whereas Theorems 1.8 and 1.9 provide no
restriction on c.

We note that the application of Theorem 1.6 to a choice of p > 13 provides a
stronger statement of the application of either of Theorems 1.8 or 1.9 to the
same odd integer p.

Remark 1.11. For larger a values (but restricted ¢ values), Hind-Zhang have
proven an analogous result [HZ, Thm. 1.5(2)] of embeddings of polydisks into
half integer ellipsoids; namely for a > 2, b € N>o, and 1 < ¢ < 2, there is a
symplectic embedding of P(a,1) into E(bc,c) if and only if a + b < be. Hind-
Zhang’s upper bound on c¢ is necessary to exclude folding and their sharp
obstruction is obtained via the (reduced) shape invariant, which encodes the

possible area classes of embedded Lagrangian tori in star-shaped domains of
C2.

Remark 1.12. There does not seem to be reason to expect that the con-
clusions of [Hul6, Thm. 1.5] for integral ellipsoids and our extension to half
integer ellipsoids, Theorem 1.6, would fail to hold for general ellipsoids. How-
ever, at present it is unclear how to utilize the Huchings criterion to obtain
the expected obstructions. In Section 3.3, we provide further insight on the
combinatorial subtleties encountered when trying to generalize the methods
of our proof for arbitrary positive rational b = p/q, where p, ¢ are relatively
prime integers, and 1 < a < 2; see also Remark 1.37.

Before reviewing Huchings’ combinatorial criterion, which is used to
prove our main results, we provide a comparison with obstructions from ECH
capacities.
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1.2. Comparison with obstructions from ECH capacities

We present several examples of the gap between the obstructions to polydisk
embeddings from ECH capacities and the stronger obstructions from [Hul6,
Thm. 1.3], Theorems 1.8 and 1.9; see also Remark 1.3. We would like to
thank the anonymous referee for suggesting the methods used in Examples
1.18 and 1.19.

The ECH capacities of a toric domain X (with the standard symplectic
form) are an increasing sequence of numbers derived from the ECH chain
complex of X (with the standard contact form). As noted earlier in (1), if X
symplectically embeds into X', then each ECH capacity of X is bounded from
above by the corresponding ECH capacity of X’ (this is a version of [Hull,
Thm. 1.1] for embeddings between possibly closed manifolds). Generalizing
the work of McDuff [McD09], Cristofaro-Gardiner proved that in some cases
(1) actually implies symplectic embedding:

Theorem 1.13 ([CG19, Thm. 1.2]). If (X,w) is a concave toric domain and
(X', w') is a convex' toric domain, there is a symplectic embedding int(X) <
int(X") if and only if

ek (int (X)) < cx (int (X)) for all k

Remark 1.14. Theorem 1.13 concerns embeddings of only the interiors of
toric domains, while the results in [Hul6] and our results refer to embed-
dings of the entire domain, boundary included. This is because in our set-
ting, the embeddings which do exist are simply inclusion, while many of
the embeddings covered by Theorem 1.13 are more exotic. Note also that
ek (int(X)) = ¢, (X) for toric domains by the definition of the ECH capacities
of a non-closed region: [Hull, Def. 4.9].

Theorem 1.13 underlies much of the recent work on the role of ECH
in symplectic embeddings, including but not limited to [CG et al., B et al.].
However, the embeddings we obstruct in this paper are of the form

P(a,1) — E(bc,c)

for various ranges of a,b, and ¢, and therefore Theorem 1.13 does not apply.
In this case, an obstruction to an embedding is a lower bound on ¢ in terms
of a and b. We will show several examples in which the lower bound on ¢
obtained via [Hul6, Thm. 1.3], Theorems 1.8 and 1.9 is larger than any lower
bound, which is possible to obtain via ECH capacities.

First, we explain how to obtain a lower bound on ¢ from ECH capacities,
which is a special case of a more general fact: see [CG et al., (2.9)] and [Hull,

(2.5)].
Lemma 1.15. If P(a,1) symplectically embeds into E(bc,c), then

alP(a,)
CZSU BMb1))

Inote that the terminology “convex” in [C(i19] is slightly broader than ours
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Proof. If P(a,1) symplectically embeds into FE(be,c), then c¢i(P(a,1)) <
ck(E(bey ¢)) for all k.
Claim: ¢ (E(bc,c)) = ¢ e (E(b, 1)).
Assuming the claim, we then know

cx(P(a,1)) <c-ci(E(b,1)) VE,
which implies our conclusion ¢ > sup, %, by dividing both sides by
¢k (E(b,1)) and taking the supremum over k.

Proof of claim: it suffices to show that the Reeb orbits on 0FE(bc, c)
are in 1-1 correspondence with the Reeb orbits on dE(b,1) and that this
correspondence divides Reeb orbit length by c. Using the standard contact
form \ = %Z?Zl r? df; in polar coordinates on C?, it is straightforward to
compute that the Reeb vector field? on dE(bc, c) is

2771 2778_1(2778 8)

anl + ?892 o C
while the Reeb vector field on 0E(b,1) is

mo 0
b 00 00y

Therefore on each torus of constant (11, r2) the Reeb vector fields on dE(be, ¢)
and OE(b, 1) sweep out the same distribution, while the Reeb flow on 0E(be, ¢)
takes ¢ times longer to close up. Finally, it remains to show that the tori of
constant (r1,r2) of each ellipsoid are in 1-1 correspondence. We do this by
identifying the torus in E (b, 1) above (r1,72) € R? with the torus in dE(bc, c)
above (cry,cry) € R2. O

2 yor
b 90, " " 90,

Note that our claim in the proof of Lemma 1.15 is an elementary case of
the conformality property of ECH capacities, [Hul4, Thm. 1.3], highlighting
the direct correspondence of Reeb orbits in this case (and avoiding the more
abstract machinery necessary to prove conformality in general).

In Examples 1.18-1.21 we discuss three cases where the lower bound
on ¢ from (1.15) is smaller than the lower bound ¢ > a/b + 1 from [Hul6,
Thm. 1.3], Theorems 1.8 and 1.9. Before discussing the first example, we
introduce some results and terminology, which allows us to compute ECH
capacities and thus analyze the supremum in Lemma 1.15.

First we have the formula for capacities of disjoint unions.

Proposition 1.16 ([Hull, Prop. 1.5]). If Xo and X1 are toric domains,
then

Ck (XOHX1> = ZIE?a:XkCZ(Xo) + Cj(Xl).

In Example 1.18 we will compute of the ECH capacities of a convex toric
domain from its “negative weight expansion,” a method due to Cristofaro-
Gardiner and Choi. The negative weight expansion (defined in [CG19, §2.2]) of

2Given a cooriented contact manifold (M, ker)), the Reeb vector field R is uniquely deter-
mined by the equations A(R) = 1 and dA(R,-) = 0.
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a convex toric domain Xg is the sequence (b; by, ba, . ..) obtained inductively
as follows. Define a “b-triangle” to be any triangle affine equivalent (e.g. up
to GL(2,Z) transformations and translations) to the triangle with vertices
(0,0), (b,0), and (0,b). The first entry b in the negative weight expansion of
Q) is the smallest b so that € fits inside a b-triangle. If € is itself a b-triangle,
then we are done. If not, the second entry by is the largest number so that
a bi-triangle fits inside the complement of €2 in the b-triangle and sharing a
corner with the b-triangle. If Q0 and this b;-triangle fully fill the b-triangle,
then we are done; else proceed inductively.

We can now compute the ECH capacities of convex toric domains, such
as polydisks and ellipsoids:

Theorem 1.17 ([CG19, Thm. A.1]). Let Xq be a convex toric domain with
negative weight expansion (b;by,bs). Then

ex(Xa) = inf e p(B) —or (Bon) [T B(ba)

Example 1.18. This example concerns the embedding P(3/2,1) < E(7/2,7/4),
which is the @ = 3,b = 2 case of [Hul6, Thm. 1.5]. The conclusion is that
P(3/2,1) cannot symplectically embed into E(2¢, ¢) for any ¢ < 7/4. It is not
possible to obstruct such embeddings using ECH capacities alone. We show
that supy, % = 5/4, which is realized by the ratio of the third ECH

capacities:?

s (P(3.1) _5/2_5
c3(E(2,1)) 2 4’
By reversing the proof of Lemma (1.15), what we need to show is that

cx(P(3/2,1)) < )

w o (B(21) 4 <
ce (P (2,1 < ¢ (E(3,2)) Vk <
o ((P ((6233 < c'2<(E<§? 1)3)\31@

by scaling both |2;|? coordinates by %. We perform this scaling so that the
negative weight expansions both have b = 2. That the negative weight ex-
pansion of P(6/5,4/5) is (2;6/5,4/5) is immediate. To compute the negative
weight expansion of F(2,1), note that it must have b = 2, leaving an obvious
1-triangle in the complement of  with corners at (0,1),(1,1), and (0,2),
and another triangle with corners (1,1),(0,1), and (2,0). After translating
_11 _21 turns the second triangle
into another standard 1-triangle. Therefore the negative weight expansion of
E(2,1)is (2;1,1).

by (—2,0), the shear transformation

3Here we used the ECH capacities of a ball ([Hull, Cor. 1.3]) and Thm. 1.17 to obtain
this computation.



Symplectic embeddings of polydisks into half integer ellipsoids 9

Using Theorem 1.17, our goal is now to show that for all k,

nferB@) e (8 (2) 115 (3) ) < inf e BE)- (B0 ][ B0).

which, because the b terms in the negative weight expansions of P(6/5,4/5)
and F(2,1) are equal, follows from showing that for all ¢,

e (B (g) 15 (g)) > ¢ (B(l) HB(1))

max ¢ (B (g)) e (B (‘;)) > max en(B(1) +en(BO). (2

By the fact that ¢, (B(a)) = ack(B(1)) by [Hull, Cor. 1.3], our goal (2) would
follow if for all m,n with m+mn = ¢, we could identify some 4, j with i+j = ¢
for which

2ei(BU) + 2¢5(B) > en(BO)) + ea(B().

If m > n then i = m,j = n is such a pair; if m < n then set i = n,j = m.

Example 1.19. This example concerns the embedding P(1,1) — E(5/2,5/3).
Theorem 1.8 with a =1 and b = % proves that if P(1,1) symplectically em-
beds into E(3¢/2,c) then ¢ > 3. We claim that the best lower bound, which
is possible to obtain from the ratio of ECH capacities is ¢ > %, is the ratio

of the second ECH capacities of P(a,1) and E(b,1):
o(P1,1) 2 4

e (E(2,1) 3/2 3
First, note that P(1,1) has the same ECH capacities as F(2,1), because
they have the same negative weight expansion (2;1,1). Next, notice that
E(2,1) C 4E(3/2,1) = E(2,4/3). Therefore, there can be no larger lower
bound on ¢ derived from the ECH capacities of P(1,1), because we would
then obtain an obstruction via the equal ECH capacities of E(2,1) to the
embedding E(2,1) — E(2,4/3).

For our final example, we invoke a simplified version of the Weyl law for
ECH capacities, which relates their asymptotic behavior to the volume of X
computed with %w Aw.

Theorem 1.20 ([CGHRI15, Thm. 1.1]). For toric domains X,

e (X)?
k

In the case of toric domains, vol(Xq) is proportional to the area of
Q. This means we expect the obstructions to embeddings of X from ECH
capacities to get worse as k gets large, since they limit to k& times the area of
Q and do not take its shape into account. One can think of this as a long-term
tendency towards the phenomenon we saw in Example 1.19, where the ECH
capacities of P(1,1) and F(2,1) (whose domains € in R? are both of area
one) were equal for all k.

liin = 4vol(X).
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Example 1.21. We consider here the embedding P(3/2,1) — E(5,10/7).
Theorem 1.9 with a = 3/2,b = 7/2 proves that if P(3/2,1) symplectically
embeds into E(7¢/2,c¢) then ¢ > 10/7. We expect that ECH capacities only
provide the lower bound ¢ > 1, which is achieved by the ratio of the first
ECH capacities:

q(P(Y) 1

a(B(31) 1
To obtain the lower bound ¢ > 1, we computed the maximum of the ratios
of the first 25,000 ECH capacities of the polydisk P(3/2,1) and ellipsoid
E(7/2,1), using the computer program Mathematica. Our methods are anal-
ogous to those of [B et al., §5], adapted for the polydisk. It is highly likely
that we have in fact found the supremum, because by Theorem 1.20,

er(X) vol(X)

I -
koo cr(Y) vol(Y)”

and therefore it’s unlikely that a sequence limiting to

V/vol(P(3/2,1))/ vol(E(7/2,1)) = /6/7 ~ 0.85714

with its first 25,000 terms less than or equal to 1 will include terms as large
as 10/7 ~ 1.42857. It may be possible to use the methods of Example 1.18
or results of [W] to prove this, but we will not attempt to do so here.

1.3. Review of convex generators and the Hutchings criterion

We now review the principal combinatorial objects involved in stating the
Hutchings criterion [Hul6, Thm. 1.19], which is necessary for one convex toric
domain to be symplectically embedded into another convex toric domain. In
Section 2, we will use this apparatus to prove Theorems 1.6, 1.8, and 1.9.

Definition 1.22. A convex path (in the first quadrant) is a path A in the
plane such that:

e The endpoints of A are (0,y(A)) and (x(A),0) where 2(A) and y(A) are
non-negative real numbers.

e A is the graph of a piecewise linear concave function f : [0,2(A)] —
[0,y(A)] with f/(0) < 0, possibly together with a vertical line segment
at the right.

The wvertices of A are the points at which its slope changes, including its
endpoints. Its edges are the line segments between vertices. A is called a
convez integral path if, in addition,

e z(A) and y(A) are integers.

e The vertices of A are lattice points.

Definition 1.23. A convex generator is a convex integral path A such that:

e Each edge of A is labeled ‘e’ or ‘A’
e Horizontal and vertical edges can only be labeled ‘e’
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Remark 1.24. In our proofs we will use the following notation for convex
generators. If @ and b are relatively prime nonnegative integers, and if m is a
positive integer, then:
e We use e, to denote an edge whose displacement vector is (ma, —mb),
labeled “e”;
o We use hqp to denote an edge with displacement vector (a, —b), labeled
“pr :
e Finally, if m > 1 then egf; lha,b denotes an edge with displacement
vector (ma, —mb), labeled “h”.

A convex generator can thus be represented by a commutative formal product
of the symbols e, , and h,p, where no factor h,, may be repeated, and the
symbols h; g and ho; may not be used.

Definition 1.25. Let A; and As be convex generators. We say that they
“have no elliptic orbit in common” if the formal products corresponding to
Ay and Ay share no common factor e, ;. Similarly, we say that A; and Ag
“have no hyperbolic orbit in common” if the formal products representing
Ay and Ap share no common factor hgp. If Ay and Ay have no hyperbolic
orbit in common, we define their “product” A1As by concatenating the formal
products corresponding to A; and As. This product operation is associative.

Definition 1.26. The quantity m(A) is the total multiplicity of all the edges
of A, i.e. the total exponent of all factors of e, ; and h,  in the formal product
for A. Note that m(A) is equal to one less than the number of lattice points
on the path A.

Remarkably, as explained in [Hul6, §6], the boundary of any convex
toric domain can be perturbed so that for its induced contact form, and up
to large symplectic action, the ECH generators correspond to these convex
generators. As a result, the ECH index may be computed combinatorially in
terms of lattice point enumeration.

Definition 1.27. If A is a convex generator, then its ECH index is defined
to be

I(A) =2(L(A) = 1) = h(A),
where L(A) denotes the number of lattice points interior to and on the bound-
ary of the region enclosed by A and the z,y-axes, and h(A) denotes the
number of edges of A that are labeled “h”.

Section 2.1 provides computations of the ECH index of several convex
generators of interest in symplectic embedding problems. Section 2.2 provides
relations the ECH index must satisfy for a convex generator with fixed end-
points. These results, in combination with additional bounds coming from
action and J-holomorphic curve genus, enable us to prove our main results.

Definition 1.28. If A is a convex generator and Xq is a convex toric domain,
define the symplectic action of A with respect to Xq by

Axg(N) = > 7xpas.

veEdges(A)



12 L. Digiosia, J. Nelson, H. Ning, M. Weiler, Y. Yang

Here, for any edge v of A, ¥ denotes the displacement vector of v, and pq .
denotes any point on the line ¢ parallel to ¥ and tangent to 02. Tangency
means that ¢ touches 02 and that 2 lies entirely in one closed half plane
bounded by ¢. Moreover, ‘x’ denotes the the determinant of the matrix whose
columns are given by the two vectors.

Next, we compute the symplectic action of our favorite toric domains.
Example 1.29. If X is the polydisk P(a,b), then
Ap(an(A) = bo(A) + ay(A).
If X, is the ellipsoid F(a,b), then
Ap@yA) = ¢,

where the line bz 4+ ay = ¢ is tangent to A.

The following definition is essential for combinatorially computing ECH
capacities:

Definition 1.30. If X is a convex toric domain, then a convex generator
A with I(A) = 2k is said to be minimal for Xgq if:

e All edges of A are labeled “e”.
e A uniquely minimizes Aq among convex generators with I = 2k and all
edges labeled “e”.

The symplectic action of minimal generators is related to ECH capaci-
ties as follows.

Remark 1.31. If I(A) = 2k and A is minimal for X, then Aq(A) = ¢, (Xq),
by [Hul6, Prop. 5.6].

In Section 3.4 we prove a converse to [Hul6, Lem. 2.1(a)], enabling the
following characterization of minimal generators associated to an ellipsoid
E(be, ¢). We define a convex integral path A to be mazimal under a convex
path T in R? if A exactly encloses all lattice points in the first quadrant
enclosed by I', including those on T'.

Proposition 1.32. Let b > 1, ¢ > 0. Let A be any purely elliptic convex
generator, and n the line of slope —1/b tangent to A. Then A is minimal for
the ellipsoid E(be,c) if and only if A is mazimal under 7).

Remark 1.33. In the special case of b = 1, that is, E(bc,c) is the ball
B(c), Proposition 1.32 gives an alternative proof of [CN18, Lem. A.3], which
classifies all minimal generators for the ball B(c).

For half integer ellipsoids we can explicitly characterize the minimal
generators as follows.

Example 1.34. Let ¢ > 0, let dy be a positive integer, and let p be any

positive integer. Then by [Hul6, Lem. 2.1] the convex generator er’2 is mini-

mal for the ellipsoid E(pc/2,c¢). When p/2 > 1, then by Proposition 3.13 all
minimal convex generators of E(pc/2, ¢) are of the form e} ye'piy 1eg_QeT31 X
Tl P,

Wheremie{O,l},dZO,and0§k<pTHifm1:0.
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Our final definition will be key to understanding when one convex toric
domain can be symplectically embedded into another convex toric domain.

Definition 1.35. Let A, A’ be convex generators such that all edges of A’ are
labeled “e,” and let X, Xqo/ be convex toric domains. We write A <x, x,,, A
if the following three conditions hold:

(i) Index requirement: I(A) = I(A').
(ii) Action inequality: Aq(A) < Ag/(A').
(iii) J-holomorphic curve genus inequality: x(A) + y(A) — w > x(A) +
y(A') +m(A) — 1.

In particular, if X symplectically embeds into X¢, then the resulting
cobordism between their (perturbed) boundaries implies that A <x, x,,, A’
is a necessary condition for the existence of an embedded irreducible holomor-
phic curve with ECH index zero between the ECH generators corresponding
to A and A’. The name of the third inequality arises from the fact that every
J-holomorphic curve must have nonnegative genus, see [HHul6, Prop. 3.2], and
proving that a J-holomorphic curve must exist in cobordisms resulting from
embeddings of convex toric domains is ultimately what allowed Hutchings to
go “beyond” ECH capacities in his criterion.

In Section 2.3, we utilize the J-holomorphic curve genus inequality with
the action inequality to find further restrictions on the endpoints of convex
generators, which when used in combination with the ECH index require-
ment, ultimately allow us to obtain obstructions through Hutchings’ combi-
natorial criterion.

We now have all the ingredients to state the Hutchings criterion:

Theorem 1.36. [Hul6, Thm. 1.19] Let X and Xq be convex toric domains.
Suppose there exists a symplectic embedding Xq — Xq/. Let A’ be a convex
generator which is minimal for Xq/. Then there exists a convexr generator

A with I(A) = I(A'), a nonnegative integer n, and product decompositions
A=Ay Ay and N = A} --- AL, such that

(i) A <qa AL for each 1=1,...,n.
(ii) Giveni,j e {1,...,n}, if Ai # Aj or Aj # A, then A; and A; have no
elliptic orbit in common.

(iii) If S is any subset of {1,...,n}, then I (T;es Ni) =1 ([T;egN)-

In practice, Theorem 1.36 is used in a negative way to provide obstruc-
tions to the symplectic embedding in question.

The proofs of our main results begin by assuming the existence of a
nontrivial embedding and checking the Hutchings criterion against minimal
generators of the form A’ = eg » (which are minimal for E(pc/2, c¢), by Exam-
ple 1.34). As a result, we obtain a convex generator A and the corresponding
product decompositions of A and ep , into n factors. Our plan is then to elimi-
nate all possible factorizations of A through the combinatorial conditions that
Theorem 1.36 mandates and thus achieve a contradiction. In the process of
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elimination, we start by restricting possibilities of A using the first condi-
tion of the Hutchings criterion, which unfolds into the three requirements
of Definition 1.35. The remaining possibilities for A and their factorizations
will then be eliminated using the action inequaity (ii) and the J-holomorphic
genus inequality (iii) in Definition 1.35.

Remark 1.37. In Section 3, we provide abstract examples, Propositions 3.4 -
3.6, to illustrate the limitations in using the Hutchings criterion when applied
to a minimal generator of the form eg?q to extend Theorem 1.6. Propositions
3.4 - 3.5 provide two abstract examples, relevant to the symplectic embedding
problem of P(a,1) into E(pc/2,¢) for any a > (2dg — 1)/dg or p < 4dy — 1.
In Propositions 3.6, we generalize the half integer b to p/q for all ¢ > 3
and consider the embedding problem of P(a,1) into E(bc,c) when 1 < a <
(2dg — 1)/dy. For each of these embedding problems, we show that, when
2a 4+ p —e < pc < 2a + p is satisfied for some € > 0, there always exists a
convex generator A with factorizations that satisfy the three conditions of
Theorem 1.36, and thus no contradiction of any kind can be achieved when

. d
taking A" = €},%.

Remark 1.38. In Section 3.4, we classify minimal convex generators as-
sociated to the ellipsoid, as summarized in Proposition 1.32 and Example
1.34. We had hoped we could use the latter generators, which represent more
complicated lattice paths, in our application of the Hutchings criterion to ex-
tend the range our results in obstructing symplectic embeddings of polydisks
into ellipsoids. However, as explained in Remark 3.14, further work is needed
in this direction, as the combinatorial methods developed in this paper are
inconclusive when applied to these more complex generators.

Remark 1.39. For the rest of this paper, we will use dp to denote the power
of er’z that we intend to apply the Hutchings criterion to. This is the “top

power” to consider. We will use d < dg to denote the powers of factors of er’Q.
For brevity, we will use the symbol “<” in place of “<p(4,1),E(be,c)” between
convex generators when a,b and ¢ are specified without ambiguity. And we
will use the symbol “%” o mean “symplectically embeds into.”

Acknowledgements. We would like to thank Michael Hutchings for sug-
gesting this project and for helpful discussions. We thank the referee for their
careful reading and suggestions on how to clarify the results of this paper. Our
2020 Virtual BeECH Group was supported by NSF grant DMS-1840723. Ad-
ditionally, LD was partially supported by NSF grants DMS-1745670, DMS-
1840723, DMS-2104411; JN was partially supported by NSF grants DMS-
1840723, DMS-2104411; and MW was partially supported by NSF grants
DMS-1745670, DMS-2103245.

2. Embedding polydisks into ellipsoids

The main goal of this section is to prove the nontrivial direction of Theorems
1.6, 1.8, and 1.9. In Section 2.1 we provide some formulae for the ECH index
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of several convex generators. Next, we characterize certain convex generators
with fixed endpoints in Section 2.2. In Section 2.3, we explore the restrictions
on the convex generator A for P(a, 1) satisfying A <p(4,1), B(pe/2,c) eg,2, which
is guaranteed to us by the Hutchings criterion, Theorem 1.36, including the
product decompositions of A and er’Q.

We further categorize the product decompositions of A into three scenar-
ios, dependent on distinct combinatorial features. We call them the “trivial
factorization,” the “general factorization,” and the “full factorization” for
easy reference:

1. The trivial factorization is the case where n = 1. By the first condition
of the Hutchings criterion Theorem 1.36, this implies A < A’ = eg?Q. We
will prove the non-existence of such a A in Section 2.4.

2. The general factorization covers the case where 2 < n < dy — 1. In
Section 2.5 we prove Proposition 2.8 that eliminates this possibility
when combined with the primality of d.

3. The full factorization is the case where n = dy. In this case, A} = e, o for
each i € {1,...,n}. We will show in Section 2.6 that this factorization
cannot be achieved.

In Section 2.7 we appeal to the elimination of these factorizations and the
combinatorial restrictions to prove Theorems 1.6, 1.8, and 1.9. The latter
two results are not direct corollaries of Theorem 1.6, but rely on similar
arguments, which we elucidate.

2.1. ECH index formulae

The following lemma provides a shortcut for computing the ECH index of
several convex generators of interest.

Lemma 2.1. Suppose k,m,d are nonnegative integers with d > 1. Then
(i) I(efpefty) = 2(km + k +m),

(ii) I(ek,legffl) =2(km +m),

(iii) I(ex,m)=km+k+m+ ged(k,m),

(iv) I(efhed, 1) = (2k +m)d?® + (2k +m + 2)d.

(v) If ged(p,q) = 1 and p,q € Nsg then I(equ) =pqd® + (p+q+1)d.

Proof. Suppose k, m,d,p,q are as given.
(i) This follows from L(ef gegy) = (k + 1)(m + 1).
(ii) This follows from L(ek’legffl) =m(k+1)+1
(iii) The number of lattice points on the line segment connecting (k,0) and
(0,m), including the two endpoints, is precisely ged(k, m) + 1. Thus

L(e’fyoegfl) + ged(k,m) + 1
5 .
Using (i) this gives I(ex m) = km + k +m + ged(k, m).
(iv) This follows from L(ef%ed, 1) = L(ef%ed 1) + L(e, ) — (d+1), as illus-

trated in Figure 1b, and using (i) and (iii).

L(ehm) =
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(v) This follows from (iii) by taking k¥ = pd and m = ¢d. Figure la shows

how L(ef ,) can be obtained using the same method as in (iii). In this
case, the number of lattice points on the line segment is ged(pd, gd)+1 =
d+1.
Y
i e 1
d( |
Kd - md ¢

(B) The lattice points enclosed by the
trapezoid can be obtained by adding
up those in the rectangle and the tri-
angle and subtracting the repeated
ones on the dotted line.

(A) The triangle encloses half of the
lattice points enclosed by the rectan-
gle, plus some on the slanted line seg-
ment.

d
p,q

kd .d

FIGURE 1. Convex generators e, , and efgeq, ;.

2.2. Combinatorics of ECH generators with fixed endpoints

In this section, for a generator A with fixed z(A) and y(A), we provide rela-
tions that I(A) must satisfy. These inequalities will be used to determine our
obstructions to symplectic embeddings of polydisks into ellipsoids. The argu-
ments presented below are elementary lattice point counts, which boil down
to the convexity requirements as stipulated in Definition 1.22. Recall that the
function a convex generator represents is concave and has non-positive slope
on each segment.

Lemma 2.2. Let xg,yo be positive integers and A be a convex generator with
x(A) = zo and y(A) = yo. Then

(i) I(A) < I(efg 060 1)
(ii) If, in addztzon all edges of A are labeled ‘e’, then I(A) > I(ezy,y)-

Proof. Let xg,yo be positive integers and A be a convex generator with
2(A) = o and y(A) = yo.

(i) By the Definition 1.22, the graph of A must be contained in the area
enclosed by the graphs of e, 4, and e7%ep’; (see Figure 2), thus

L(ezq,y0) < L(A) < L(ef 060 °)-
It follows that
I(A) = 2(L(A) = 1) = h(A) < 2(L(A) — 1) < 2(L(efheqy) — 1) = I(e7heqh)-
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Y
Zo LYo
€1,0%0,1
Yo
A
69607?40
0 X

FIGURE 2. Convex generators ey, 4o, €1pegy, and A with
z(A) = zo and y(A) = yo.

(ii) If we assume that A is purely elliptic, i.e. that all edges of A are labeled
‘e’, then h(A) = 0 and we have

I(exo,yo) = 2(L(€$07yo) - 1) < Q(L(A) - 1) = I(A)
U

Lemma 2.3. Let xg,yo be positive integers and A be a convexr generator
with x(A) = zo and y(A) = yo. If A does not contain an e1 o factor, then
I(A) < I(engaely ')

Proof. Let xg,yo and A be as given. Denote k to be the slope of the first linear
segment (that which intersects with the y-axis) of A. Since A contains no eq 1
factor, k # 0. If f% < k < 0, then since each linear segment of A must
have endpoints with integer coordinates, we must have z(A) > xg, which is

impossible. Therefore, we see that k& < _?107 which implies that the set of
lattice points enclosed by A must be a subset of that enclosed by emoyleg?fl
by convexity (see Figure 3).

Y

Yo—
Yo q €20,1€0,1
Yo — S p

0 x

FIGURE 3. Convex generators exo’legf’fl and A with z(A) =
xo and y(A) = yo that does not contain an ey o factor.

Hence it follows from L(A) < L(ezmlegf’fl) that
I(A) = 2(L(A) = 1) = h(A) < 2(Llexgaefy ) = 1) = I(esg1ef’s ),
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as desired. O

2.3. Restrictions from action and J-holomorphic curve genus

In this section, we study convex generators A such that A <p(4 1), E(pc/2,c) 6272
for some integer d > 1. The action inequality and the J-holomorphic curve
genus inequality of Definition 1.35 allow us to find restrictions on z(A) and
y(A) in relation to a, p, and d. These inequalities, when used in combina-
tion with the ECH index requirement, are crucial to providing obstructions
through the Hutchings criterion.

We first prove a more general result for rational b = p/q and A <p(q,1),E(be,c)

d
P,q°

e
Proposition 2.4. Let a > 1, ¢ > 0 and b = p/q for p,q relatively prime
integers. Let A be a convex generator. Suppose P(a,1) <> E(bc,c) satisfies
pc<qa+p. If A< egﬂ for some d > 1 then y(A) < q¢d.

Proof. From the J-holomorphic curve genus inequality of Definition 1.35, we
have

z(A) +y(A) > pd + qd.
Suppose y(A) > gd. Then the the action inequality of Definition 1.35 gives
pd +agqd < 2(A) +y(A) + (a = Dy(A) = Apa,1)(A) < Ap(epq.0)(€p.q) = ped,
which is a direct contradiction to pc < ga + p. O

With this result, we are ready to derive the inequalities which will be
central to our proofs of the main results.

Lemma 2.5. Leta>1,¢> 0 and b= p/2 for p > 2 some odd integer. Let
A be a convex generator. Suppose P(a,1) < E(be, ¢) satisfies pc < 2a+p. If
AL 6272 then y(A) < 2d and

x(A) —pd S 3d—1—y(A)

20— y(A) = 2d— y(A)
Proof. Proposition 2.4 immediately tells us that y(A) < 2d. Multiplying our

hypothesis pc < 2a + p by d provides pced < 2ad 4 pd. The action inequality
of Definition 1.35 provides:

z(A) + ay(A) = Ap(a,1)(A) < Appe,e (el y) = ped.
Stringing inequalities provides x(A) 4+ ay(A) < 2ad + pd, and so z(A) — pd <
2ad — ay(A). Now, because y(A) < 2d, we factor and divide to get
z(A) — pd
_—t 3
20— y(A) @)
The J-holomorphic curve genus inequality of Definition 1.35 also tells us that
z(A)+y(A) > (p+3)d—1 which can be rewritten as z(A)—pd > 3d—y(A)—1,
and from this we conclude that
x(A) —pd S 3d—1-y(A)
2d—y(A) = 2d—y(A)
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In particular, we have
3d—1-y(A)
_ 4
“ T5d () @

O

2.4. Elimination of the trivial factorization

The Hutchings criterion imposes a condition on each pair of factors A; and
Aj. In particular, it requires A <p(q.1, B(pe/2,c) e;l?Q when the factorization is
trivial. Thus we wish to prove the non-existence of the convex generator A
such that A < er’Q whenever dy > 2,1 < a < (2dy — 1)/dg and p > 4dy + 1.
Lemma 2.5 tells us A < eg?z only if y(A) < 2dy. We split the remaining
possibilities in two cases:

1. The case when dy < y(A) < 2dy as in Figure 4a;
2. The case when 0 < y(A) < dy as in Figure 4b.

In the first case, the relatively large value of y(A) allows A to fulfill the
index requirement of Definition 1.35 with considerable flexibility on z(A),
which prevents the action inequality of Definition 1.35 alone from yielding
the desired result. We will instead appeal to (4), namely that:

3d—1—-y(A)
2d —y(A)

which is the additional information provided by the J-holomorphic curve
genus inequality, to prove obstructions.

In the second case, the smaller value of y(A) forces x(A) to be sufficiently
large in order for A to achieve the same index as ed %. In consequence, we can
derive from Lemmas 2.1 and 2.2, which give 1nf0rmat10n on the ECH index
of A, a restriction on x(A). Combining this restriction with the inequality (3)
derived from action, namely that

a >

z(A) — pd
~ 2d—y(A)’

proves the nonexistence of such A.

x pdo z(N) z
(A) A < e, with do < y(A) < 2do. (B) A < e8% with 0 < y(A) < do.

FIGURE 4. Different cases of A < 6202.
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In the proof of the following proposition, we will handle these two cases
respectively through two claims. The result permits us to eliminate the trivial
factorization of A and also give information on A < egz for d < dy — 1 that
will be useful later.

Proposition 2.6. Let dy > 2,1 < a < (2dy —1)/dy, ¢ >0 and b =p/2 for
p > 4do+1 an odd integer. Suppose P(a,1) < E(bc, ¢) satisfies pc < 2a+ p.
Then the following statements are true:
(i) There exists no convex generator A such that A < 62?2.
(ii) If d € [2,do — 1] and A is a convex generator such that A < et ,, then
y(A) = d.

Proof. We will prove both (i) and (ii) using the following two claims.

Claim 2.6.1. Let dy > 2,1 <a < (2dg—1)/dyg, ¢c>0and b =p/2 for p > 2
an odd integer. Suppose P(a,1) < E(bc, c) satisfies pc < 2a+p. If A is a
convex generator for P(a, 1) such that

e A<el,and d e [2,dyg — 1], then y(A) < d.

e A<el, and d = dy, then y(A) <d—1.

Claim 2.6.2. Let dy > 2,1 < a < (2dy — 1)/dy, ¢ > 0 and b = p/2 for

p > 4dy + 1 an odd integer. Let A be a convex generator. Suppose P(a, 1) <
E(bc, c) satisfies pc < 2a +p. If A < el , for any d € [2,do], then y(A) > d.

Proof of Claim 2.6.1. The right hand side of (4) is monotonically increasing
in variable y(A) on the interval 0 < y(A) < 2d. If 2 < d < dy, suppose for
contradiction y(A) > d + 1, then
2d — 2
=2

a > d—1 s
a contradiction. If d = dy, suppose for contradiction that y(A) > d = d.
Then a > (2dy — 1)/dp, a contradiction, as desired.

Proof of Claim 2.6.2. Fix 2 < d < dy with A < egﬁz, and suppose for con-

tradiction that y(A) < d — 1. By Lemma 2.2(i) and Lemma 2.1(i), (v) we
have
T(A) = I(ej o) = 2+ (p+3)d < 2(x(A) +y(A) +(A)y(A)) = T(e7g efy”).
Rewriting gives
2d*> + d)p + 3d — 2y(A)

2y(A) +2

x(A) > (

Combining this with (3), we get
(2d® — d — 2dy(A))p + 3d — 2y(A)
(2d = y(A)(2y(A) +2)

One can verify that the right hand side is monotonically decreasing with
respect to the variable y(A) on the interval 0 < y(A) < d — 1 whenever

a >
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d> 2 and p > 4dy + 1. It follows that the lowest bound on « is achieved at
y(A) =d — 1, thus
(p+1)d+2
2d2 +2d (d).
But note now that F' is monotonically decreasing with respect to the variable
d. Therefore F(d) > F(dy) since d < dy. Finally plugging in p > 4dy + 1 >
4dy + 1 — 4/dy, yields the desired contradiction:

2d3 +dp—1  2dg—1
g + do do

a>F(d0)2

Now, under the hypothesis of the statement of Proposition 2.6, if d = dy
and A is a convex generator such that A < 6%72, then Claim 2.6.1 tells us that
y(A) < d —1, but Claim 2.6.2 implies y(A) > d. This is a contradiction,
proving (i). On the other hand, if d € [2,dy — 1] and A is a convex generator
such that A < ef,, then Claim 2.6.1 and Claim 2.6.2 show d < y(A) < d.
This proves (ii). O

Remark 2.7. Proposition 2.6(i) provides a sufficient condition for when the
trivial factorization of A is impossible, and Proposition 2.6(ii) further restricts
the remaining possibilities of A satisfying A < 6%72 for d € [2,dy — 1], which
we turn our attention to in the next section.

2.5. Elimination of the general factorization

We now aim to eliminate the possibility of A having the general factorization,
that is, A = ] ; A; for some 2 < n < dy — 1 satisfying the Hutchings
criterion, Theorem 1.36. Corresponding to this factorization of A, we would
have A’ = ef%) =[], A}, where A, = el, for each i € {1,...,n}.

Under our hypothesis that dy is an odd prime number, not all A can
be the same in this factorization. On the other hand, the second condition of
the Hutchings criterion forces A} and A to be the same whenever A; and A,
share a common factor of the form eg .

In the proof of Proposition 2.8 below, we use this observation to arrive
at a contradiction, which allows us to eliminate the possibility of the general
factorization.

Proposition 2.8. Let dy > 3 be a prime number. Let 1 < a < (2dy — 1)/dy,
¢ >0 and b = p/2 for p > 4dy + 1. Suppose P(a,1) < E(be, ¢) satisfies
pc < 2a+ p. If there exists a convex generator A, positive integer 1 < n < dy

and factorizations A = [, A; and eg?z =11, ezfz satisfying the three

conditions in the Hutchings criterion, Theorem 1.36, then n € {1,do}.
Proof. We first prove the following claim:

Claim 2.8.1. Let d > 1,1 < a <2, ¢ >0 and b = p/2 for an odd integer

p > 4d— 3. Let A be a convex generator. Suppose P(a, 1) < E(be, ¢) satisfies
pc<2a+p IfAL eg’Q and y(A) = d, then A contains an e ¢ factor.
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Proof of Claim 2.8.1. If A < eg’Q with y(A) = d, note first that the J-
holomorphic curve genus inequality of Definition 1.35 gives x(A) + y(A) >
(p+3)d — 1 hence z(A) > (p+ 2)d — 1. The action inequality of Definition
1.35 gives
z(A) + ad = 2(A) + ay(A) < ped < 2ad + pd,

hence z(A) < (p+a)d < (p+2)d, so z(A) < (p+2)d — 1 since (p+ 2)d is an
integer. Thus we must have z(A) = (p + 2)d — 1.

Now suppose for contradiction A contains no e; o factor. By Lemma 2.3,

I(A) < I(%(A),leg,(f\)_l) = I(e(pr2ya-1,1€01")-

By the index requirement of Definition 1.35, I(A) = I(efl ;). Combining
this with the inequality above and the index formulae of Lemma 2.1(ii), (v)
gives

2pd® + 4d® = I(e(prapa—r,1€01") = I(A) = I(el ;) = 2pd® + (p + 3)d,
which implies that p < 4d — 3, a contradiction.

Let dg, a,p be as given in the statement of Proposition 2.8. Note that
if d = d; for any i € {1,...,n}, then a,d,p also satisfy the hypothesis of
Claim 2.8.1. Because the factorizations of A and ed“2 satisfy the Hutchings

criterion, A; < ep2 for all 4 € {1,...,n}. If d; > 2, then by Proposition
2.6(i1), y(A;) = d;, which implies that A must have an e; o factor by Claim
2.8.1. If d; = 1, then either y(A;) = 0, where A; = e} ; for some integer r, or
y(A;) = 1, which again by Claim 2.8.1 implies that e o is a factor of A;. We
conclude that all A; share an elliptic orbit in common, hence in particular
d; = d; for every i,j € {1,...,n}. This happens only if n divides dy. But
dy > 3 is prime, so n could only be 1 or dy, i.e., the general factorization is
impossible. (I

2.6. Elimination of the full factorization

Another possible outcome of applying the Hutchings criterion to A’ = ez?z

is that we obtain a A and factorizations A’ = e, 2---€,2 and A = H?il A
that fulfill the three requirements of Theorem 1.36. In particular, each A;
should satisfy A; <p(a,1),E(pc/2,c) €p,2, and I(AjA;) = I(eijg) for all i,j €
{1,...,do}.

We prove below the non-existence of such A by showing that these two
conditions cannot be satisfied at the same time under our hypothesis.

Proposition 2.9. Let dy > 3 be given. Let a > 1, ¢ > 0 and b = p/2 for
p > 2 an odd integer. Suppose P(a, 1) < E(be, ¢) satisfies pc < 2a+p. If there
exists a convex generator A, positive integer 1 < n < dy and factorizations

= [, A; and 62?2 = II, eijé satisfying the three conditions in the
Hutchings criterion, Theorem 1.36, then n # dg.
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Proof. Suppose for contradiction n = dp, we have A; < ell)’2 and I(A;A) =
I(e2,) for all i,j € {1,...,do}. By Proposition 2.4, y(A;) can either be 0 or
1. Thus we have three possibilities:
1. At least 2 of the y(A;) are 0. Say y(A1) = y(A2) =0, hence A; = Ay =
efg+3)/2. Then

I(A1Ag) =6p+6 #10p+6 = I(c, 5)

using Lemma 2.1(ii). This is a contradiction.

2. Only one of the y(A;) is 0. Say y(A;) = 0 and y(A3) = y(A3) = 1, hence
A= e(1?§+3)/2 and A; = e]ffoemhl with 4k; +2m; = 3p+ 1 for i = 2, 3.
We must have ko = ks = 0, otherwise for either i = 2 or i = 3, Ay = A;
since they share the elliptic orbit ej o, contradicting y(A;) = 1. This
forces mg = m3 = (3p+1)/2 hence Ag = As. Then using Lemma 2.1(ii)
we obtain

I(AsA3) =9p+7=10p+ 6 = I(c ,).

This implies that p = 1, a contradiction.
3. Assume y(A;) = 1 for all i € {1,...,dp}, hence A; = e’ffoemi’l with

4k; +2m; = 3p+ 1 for 1 <i < dp.

Ifk; =k; =0fori # j,then A; = A; = e, 1 where m = (3p+1)/2,
and the computation in case 2 shows I(A;A;) = I(e2 ,) implies p = 1,
a contradiction.

If k; # 0 and k; # 0 for ¢ # j, then A; = A; = e’f,oeml as they
share the elliptic orbit e; g. Then

I(AA;) =12k +6m+4=9p+7=10p+6 = I(e; 5)

using Lemma 2.1 (ii). Again this implies p = 1, a contradiction. By the
pigeonhole principle, these two cover all the cases when y(A;) = 1 for
all 7+ < dy since dy > 3.

O

2.7. Proofs of the main results

We are ready to present the proof of Theorem 1.6.

Proof of Theorem 1.6. As in the theorem statement, let dy > 3 be a prime
number. Let 1 < a < (2dy — 1)/do, ¢ > 0 and b = p/2 for some odd integer
p > 4dy + 1. Suppose instead P(a, 1) < E(bc, c) with pc < 2a + p, i.e. the
embedding is not a trivial inclusion.

We apply the Hutchings criterion, Theorem 1.36, to the minimal convex
generator eﬁ% of E(be,c) to obtain A, a positive integer n < dy, and factor-
izations A = [[I_; A; and €%, =[]\, el, satisfying the three conditions of
the Hutchings criterion.

By Proposition 2.6(i), A < 62?2 is impossible, so n # 1.

By Proposition 2.9, n # dy.

By Proposition 2.8, however, n can only be 1 or dy. This is a contradic-
tion.
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Therefore, A does not exist and we must have pc > 2a + p, or a + b <
be. O

As stated previously, the next two theorems, which we shall now prove,
provide obstructions when p is smaller.

Proof of Theorem 1.8. As in the theorem statement, let 1 < a <4/3,¢ >0

and b = p/2 for some odd integer p > 2. Suppose instead P(a, 1) < E(bc, c)
with 2a 4+ p > pc. Let dg > 2 be given. Suppose A < eg’Q for an arbitrary
integer 2 < d < dy. We will use Lemma 2.5 to show that no such A exists.

If y(A) =0, then A = ef§+(p+3)d/2 by index computation. Inserting
z(A) = pd® + (p+3)d/2
in (3) gives, since p > 3 and d > 2,
S (2d—1)p+3 <
— 2
If y(A) > 0, by Proposition 2.4 we know that y(A) < 2d. Then since (4)

is monotonically decreasing in y(A) for any d > 2, plugging in y(A) = 1 gives
the lowest bound:

3.

3d—2 S 4
“Cu-17 3

for any d > 2. We now apply the Hutchings criterion, Theorem 1.36 to

the minimal convex generator e;'ff’2 for E(bc,c) with dyg = 3 to obtain A, a

positive integer n < do, and factorizations A = []'_; A; and el = []I, et
satisfying the Hutchings criterion. By the above argument, n cannot be 1 or 2.

Also by Proposition 2.9, n # dy. Thus no such A exists, a contradiction. O

Proof of Theorem 1.9. As in the theorem statement, let 1 < a < 3/2,¢ >0
and b = p/2 for some odd integer p > 7. Suppose instead P(a, 1) < E(be, )
with 2a 4+ p > pc. Let dy > 2 be given. Suppose A < eg’Q for an arbitrary
integer 2 < d < dy. We will use Lemma 2.5 to show that no such A exists.
2
If y(A) =0, then A = eﬁ':io HP+3)4/2 Gince p > 3 and d > 2, substituting
z(A) = pd*> + (p+ 3)d/2 in (3) gives
2d — 1
a > # Z 3.
If 2d > y(A) > 2, then since (4) is monotonically decreasing in y(A) for any
d > 2, plugging in y(A) = 2 gives the lowest bound:
,o3d=3_3
2d—2 2
Finally, if y(A) = 1, by Lemma 2.2(i),
I(A) =1(ef ) =2pd® + (p+3)d < 4z (A) + 2,

and )
2pd d—2
r(a) > 2EH@EIIZ2 (5)
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Plugging (5) and y(A) =1 in (3), we get

2 _ 2 _ _
(2 —3dp+3d—2  Td—9d—1

@ 8d—14 =T 42

N W

since p > 7 and the function is monotonically increasing in variable d when
d > 2. We now apply the Hutchings criterion, Theorem 1.36 to the minimal
convex generator eﬁ"z of E(bc,c) with dg = 3 to obtain A, a positive integer

n < dy, and factorizations A = [[;_; A; and e, do — T, egfz satisfying the
Hutchings’ criterion. By the above argument, n cannot be 1 or 2. Also by
Proposition 2.9, n # dy. Thus no such A exists, a contradiction. O

3. Prospects on extending Theorem 1.6 via the
Hutchings criterion

In this section we discuss the scope of the Hutchings criterion as it pertains to
obstructing symplectic embeddings of polydisks into ellipsoids. In Section 2,
we proved our main theorems by checking the Hutchings criterion, Theorem
1.36, against the minimal convex generator eg?q for E(be,c), where b = p/q
with ¢ = 2 and p odd, which gave obstructions to symplectic embeddings
of P(a,1) into E(bc c) In Section 3.2, we show our method of using the
minimal generator e , for E(be, ¢) cannot provide obstructions in the same
way if the restmctlons on the a and p values are weakened respectively to
1 <a < (2dyg — 1)/dog + ¢ for any positive € and p > 4dy — 1. In Section
3.3, we show that the use of the minimal generator egoq cannot be used to
obstruct embeddings of polydisks P(a,1) into ellipsoids E(bc,c) if b = p/q
for any coprime integers p > g > 3.

In particular, our Propositions 3.4-3.6 demonstrate that the restrictions
on a and b in Theorem 1.6 are optimal with respect to the use of the minimal
convex generator e , for E(pc/2,c) in the Hutchings criterion. The proofs
of Propositions 3. 4 3 6 rely on certain combinatorics of convex generators,
which we provide in Section 3.1. Of particular interest is Lemma 3.3, which
encodes the combinatorial information of a given generator A with respect to
its index I(A) and endpoint values x(A), y(A). This lemma provides classes
of abstract examples satisfying the Hutchings criterion, leading to the limi-
tations we establish on the Hutchings criterion with respect to the minimal
convex generator ed‘J

It remains to consider alternate minimal convex generators for the el-
lipsoid which realize more complex lattice paths. In Section 3.4, we inves-
tigate this possibility. Proposition 3.9 provides an abstract description for
all minimal convex generators for the ellipsoid FE(be,c¢) for any real num-
bers b > 1,¢ > 0, and Proposition 3.13 extracts more information for the
case where b is a half-integer and provides an explicit form for the minimal
convex generators for E(bc,c). However, as explained in Remark 3.14, the
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combinatorial methods developed in this paper are inconclusive when ap-
plied to these more complicated convex generators, indicating an avenue for
further research.

3.1. Achieving arbitrary index through maximal generators

To develop examples demonstrating the limitations of the Hutchings criterion
when applied to the minimal convex generator ez?z for the ellipsoid, it is key
to first construct abstract examples of generators of arbitrarily large index.
We construct these examples by utilizing the ability to “transform” non-
integral convex paths to integral convex paths, as in Definition 1.22, so that
they exactly enclose identical sets of lattice points.

Definition 3.1. Let I' be a convex path in R?. We say a convex integral
path A is mazimal under T" if A encloses precisely all lattices points in the
first quadrant enclosed by T, including those on T'.

The existence and uniqueness of maximal generators under a convex
path is guaranteed when a certain integral condition is met:

Lemma 3.2. Given a convex path I such that each linear segment of I' passes
through an integer lattice point, there exists a unique convex integral path A
that is maximal under T.

We note that a convex path I' satisfying the hypothesis of Lemma 3.2
need not be a convex integral path. The idea of the proof is to ensure that
the convex hull of the set of points enclosed by I" can be enclosed by a convex
integral path.

Proof. Any convex integral paths A, A’ that are maximal under I" enclose
the same set of lattice points, therefore uniqueness is evident from convexity.
It remains to prove existence.

We explicitly construct such a convex integral path A as follows. Let n
denote the maximal y-coordinate of lattice points enclosed by I'; including
those on the boundary. For all integers 0 < k < n, we pick the largest integer
xy, such that the lattice point (x, k) in the first quadrant is enclosed by T'.
For every k > 0, we may choose a positive integer k' so that 0 < k¥’ < k and
the slope m of the line joining (xx, k) and (zj, k'), is the largest amongst
those obtained from joining (zg, k) with any other (zj,k’). Note that the
slope m can be negative infinity.

Set A = egf}). We then proceed inductively from k = n, where in each
step we choose k' as in the procedure above, and add an €,/ —ax,k—k factor
to A. We repeat this process starting from the new &k’ and stop when k¥’ = 0.
The process terminates in at most n steps. Note that in each step, the slope of
the new elliptic orbit added is always less than any previous ones, otherwise
this would contradict maximality of the slope in the previous step. Thus the
formal product A is geometrically exactly the convex integral path connecting
the chosen (zy, k). It follows that A encloses all the lattice points enclosed
by T. O



Symplectic embeddings of polydisks into half integer ellipsoids 27

Using the above procedure, we prove the following lemma by building
a convex path subject to the lattice requirement.

Lemma 3.3. Let integers xg,yo > 0 be given. Let L be an integer satisfying
L_ = L(eaq,y,) < L < L(eyed?y) =: Ly

Then there exists a convex generator A satisfying x(A) = xo, y(A) = yo and
L(A)=L.

Proof. Write m = —yo/z9. We denote S to be the set of all lattice points
(z,y) in the first quadrant such that (z,y) is enclosed by e]%eq’ but not by
€x0,y0- FOr each lattice point (x,y) € S, there exists a unique line of slope m
passing through (x,y), which we will denote n(z,y). We put an ordering on
S by asserting that (z1,y1) < (z2,y2) if and only if

mry — Y1 < M2 — Y2
Oor Mmxip — Y1 = Mmxz — Y2, T1 < Ta

Geometrically, we are arranging the lattice points in S into subclasses de-
termined by the linear equation 7n(z,y), among which we then sort using
the z-coordinate. Intuitively, this ordering on S gives us the order in which
to “add” points to the convex generator ey, ,,, one at a time to maintain
convexity, which we will now rigorously show.

By definition, it is clear that < is a strict total order. Note that S con-
tains L, — L_ distinct points. Thus there exists a unique order isomorphism
from (S, =) to [1, L+ — L_] N Z with the usual ordering.

Now, let (2/,y") € S be the element corresponding to L — L_ via the
order isomorphism. Consider n(2’,y’), which may pass through multiple el-
ements of S. We may rotate n(a’,y’) clockwise about the point (z,%’), by
a small angle, to obtain a new line 7/, such that n’ encloses precisely every
lattice on and under 7n(z’,y") in the first quadrant except for those both on
the line n(z’,y’) and to the right of (z’,3’). An example of this procedure is
given in Figure 5

We can obtain the 1’ in the way described above because Z? is discrete
and the number of lattice points enclosed by n(z’,y’) in the first quadrant
is finite. Note that the slope m’ of 1’ satisfies —co < m’ < m < 0 by
construction. We thus denote A the region in the first quadrant enclosed by
7', the vertical line © = xg and the horizontal line y = yo, and we denote T’
the convex path on the boundary 0A removing those on the x, y-axes. By
Lemma 3.2, there exists a purely elliptic convex generator A that is maximal
under A. By maximality, 2(A) = xg, y(A) = yo, and A encloses precisely:

e Each of the lattice points under e, y,;

e Each of the elements (z,y) € S satisfying ma — y < ma’ — ¢/;

e Each the elements (z,y) € S satisfying mz —y = ma’ —y' and © < 2/.
There are precisely L_ = L(ey,,y,) €lements in the first category, while there

are precisely L — L_ elements in S preceding (z/,y’), as in the second and
third categories combined. We conclude that L(A) = L, as desired. ]
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YA

[0/e)
)

FicURE 5. In this example, g = 8 and yyo = 4. Note that
(4,3) € (S, =) corresponds to 6 under the given order isomor-
phism, and we can rotate 7(4,3) according to the described
procedure to obtain 7/, which encloses precisely 6 points in

S.

3.2. Limitations of er’Q for obstructing polydisk embeddings into
E(pc/2,c¢)
We now address the limitations of our method by investigating two key steps
in the proof of Theorem 1.6, namely Claims 2.6.1 and 2.6.2 of Proposition
2.6, where the restrictions a < (2dy — 1)/dp and p > 4dy + 1 naturally arise.
Claims 2.6.1 and 2.6.2 establish conditions on the existence of a trivial
factorization coming from the Hutchings criterion in terms of certain require-
ments on P(a,1) and E(pc/2,c). We first prove that if we extend the upper
bound a < (2dy —1)/dy by any positive amount, Claim 2.6.1 no longer holds:

Proposition 3.4. Let e > 0, dy > 2, a = (2dy — 1)/do + &, ¢ > 0, and
b=1p/2 for p > 2 an odd integer. If we assume 2a +p —e/2 < pc, then there
always exists a convex generator A such that A < er’Q.

Remark. Note that the hypothesis on b,c,p,dy in Proposition 3.4 is the
same as in Claim 2.6.1 except that we changed 1 < a < (2dy — 1)/dy to
a = (2dp — 1)/do + €. The inequality

2a+p—¢/2 <pc<2a+p,
corresponds to when the domain P(a, 1) does not trivially include into E(pc/2, ¢).

Proof. We claim that there exists a purely elliptic A with z(A) = (p+2)do—1,
y(A) = dOa and
I(A) = I(ef) = 2pd + (p + 3)do.
To see this, note first that since dg > 2, we have ged(z(A),y(A)) = 1,
so indeed using Lemma 2.1(i) and (iii),

(p+2)dB3+(p+2)do = I(en(ayyin) < I(e®y) < (] el ) = 2(p+2)d2+2(p+2)do—2,
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which implies
z(A A
Lleaum) < Lleg) < L(e5'5 ef)-
By Lemma 3.3, this proves the existence of A. We now argue that A < e

To see that the J-holomorphic curve genus inequality of Definition 1.35 holds
note that

2(A) +y(A) = (p+3)dog— 1> (p+3)dy — 1.
Further, recall that AE(pC/Q,C)(eg?Q) = pcdyp, thus the action inequality of
Definition 1.35 is satisfied since

AP(a 1)(A) = JC(A) + ay(A) = (p + 4)d0 — 2+ edy = 2ady + pdy — edy,

which holds by the hypothesis 2a + p — e < pe. This shows that A < e, as

desired.

p2’

We similarly examine the conditions on p mandated by Claim 2.6.2. We
show that if we decrease the lower bound on p > 4dy+1 by taking p = 4dy—3,
the second largest odd integer after 4dy+ 1, then Claim 2.6.2 no longer holds.

Proposition 3.5. Let dy > 2, a = (2dy — 1)/dy, ¢ > 0 and b = p/2 for

dog—1
2a4+p— < pc,

d2
then there always exists a convexr generator A such that A < e %

Remark. Note again that the hypothesis of Proposition 3.5 is consistent
with that of Claim 2.6.2 except that p = 4dy — 3 < 4dy + 1.

Proof. We claim that there exists a purely elliptic A with z(A) = (p + 2)do,
y(A) = do — 1, and

I(A) = I(€}%) = 2pd3 + (p + 3)do.
First note that ged(z(A), y(A )) 3 since z(A) = (4do+3)y(A)+3, so indeed,
using p = 4dyp — 3 and Lemma 2.1(i) and (iii),
I(eanypw) < ()i +do+2 < I(e)%) < 1(e7g epy”) = 2p+2)dg+2do

The inequalities in the hypothesis of Lemma 3.3 are satisfied, proving the
existence of such A. We now argue that A < eﬁ?z. The J-holomorphic curve

genus inequality of Definition 1.35 between A and eﬁ?z holds as
2(A) +y(A) = (p+3)do — 1 > (p+3)do — 1.

Further, recall that AE(pC/Q,C)(eZ?Q) = pcdy, thus the action inequality of
Definition 1.35 is satisfied since

0o—1

——d
d% 05

which holds by hypothesis. This shows that A < eZ?Q, as desired. (]

AP(a,l)(A) - 1’(A) + ay(A) = pd(] + 2d0 + ado —a = 2ad0 —|—de —
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With the application of the Hutchings criterion in mind, Propositions
3.4 and 3.5 imply that the trivial factorization is always possible under their
respective hypotheses. That is, no contradiction of any kind can be achieved
to obstruct a nontrivial embedding P(a, 1) < E(pc/2,c) satisfying respec-
tively 2a +p — e < pc < 2a+p and 2a + p — O(dy*) < pe < 2a + p. Thus,
applying the Hutchings criterion, Theorem 1.36, to the minimal generator
edo, for any dy > 2 will not produce an obstruction for any a > (2dy — 1) /dy

P,2
or p < 4dy + 1 beyond the stipulations of Theorem 1.6.

3.3. Limitations of eg?q for obstructing polydisk embeddings into

E(pc/q;c)

We now illustrate the difficulties in extending our result to rational b = p/q
using the combinatorial tools employed in the proof of our main theorems.
Although Proposition 2.4 provides the general result that A < equ is possible
only when y(A) < gd, the increasing value of ¢ > 2 prevents further restric-
tions on y(A) from the action and J-holomorphic curve genus inequalities
of Definition 1.35. Thus we are unable to provide statements analogous to
Proposition 2.6 for ¢ > 2.

The following result shows that if we allow b to be an arbitrary ratio-
nal number, then the trivial factorization is always possible, hence no ob-
structions to nontrivial embeddings of P(a,1) into E(bc, c) can be obtained
through the Hutchings criterion when applied to eg?q.

Proposition 3.6. Let dy > 2, a = (2dy — 1)/dy, ¢ > 0, and b = p/q for

p>q >3 and p,q coprime integers. If we assume

(¢-3)(do—1) _
2dy

then there always exists a convex generator A such that A < eg?q.

qa+p— pe,

Remark. Note that we take a to be its greatest value allowed by Theorem
1.6, which is less than 2. The inequality

(¢ —3)(do —1)
2dy

corresponds to when the domain P(a, 1) cannot trivially include into E(pc/q, c).

qa +p — <pc<qa+p

Proof. We claim that there exists a purely elliptic A with y(A) = [%] do,
z(A) = (p+q+1)do —1— [2] do such that A < eg?q. We prove the existence
of such A separately with two cases: ¢ even and ¢ odd.
1. Suppose q is even. Then y(A) = 2dy and x(A) = pdo + 2do +do — 1. We
first show the existence of A with
I(A) = 1(e},) = padg + (p + g + 1)do.
By Lemma 2.1(i),

2
z(A A q
I(e7VeyV) = (pq +o q> B2+ (q+2p+2)do — 1.
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2
I(EW ™) — p(eto ) = (q ; q) B+ (p+1)dy—1>0,

p,q 2

implying I(efo,) < I(el(A) y(A))
Next, usmg Lemma 2. 1(111) and the fact that ged(z(A),y(A)) <
y(A), we get
I(eaa)yay) = 2(A) +y(A) + 2(A)y(A) + ged(z(A), y(A))
< z(A) +2y(A) + z(A)y(A)

=<pq++ )d3+(p+q+1)do—1.

Subtracting I (enq) from the quantity in the last line above we get
(—2pg + ¢* + g)df — 4
4

implying I(ey(a)ya)) < I(ef,). It then follows from Lemma 3.3 that
A exists. Now, the J- holomorphlc curve genus inequality of Definition
1.35 holds because

2(A)+y(A) = (p+q+1)dg—1 > (p+q+1)dg—1 = x(eg?q)w( )+m( epy)—1.

Further, recall that Apgp. /q70)(eg?q) = pedy, thus the action inequality
of Definition 1.35 is satisfied since

Apa1)(A) = z(A) + ay(A)

<0,

—2)(dg — 1
= gady + pdo — (g=2)(do—1) )do
2dy
—3)(dp —1
< qady + pdy — wdo < pcdy,
2dy
where the last inequality holds by the hypothesis. Thus we have A <
edo
p.a-

2. Suppose ¢ is odd. Then y(A) = %do and z(A) = pdo + %1(10 —1. The
rest of the steps are similar to the previous case. One can check that
ey pn) < 1efey) < 175 ef).

Thus by applying Lemma 3.3 we prove the existence of A with these
z(A) and y(A) values and I(A) = I(efo, ). Again, the the J-holomorphic
curve genus inequality of Definition 1 35 holds because

(M) +y(A)=(p+q+1)do—1> (p+q+1)do — 1.
Finally, the action inequality of Definition 1.35 is satisfied since

(¢ —3)(do — 1)

Ap(a,1)(A) = gady + pdo — 2dg

do < pedy = AE(?C/qﬁ)(eg?q)'

We again conclude A < ep o
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Remark 3.7. Note that in Proposition 3.6 we require ¢ > 3 because in this
case there is a nice general formulation of A satisfying A < eg?q. One can
easily construct explicit examples of A < eg?q for ¢ = 3 by modifying the
value of y(A).

3.4. Classification of minimal generators for the ellipsoid

To understand the extent to which the Hutchings Criterion, Theorem 1.36,
applies to a symplectic embedding problem, it is necessary to understand the
minimal convex generators for the target of interest. In this section, we clas-
sify all minimal convex generators for the ellipsoid E(be, ¢) in Proposition 3.9,
where b > 1, ¢ > 0 are any real numbers. Proposition 3.9 provides a converse
to [Hul6, Lem. 2.1(a)] and generalizes the result of [CN18, Lem. A.3], which
considers the case b = 1. We then specialize to the b = p/2 case, and provide
an explicit formula for the minimal generators of half integer ellipsoids in
Proposition 3.13.

Recall that a convex generator A is minimal (Definition 1.30) for a
convex toric domain Xgq if A is purely elliptic and A uniquely minimizes the
symplectic action Ag among all purely elliptic convex generators of the same
index. Moreover, the symplectic action of minimal generators is related to
ECH capacities as follows.

Remark 3.8. If I(A) = 2k and A is minimal for Xq, then Ag(A) = ¢, (Xq),
by [Hul6, Prop. 5.6].

We obtain the following characterization of minimal generators for the
ellipsoid:

Proposition 3.9. Let b > 1, ¢ > 0. Let A be any purely elliptic convex
generator, and n the line of slope —1/b tangent to A. Then A is minimal for
the ellipsoid E(be,c) if and only if A is mazimal (cf. Lemma 3.2) under 7.

We first present a proof of Propositon 3.9 relying on ECH capacities,
after which we will present a purely combinatorial proof.

ECH capacities proof of Proposition 3.9. Let A be a convex integral lattice
path that is not maximal under any line of slope —1/b. By Example 1.29,
the action of A equals that of the maximal generator A’ under some such line
1 tangent to both A and A’. The path A’ is uniquely maximal, so A must
enclose fewer lattice points than A’ does.

Assume A encloses i fewer lattice points than A’. Let j be the number
of lattice points on 1 (which all must be on A’). We have i < j because if
1 > j then the action of A is strictly greater than the action of the maximal
generator under the next line below 7 of slope —1/b passing through a lattice
point in the first quadrant. This lower action is the k" ECH capacity of
E(be,c) for k = I(A')/2 — j by [Hull, Prop. 1.2]. However, if ¢ > j then
k > I(A)/2 —4i = I(A)/2. Since ECH capacities are increasing, we have
crny/2(E(be,c)) < cx(E(be, c)), which is strictly less than the action of A,
and so A cannot be minimal as its action does not equal cy(a)/2(E(bc, c)).
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Now we may assume 7 < j. Number the lattice points on 7 from 1 to j
from the upper left to lower right. We cannot have j = 1, because by i < j,
the path A could not then be tangent to n because they do not share any
lattice points. Therefore there are at least two other convex integral lattice
paths with the same action as A and enclosing the same number of lattice
points: the convex hull of the set of points strictly enclosed by n and including
{1,...,j —i} and the convex hull of the set of points strictly enclosed by 7
and including {i +1,...,j}. At least one of these is not A, so A cannot be
the unique convex integral lattice path with its action amongst lattice paths
enclosing I(A)/2 + 1 lattice points. Thus A certainly cannot be the unique
minimizer of its action amongst this set of lattice paths, and thus cannot be
minimal. (]

To give a purely combintorial proof of Proposition 3.9, we first set up
some notation. Fix b > 1 and ¢ > 0. For an integer lattice point Q = (z,y)
in the first quadrant, let A(Q) denote the E(be,¢) action of Q,

A(Q) = cx + bey.

Let n¢g denote the line of slope —1/b that goes through @, and let Ay denote
the unique, purely elliptic, convex generator, maximal under 7g, given by
Lemma 3.2. Define the quantity L(Q) = L(Ag) to be the number of lattice
points enclosed under Ag. Lastly, write

S={LQ):QeN}CN
to be the set of all indices of integer lattice points in the first quadrant N2.

Warning. We note that the definitions of A(Q), ng, Ag, L(Q) and S all
implicitly depend on the parameters b > 1 and ¢ > 0, as the domain E(bc, ¢)
is unambiguous. Additionally, when describing a convex generator A, we will
use “minimal” in short of “minimal for the ellipsoid E(bc,c)”.

The purely combinatorial idea behind Proposition 3.9 is as follows. By
definition, a minimal convex generator of a given index is unique when it
exists, which prompts us to classify minimal generators by index. By [Hul6,
Lem. 2.1(a)], each A¢ is minimal, hence for k € S the classification of minimal
generators of index 2k follows directly by noting that I(Ag) = 2L(Ag) =
2L(Q). For k ¢ S, we use tools similar to those developed in Lemma 3.3 to
construct two distinct purely elliptic convex generators of index 2k that both
minimize the ellipsoid symplectic action. To do so, we interpret symplectic
action in terms of the following:

Lemma 3.10. Fix real numbers b > 1 and ¢ > 0. Given a convex generator
A, we have

AE(bc,c) (A) = Q Hrllgz*(r AA(Q)v (6)

where the mazimum is taken over all lattice points Q) enclosed by A. In par-
ticular, for a lattice point Qo € N2, we have AEBbe,e)(Ag,) = A(Qo).
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Proof. Among all lattice points @ enclosed under A, A(Q) is maximized when
the line ng is tangent to A. Therefore, (6) follows from Example 1.29 and the
definition of A(Q). The rest of the lemma follows from the observation that
ng is, by construction, tangent to Aq. O

The following equivalences illustrate a close relationship between 7g,

Ag, L(Q), and A(Q).

Lemma 3.11. Fiz real numbers b > 1,¢ > 0, and let Q1, Q2 € N? be two
lattice points. The following are equivalent:

1. A(Q1) = A(Q2),

2. 1Q, = NQa>

3. Ao, = Ag,,

4- L(Q1) = L(Q2).
Further, A(Q1) < A(Q2) precisely when L(Q1) < L(Q2), which happens
precisely when ng, is strictly below the line ng, .

Proof. Note that the quantity A(Q) is a multiple of the y-intercept of ng
by the constant b - ¢, hence (1) and (2) are equivalent. By the uniqueness
statement of Lemma 3.2, (2) implies (3). By definition, (3) implies (4).

We now argue that (4) implies (2). If ng, # n¢,, then since they are lines
of the same slope, one must have a larger y-intercept, say ng,. Now, since
by definition they go through a lattice point, the maximal convex generator
A, encloses strictly more lattice points than Ag,, which shows that L(Q1) >
L(Q2). The last statement of the lemma follows similarly from definition. O

We can now consider the base when b is irrational.

Lemma 3.12. Fiz real numbers b > 1 and ¢ > 0. The set S = N if and only
if b is irrational.

Proof. If b = p/q, with p,q € N, select any = € N, with = > p, and select
some y € N large enough so that that L(z,y) > 1. By Lemma 3.11, we have
L(z,y) = L(x—p,y+q). In this case, we have L(z,y)—1 ¢ S. This is because
if L(z,y) —1 = L(Q) for some @, then g is strictly below the line 7, ,. But
then 7¢ misses at least two lattice points (x,y) and (z —p, y + ¢). Therefore,
L(z,y)—1¢ S,andso SC Nifbe Q.

Now suppose b ¢ Q. We cannot have L(z,y) = L(z,y') for distinct
(z,y) # («',y') since otherwise b is the ratio of integers (z — ') /(y' — y) by
Lemma 3.11. Therefore if k € S, then k—1 € S. The claim S = N now follows
from the fact that S is unbounded, as L(N,0) > N for any N € N. O

Combinatorial proof of Proposition 3.9. The if direction is the content of [Hu16,
Lem. 2.1(a)], we now prove the converse. Let A be a minimal convex gen-
erator. We will show that A is maximal under 7. Let k& denote the inte-
ger L(A). By definition, a minimal convex generator of a given index is
unique when exists, therefore if £k = L(Q) € S we must have A = Ag, since
L(Ag) = L(Q) = k and Ag is minimal. Note that combining with Lemma
3.12 this already proves the proposition for the case when b is irrational.
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It suffices to consider when k ¢ S. For this case, we construct two
distinct convex generators, A; and As, both of index 2k, such that both
minimize the ellipsoid symplectic action among all generators with index 2k.
Choose @ to be a lattice point such that L(Q) > k is the smallest element in S
greater than k. This can be done since S is unbounded. Let Q1, ..., Q,, € N? be
all of the lattice points such that L(Q;) = L(Q). Using Lemma 3.11, we have
L(Q) —n < k by the minimality of L(Q) > k in S. Define m = L(Q) — k < n.
We define two orderings <, <, on the set of integer lattice points N2, in the
spirit of Lemma 3.3,

Q1 =1 Q2 = L(Q1) < L(Q2) or (L(Q1) = L(Q2), 71 < x2);
Q1 22 Q2 = L(Q1) < L(Q2) or (L(Q1) = L(Q2),r1 > 72).

Both <7, =<5 are strict total orders. Thus we may rearrange the @); such that
Q; =1 @, whenever i < j. Now by the definition of <5 (and the fact that
L(Q,) = L(Q;)) it follows that Q; <2 @, if and only if ¢ > j. By the proof of
Lemma 3.3, we obtain two purely elliptic convex generators A1, Ao, such that
A1 encloses exactly all Q@ € N2 with Q =<1 Qn_m, and Ay encloses exactly
all @ <o Q. Specifically, A; is achieved as the maximal convex generator
under the line g rotated by a sufficiently small amount clockwise at the
point @p—m, and Ay maximal under 7¢g rotated counterclockwise at @,
both of which can be done since the number of lattice points enclosed by 7¢g
in the first quadrant is finite. Note that A; £ As since 0 < m < n. Note also
that by construction L(A;) = L(As) = L(Q) — m = k, since each A; omits
precisely m points that are enclosed under ng.

We examine the symplectic action of A; and As for the ellipsoid E(bc, ¢).
Since A(Qn-m) = A(Qm) = A(Q) by the equivalence in Lemma 3.11, we see
that by equation (6), Ag(pe,c) (A1) = Ap(pe,e)(A2) = A(Q). If A is a generator
with Appe,e)(A) < A(Q), then by equation (6) for every Q' enclosed by
A, we have A(Q') < A(Q), which implies that L(Q') < L(Q) by Lemma
3.11. But there are at most L(Q) — n many such lattice points @Q’, hence
L(A) < L(Q) — n < k follows from another application of 3.11. This shows
that A; # As both minimize symplectic action, hence there exists no minimal
convex generator with index 2k, k ¢ S. The proof is now complete. O

We now use the result of Proposition 3.9 to provide a concrete descrip-
tion of a minimal convex generator in terms of its elliptic orbit decomposition.

Proposition 3.13. Let p > 2 be an odd integer and c > 0, then all minimal
convex generators of E(pc/2,¢) are of the form

k d
with the following constraints: m; € {0,1},d >0, 0 < k < % if my =1,

and0§k<p7+1ifm1:0.

Proof. Let A be a minimal convex generator for E(pc/2,c). By Proposition
3.9, there is a line 7 of slope —2/p that is tangent to A such that A is maximal
under 7. Recall from Definition 1.28 the notion of tangency, thus 7 touches A,
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and A lies entirely in the closed half plane to the lower left of n. In particular,
A contains at least one integer lattice point @ = (g1, ¢2) in the first quadrant.

Suppose A has an edge eé’ ; whose right endpoint is @, where i,j > 0
are coprime and ! > 0. In this case, we must have j/i < 2/p. We discuss the
following two cases:

1. If i > p, then the point (g1 — p,g2 + 2) on 7 is in the first quadrant
and therefore must be enclosed by A. This forces j/i = 2/p and hence
J =2,7=p as they are coprime. In this case, eﬁvj = 62,2-

2. If ¢ < p, then j/i < 2/p and j < 2. Then if j = 1, we have i > (p+1)/2,
so A must enclose (qg1 — (p+1)/2, g2 + 1), which is to the lower left of 7.
This forces j/i > 2/(p+1),s0i= (p+ 1)/2. Now suppose [ > 2, then
il > p, so (g1 — p, g2 + 2) is in the first quadrant yet not enclosed by A,

contradicting its maximality under 7. Therefore, e} . = =eps1 g

i.J

Alternatlvely, if j =0, then ¢ = 1. Suppose I > (p —|— 1)/2, then
(g1 — (p+1)/2,92 + 1) in the first quadrant is not enclosed by A, again
contradlctlng its maximality under 5. Therefore, we must have el . =

4.3
e} o where | < (p+1)/2. Note that this is exactly when my = 0.

On the other hand, suppose A has an edge e! i,; whose left endpoint is
@, where 7,5 > 0 are coprime and [ > 0. In this case, we must have j > 1
and j/i > 2/p. We discuss the following two cases:

1. If i > p, then the point (g1 + p,q2 — 2) on 7 is in the first quadrant
therefore must be enclosed by A. This forces j/i = 2/p, so j = 2 and
i = p. We again obtain el i = elp g

2. If i < p, then 2/(p —1) > j/i > 2/p, since A must enclose (¢1 + (p —
1)/2, g2 — 1), which is to the lower left of 7. Solving the inequality gives
1= (p—1)/2,5 = 1. Now suppose [ > 2, then jI > 2,0 (q1 +p,q2—2) is
in the first quadrant yet not enclosed by A, a contradiction. Therefore,

A
€ij = Crzly-

Now, suppose A has an edge eptl g with right endpoint @ and another
edge el» . incident with €pf1 q On the left Then since A fails to enclose (¢1 —
D, QQ—|—2) we need jl < 2— 1= 1andil < p—(p+1)/2 = (p—1)/2. Therefore,
we must have e} ; = ef o, where I < (p —1)/2.

Finally, suppose A has an edge €p i with right endpoint @ and another
edge eé’» incident with e p=1y On the right. Then since A fails to enclose

(1 +p, g2 — 2), we need 5l < 1. That is, j = 0, but this is impossible because
of the convexity of A.
We can now conclude that A is indeed of the form e’f Oep+1 165 er -

Wheremi € {071}7d2070 < k< pT 1fm1 = 1, and0§ k < p;—l if
’I?’Ll:O. O

Remark 3.14. For the symplectic embedding problems of the polydisk into
half-integer or rational ellipsoids, it is unclear how the Hutchings criterion
(Theorem 1.36) will perform when applied to the minimal convex generators
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Z,z, as classified in Proposition 3.9 and 3.13. We still expect that

the minimal generators 632 for the ellipsoid will provide the best obstruc-
tion. This is due to the fact that among the classes of generators provided
by Proposition 3.9, 62’2 maximizes the z and y-intercepts for a fixed ellipsoid
symplectic action. Thus, it imposes the tightest constraint to obstruct em-
bedding in light of the first and central condition of the Hutchings criterion
(cf. Definition 1.35). This makes ef , an ideal candidate to study obstructions
using the Hutchings criterion. However, the full combinatorial implications of
the Hutchings criterion are not understood well enough to prove that for the
ellipsoid, eg’z provides the best obstruction. We now point out the directions
for future study and explain the potential difficulties:

other than e

e One can ask whether the new minimal generators in Proposition 3.13
will provide any obstructions via the Hutchings criterion, and how those
obstructions compare to the main Theorem 1.6 of this paper. Since
these generators have more complex product decomposition, the meth-
ods that we used in Section 2 do not immediately generalize. A good
understanding of the ECH index of products of arbitrary convex gener-
ators is therefore required to understand the implications of the third
condition in the Hutchings criterion.

e One can ask whether the Hutchings criterion is limited using these new
minimal generators in the same way as it was using eﬁﬁ2 by Propositions
3.4, 3.5, and 3.6. We note that the examples provided in Proposition
3.4-3.6 satisfy the Hutchings criterion (thus showing non-obstruction)
by the trivial factorization. This method circumvents the need to dis-
cuss product decomposition of convex generators, which is inherently
difficult. Due to the higher multiplicity of the new generators in Propo-
sition 3.13, the main tools that we developed in Section 3.1 no longer
apply, thus one again needs to confront the intricacies of product de-
compositions for arbitrary convex generators.
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