2022 IEEE 35th Computer Security Foundations Symposium (CSF) | 978-1-6654-8417-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/CSF54842.2022.9919653

2022 IEEE 35th Computer Security Foundations Symposium (CSF)

The Complexity of Verifying Boolean Programs
as Differentially Private

Mark Bun
Department of Computer Science
Boston University, USA
mbun@bu.edu

Abstract—We study the complexity of the problem of verifying
differential privacy for while-like programs working over boolean
values and making probabilistic choices. Programs in this class
can be interpreted into finite-state discrete-time Markov Chains
(DTMC). We show that the problem of deciding whether a
program is differentially private for specific values of the privacy
parameters is PSPACE-complete. To show that this problem is
in PSPACE, we adapt classical results about computing hitting
probabilities for DTMC. To show PSPACE-hardness we use a
reduction from the problem of checking whether a program
almost surely terminates or not. We also show that the problem of
approximating the privacy parameters that a program provides is
PSPACE-hard. Moreover, we investigate the complexity of similar
problems also for several relaxations of differential privacy:
Rényi differential privacy, concentrated differential privacy, and
truncated concentrated differential privacy. For these notions,
we consider gap-versions of the problem of deciding whether a
program is private or not and we show that all of them are
PSPACE-complete.

I. INTRODUCTION

Differential privacy [20] provides a formal framework for
guaranteeing that programs respect the privacy of the individ-
uals contributing their data as input. The idea at the heart of
differential privacy is to use carefully calibrated random noise
to guarantee that an individual’s data has a limited influence
on the result of a data analysis. The literature on differential
privacy shows how this can be done for numerous tasks across
statistics, optimization, machine learning, and more. However,
showing that a program satisfies differential privacy can be
difficult, subtle, and error prone [37], [40]. For this reason,
several techniques have been proposed in order to verify or
find violations in differential privacy programs, e.g. [4], [8],
[91, [18], [25], [45], [53].

Despite tremendous progress in the development of methods
and tools to support the deployment of differential privacy,
there are fundamental open questions about the complexity of
the problems these tools address. In this paper, we focus on
one of these problems:

Decide (¢,0)-DP: Given a Boolean program and
parameters ¢, §, decide whether a program is (e, d)-
differentially private or not.

Barthe et al. [4] showed that a version of this problem,
for probabilistic while-like programs using both finite and
infinite data, is undecidable. However, it becomes decidable
when a restriction is imposed on the way infinite data are

Marco Gaboardi
Department of Computer Science
Boston University, USA
gaboardi@bu.edu

Ludmila Glinskih
Department of Computer Science
Boston University, USA
Iglinskih @ gmail.com

used in while loops. Gaboardi et al. [26] showed that, for
probabilistic programs over finite data domains and without
loops, when the parameters are rational, this problem is
coNP#P_complete for (e,0)-differential privacy and even
harder for (e, §)-differential privacy. In this work we consider
the case where programs can contain loops and work over
finite data, and the parameters are given as dyadic numbers
(rational numbers whose denominator is a power of two).
We show that adding loops and maintaining the restriction
on finite data preserves decidability but significantly increases
the complexity of the problem, even for just (e, 0)-differential
privacy.

Our contributions

We consider programs from a simple probabilistic while-like
programming language over boolean data, where randomness
is represented as probabilistic choice. We call this language
BPWhile. This language can be seen as a low-level target
language for differential privacy implementations which are
intrinsically over finite data types [3], [27], [33], [41].

As a first step, we show PSPACE-hardness for Decide
(e,6)-DP over this language, with respect to the size of the
program. We show this result by using a reduction from
the problem of deciding almost sure termination for pro-
grams in BPWhile. Programs in this language can be seen
as discrete-time recursive Markov chains for which almost
sure termination has been shown PSPACE-complete [22].
Intuitively, the hardness of verifying whether a program is
differentially private comes from the fact, that we need to
compare distributions on outputs for neighboring pairs of
inputs. Understanding such distributions essentially gives us a
way to check whether a program terminates with probability
1 or not. We use this idea in all PSPACE-hardness proofs
in this work.

We then present an algorithm for Decide (e, §)-DP which
uses polynomial space, completing our proof of PSPACE-
completeness for Decide (e, §)-DP. Our algorithm is based on
classical results showing that computing hitting probabilities
in discrete-time Markov chains can be done in a space efficient
way. Our proof of PSPACE-completeness even holds in the
case where the privacy parameter § is zero—this setting is
usually called pure differential privacy.

© 2022, Mark Bun. Under license to IEEE. 396
DOI 10.1109/CSF54842.2022.00025

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

Similarly to [26], we also consider a related problem con-
cerning the approximation of privacy parameters. In particular,
we study the following gap-promise variant of the problem.

Distinguish (e,)-DP: Given a program that is
promised to either be (0, 0)-differentially private or
not (e, §)-differentially private, decide which is the
case. Here, ¢, may be fixed constants independent
of the input.

We show that this problem is also PSPACE-hard via an-
other reduction from the problem of deciding almost sure
termination. At first glance, the statement seems specific to
(0, 0)-differentially privacy, but it implies more generally that
it is hard to distinguish between (e, d)-differentially private
programs and programs which fail to be (¢ + «,d + f)-
differentially private for positive constants «, 5. In particular,
it is hard even to approximate the best € and § parameters for
which a program guarantees differential privacy.

Further, we consider several relaxations of the definition of
differential privacy which have recently appeared in the litera-
ture. Specifically, we consider deciding Rényi-differential pri-
vacy (RDP) [42], concentrated differential privacy (CDP) [12],
and truncated concentrated differential privacy (tCDP) [11].
For each of these privacy notions we define a gap version
of the problem of deciding whether a program is private or
not and we show that all of them are PSPACE-complete.
To show membership in PSPACE we use similar approach
as in the PSPACE-algorithm for Decide (e,0)-DP. The
main difference is that definitions of RDP, CDP, and tCDP
involve computations of Rényi divergences and, as we are
working with probabilities that can have exponentially long
descriptions, we carefully apply known uniform families of
polylogarithmic depth circuits to perform these calculations.
We prove our lower bounds using reductions from Distinguish
(e,6)-DP.

To summarize, our contributions are:

1) We give a proof of PSPACE-hardness for the problem
of deciding (e, d)-differential privacy (by showing a
polynomial time reduction from the language of almost
surely terminating programs, Section V-D).

We show a PSPACE algorithm for deciding (e, J)-
differential privacy (Section V-C).

We show PSPACE-hardness for the problem of ap-
proximating the privacy parameters (Section VI).

We show PSPACE algorithms for deciding Rényi-
differential privacy (Section VII-A), concentrated differ-
ential privacy (Section VII-B), and truncated differential
privacy (Section VII-C).

We also give a proof of PSPACE-hardness for de-
ciding Rényi-differential privacy (Theorem 17), concen-
trated differential privacy (Theorem 22), and truncated
concentrated differential privacy (Theorem 26) (via re-
ductions from the problem of approximating privacy
parameters, Section VI).

2)
3)

4)

5)

397

II. RELATED WORK

Verification tools for differential privacy: Several tools
have been developed with the goal of supporting programmers
in their effort to write code that is guaranteed to be differen-
tially private, including type systems [6], [25], [44], [45], [53],
program logics [5], [7], [8], and other program analyzers [2],
[15], [24], [39], [49]. Other tools help programmers find
violations in differentially private implementations [9], [18],
[54]. Finally, several recent tools address both problems at the
same time [4], [23], [51]. Most of these tools are capable of
analyzing complex examples corresponding to the state of the
art in differential privacy algorithm design [19], [36].

Implementations on finite computers: Several works have
studied how to implement differentially private algorithms
using finite arithmetics. Mironov [41] showed that naive im-
plementations of the Laplace distribution using floating point
numbers are actually not private. Gazeau et al. [27] showed
that similar problems as the one identified by Mironov are
not only due to the non-uniformity of floating points but they
are actually intrinsically due to the use of finite precision
arithmetic. Ilvento [33] showed that similar considerations can
be applied also to algorithms that are in principle discrete,
such as the exponential mechanism. Balcer and Vadhan [3]
showed how to implement several important differentially
private algorithms in an efficient way on finite precision
machines.

Related Results in Complexity: Murtagh and Vadhan [43]
studied the complexity of finding the best privacy parameters
for the composition of multiple differentially private mech-
anisms and showed it to be #P-complete. This work, in
part, led to the development of several variants of differential
privacy, most of which we consider here, with better com-
position properties. Barthe et al. [4] showed that deciding
differential privacy for probabilistic while-like programs using
both finite and infinite data is undecidable, but it becomes
decidable when a restriction is imposed on the way infinite
data are used in while loops. However, they do not study
the computational complexity of this problem. Gaboardi et
al. [26] showed coNP#P-completeness for the problem of
deciding (e, 0)-differential privacy for probabilistic programs
over finite data domains and without loops. They also stud-
ied this problem and approximate versions of it for (e,d)-
differential privacy. Chadha et al. [14] recently showed that
deciding differential privacy for a class of automata that can
be used to describe classical examples from the differential
privacy literature can be done in linear time in the size of
the automata. This class of automata includes computations
over unbounded input data, such as real numbers. Chistikov et
al. [15], [16] studied several complexity problems concerning
differential privacy in the setting of labelled Markov chains.
They showed that the threshold problem for a computable
bisimilarity distance giving a sound technique to reason about
differential privacy is in NP [15]. Further, they proved that
another distance, based on total variation, which can be used to
more precisely reason about differential privacy is undecidable

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

in general, and the problem of approximating it is #P-hard, and
in PSPACE [16].

There are also other related results from the program
verification and privacy literatures. Courcoubetis and Yan-
nakakis [17] studied the complexity of several verification
problems for probabilistic programs. Etessami and Yan-
nakakis [22] studied the complexity of several problems for
recursive Markov chains. Notably, they showed that decid-
ing almost sure termination for this computational model
is PSPACE-complete. Kaminski et al. [35] studied the
arithmetic complexity of almost sure termination for general
probabilistic programs with unbounded data types. Chadha et
al. [13] showed PSPACE-completeness for the problem of
bounding quantitative information flow for boolean programs
with loops and probabilistic choice. A bound on pure dif-
ferential privacy entails a bound on quantitative information
flow, but not the other way around, and hence their result does
not directly apply in our context. Gilbert and McMillan [29]
studied the query complexity of verifying differential privacy
programs modeled as black boxes.

III. PRELIMINARIES
A. Boolean Programs with Loops and Random Assignments

In this paper we consider a simple while-like language
working over booleans, extended with probabilistic choice.
This language, which we call BPWhile, can be seen as a prob-
abilistic extension of the language for input/output bounded
boolean programs studied in [30]. The syntax of the language
is defined by the following grammar.

b == true|false|random|z|bAb|DVD|!b

¢ == skip|z:=0b]|c¢c|if bthencelsec|
while bthenc

C == input(z,...,2);c;return(z,...,x)

All of the constructs are standard. The expression random
represents a random fair coin, which with probability 1/2
evaluates to true and with probability 1/2 evaluates to false.
The semantics for BPWhile programs is also standard and
we omit it here. However, notice that program may fail to
terminate, and we also have to consider this when analyzing
probabilities. To mark non-termination we will use the symbol
L. We also remark that a given BPWhile program operates
only on boolean inputs of a single fixed length n, specified
(implicitly) in the program description.

Our language is very similar to the one studied in [26]. The
main difference is that we have an additional loop construction
while b then c. Without loops, programs in this language can
be interpreted into boolean circuits of roughly the same size.
However, this cannot be done in presence of loops, as the
straightforward approach of unfolding loops gives a circuit of
size exponential in the program length. To avoid analyzing
boolean circuits of exponential size, we will instead analyze
programs as discrete-time Markov chains, in a manner similar
to [4]. This is possible because BPWhile programs use a
bounded amount of memory (that is at most linear in the size
of the input program), corresponding to an exponential, in the

398

size of the input, number of states in the resulting Markov
chain. The precise translation will be given in Theorem 7.

Similarly to [26] we measure the complexity of the prob-
lems we are interested in as functions of the size of the input
program, rather than, e.g., the number of bits the input program
itself takes as input.

Language expressivity: We use booleans as our basic
data type to keep our proofs simple. However, all of the
results we show also hold for programs where values are
from a fixed finite domain. In fact, the language we use here
can be thought as a low-level language which could be the
target of implementations of differential privacy primitives.
As shown in several works, one has to be very careful when
implementing differentially private primitives [3], [27], [33],
[41]. One way to guarantee correctness for this process could
be to give a translation into BPWhile and then decide whether
the given program is differentially private or not. We illustrate
how this process could work with an example.

Using 1 + n + m boolean values we can represent arbi-
trary positive and negative fixed-point numbers with range
(—2™ +1,2™ — 1) and precision 2™, and perform standard
arithmetic operations and comparison over them. We can
then think about working with blocks of variables of size
1 + n + m, which we denote using vector notation, e.g.
Z,%,.... Notice that using this representation we can also
easily encode a uniform sampling operation for elements in
a range (v,w], which we denote uniform(v,w]. We can,
for example, implement the bounded Geometric Mechanism
from [28], using this encoding and the implementation in
finite precision arithmetic provided in [3]. Given a positive
integer m and a private positive integer value ¢ < n, this
discrete mechanism selects an integer element z from the range
[0, n] with probability proportional to e~ Essentially, the
mechanism implements inverse transform sampling based on
the inverse CDF of the output distribution. Given ¢, n and e,
this mechanism can be described in BPWhile as in Figure 1.

All the operations in this piece of code are assumed to work
on blocks of variables and of booleans that are long enough
to avoid overflow and approximations. This algorithm samples
from a uniform distribution (line 3) for a value of d large
enough and uses a while loop to go through the integers in
the range [0,n] to find the right element to return. A faster
implementation could be based on binary search. The nested
conditionals (lines 7-14) implement the checks required for
the inverse transform sampling to identify the right element to
return.

We gave this example to show that the language is expres-
sive enough to implement a real-world mechanism. However,
we also chose this example because identifying the privacy
guarantee provided by this algorithm is non-trivial. Balcer and
Vadhan [3] showed this algorithm to be (¢, 0)-differentially
private when é = In(1 + 2-M1°8(/91) and ¢ € (2/9¢,¢/2],
where the complexity in the expression for € comes from the
implementation. This example shows why several works have
designed methods to decide differential privacy, and why it is
important to understand the complexity of this problem.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

0. input(€ n,e€);

1. k= [log(2/e)]

2. di= (2R 4 1)(2F 4 1)

3. @:=uniform(0, CZ]

4, 7:=0;

5. 7=

6. whileZ < i A7 = nthen

7. if 7 < ¢ then

8. if i < 2F@E2)(2k 4 1)n—(e-2)

9. then 7:= 7

10. else skip

11. else

12. if il < d— 2FE-ED(9F 4 1)n—1-(-9)

13. then 7 := 2

14. else skip

15. Z7=Z4+1;

16. return(?);
Fig. 1. Example: Bounded Geometric Mechanism in finite precision arith-
metic

B. Almost Sure Termination and Configuration Graph

Our approach will rely on the hardness of the problem
of deciding almost sure termination for probabilistic boolean
programs (Lemma 4). Almost sure termination is a natural
probabilistic extension of the concept of termination.

Definition III.1. A program C almost surely terminates if on
all inputs it terminates with probability 1.

Deciding almost sure termination for general probabilistic
programs on unbounded data types is known to be II9-
complete [35] while for programs representing recursive
Markov chains it is known to be PSPACE-complete [22].

In the following, it will be convenient to analyze BPWhile
programs using their configuration graph. To do this, we
assume that the code of a program comes with lines of code
associated to each command, in a way similar to the code in
Figure 1.

Definition IIL2. Consider a BPWhile program C with [lines
of code and v Boolean variables. A state s of C is a pair
(m, i) where m € {0,1}" represents a potential value of the
memory, i.e. values for all the variables, and i € [l] is a line
of code. The size of the program is the number of symbols in
the description of the program.

Note that as the description of each variable, input value
and line in the program requires at least one symbol, we get
that [, v, and the size of the input of the program are always
at most the size of the program. Throughout this paper we
measure complexity of the verifying procedures based on the
size of the program.

Definition IIL3. The configuration graph G = (V,E) of a
BPWhile program C on input x has a vertex for every possible
state of the program and a directed edge ((m, i), (m',i")) € E
if the probability of getting the memory m’ starting from the

399

memory m and executing the command at line i’ is strictly
greater than 0.

We will also sometimes use the term state graph to refer to
the configuration graph. The starting state of a program is the
state at the beginning of C’s execution on x, where the input
variables are set to = and the index of the execution line is 0.
A final state is any state following the execution of the last
line of code (the final return command). We denote the set of
final states in a configuration graph by V; C V.

C. Markov Chains

To analyze the probability that a boolean program C' on
input = outputs a specific value, we need to associate proba-
bilities to each transition in the configuration graph. By doing
this, we turn a configuration graph into a discrete time Markov
chain.

Definition IIL.4 ([31], [38], [50]). A discrete-time Markov
chain M = (V,E,{puw | (u,w) € E} {po(v)lv € V})
consists of a set of states V, a set E C'V x V of transitions
between states, a list py, of positive probabilities for all
transitions (u,w) such that for each state uw € V, we have
Zwevpuw =1, and an initial probability distribution py on
states in V.

Following [17] we view a Markov chain as a directed graph
(V, E), with weights p,,, on all edges (u,w). Moreover, as in
a configuration graph, we associate each vertex in the graph to
a state of a BPWhile program, and a transition between states
to one possible execution step of the program. As an initial
probability distribution we use a unit distribution that places
weight 1 on the unique start state of the program.

To verify whether a BPWhile program is differentially
private, as we will see in the next section, we need to compare
the probabilities of outputting the same output on neighboring
inputs. We will do this by computing hitting probabilities of
final states with a fixed output values.

Definition IILS. The hitting probability of a state s € V in a
Markov chain M = (V| E, p, po) is the probability of reaching
s in M starting with a initial probability distribution pg after
an arbitrary number of steps.

D. Differential Privacy

Differential privacy is a property of a program that can
be expressed in terms of a neighboring relation over possible
program inputs. Here we view an input as a sensitive dataset,
and say that two inputs are neighboring if they differ in one
individual’s information. As our focus in this paper is on
boolean programs, we define two datasets to be neighboring
when they differ in a single bit.

Definition IIL.6. Two boolean vectors of the same length are
said to be neighboring if their Hamming distance (the number
of positions in which these vectors differ) equals 1.

Notice that this is a strong notion of neighboring, which
makes our hardness results stronger. That is, our hardness

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

results extend naturally to other more involved notions of
neighboring. Moreover, our upper bound arguments apply to
any neighboring relation between boolean vectors (or more
generally, vectors over any fixed finite data domain) as long
as that relation can be checked in polynomial space. Using
the notion of neighboring we introduced above we can now
formulate differential privacy.

Differential privacy guarantees that a change of any one
data in the input will not change much the observed output
of the program. More formally, differential privacy guarantees
that the distributions of outputs of a program when run on
neighboring datasets are close.

Definition IIL1.7 (Differential Privacy [20]). A boolean pro-
gram C with inputs of length n and producing outputs of
length 1 is (e,0)-differentially private if for every pair of
neighboring inputs z,2’ € {0,1}" and for every set of
possible outputs O C {0, 1} U {L} :

Pr[C(x) € O] < e - Pr[C(2) € O] + 6. (D

This version of differential privacy is often called approxi-
mate differential privacy to distinguish it from pure differential
privacy, which is the special case where 6 = 0. We will denote
the latter by e-differential privacy.

In the following, it will be convenient at times to work with
the following reformulation of differential privacy.

Lemma 1 (Point-wise differential privacy [7]). A program C
is (e, d)-differentially private if and only if for all neighboring
inputs xz,x’ € {0,1}",

oe{0,1}u{L}

where 0 . (0) = max(Pr[C(x) = o] — e*(Pr[C(a’)

6.77,36’(0) S 6a

0]),0).

IV. COMPLEXITY OF CHECKING ALMOST SURE
TERMINATION

In this section we give intuition for the hardness of deciding
differential privacy by discussing the complexity of almost
sure termination. While it is known that almost sure termina-
tion for Markov chains is PSPACE-complete [22], we believe it
is instructive to understand where this complexity comes from.
We start with a helpful characterization, proved in Appendix B,
of almost sure termination of a BPWhile program in terms of
reachability in the program’s configuration graph.

Theorem 2. A program C terminates almost surely if and only
if for every input x and every vertex v in the configuration
graph of C(x) that is reachable from the start state, there is
a path from v to one of the final states.

The main intuition of this theorem is that the only way for
a program to fail to terminate with probability 1 is if there is
some positive probability that it enters an infinite loop from
which it cannot exit. This is possible if and only if there exists
a state that is reachable from the start state, but from which
we cannot reach any of the final states.

400

Theorem 2 immediately suggests a simple exponential-time
(and exponential-space) algorithm for checking almost sure
termination. For each possible input to the program, we can
construct the configuration graph of the program on that input.
Using breadth-first search, we can mark which states are
reachable from the start state, and for each such state we
check whether any of the final states are reachable. If there
exists an input and a state in its configuration graph that is
reachable from the start state but cannot reach a final state,
then by Theorem 2 we get that the program doesn’t terminate
almost surely. If for every input, there is no such state, then
the program almost surely terminates.

Constructing the configuration graph explicitly and running
breadth-first search uses exponential space. In what follows,
we describe how to reduce the space complexity to polyno-
mial.

We can improve the previous algorithm by avoiding storing
the whole configuration graph, and instead providing implicit
access to any edge in the graph. This requires us to re-compute
on-the-fly information about the set of reachable states from
any given vertex, but fortunately, this can still be done in
polynomial space.

Theorem 3. There is a deterministic algorithm for checking
almost sure termination of a BPWhile program using space
polynomial in the size of the program.

To show PSPACE-hardness of checking almost sure
termination we reduce from the PSPACE-complete true
quantified boolean formula (TQBF) problem. This is the
problem of deciding whether a fully quantified propositional
boolean formula is true. For a formula ¢ with ¢ quantifiers,
we define a BPWhile program with ¢ nested while-loops to
evaluate the formula. The reduction is similar to the reduction
in [30] from TQBF to the reachability problem for extended
hierarchical state machines. We prove the following theorem
in Appendix C.

Theorem 4. The problem of checking whether a BPWhile
terminates almost surely is PSPACE-hard.

V. VERIFYING DIFFERENTIAL PRIVACY

We reason about differential privacy in a manner similar
to almost sure termination. In particular, we use a Markov
chain interpretation of a program C. We first give an ineffi-
cient (exponential-time) but simple algorithm (Section V-A),
followed by a PSPACE-algorithm for verifying whether a
program is pure (Section V-B) or approximate differentially
private (Section V-C).

A. Exponential-Time (¢,0)-

Differential Privacy

Algorithm for Checking
To give an exponential-time algorithm for checking (e, 0)-
differential privacy, we first review the algorithm for comput-
ing the probability of reaching any given final state s; in a
Markov chain from [4]:
1) For each state v, initialize a variable g, representing the
probability of reaching s; from this state.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

2) Set qs, = 1 for the final state sj.

3) For each state v from which sy is not reachable set
qv = 0.

For any state v for which we do not yet have an equation,
we introduce the equation ¢, = Zuev Qu * Pou, Where
Do 18 the probability of transitioning from v to u in one
step. If there is no transition from v to u, then p,, = 0.
The previous steps give us a set of equations, one for
each possible state of the Markov chain. The number of
variables equals the number of equations. This linear
system can be solved unambiguously by using any
polynomial-time algorithm for solving systems of linear
equations.

We can now state our exponential time algorithm for deciding
differential privacy for BPWhile programs.

4)

5)

Theorem 5. For a fixed rational number e, the problem
DECIDE (€,0)-DP, checking whether a BPWhile program
is (€,0)-differentially private, is solvable by a deterministic
algorithm using time exponential in the size of a program.

Proof: By Lemma 1 for checking (¢, 0)-Differential Pri-
vacy for a program C it is sufficient to compare for every
pair of neighboring dataset the output distributions on every
possible value. Using this approach, we get the following
simple algorithm:

1) For neighboring inputs x,z’ of size n and a program
C of size N construct two Markov chains, with one
start-state in each, set these start-states to x and z’,
respectively.

Find the probabilities of each final state in each Markov
chain.

Compare the probability of the same states in the two
Markov chains. If there is at least one output ¢ such that
P[C(z) = ¢] > e“P[C(x') = |, terminate and output
“Not (e,0)-DP”. Otherwise continue.

If the checks were successful for all pairs, terminate with
an output: “(¢,0)-DP”.

This algorithm explicitly store probabilities of reaching all of
up to 2% final states, as well as a system of linear equations
of size exponential in N. As the input of the algorithm is
a program C' of size N, we get that this algorithm requires
exponential space and time in the size of its input. |

B. PSPACE Algorithm for Checking (¢, 0)-Differential Privacy

A classic line of work [10], [34], [48] showed that com-
puting the hitting probabilities of final states can be done
efficiently in space. This is what we need to design a PSPACE
algorithm to check differential privacy. In designing this al-
gorithm we use the work of Simon [48] who showed that
given a Markov chain of size M, the hitting probability of
any state can be computed in space O((log M)%). Subse-
quent work [10], [34] improved this result by showing that
O((log M)?) is enough. Nevertheless, we focus our exposi-
tion on Simon’s algorithm as its presentation simplifies the
description of our algorithm, and improving the polynomial
does not affect membership of our problem in PSPACE.

2)

3)

4)

401

Simon’s result can be formally stated as follow:

Lemma 6. [48] Let M be a Markov chain (represented by its
transition matrix) with at most 2¥ states, an initial distribution
placing all mass on one state s, a set of final states F' each
with only one self-transition, and the property that every state
not in ' each outgoing transition probability is either 0 or
1/2. There is an O(LS)-space deterministic algorithm that
computes the hitting probabilities of every state in F.

To apply the algorithm from the previous lemma we need
to do an extra pre-processing step to remove all non-final
recurrent states of a Markov chain.

Definition V.1. A recurrent state in a Markov chain is a state
such that, after reaching it once, the probability of reaching
it again is 1.

A similar pre-processing step appears in Simon’s paper,
and we describe our removal process below in our proof of
Theorem 7.

Now we are ready to show that (e, 0)-differential privacy
for BPWhile programs can be decided in polynomial space.

Theorem 7. For a fixed rational number e, the problem of
checking whether a BPWhile program is (e, 0)-differentially
private is solvable by a deterministic algorithm using space
polynomial in the size of the program.

Proof:

To apply the algorithm from Lemma 6 and conclude that
polynomial space is sufficient in order to compute the final
probabilities, we need to be able to compute the probability
of each transition in the Markov chain using polynomial space.
We cannot explicitly store the whole Markov chain using space
that is polynomial in the size of a program. Instead, we can
construct an algorithm working in polynomial space which
gets as input a description of the BPWhile program C, the
program input z, and two states u,v of the Markov chain
corresponding to C(x). It outputs the transition probability of
edge (u,v) (the probability that C'(z) gets from state u to state
v in one step).

We need to find the probability of hitting each reachable
final state of the Markov chain of C(x). Note that these
probabilities can be as small as 1/22p(N) for some polynomial
p(N), where N is the size of the input program. This is
because a Markov chain for a program of size N has a
number of states which is at most exponential in N, and
as each transition probability is either 0, or 1/2, or 1, there
can be a simple path in the Markov chain from the start
state to the final state that goes through all the states with
probability 1/ 22" ™), Storing these values requires exponential
space, so the PSPACE algorithm described further only
provides implicit access to these probabilities, i.e., the ability
to compute any desired bit of a probability.

Here are the conditions that the Markov chain we construct
needs to satisfy in order to apply Lemma 6.

« The transition probability between every two states in the

Markov chain of size O(2P°"%(N)) should be computable

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

in polynomial space. Every final state has a self-transition
with probability 1.

Each transition in the Markov chain for all non-final
states has to have weight either 1/2 or 0, and the graph
underlying the Markov chain shouldn’t contain multiple
edges. This can be done by duplicating every state, except
the start state, increasing the number of vertices by a
factor of 2. Every duplicate final state is also marked
as a final state. Let a and b be vertices in the original
Markov chain of the program that are transformed to two
pairs of vertices a1, as and by, by respectively. Then we
re-assign the weight of edge e from a to b in the original
Markov chain as follows:

— If the original weight of e is 1/2, then we add two
edges (a1, b1), (az, b2) each of weight 1/2 to the new
Markov chain.

— If the weight of e is 1 we add four edges
(a1,b1), (a1,b2), (az,b2), (az,b;) each of weight
1/2.

— If the weight of e is 0, we do not add any edges
between vertices a1, as and by, bs.

Therefore, for each original edge we add at most 4 new
edges, so we do not increase the size of the Markov chain
by more than a factor of 4. Moreover, for every pair of
vertices in the new Markov chain, we can recompute the
weight of the edge based on the the weight of the edge
in the original Markov chain in linear time. Overall, this
transformation is computable in the space polynomial in
the size of the input BPWhile program and it guarantees
that the probability of getting from one vertex to any
other in one step is either 0 or 1/2.

All recurrent states except the final states should be
deleted. We simulate this deletion as follows. Whenever
our algorithm reads the probability on an edge (u,v), we
check whether either v or v are recurrent and zero out
this probability if so. This check is similar to the one
that we discussed earlier for almost sure termination. We
consider the graph underlying the Markov chain of the
program. To check whether state u is recurrent, we run
a search algorithm checking whether there is at least one
path through edges with non-zero weight to at least one
of the final states. We can use Savitch’s algorithm [47]
to do this check in space polynomial in the size of the
program.

To verify whether a program C is e-differentially private
we can now enumerate all pairs x, 2’ of neighboring inputs,
and all possible outcomes o. For each outcome o, we com-
pute Pr[C(z) = o] by summing the hitting probabilities of
reaching final states in the configuration graph of C' on z that
result in outputting o. Finally, we compare Pr[C(z) = o] to
e Pr[C(z') = o]. Note that if e is a rational number with
numerator a and denominator b, then we can avoid division
by comparing b - Pr[C(z) = o] to a - Pr[C(z") = o].

We remark that the necessary arithmetic operations on
exponentially long (implicitly represented) numbers can be

402

carried out in polynomial space (though exponential time is
still required) using classic logspace algorithms for addition
and multiplication.! In particular, this works even if e€ is an
exponentially long rational number provided as input to the
problem. u

C. PSPACE Algorithm for Checking (e,d)-Differential Pri-
vacy

Now, using the pointwise definition of differential privacy
from Lemma 1 and using similar ideas to the algorithm in
Section V-B we can construct a PSPACE-algorithm for
checking (e, §)-differential privacy of BPWhile programs.

Theorem 8. For fixed rational numbers €€, 6, the problem of
checking whether a BPWhile program is (e,)-differentially
private is solvable by a deterministic algorithm using space
polynomial in the size of the input program.

Proof: Let €5 = a/b for natural numbers a,b. As in
the algorithm in Section V-B we iterate through all pairs of
neighboring inputs (z,z’), and for each of them compute

b8 2 (0) = max(bPr[A(x) = o] — aPr[A(z') = 0], 0),

using the algorithm from Theorem 6. Then we add this value

to the sum > b0 1 (0), until we have iterated over
0€{0,1}U{ 1}

all possible inputs, or until the partial sum is greater than bé.
In the former case we terminate with the output “not DP”,
otherwise we do not terminate until checking the last output,
and output “DP”.

Again, the necessary arithmetic computations (maximum,
addition, subtraction, and multiplication) on exponentially long
rational numbers can be done in polynomial space. |

D. PSPACE Hardness

To show PSPACE-hardness of checking whether a BP-
While program is differentially private, we reduce from the
problem of checking almost sure termination. All of our
hardness results have a similar structure: for a program C
we construct another program C’ that is differentially private
(with some parameters) if and only if program C' terminates
almost surely. We show such reductions for the problems of
DECIDE (¢€,0)-DP, DECIDE (€,6)-DP, and for DISTINGUISH
(¢,0)-DP.

Lemma 9. For a fixed rational e > 1, the problem of check-
ing almost sure termination for BPWhile Boolean programs
is poly-time Karp-reducible to the problem of checking (e, 0)-
differential privacy for those programs.

Proof: Let C(z) be a BPWhile program for which we
want to check almost sure termination. We construct a new
program C’ that will receive an input z and one additional bit
of input b, and runs C as a subroutine. The BPWhile language
doesn’t support procedure calls, but we can encode the same
behavior using the following code representing a template for

'We can construct uniform NC! and NC? circuits for these operations.
Simple constructions are explained in [52].

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

the code of the program C”. In this reduction we consider two
inputs to a program C’ as neighboring if they disagree only
in one bit.

Here is the template code for C:

input(z,b); if b == 1 then C(z) else skip;return(1)

Notice that the return statement is executed only if C'(x) halts
orb==

As we add constant number of extra lines to the original
program C, it takes linear time to construct C’. Hence the
reduction takes linear time.

To show correctness of the reduction we need to check that
it maps yes-instances of the almost sure termination problem to
yes-instances of DECIDE (¢€,0)-DP problem, and no-instances
to no-instances. If a program C' almost surely terminates on
all inputs, then for all possible values of bit b we get that
C’'(x,b) outputs 1 with probability 1. Hence this program is
(e, 0)-differentially private for every e > 0.

If the program C' is not almost surely terminating, then there
exists an input z such that program C(x) fails to terminate
with some probability p > 0. Hence, we get that:

Pr[C’(z,1) doesn’t haltf] = p > 0.
On the other hand, on the neighboring input (z,0) we get
Pr[C’(z,0) doesn’t halt] = 0.

Therefore C” is not -DP for any e. [|

Lemma 10. For any fixed rational e and dyadic § € (0,1),
the problem of checking almost sure termination for BPWhile
Boolean programs is poly-time Karp-reducible to the problem
of checking (e, d)-differential privacy for those programs.

Proof: As in the proof of Lemma 9, let C(x) be a
BPWhile program for which we want to check almost sure
termination. We construct a new program C’ that will receive
an input = and one additional bit of input b, that runs C' as
a subroutine. We denote by delta_rand a subroutine that
outputs 1 with probability 1—4, and outputs O with probability
0. For any dyadic rational constant 6 = a/2™, this can be
constructed using m calls to the the random operator. Note
that the length of the program computing this subroutine is a
constant independent of the length of the input program C.
The following is a template for the code of C':

1. input(z,b);

2. if b==1 then

3. C(z);

4. r = delta_rand();
5. if r == 0 then

6. while true then
7. skip;

8. else skip;

9. else skip;

10. return(l)

Notice that the while-loop in line 6-7 is potentially infinite.
As delta_rand can be computed by a program of constant

size, this reduction takes linear time as in the analysis of

403

Lemma 9. Now to analyze the correctness of the reduction,
first assume that C' almost surely terminates. Then C’(z,b)
either outputs 1 with probability 1, or it outputs 1 with
probability 1 —4 and doesn’t halt with probability . For every
pair of input (z, b), (2, 1), the statistical distance between the
possible distributions on outputs is at most 6. Hence C’(z, b)
is (0, 6)-DP, hence (e, §)-DP.

If C(x) doesn’t almost surely terminate, then there exists
some « > 0 such that on some input « program C(z) enters
an infinite loop with probability «. Hence overall we get that
C’'(z,1) enters an infinite loop with probability at least § +
a, but C'(x,0) terminates and outputs 1 with probability 1.
Hence we get that

Pr[C’(z,1) doesn’t half] = o+ § >
e Pr[C'(x,0) doesn’t halt] + § = 0 + 4,

and therefore C’(x,b) is not (e, §)-DP. [|

Combining the fact that the problems DECIDE (e,0)-DP
and DECIDE (¢,0)-DP are PSPACE-hard with the algorithms
from Theorem V-B and Theorem V-C we conclude that they
are PSPA CE-complete.

Corollary 11. For any rational € and dyadic § € (0,1) the
problems of checking whether a BPWhile program is e-DP or
whether a BPWhile program is (€, §)-DP are both PSPACE-
complete.

VI. HARDNESS OF APPROXIMATION OF PRIVACY

In this section, we show a strong sense in which the
privacy parameters of a BPWhile program are hard even to
approximate. We do this by showing that for any constant
parameters ¢,6, it is PSPACE-hard even to distinguish
between the case where a program is (0,0)-DP or whether
it fails to be (g,0)-DP. This, for example, implies that the
privacy parameters of a program are hard to approximate up
to an additive (¢/2,6/2).

Lemma 12. For any rational constants €,6 € (0,1) the
problem of checking almost sure termination for BPWhile pro-
grams is Karp-reducible to the promise problem of determining
whether BPWhile program is (0,0)-differentially private or it
is not (e, 0)-differentially private.

Proof: Our reduction consists of two parts:

1) Given a BPWhile program C, we construct a new
BPWhile program C” such that if C' almost surely termi-
nates, then C” almost surely terminates too. Meanwhile,
if C' doesn’t almost surely terminate, then C’ terminates
with probability at most %

As in the reductions in the proofs of Lemma 9 and
Lemma 10 we construct a program C” that calls C”
with the property that C" is (0,0)-DP if C’ is almost
sure terminating, and C” is not (e,d)-DP if C” halts
with probability at most %

2)

For the first step, we use the following claim that we prove
in Appendix D.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

Claim 13. If C is a BPWhile program, then we can construct
in polynomial-time a new program C' that almost surely
terminates if C almost surely terminates, and terminates with
probability at most 1/2 if C' is not almost surely terminating.

As in the reductions in Lemma 9 and Lemma 10, we now
construct a new program C” that receives an input x and
one additional bit of input b, and runs C’ as a subprogram.
We repeat the execution of C’(z) a total of m times, where
€®-27"™ 4§ < 1. Note that m depends only on the privacy
parameters ¢, § and not on the program C’. Now we construct
the following program C”.

1. input(z,b);

2. if b==1 then

3 C'(x); # run C'(z) m times
4.

5 C'(@);

6. else skip;

7. return(l)

The time complexity of constructing C”'(z,b) is linear in
the size of C’ as m is a constant. To show correctness, assume
that C, and hence C’ terminates almost surely. Then C”'(z, b)
outputs 1 with probability 1 on all inputs. Hence C”(z,b) is
(0,0)-DP.

If C(x) does not terminate almost surely then there exist
an input x and some a > 1/2 such that C’(z) fails to halt
with probability «. As we chose the number of repetitions m
in such way that

¢ - Pr[m sequential runs of C’(x) halt] +§ < 1,

we get that C”'(«, b) is not differentially private on neighboring
inputs (z,0) and (x,1), since

e - Pr[C"(z,1) halts] + § < 1 = Pr[C"(x,0) halts].

Therefore, if the original program C'(x) is not almost surely
terminating, we transformed it via the intermediate program
C’'(x) to a program C”(x,b) that is not (e, d)-differentially
private.]

Corollary 14. For any rational constants €¢,§ the problem
DISTINGUISH (¢,6)-DP is PSPACE-hard.

VII. OTHER DEFINITIONS OF DIFFERENTIAL PRIVACY

Pure and approximate differential privacy degrade smoothly
under composition: the overall privacy guarantee of a se-
quence of DP algorithms remains DP. However, in the worst
case it is #P-hard to compute the best possible parameters
achievable by a composition of approximate differentially
private algorithms [43]. Other variants of differential privacy,
such as Rényi [42], concentrated [12], [21], and truncated
concentrated differential privacy [11], were introduced, in part,
to address this problem. All of these notions lead to efficiently
computable optimal composition bounds.

We show PSPACE-completeness for each of the problems
of verifying (up to a precision parameter given as input)
whether a BPWhile program is Rényi differentially private,

404

concentrated differentially private, or truncated concentrated
differentially private.

A. Rényi Differential Privacy

Definition VIL1. Let P = (p1,...,pn) and Q =
be probability distributions over 1, . ..
divergence of P from Q is

(qh e 7qn)
,n. For a > 1, the Rényi

n a
p;
T log (Z qa_1>.
i=1 i

Definition VIL2. [42] A program C' is («, pa)-Rényi-DP if
for all neighboring inputs x,x’,

Do (C(@)|C(a)) < pa.

We can check whether a BPWhile program C is («, pa)-
Rényi-DP using an algorithm similar to the one for checking
(€,6)-DP from Section V-C. A technical issue that arises here
is that when computing Rényi divergences, we need to expo-
nentiate possibly exponentially long numbers to exponentially
large degrees o and o — 1. We do not have the space to
perform such computations exactly, so instead we consider
a “gappped promise” version of the problem which takes an
additional precision parameter 7 as input, and distinguishes
between the case where the program is (p, pa)-RDP and the
case where it fails to be (p, paz 4+ 27")-RDP. The inclusion of
this precision parameter allows us to approximately compute
Rényi divergences via additions of logarithms of exponentially
long numbers to at most exponential precision.

Do (P||Q) =

Definition VIL3. In the GAP-RENYI-DP problem, an in-
stance (C,a, p,n) consists of a BPWhile program C, two
dyadic rational numbers o and p, and a binary integer pa-
rameter 1. The problem is to distinguish between the following
two cases:

1) Yes instances: for all neighboring inputs x,x’ we have
Dq(C(2)|C(2")) < pa,

2) No instances: there exists a pair of neighboring inputs
z, 2’ such that Do (C(2)||C(a")) > po + 55

Theorem 15. The gap problem GAP-RENYI-DP is solvable
by a deterministic algorithm using space polynomial in the
size of the instance.

Proof: Consider an instance (C,«,p,n) of the problem
GAP-RENYI-DP. Following the definition of the problem, we
iterate through all pairs of neighboring inputs (z,z’), and
check that Rényi divergence is smaller than po. If the length
of an instance is at most n, then, as the length of the program
C is bounded by the length of the instance, we have at most
2™ possible output values. Denote the set of output values
(including the non-termination outcome L) as O. We need to
check the following condition:

Pr (x)]
log Z Pr|

(z') =

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

which we can rewrite as

PCE) = 0" _ (e
oez;) PC(a) = ot = '

First of all, we observe that for any pair of neighboring
inputs x, 2, if for some outcome o we have Pr[C(z) = o] > 0
but Pr[C(z’) = o] = 0, then we automatically have a no-
instance of the problem. This is because for every possible p
and « we would get

Pr[C(z) = o]
Pr[C(z") = o]

and so such C is not Rényi differentially private for these
parameters. So for each pair of neighboring inputs and for
each potential outcome, we first check whether at least one
of the probabilities is equal to zero, and output “no-instance”
if the second probability is non-zero. As all probabilities are
finite and represented by numerators and denominators of at
most exponential length, this can be performed in polynomial
space.

Since «v and p are given as part of the input, the lengths of
« and p are at most n. Hence «, p < 2™. Therefore, |pa(a —
1)| < 23" and we can compute 2°*(®~1) in polynomial space.’
Taking base-2 logarithms of Pr[C(z) = o] and Pr[C(z) = o],
our goal is to (approximately) determine whether

Z 2logPr[C(z):o](x—logPr[C(I'):O]-(a—l) < 2;)04(04—1).

0€0

> 2pcz(0¢71)7

As this is a comparison between a sum of at most 2"
numbers and a number of length 237, it suffices to compute

23n 4 221 4 n bits of the quantity

9log Pr[C/(x)=0]-a—log Pr[C(z')=0]-(a—1)

for each o € O to determine which of the two cases we are
in:
1) Z glog Pr[C(z)=o]-a~log Pr[C(a")=0]-(a=1) < gpala=1) - op
0cO
2) Z glog Pr[C(x)=0]-a—log Pr[C(a’)=0]-(a—1) > gpa(a—1)+%7
0€cO

As in our previous PSPACE-algorithms, we cannot ex-
plicitly store the value of each partial sum in the memory, as
each has exponential length. So below, when we say that we
“compute” an exponentially long number, we mean that we
provide a polynomial space procedure that computes every bit
of the number if its index is at most 29(), where g(n) is a
fixed polynomial.

Again as in the algorithm for DECIDE (¢,6) in Section V-C,
our goal is to compute a sum of 2" numbers. Butpnow each of
this numbers have more complicated form 2'°8 Pr; @108 Pre,
where Pr, and Pr;, are exponentially long numbers, and « is a
dyadic rational number of length at most n. For each element
of the sum we need only to compute the 237 + “2—7,1 +n

2We can print ‘1’ followed by 2°*(®=1) zeros by using a counter up to
pa(l — a) to output the correct number of zeros.

405

most significant bits to guarantee that we underestimate each
element of the sum by at most 2~ (*~1)/2"=7_Thjs yields an
overall underestimate of the sum of all 2" elements is at most
2= (a=1)/2" Therefore, we underestimate the logarithm of this
sum by at most —(a — 1)/2". Hence we always distinguish
case | from case 2, by performing a comparison® to determine
whether 2log %-aqtlog Pry
smaller than 2°®(e—1),
All that remains is to show that we can compute (i.e.,
give implicit access to each bit of) each term of the form

2log llz:‘; -a+log Pry,

. a—1
is greater than 2°,(@—1+% or

in polynomial space. Every bit of the in-
teger logarithm can be computed using uniform circuits of
polylogarithmic depth [46] in the length of the input integer
and the index of the requested bit, so we can compute numbers
of the form log(Pr, / Pr;) and log Pry,. Further, using space-
efficient algorithms for addition and multiplication of expo-
nentially long numbers, as in Theorem V-B, we can compute

log E‘;‘b‘ - + log Pry. Therefore, we can implicitly compute
log 1;?; -a+log Pry, with a polynomial space algorithm. Finally,

the exponential function has a representation as power series,
and such power series can be computed by uniform families
of logarithmic-depth circuits [46, Corollary 2.2]. So we can
exponentiate 2 to a dyadic rational degree using an algorithm
that runs in space logarithmic in the length of the exponent.
Combining polynomial space computations we obtain a poly-
nomial space algorithm for computing 2'°% 7 **1°sPr - g

To show PSPACE-hardness, we use Theorem 12, and
the following fact to reduce from DISTINGUISH (e, §)-DP to
GAP-RENYI-DP:

Theorem 16 ([42]). If C is an (o, pa)-RDP program, it also
satisfies (pa+ log1/6 0)-differential privacy for any 6 € (0, 1).

a—1 7

Combining this with Theorem 12, which states that it is
PSPACE-hard to determine whether a BPWhile program is
(0, 0)-differentially private or not (e, §)-differentially private,
we obtain:

Theorem 17. GAP-RENYI-DP is PSPACE-hard.

Proof: Fix two dyadic rational numbers ¢, € (0,1). Let
1, p and « be positive numbers with finite binary representa-
tions such that
+ Lg (1/9) + i <€

a—1 2n
To reduce from DISTINGUISH (e,)-DP to the GAP-RENYI-
DP problem, we map an instance C' of DISTINGUISH (€, §)-
DP to the instance (C,a, p,n) in deterministic linear time.

To show correctness of this reduction, first consider the

case where C is a yes-instance of DISTINGUISH (€,0)-DP.
That means that C' is (0,0)-DP. Then the distributions on the
outputs of C are identical for every pair of neighboring inputs.
Hence C is also (o, pa)-Rényi-DP, so (C,«, p,n) is a yes-
instance of GAP-RENYI-DP.

0 < pa

3Exponentially long numbers can be compared in polynomial space by
finding the most significant bit on which they differ.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

Now, consider the case where C' is a no-instance of DIS-
TINGUISH (€, d)-DP. We need to show that (C, o, p,7) is a
no-instance of GAP-RENYI-DP. We do this by contraposition:
If (C,a,p,n) is not a no-instance, then for all neighboring
inputs x, ' it holds that D,(C(z)||C(2')) < pa + 5. Then
for p' = p+ —L;, we have that C is (o, p'cr)-Rényi-DP. Then
by Theorem 16, C'is (p'a+ %, 0)-DP. But by our choice
of the parameters, p'a + % = pa + 2% + % < e,
hence C' is (e, 6)-DP. This implies that C' is not a no-instance
of DISTINGUISH (¢, d)-DP.

Since we showed in Theorem 12 we showed that Dis-
TINGUISH (€,0)-DP is PSPACE-hard, it follows that GAP-
RENYI-DP is PSPACE-hard. |

Combining the results of Theorem 15 and Theorem 17 we
obtain:

Corollary 18. GAP-RENYI-DP is PSPACE-complete.

B. Concentrated Differential Privacy

Definition VIL4. [12], [21] A program C'is p-Concentrated-
DP if for every neighboring inputs x,x’ and every a €
(1,+00)

Do (C(2)]IC(a")) < pa.

As in Section VII-A we consider a gapped version of the
problem for an integer precision parameter 7 provided as input.

Definition VILS5. An instance of the GAP-CONCENTRATED-
DP problem (C,p,n) consists of a BPWhile program C, a
dyadic rational number p, and a binary integer precision
parameter 1. The goal is to distinguish between the following
two cases:

1) Yes-instances: for all neighboring inputs x,x’ and for
all a € (1,+400), we have D, (C(z)||C(2")) < pa,

2) No-instances: there exists a pair of neighboring inputs
z,a’ and o € (1,400) such that D, (C(x)||C(z")) >
po+ %

In order to verify whether an instance (C,p,n) is a
yes-instance of GAP-CONCENTRATED-DP we should verify
whether the inequality D, (C(z)||C(z")) < pa holds not only
for all pairs (z,z'), but also for all & > 1. This is equivalent
to verifying that C' is («a, par)-Rényi-DP for every « > 1. But
as there is an unbounded continuum of possible « to consider,
we do not immediately obtain an algorithm by attempting to
exhaustively check them. The following lemma shows that to
solve the gapped version of the problem, we need only to
consider finitely many « within a finite range.

Lemma 19. Suppose (C,p,n) is a no-instance of the GAP-
CONCENTRATED-DP problem. Then there exists a polynomial
p(n), neighboring inputs x,z', and o € (1,1 + 2" /p) an
integer multiple of 27771 /p such that D, (C(z)||C(z')) >
pa + .

We provide the proof of the lemma in Appendix E. Com-

bining this lemma with the algorithm from Theorem 15 we
get the following theorem:

406

Theorem 20. The gap problem GAP-CONCENTRATED-DP is
solvable by a deterministic algorithm using space polynomial
in the size of the instance.

Similarly to the proof of Theorem 17 we can use the fact that
concentrated DP implies approximate DP to give a reduction
from DISTINGUISH (€, d)-DP to GAP-CONCENTRATED-DP.

Theorem 21 ([12]). If C is an p-CDP program, it also

satisfies (p + 2+/plog (1/9),6)-differential privacy for any
d € (0,1).

Theorem 22. GAP-CONCENTRATED-DP is PSPACE-hard.

Combining the results of Theorem 20 and Theorem 22 we
get the corollary:

Corollary 23. GAP-CONCENTRATED-DP is PSPACE-
complete.

C. Truncated Concentrated Differential Privacy

Definition VIL6. [I1] A program C' is w-Truncated p-
Concentrated-DP if for every neighboring inputs x,x' and
every a € (1,w)

Da(C(x)[IC(2")) < pa.

Again, we introduce a promise version of the problem. This
allows us to consider quantities of fixed precision parameter-
ized by n:

Definition VIL7. In the GAP-TRUNCATED-
CONCENTRATED-DP problem, an instance (C,p,w,n)
consists of a BPWhile program C, two dyadic rational
numbers p and w, and a binary integer precision parameter
1. The goal is to distinguish between the following two cases:

1) Yes-instances: for all neighboring inputs x,x’ and for
all a € (1,w),

Dao(C(2)[C(2)) < pa,

2) No-instances: there exists a pair of neighboring inputs
z,x" and o € (1,w) such that

1

Da(C@)IC@) 2 pa+ o

As we need to verify a bounded range of values of

the parameter « the verification procedure is analogous to

the algorithm for verifying concentrated differential privacy.
Therefore, we get the following theorem:

Theorem 24. The promise problem GAP-TRUNCATED-
CONCENTRATED-DP is solvable by a deterministic algorithm
using space polynomial in the size of the instance.

Similarly to the proof of Theorem 17 and Theorem 22 we
use an existing result connecting the parameters of approxi-
mate and truncated concentrated differential privacy to show
reduction from DISTINGUISH (¢, §)-DP to GAP-TRUNCATED-
CONCENTRATED-DP.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

Theorem 25 ([11]). If C is an (p,w)-TCDP mechanism, then

it also satisfies (p+ 2+/plog (1/9),0)-differential privacy for
any § € (0,1) that satisfies log (1/6) < (w — 1)2p.

The proof of hardness is then similar to the hardness result
for GAP-RENYI-DP.
Theorem 26. GAP-TRUNCATED-CONCENTRATED-DP is
PSPACE-hard.

Combining the results of Theorem 24 and Theorem 26 we
get the corollary:

Corollary 27. GAP-TRUNCATED-CONCENTRATED-DP is
PSPACE-complete.

VIII. TERMINATION-SENSITIVE VS
TERMINATION-INSENSITIVE DIFFERENTIAL PRIVACY

In the definition of differential privacy we have consid-
ered in this paper, Definition III.7, we considered sets of
outcomes over {0,1} U {1}. This definition corresponds to
a “termination-senstive” differential privacy model where the
adversary can observe the program’s termination behavior. As
in information flow control, one can also study a “termination-
insensitive” model where we require Condition 1, in Defini-
tion IIL7, to hold only for sets of outcomes O C {0,1}*
and where the probabilities are conditioned on the program
C terminating. It is easy to see that, up to a factor of
2, termination-sensitive (pure) e-differential privacy implies
termination-insensitive (pure) e-differential privacy. Indeed,
for all neighbors z, 2’ and O C {0,1}¢ we have:

Pr[C(z) € O]

Pr[C(z) e O | C(x) £ 1] = Pr(C(z) £ 1]
€ /
¢ PrC) €01 _ 2 pioyty e 0j0(') £ L.

T e Pr[C(z)) £ 1]
This argument does not work for (e, d)-differential privacy.
Indeed, a program that given a boolean input b returns b with
probability 4 and | with probability 1 — § is termination-
sensitive (0, 0)-differentially private, but is not termination-
insensitive (e, §)-differentially private for any € < co or 6 < 1.

Meanwhile, even termination-insensitive pure differential
privacy does not imply termination-sensitive differential pri-
vacy. For example, a program that on input O returns 0
with probability 1, and on input 1 returns 0 with probability
0.01, and L with probability 0.99 is termination-insensitive
0-differentially private, but is not termination-sensitive (e, d)-
differentially private for any ¢ < 0.99.

In this work, we focused on the termination-sensitive model
because it is the most natural from a probabilistic perspective
and because it is less susceptible to timing side-channel
attack as the one illustrated in the latter example above.
Nevertheless, all of our results can be adapted to work for
the termination-insensitive model as well. Our algorithmic
results can be adapted by explicitly normalizing the computed
probabilities by the probability of termination, which can be
computed in PSPACE. Meanwhile, our lower bounds hold
by replacing all steps where we explicitly enter an infinite

407

loop with steps where we output a special failure symbol.
This modification should be made to both the specification
and reduction we consider for almost-sure termination, as well
as for our reductions from almost-sure termination to privacy
verification problems.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the problem of deciding a
probabilistic boolean program to be differentially private, for
several notions of differential privacy, is PSPACE-complete.
In addition we have shown that also an approximate version
of this problem is PSPACE-hard. These results can help
identify the limitations of automated verification methods.
One direction that our results point to is the use of QBF
solvers [1] for reasoning about differential privacy and almost
sure termination for BPWhile programs. But first, to apply
a QBF solver to verify whether an input BPWhile program
is differentially private, the program should be efficiently
converted to a quntatified boolean formula. In current work we
only showed reduction in the opposite direction, namely we
converted a QBF formula to a BPWhile program in Lemma C.
We leave the discussion of the applicability of QBF solvers
for future work.

Our proofs of the PSPACE-hardness results for
Gap-Rényi-DP, Gap-Concentrated-DP, and Gap-Truncated-
Concentrated-DP uses simple reduction from PSPACE-
hardness of Distinguish (g,9)-DP that doesn’t rely on any
specific properties of BPWhile language. The similar reduction
can be used to show, for example, NP- and coNP-hardness
of Gap-Rényi-DP, Gap-Concentrated-DP, and Gap-Truncated-
Concentrated-DP for loops-free boolean language from [26].

Results that we discuss show that a problem of checking
various properties of probabilistic boolean programs with
while loops require exactly polynomial space. A problem that
generalizes all these results is the problem of checking whether
a probability distributions on the outputs of the program satisfy
a property expressed by a polynomial-space computation.
The PSPACE-hardness of verification of such generalized
property is implied by the almost sure termination. That is
so as we have an easily verifiable property of the output
distribution, we just need to check whether a sum of the
probabilities of the outputs is 1 or not. But can we show that
every property of the output distribution can be computed by a
polynomial space algorithm, if we are given an implicit access
to the distribution through the algorithm that outputs every
requested bit of the probability of requested output?

ACKNOWLEDGMENT

We thank Alley Stoughton and the anonymous reviewers for
their helpful comments and suggestions.

Mark Bun was supported by NSF grants CCF-1947889
and CNS-2046425. Marco Gaboardi was partially supported
by NSF grants CNS-2040215 and CNS-2040249. Ludmila
Glinskih was supported by NSF grants CCF-1947889 and
CCF-1909612.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

[1]

2

3

[4

[5

[6

[7

[8

9

[10]

(11

[12]

[13]

REFERENCES

The quantified boolean formulas
http://www.gbflib.org.

Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of
differential privacy. Proc. ACM Program. Lang., 2(POPL):58:1-58:30,

2018. https://doi.org/10.1145/3158146 doi:10.1145/3158146.

satisfiability library.

Victor Balcer and Salil P. Vadhan. Differential privacy on
finite computers. In Anna R. Karlin, editor, 9th Innova-
tions in Theoretical Computer Science Conference, ITCS 2018,

January 11-14, 2018, Cambridge, MA, USA, volume 94 of
LIPIcs, pages 43:1-43:21. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2018. https://doi.org/10.4230/LIPIcs.ITCS.2018.43
doi:10.4230/LIPIcs.ITCS.2018.43.

Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla, and
Mahesh Viswanathan. Deciding differential privacy for programs with
finite inputs and outputs. In LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbriicken, Germany, July
8-11, 2020, pages 141-154. ACM, 2020.

Gilles Barthe, Marco Gaboardi, Emilio Jests Gallego Arias, Justin Hsu,
César Kunz, and Pierre-Yves Strub. Proving differential privacy in
hoare logic. In IEEE 27th Computer Security Foundations Sympo-
sium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages 411-424.
IEEE Computer Society, 2014. https://doi.org/10.1109/CSF.2014.36
doi:10.1109/CSF.2014.36.

Gilles Barthe, Marco Gaboardi, Emilio Jesus Gallego Arias, Justin Hsu,
Aaron Roth, and Pierre-Yves Strub. Higher-order approximate relational
refinement types for mechanism design and differential privacy. In
POPL, pages 55-68, 2015.

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. Proving differential privacy via probabilistic cou-
plings. In LICS 16, pages 749-758, New York, NY, USA, 2016. ACM.
Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago Zanella Be-
guelin. Probabilistic relational reasoning for differential privacy. ACM
SIGPLAN Notices, 47(1):97-110, 2012.

Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov,
and Martin Vechev. Dp-finder: Finding differential privacy violations by
sampling and optimization. In CCS ’18, pages 508-524, 2018.

Allan Borodin, Stephen A. Cook, and Nicholas Pippenger.
Parallel computation for well-endowed rings and space-bounded
probabilistic machines. Inf. Control., 58(1-3):113-136, 1983.
https://doi.org/10.1016/S0019-9958(83)80060-6 doi:10.1016/S0019-
9958(83)80060-6.

Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke.
Composable and versatile privacy via truncated CDP. In Ilias Di-
akonikolas, David Kempe, and Monika Henzinger, editors, Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 74-86. ACM, 2018. https://doi.org/10.1145/3188745.3188946
doi:10.1145/3188745.3188946.

Mark Bun and Thomas Steinke. Concentrated differential privacy:
Simplifications, extensions, and lower bounds. In Martin Hirt and
Adam D. Smith, editors, Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part I, volume 9985 of Lecture Notes in Com-
puter Science, pages 635-658, 2016. https://doi.org/10.1007/978-3-662-
53641-4_24 doi:10.1007/978-3-662-53641-4_24.

Rohit Chadha, Dileep Kini, and Mahesh Viswanathan. Quantitative in-
formation flow in boolean programs. In Martin Abadi and Steve Kremer,
editors, Principles of Security and Trust - Third International Confer-
ence, POST 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings, volume 8414 of Lecture Notes in Computer
Science, pages 103—119. Springer, 2014. https://doi.org/10.1007/978-3-
642-54792-8_6 doi:10.1007/978-3-642-54792-8_6.

Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. On linear
time decidability of differential privacy for programs with unbounded
inputs. In LICS '21: 36th Annual ACM/IEEE Symposium on Logic in
Computer Science.

Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Bisim-
ilarity distances for approximate differential privacy. In Shu-
vendu K. Lahiri and Chao Wang, editors, Automated Technol-
ogy for Verification and Analysis - 16th International Symposium,
ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceed-

408

[16

[17

[18

[19

[20

21

22

23

24

25

[26

[27

[28

[29

[30

]

1

1

1

]

I

1

1

]

1

]

]

ings, volume 11138 of Lecture Notes in Computer Science, pages
194-210. Springer, 2018. https://doi.org/10.1007/978-3-030-01090-
412doi : 10.1007/978 — 3 — 030 — 01090 — 4;2.

Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Asym-
metric distances for approximate differential privacy. In Wan
Fokkink and Rob van Glabbeek, editors, 30th International Con-
ference on Concurrency Theory, CONCUR 2019, August 27-
30, 2019, Amsterdam, the Netherlands, volume 140 of LIPIcs,
pages 10:1-10:17. Schloss Dagstuhl - Leibniz-Zentrum fiir In-
formatik, 2019. https://doi.org/10.4230/LIPIcs. CONCUR.2019.10
doi:10.4230/LIPIcs. CONCUR.2019.10.

Costas Courcoubetis and Mihalis Yannakakis. The complex-
ity of probabilistic verification. J. ACM, 42(4):857-907, 1995.
https://doi.org/10.1145/210332.210339 doi:10.1145/210332.210339.
Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel
Kifer. Detecting violations of differential privacy. In CCS 2018, pages
475-489, 2018.

Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Dan Kifer.
Free gap information from the differentially private sparse
vector and noisy max mechanisms. Proc. VLDB Endow.,
13(3):293-306, 2019. URL: http://www.vldb.org/pvldb/vol13/p293-
ding.pdf, https://doi.org/10.14778/3368289.3368295
doi:10.14778/3368289.3368295.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.
Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of
Lecture Notes in Computer Science, pages 265-284. Springer, 2006.
Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy.
CoRR, abs/1603.01887, 2016. URL: http://arxiv.org/abs/1603.01887,
http://arxiv.org/abs/1603.01887 arXiv:1603.01887.

Kousha Etessami and Mihalis Yannakakis. Recursive markov chains,
stochastic grammars, and monotone systems of nonlinear equations. J.
ACM, 56(1):1:1-1:66, 2009. https://doi.org/10.1145/1462153.1462154
doi:10.1145/1462153.1462154.

Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. Coupled
relational symbolic execution for differential privacy. In ESOP, 2020.
To appear.

Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: a
new approach for analyzing privacy properties. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
42:1-42:10. ACM, 2014. https://doi.org/10.1145/2603088.2603097
doi:10.1145/2603088.2603097.

Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. Linear dependent types for differential privacy. In
POPL, pages 357-370, 2013.

Marco Gaboardi, Kobbi Nissim, and David Purser. The complexity of
verifying loop-free programs as differentially private. In 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbriicken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 129:1-129:17. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2020.

Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. Preserving
differential privacy under finite-precision semantics. Theor. Com-
put. Sci., 655:92-108, 2016. https://doi.org/10.1016/j.tcs.2016.01.015
doi:10.1016/j.tcs.2016.01.015.

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Uni-
versally utility-maximizing privacy mechanisms. SIAM J. Com-
put., 41(6):1673-1693, 2012. https://doi.org/10.1137/09076828X
doi:10.1137/09076828X.

Anna C. Gilbert and Audra McMillan. Property testing for
differential ~ privacy. In 56th Annual Allerton Conference
on Communication, Control, and Computing, Allerton 2018,
Monticello, IL, USA, October 2-5, 2018, pages 249-258.
IEEE, 2018. https://doi.org/10.1109/ALLERTON.2018.8636068
doi:10.1109/ALLERTON.2018.8636068.

Patrice Godefroid and Mihalis Yannakakis. Analysis of boolean pro-
grams. In Tools and Algorithms for the Construction and Analysis of
Systems - 19th International Conference, TACAS 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

7795 of Lecture Notes in Computer Science, pages 214-229. Springer,
2013.

Sergiu Hart and Micha Sharir. Probabilistic temporal logics for finite
and bounded models. In Richard A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1984, Washington, DC, USA, pages 1-13. ACM, 1984.
https://doi.org/10.1145/800057.808660 doi:10.1145/800057.808660.
Juris Hartmanis and Janos Simon. On the structure of feasible compu-
tations. Adv. Comput., 14:1-43, 1976. https://doi.org/10.1016/S0065-
2458(08)60449-0 doi:10.1016/S0065-2458(08)60449-0.

Christina Ilvento. Implementing the exponential mechanism
with base-2 differential privacy. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages
717-742. ACM, 2020. https://doi.org/10.1145/3372297.3417269
doi:10.1145/3372297.3417269.

H. Jung. Relationships between probabilistic and deterministic tape
complexity. In Jozef Gruska and Michal Chytil, editors, Mathematical
Foundations of Computer Science 1981, Strbske Pleso, Czechoslo-
vakia, August 31 - September 4, 1981, Proceedings, volume 118
of Lecture Notes in Computer Science, pages 339-346. Springer,
1981. https://doi.org/10.1007/3-540-10856-4_101 doi:10.1007/3-540-
10856-4_101.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
On the hardness of analyzing probabilistic programs. Acta Informat-
ica, 56(3):255-285, 2019. https://doi.org/10.1007/s00236-018-0321-1
doi:10.1007/s00236-018-0321-1.

Haim Kaplan, Yishay Mansour, and Uri Stemmer. The sparse vector
technique, revisited. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems,
NeurIPS 2020, 2020. To appear. URL: https://arxiv.org/abs/2010.00917.
Daniel Kifer, Solomon Messing, Aaron Roth, Abhradeep Thakurta,
and Danfeng Zhang. Guidelines for implementing and audit-
ing differentially private systems. CoRR, abs/2002.04049, 2020.
URL: https://arxiv.org/abs/2002.04049, http://arxiv.org/abs/2002.04049
arXiv:2002.04049.

Daniel Lehmann and Saharon Shelah. Reasoning with time and chance.
Inf. Control., 53(3):165-198, 1982. https://doi.org/10.1016/S0019-
9958(82)91022-1 doi:10.1016/S0019-9958(82)91022-1.

Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. Model checking
differentially private properties. In Sukyoung Ryu, editor, Program-
ming Languages and Systems - 16th Asian Symposium, APLAS 2018,
Wellington, New Zealand, December 2-6, 2018, Proceedings, volume
11275 of Lecture Notes in Computer Science, pages 394—414. Springer,
2018. https://doi.org/10.1007/978-3-030-02768-1_21 doi:10.1007/978-
3-030-02768-1_21.

Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector
technique for differential privacy. Proc. VLDB Endow., 10(6):637-648,
February 2017.

Tlya Mironov. On significance of the least significant bits for
differential privacy. In Ting Yu, George Danezis, and Virgil D.
Gligor, editors, the ACM Conference on Computer and Communi-
cations Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
pages 650-661. ACM, 2012. https://doi.org/10.1145/2382196.2382264
doi:10.1145/2382196.2382264.

Ilya Mironov. Rényi differential privacy. In 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA,
August 21-25, 2017, pages 263-275. IEEE Computer Society, 2017.
https://doi.org/10.1109/CSF.2017.11 doi:10.1109/CSF.2017.11.

Jack Murtagh and Salil P. Vadhan. The complexity of computing the
optimal composition of differential privacy. In Eyal Kushilevitz and Tal
Malkin, editors, Theory of Cryptography - 13th International Confer-
ence, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part I, volume 9562 of Lecture Notes in Computer Science, pages
157-175. Springer, 2016. https://doi.org/10.1007/978-3-662-49096-9_7
doi:10.1007/978-3-662-49096-9_7.

Joseph P. Near, David Darais, Chike Abuah, Tim Stevens, Pranav
Gaddamadugu, Lun Wang, Neel Somani, Mu Zhang, Nikhil Sharma,
Alex Shan, and Dawn Song. Duet: an expressive higher-order language
and linear type system for statically enforcing differential privacy. Proc.
ACM Program. Lang., 3(O0OPSLA):172:1-172:30, 2019.

Jason Reed and Benjamin C. Pierce. Distance makes the types grow

409

stronger: a calculus for differential privacy. In ICFP 2010, pages 157—
168. ACM, 2010.

John H. Reif. Logarithmic depth circuits for algebraic functions.
SIAM J. Comput., 15(1):231-242, 1986. https://doi.org/10.1137/0215017
doi:10.1137/0215017.

Walter J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. J. Comput. Syst. Sci., 4(2):177-
192, 1970. https://doi.org/10.1016/S0022-0000(70)80006-X
doi:10.1016/S0022-0000(70)80006-X.

Janos Simon. On tape-bounded probabilistic turing machine acceptors.
Theor. Comput. Sci., 16:75-91, 1981.

Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. Formal
verification of differential privacy for interactive systems (extended
abstract). In Michael W. Mislove and Joél Ouaknine, editors, Twenty-
seventh Conference on the Mathematical Foundations of Program-
ming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011,
volume 276 of Electronic Notes in Theoretical Computer Science,
pages 61-79. Elsevier, 2011. https://doi.org/10.1016/j.entcs.2011.09.015
doi:10.1016/j.entcs.2011.09.015.

Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985, pages 327-338.
IEEE Computer Society, 1985. https://doi.org/10.1109/SFCS.1985.12
doi:10.1109/SFCS.1985.12.

Yuxin Wang, Zeyu Ding, Daniel Kifer, and Danfeng Zhang. Checkdp:
An automated and integrated approach for proving difterential privacy
or finding precise counterexamples. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.
To appear.

Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner,
1987. URL: http://1s2-www.cs.uni-dortmund.de/monographs/bluebook/.
Danfeng Zhang and Daniel Kifer. Lightdp: towards automating differ-
ential privacy proofs. In POPL 2017, pages 888-901. ACM, 2017.
Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, and
Aaron Roth. Testing differential privacy with dual interpreters. Proc.
ACM Program. Lang., (OOPSLA), 2020. To appear.

[46]

(47

(48]

(49]

[50]

[51]

[52]
(53]

[54]

APPENDIX A
COMPUTING HITTING PROBABILITIES IN
POLYLOGARITHMIC SPACE

Here we give a brief overview of Simon’s algorithm [48]
for computing the hitting probabilities of a Markov chain with
n states using O(log® n) space.

The original application in Simon’s paper was to show that
unbounded-error probabilistic Turing machines can be simu-
lated in deterministic polynomial space. That is, he showed
that one can determine in PSPACE whether the accept
configuration in the configuration graph of a probabilistic TM
is reached with probability strictly greater than 1/2. This in
turn is accomplished by interpreting the configuration graph as
a Markov chain and exactly computing the hitting probability
of the accept configuration.

We now describe the algorithm for computing hitting prob-
abilities captured in Lemma 6. Recall that we are given a
Markov chain M = (V, E, p, pp) with 2” states. The Markov
chain is represented by its transition matrix (an object of size
20(L)), 50 each entry can be addressed using O(L) space. We
assume that py is supported on a single start state, that all
non-final states are non-recurrent (i.e., upon leaving a non-
final state, the probability the Markov chain returns to it is
less than 1) and that for all non-final states, every outgoing
transition has probability either 0 or 1/2.

Simon first described an algorithm using O(L?) time in the
random access machine with multiplication (MRAM) model —
a model of parallel computation with unit-cost multiplication.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

This implies an O(LS5)-space algorithm on a deterministic TM
using a generic simulation of time 7(n) MRAM algorithms
by space O(T?(n))-space deterministic TMs [32].

The MRAM algorithm works as follows. Let P denote
the transition matrix of the Markov chain M. Let () be the
submatrix of P corresponding to the non-final states. For a
given final state f, let vy be the column of P corresponding
to state f, but restricted to the entries corresponding to non-
final states. Let vT be the row vector with a 1 in the entry
corresponding to the start state and 0’s elsewhere. Then letting
Qoo = Q4+ Q% + Q% + ..., we have that the probability
of reaching the final state f from the start state s is a =
v Qs V. The goal now becomes to compute this matrix-
vector product.

The key idea is that since () consists only of non-recurrent
states, then Q. is well-defined and Qo, = (I — Q)™! — I.
Matrix inversion (more precisely, computing the numerators
and denominators of the resulting entries separately) can be
performed on an MRAM in time O(L®) using a variant
of Csanksy’s algorithm. This dominates the runtime of the
algorithm, which just has to perform the matrix-vector product.

APPENDIX B
PROOF OF THEOREM 2

We prove our simple criterion for determining whether a
program terminates almost surely based on the topology of its
state graph.

Proof of Theorem 2: For the “if” direction, suppose x is
an input such that for every reachable vertex in the state graph
G = (V, E) of C(z), there is a path from v to one of the final
states. Let m = |V| be the number of vertices. Since every
simple path in G has at most m edges, we have that for every
v, the probability of reaching a final state after at most m
additional steps of computation starting from v is least 27",
Therefore, for any k > 1, the probability that the program fails
to terminate on input 2 after km steps is at most (1 —27™)F,
Taking k — oo, we see that that the program fails to terminate
with probability 0. Therefore, C' terminates almost surely on
input z.

For the “only if” direction, suppose there is an input x and
a vertex v in the state graph of C(x) that is reachable from
the start state but cannot reach any final state. Then on C(x)
reaches state v with probability at least 27" by following
the simple path from the start state to v. Once the program
has reached v, it is impossible to terminate. So the program
terminates with probability at most 1 — 27" < 1. |

APPENDIX C
REDUCTION FROM TQBF TO ALMOST SURE TERMINATION

Suppose we have a fully quantified Boolean formula

Y =Vry €{0,1}3xy € {0,1}...Va, € {0,1}p(x1,. .., x1)

in prenex normal form. We wish to check whether 1) € TQBF.
We create a BPWhile program, the template for which we give
below, such that the program terminates almost surely iff 1 is
true. As in previous reductions, for the sake of readability we

410

use a few extra constructions that BPWhile doesn’t formally
support, such as variables that take on constant-size integer
values.

A:

input(b); # dummy input bit that

the program ignores
cl = 0;
xl = 0;
while x1 <=1 then
c2 = 0;
x2 = 0;
while x2 <= 1 then
c3 = 0;
x3 = 0;
while x3 <= 1 then
while xt <= 1 then
if phi(xl,...,xt)==1 then
ct++;
Xt++;
if ct == 2 then
c(t=1)++;
if ¢3 == 2 then
c2++;
X2++;
if ¢c2 >= 1 then
cl++;
x1++;
if (cl < 2) then #psi is false

while true then #enter
skip;
return (1)

infinite loop

The first part of the program uses ¢ nested while loops to
evaluate the QBF formula . Each loop corresponding to a
universal quantifier checks that both assignments to its variable
return 1. Meanwhile, each loop corresponding to an existential
quantifier checks that at least one of the assignments returns
1.

After evaluating the entire formula, the program enters an
infinite loop if it evaluates to false, and otherwise terminates
with probability 1.

Hence this construction produces a BPWhile program that
terminates with probability 1 iff the formula v is true. The
construction of the program takes time polynomial in the size
of 1, so checking almost sure termination is PSPA CE-hard.

APPENDIX D
ADDITIONAL PROOFS FROM SECTION VI

Proof of Claim 13: Suppose P is not almost surely
terminating and that x is an input on which the program
is not terminating with some positive probability. Consider
the Markov chain corresponding to the execution of P(z).
This Markov chain has a reachable, recurrent non-final state.
Since a program of size N has at most 2P°Y(V) gtates,

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

this recurrent state is reachable within 2P°¥(Y) transitions.
Moreover, since each transition has probability either 0,1/2,
or 1, the probability of reaching this recurrent state is at least
9- only(N)

The program P’ will amplify the probability of reaching this
recurrent state (i.e., entering this infinite loop) by repeating P
many times. Below we describe how to encode this number
of repetitions succinctly. We provide a code template where
we operate with two vectors of m + 1 boolean variables
Counter and B, that we use in this program to represent
integers in the range [0,2™*!). We compare and increment
these variables, and both of these operations can be encoded
as simple procedure of polynomial size in the length of m
with boolean variables only.

1. input(z);

2. while true then

3. B =0;

4. Counter = 0;

5. while (Counter < 2™) then
6. increment(Counter);
7. a = random;

8. if a =1 then

9. increment(DB);

10. if B < 2™ then
11. P(z);

12. else

13. return(l)

In short, this program terminates if and only if out of
2™ coin tosses in the inner while loop, we get 2™ 1’s. As
the probability of this event is 1/22", we get that we need
approximately 22" iterations of the external loop to finally
get exactly 2™ ones in 2™ coin tosses. As in each iteration of
the external loop we run the program P that with probability
at least 1/ 22™ enters an infinite loop, overall we enter this
loop with constant probability when it exists.

We now analyze the guarantee of P’ more formally. Let
X be the number of rounds in which the outer loop runs,
and ¢ = 272" be the probability of getting B = 2™ after
the inner loop run. Then we get that X is distributed as a
geometric random variable

Pr[X =1]=¢,Pr[X =

2l =q(1—4q),

Pr[X = 3] = ¢(1 - q)*,

Then we can estimate the probability that P’ halts as:

Pr[P’ halts] < Zq(l k(1 - qz @)% 1
k=1 k=1
7\ 2k q (1-9)
= —" 1—¢q)*" = .
i Dt i e
_ q-(1—q) :‘J(l_Q) 1- /2_Ooq
1-(1-q)? q(2-q) 2—q q
Hence, if 0 < ¢ < 1 we get that Pr[P’ halts] < 1/2.]

411

APPENDIX E
ADDITIONAL PROOFS FROM SECTION VII

Proof of Lemma 19: The problem we are interested in
is as follows. Given implicit descriptions of two finite proba-
bility distributions d;(7) and do(%), where each probability is
discretized to 1/ QQPW, and a rational parameter p, determine

whether
log Z (d1(i

1

~Da(di]d2) =
for all dyadic rational o € (1,00) with precision 1/2P(=),
or whether for at least one dyadic rational o € (1,00) with
precision 1/2”('”‘) it holds that

1og Z (d1(i

221(v)

(@)™ < p,

1a> +i
pat o

(1))
Let m = , so each probability in d;(i) and ds(¢) are
discretized to 1/m. We claim that it suffices to check this
condition for all o < 1 + logm/p. Either

1) There exists ¢ in the probability space such that d; (z) >
0 and do(7) = 0, in which case D,(d;]||dz2) is infinite
for every o > 1; or
For every outcome i, the value m is an upper bound
on the ratio di(i)/d2(7). In this case, the quantity
LD (dy||d2) we are interested in is at most

2)

1
] @ dy(i) <
ala—1) oggm da(i) <
logm
— 1 N <
ala—1) og(m)_oz—l7
logm

which is at most p for a > 1+
In both cases we need to check values of « within the
interval (1,1 + logm/p).
That still leaves us with the infinite number of values of «
we need to check. To finish the proof of the lemma we show
that it is enough to consider values of o discretized to 2~

Claim 28. Fix distributions P and Q and p > 0. If
D, (P||Q) < pac+ 27" for every o > 1 that is discretized to
an integer multiple of 27" /p, then D, (P||Q) < pa + 27 7+1
for every a > 1.

Proof: 1t suffices to show that if 0 < a1 < ay =
a1 + 27"/p are such that D,, (P||Q) < pay + 27" and
D,,(P||Q) < pas+2~", then for every o/ witha; < o/ < a
we have D/ (P||Q) < pa’ +277T1. As the Rényi divergence
between two distributions increases monotonically as a func-
tion of o, we have

Do (P||Q) < Doy (P[|Q) < paz +277"
=p(d + (az —) + 27" = pa + plag — o) +27".
From the facts that as — a; = 27"/p and oy < o’ < ag we
get (ap —a') < 277 /p. Hence Dy (P||Q) < pa/ +277+1. =
This completes the proof of the lemma, as we showed that

we can consider values of « discretized to 27" /p in a bounded
range. |

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 01,2023 at 20:38:27 UTC from IEEE Xplore. Restrictions apply.

