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I. ABSTRACT

Molecular qubits are an emerging platform in quantum information science (QIS) due

to the unmatched structural control that chemical design and synthesis provide compared

to other leading leading qubit technologies. This theoretical study investigates pulse se-

quence protocols for spin-correlated radical pairs (SCRPs), which are important molecular

spin qubit pair (SQP) candidates. Here, we introduce improved microwave pulse protocols

for enhancing the execution times of quantum logic gates based on SQPs. Significantly, this

study demonstrates that the proposed pulse sequences effectively remove certain contribu-

tions from nuclear spin effects on spin dynamics, which are a common source of decoherence.

Additionally, we have analyzed the factors that control the fidelity of the SQP spin state

following application of the CNOT gate. It was found that higher magnetic fields introduce

a high frequency oscillation in the fidelity. Thereupon, it is suggested that further research

should be geared towards executing quantum gates at lower magnetic field values. In ad-

dition, an absolute bound of the fidelity outcome due to decoherence is determined, which

clearly identifies the important factors that control gate execution. Finally, examples of the

application of these pulse sequences to SQPs are described.

II. INTRODUCTION

There is a growing interest in molecular qubit systems comprising electron and nuclear

spins for quantum information science (QIS) and quantum computing (QC). It stems from

the extensive control over the qubit nature that chemical synthesis allows, providing the

ability to fine-tune qubit properties and spatially position individual molecular qubits via

covalent and non-covalent assemblies that may be used for quantum sensing (QS) or for

preparing multi-qubit arrays.1 Additionally, there are already a number of candidates for

molecular qubits, such as photogenerated radical-pairs in donor-bridge-acceptor systems,2,3

photogenerated radical pairs in triradical Pt complexes,4 photoisomerization-induced spin-

charge Co complexes,5 and a recent example of a successful quantum teleportation exper-

iment that utilized Electron Paramagnetic Resonance (EPR) for detection.3 Besides the

universal issue of coherence times and detection, alongside the experimental execution of

quantum logic gates, further challenges need to be addressed. These challenges include a
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full description of the dynamical properties of spin systems via computational or experimen-

tal techniques, coupling to external fields, electron-nuclear hyperfine interactions, spin-orbit

coupling, magnetic spin exchange, and their effect on controlling the spin states. Further-

more, there is the matter of understanding environmental contributions to decoherence and

how these effects impact molecular qubits. Addressing all of these issues would greatly

accelerate the utilization of molecular systems in QIS and QS and provide a toolbox for

designing new experiments and applications, which are only at the beginning stages of this

emerging second quantum revolution.6

In Quantum Information Processing, there are several spin-based platforms outside molec-

ular spin systems, such as impurities in semiconductors and quantum dots. Examples of

impurities in semiconductors include coloured centres in diamond, such as nitrogen-vacancy,

(NV),7–10 and silicon-vacancy, (SV) centres,11,12 and Phosphorus donor qubits in Silicon.13,14

Much research has been conducted on these systems, which have several desirable character-

istics, such as extended coherence times and optical addressability, and have been applied

to sensing applications. However, they have encountered engineering and production obsta-

cles. These materials have impurities that are difficult to manage, and spatial placement of

defects, scalability to multiple qubits, and coupling of a large number of qubits are all diffi-

cult. In addition, Silicon15–17 and germanium18–20 quantum dots have been prominent QIP

platforms. These are potential platforms with high fidelity rates, but similar to semiconduc-

tor impurities, they present fabrication and control issues. In addition to a high sensitivity

to ambient and charge noise, which can reduce coherence times. This article is limited to

molecular spin systems, which have been on the rise due to the ability of chemical synthesis

to precisely control atomic placements.

Photogenerated SCRPs in donor-bridge-acceptor (D-B-A) molecules are one class of

molecular qubit candidates that shows great promise. Their advantages can be readily

demonstrated by considering the widely researched preparation, photophysics and spin dy-

namics of SCRPs, which are illustrated in Figure 1.21–25 In these systems, selective pho-

toexcitation of D, B, or A produces an excited singlet state that undergoes rapid charge

separation to produce a SCRP in an initial singlet spin state. This SCRP can be considered

a spin qubit pair (SQP) and has been shown to satisfy a number of the DiVincenzo criteria.26

The SCRPs are generated in a well-defined initial state, the systems are well-characterised,

potentially scalable, and have been shown to have long coherence times, around 2 µs at rela-
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tively high temperatures of 80 K.2 SCRP coherence times can also be increased by reducing

the electron-nuclear hyperfine interactions in each radical using deuteration and working in

a nuclear spin free solvent, in addition to removing rapidly moving nuclear spins, such as

the hydrogen atoms in methyl groups. Finally, a universal ”set” of quantum logic gates

exists, with initial attempts at implementation having been shown,2,27 and there is evidence

of a qubit-specific measurement capability based on quantum state tomography;2 however,

further research needs to be done.

Figure 1: Scheme of a typical spin selective charge recombination reaction in donor-acceptor

(D–A) molecules. After initial light excitation and electron transfer reactions, a SCRP in

a singlet state is produced, [D•+ − A•−]1. The singlet state can interconvert to the triplet

state [D•+−A•−]3 via hyperfine interactions of each of the spins. Both of these states relax

to the ground state via different pathways. The singlet state relaxes to the ground state via

the singlet pathway with recombination constant kS, and the triplet state recombines to a

triplet product via the triplet pathway with recombination constant kT .

With respect to QIS, there are a few general criteria for a good SCRP system: First,

the SCRP should have intermediate electron spin–spin coupling because this value will

ultimately determine the speed at which a gate can be executed. Second, the SCRP should

have long coherence times, T2 to ensure that a suffiicent number of gate operations can

be made to be useful; Third, the SCRP should be capable of being oriented in a well-

defined, controllable position to avoid overlapping transitions and to enable proper readout

and control of the spin system. For example, oriented single crystals would be ideal in this

regard.

In this article we will explore how quantum logic gates can be implemented in a SCRP
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system. We will propose improved pulse sequences for most common two-qubit quantum

logic gates in SCRPs and introduce ways to correct for different noise sources in the experi-

mental application of these quantum logic gates. Furthermore, we will give a full dynamical

description of how the fidelity of the SQP spin system following CNOT gate application

will vary with different parameters in the experiment and give evidence for the advantages

of performing these experiments at lower magnetic fields. Lastly, a universal bound on

the fidelity value of a CNOT gate operation will be given when T2 relaxation effects are

incorporated, providing an understanding of how decoherence affects SQPs.

III. THEORY

A. Spin Hamiltonian

The spin dynamics of an arbitrary SCRP in a fixed orientation are governed by its

spin Hamiltonian, which includes the anisotropic electron Zeeman interaction, electron–

nuclear hyperfine interaction, electron–electron dipolar interaction and electron exchange

interaction.28–30 If the applied magnetic field is larger than other interactions in the system,

then a secular approximation can be employed which simplifies the Hamiltonian to:27,30–32

Ĥ = Ĥ12 + Ĥhyp (1)

where,

Ĥ12 = g1µB |B| Ŝ1z + g2µB |B| Ŝ2z + JŜT1 Ŝ2 +
1

2
D
(

3Ŝ1zŜ2z − ŜT1 Ŝ2

)
= ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z +D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

) (2)

ĤHyp = Ŝ1z

(
N1∑
k=1

(
A1kÎ1k,z +B1kÎ1k,x

))
+ Ŝ2z

(
N2∑
p=1

(
A2pÎ2p,z +B2pÎ2p,x

))
(3)

and

D = D

(
cos2(θ)− 1

3

)
D1 = D + J

D2 = −D
2

+ J

(4)
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Here B is the applied magnetic field, Ŝi and Îik are electron and nuclear spin operators,

respectively, Ni is the number of nuclear spins coupled to radical i, θ is the angle between the

applied magnetic eld and the dipolar axis, J is the electron exchange interaction constant,

D is the strength of the dipolar interaction, µB is Bohr magneton, and gi is the g tensor.

With the additional simplification, ωi is the Zeeman frequency of radical i under the applied

magnetic field of strength |B|.

Eigenvectors and eigenvalues for Ĥ12 are:33,34

|1〉 = |T+〉 ; |2〉 = cos ξ |S〉+ sin ξ |T0〉

|3〉 = − sin ξ |S〉+ cos ξ |T0〉 ; |4〉 = |T−〉
(5)

λ1 =
Ω

2
+
D1

4
; λ2 = −1

2
Θ− D1

4

λ3 =
1

2
Θ− D1

4
; λ4 = −Ω

2
+
D1

4

(6)

where,

tan (2ξ) =
−∆ω

2
3
D1 + 1

3
D2

(7)

∆ω = ω2 − ω1; Ω = ω1 + ω2; Θ =
√

∆ω2 +D2
2 (8)

The electron spin - electron spin Hamiltonian, Ĥ12, can be further reduced at very high

magnetic fields if the difference between Zeeman energies is much larger than spin interac-

tions, i.e. |ω2 − ω1| � D1:

Ĥ12 = ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z (9)

In this study, only the Ĥ12 term of the full Ĥ will be used for the design of the pulse

sequences and the influence of Ĥhyp on dynamics will be discussed separately. Furthermore,

the three main cases of high field Ĥ will be discussed during the design of pulse sequences:

1. Ĥ with only Ŝ1zŜ2z interaction:

Ĥ1 = D1Ŝ1zŜ2z (10)
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2. High field Ĥ with |ω2 − ω1| � D1:

Ĥ2 = ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z (11)

3. High field Ĥ:

Ĥ3 = ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z +D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)
(12)

B. Idempotent operators

A neat and simple tool to derive an analytical form of any two spin pulse sequence, first

introduced by Price et al.,35 involves the use of primitive idempotent operators, E±, that

satisfy the following properties:

E+ + E− = 1, E2
± = E±, E+E− = 0 (13)

Important idempotent operators for electron spins are:

Ei
± =

1

2
I± Ŝiz, Ei,j

± =
1

2
I± 2ŜizŜjz (14)

Thus, an arbitrary density matrix,

Û =


u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 (15)

can be decomposed using idempotent operators:27

Û = u11E
1
+E

2
+ + 2u12Ŝ2xE

1
+E

2
− + 2u13Ŝ1xE

1
−E

2
+ + 4u14Ŝ1xŜ2xE

1
−E

2
−

+ 2u21Ŝ2xE
1
+E

2
+ + u22E

1
+E

2
− + 4u23Ŝ1xŜ2xE

1
−E

2
+ + 2u24Ŝ1xE

1
−E

2
−

+ 2u31Ŝ1xE
1
+E

2
+ + 4u32Ŝ1xŜ2xE

1
+E

2
− + u33E

1
−E

2
+ + 2u34Ŝ2xE

1
−E

2
−

+ 4u41Ŝ1xŜ2xE
1
+E

2
+ + 2u42Ŝ1xE

1
+E

2
− + 2u43Ŝ2xE

1
−E

2
+ + u44E

1
−E

2
−

(16)

This provides a straightforward way to find a decomposition for any two-spin quantum

gate. An important property for idempotent operators used throughout this work is:

eAE± = eAE± + E∓, given that [A,E±] = 0 (17)
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Lastly, an important property for the exponential of an arbitrary Pauli spin matrix Ŝk is:

eiθŜk = cos

(
θ

2

)
I + i2Ŝk sin

(
θ

2

)
(18)

C. Fidelity

The general measure of closeness between two quantum states is called the fidelity and

it can be computed with knowledge of their density matrices ρ̂ and σ̂ using the following

equation:36

F (ρ̂, σ̂) =
(

Tr
√
ρ̂1/2σ̂ρ̂1/2

)2

(19)

Here ρ̂ is taken to be the ideal density matrix state and σ̂ is the experimentally measured

density matrix, for instance, determined by quantum state tomography.2

In the case of an initial pure state ρ̂(0) = |Ψ〉 〈Ψ| and ρ̂ = Ûidealρ̂(0)Û †ideal, where Ûideal is

trace preserving, the fidelity measure simplifies to:

F = 〈Ψ| Û †idealσ̂Ûideal |Ψ〉 (20)

Given that ρ̂2 = ρ̂. Here Ûideal is the ideal case propagation matrix. If we can easily

decompose σ̂ = Ûspin |Ψ〉 〈Ψ| Û †spin, then the fidelity measure will be:

F =
∣∣∣〈Ψ| Û †idealÛspin |Ψ〉∣∣∣2 (21)

where Ûspin is resultant propagator under arbitrary spin evolution and rotation pulses.

For instance, if the system has two electron spins that are initialized in a singlet state,

and the ideal gate is a CNOT gate, then the fidelity will be:

F =
∣∣∣〈S| Û †CNOT Ûspin |S〉∣∣∣2 (22)

IV. PULSE SEQUENCES FOR TWO QUBIT GATES

The general algorithm for deriving a pulse sequence is as follows: First, expand the target

propagator using idempotent operators. Second, derive a pulse sequence for a Hamiltonian

that only includes the electron spin - electron spin interaction. Third, apply correction terms

to the pulse sequence to account for other Hamiltonian terms.27,35
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In this section, the procedure for generating a pulse sequence will be demonstrated by

finding the Controlled-NOT (CNOT) gate pulse sequence for a SCRP system. Considering

that the pulse sequence is derived for a Hamiltonian without Zeeman and hyperfine interac-

tions, a correction term will be proposed, which will also alleviate the influence of hyperfine

interactions on the fidelity measure. In addition to the CNOT gate, the pulse sequence for

other generally used two qubit gates will be introduced. Finally, a simplification for a CNOT

gate for a SCRP starting in a singlet state will be demonstrated that will significantly reduce

the number of pulses needed to execute the gate.

A. Pulse sequence for a CNOT gate

The CNOT gate is one of the fundamental two qubit quantum logic gates that when

combined with several single qubit gates forms a complete set of quantum logic gates from

which any arbitrary unitary transformation can be derived.26 The propagator matrix takes

the form:

ÛCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (23)

Its main action is the inversion of |βα〉 and |ββ〉 populations in a two qubit system that

manifests from the state of the first (called the control) qubit. If the first qubit is in |β〉

state then the state of the second (called the target) qubit is flipped. The unitary matrix

formed with the expansion in Eq. 16 for this gate is:

ÛCNOT = E1
+ + 2Ŝ2xE

1
− (24)

Given that a pulse sequence is essentially a set of multiplied exponential matrices it

becomes possible to find a binomial multiplication for the expansion that will transform it

into an experimentally feasible pulse sequence:

ÛCNOT = E1
+ + 2Ŝ2xE

1
−

= E1
+ + i(−i)2Ŝ2xE

1
−

=
(
−i2Ŝ2xE

1
− + E1

+

) (
iE1
− + E1

+

) (25)
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By applying Eq. 17 and noting that eiπ/2 = i and e−iπŜ2x = −2iŜ2x according to Eq. 18,

we find:

ÛCNOT = e−iπŜ2xE1
−ei

π
2
E1
− (26)

Using the definitions in Eq. 14, this is expanded as:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2xe−i

π
2
Ŝ1zeiπŜ1zŜ2x (27)

Due to the nature of the experimental setup and the spin Hamiltonian, the Ŝ1z and Ŝ1zŜ2z

terms cannot be directly generated in the experiment. These exponential terms have to be

decomposed into a form more suited for experimental implementation. There are a large

number of ways to decompose these terms; in addition, the terms in Eq. 27 commute with

each other resulting in many different pulse sequences that can achieve the same unitary

transformation. One possible solution, with a particularly clean structure, is as follows:

e−i
π
2
Ŝ1z = ei

π
2
Ŝ1xei

π
2
Ŝ1ye−i

π
2
Ŝ1x (28)

eiπŜ1zŜ2x = e−i
π
2
Ŝ2yeiπŜ1zŜ2zei

π
2
Ŝ2y (29)

Substituting Eq. 28 and 29 into Eq. 27 yields:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2yeiπŜ1zŜ2zei

π
2
Ŝ1xei

π
2 (Ŝ1y+Ŝ2y)e−i

π
2 (Ŝ1x+Ŝ2x) (30)

For the reduced high field Hamiltonian in Eq. 10, the rotation term, Ŝ1zŜ2z, can be

treated as a time propagation under the spin Hamiltonian:

e−iĤ1τ = eiπŜ1zŜ2z

−iĤ1τ = iπŜ1zŜ2z

−iD1τ Ŝ1zŜ2z = iπŜ1zŜ2z

τ = − π

D1

=
π

|D1|

(31)

Note that D1 < 0. The pulse sequence for the CNOT gate (read from left to right, this

notation will be used throughout this paper) is:

90◦1x+2x, 90◦−(1y+2y), 90◦−1x,
π

|D1|
, 90◦2y (32)

Here the degrees show the magnitude of spin selective or non-selective rotations and the

subscripted index identifies each electron spin and its phase. The non-degree term represents

the propagation time required for the system.
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1. The sign of D1

The reported sequences in Ref. 27 have this form for the spin evolution time:

τ =
π

D1

(33)

Since, as defined in Eq. 2, D1 is a negative quantity for radical pairs, the reported SWAP

and CNOT gate sequences for electron spins are not appropriate since π/D1 6= π/|D1|. If

τ = π/D1, the actual CNOT pulse sequence suggested by Ref. 27, which was recently

employed in Ref. 37 takes the form (with adjusted phase):

ÛCNOT =


0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

 (34)

Care must be taken when using pulse sequences to be sure the right sequence is used for

the appropriate case.

B. Corrections for Zeeman Interactions

The derived pulse sequence in Eq.32, namely the Ŝ1zŜ2z evolution, breaks down when

including the electron Zeeman terms such as in Eqs. 11, 12. The general way to correct

this is to split the spin evolution term into two equal parts and apply an additional pulse

sequence, which will selectively rotate only the Ŝiz terms and cancel the other Zeeman

terms.27 Under the influence of Eq. 11 this method yields:

eiπŜ1zŜ2z = e−iĤ2
τ
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤ2

τ
2 eiπ(Ŝ1x+Ŝ2x)

= e−i(ω1Ŝ1z+ω2Ŝ2z+D1Ŝ1zŜ2z) τ2 e−iπ(Ŝ1x+Ŝ2x)e−i(ω1Ŝ1z+ω2Ŝ2z+D1Ŝ1zŜ2z) τ2 eiπ(Ŝ1x+Ŝ2x)

= e−i(ω1Ŝ1z+ω2Ŝ2z+D1Ŝ1zŜ2z) τ2 e−i(−ω1Ŝ1z−ω2Ŝ2z+D1Ŝ1zŜ2z) τ2

= e−iD1Ŝ1zŜ2zτ

(35)

Hence, for each pulse sequence evolving under Eq. 11, the propagation time τ is replaced

by:

τ → 180◦−(1x+2x),
τ

2
, 180◦1x+2x,

τ

2
(36)
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For the time evolution under Eq. 12 a correction sequence that divides the spin evolution

time into four parts was suggested in Ref. 27. We note that the same result can be achieved

with fewer dissections and pulse sequences:

eiπŜ1zŜ2z = e−iĤ3
τ
2 e−iπŜ1xe−iπŜ2ye−iĤ3

τ
2 eiπŜ1xeiπŜ2y

= e−iĤ3
τ
2 e−i(−ω1Ŝ1z−ω2Ŝ2z+D1Ŝ1zŜ2z−D2(Ŝ1xŜ2x+Ŝ1yŜ2y)) τ2

= e−iD̂1Ŝ1zŜ2zτ

(37)

The two exponential terms can be added because the expressions commute. For every

pulse sequence that evolves under Eq. 12 the propagation time τ is replaced by:

τ → 180◦−1x, 180◦−2y,
τ

2
, 180◦1x, 180◦2y,

τ

2
(38)

C. Hyperfine Interaction Effects

The hyperfine interaction, which arises from nuclear spins, is typically non-negligible in

SCRP systems and is often of a similar order of magnitude to the D coupling. Nuclear

spins significantly influence the experimental setting by altering the initial pulse response,

affecting readout through modulation effects, and introducing additional sources of noise.

Whenever possible, these effects should be mitigated through chemical synthesis or isotopic

labelling, as well as by creating an environment that minimizes spin decoherence, such

as employing specific solvents and maintaining low temperatures. Notably, the correction

factors introduced earlier can also eliminate some contributions from hyperfine interaction

terms, potentially enhancing the fidelity of the two Qubit gate in situations where nuclear

spin effects cannot be mitigated.

When we add static hyperfine coupling effects to the correction sequence in Eq. 36. we

find:

eiπŜ1zŜ2z = e−iĤhyp,2
τ
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤhyp,2

τ
2 eiπ(Ŝ1x+Ŝ2x)

= e−iĤhyp,2
τ
2 e−iĤ

′
hyp,2

τ
2

(39)

where,

Ĥhyp,2 = Ĥ2 + Ĥhyp (40)

Ĥhyp = Ŝ1z

(
N1∑
k=1

(
A1kÎ1k,z +B1kÎ1k,x

))
+ Ŝ2z

(
N2∑
p=1

(
A2pÎ2p,z +B2pÎ2p,x

))
(41)
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Ĥ ′hyp,2 = Ĥ ′2 − Ĥhyp (42)

Ĥ ′2 = −ω1Ŝ1z − ω2Ŝ2z +D1Ŝ1zŜ2z (43)

Since
[
Ĥhyp,2, Ĥ

′
hyp,2

]
= 0 (proof of which is shown in Appendix A):

e−iĤhyp,2
τ
2 e−iĤ

′
hyp,2

τ
2 = e−i(Ĥhyp,2+Ĥ′hyp,2)

τ
2 = e−iD1Ŝ1zŜ2zτ = eiπŜ1zŜ2z (44)

This shows that the overall performance in terms of fidelity of a pulse sequence for Ĥ2

will be unaffected by the static hyperfine interactions of the system.

An equivalent result can be seen for the correction sequence in Eq. 38 since
[
Ĥhyp,3, Ĥ

′
hyp,3

]
=

0 (proof in Appendix A), where

Ĥhyp,3 = Ĥ3 + Ĥhyp (45)

Ĥ ′hyp,3 = Ĥ ′3 − Ĥhyp (46)

Ĥ ′3 = −ω1Ŝ1z − ω2Ŝ2z +D1Ŝ1zŜ2z −D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)
(47)

The result presented above assumes that nuclear Zeeman effects are negligible in the

dynamics due to their small magnitude compared to the electron spin Zeeman effect. If

these effects are included in the dynamics, the time-propagation sequence becomes:

e−iπŜ1zŜ2z = e−iD1Ŝ1zŜ2zτe−i
∑N1
k=1 ω1k Î1k,zτe−i

∑N2
p=1 ω2pÎ2p,zτ (48)

Where ωij is gyromagnetic ratio of nuclei j coupled to electron spin i.

Although this effect will undoubtedly influence the spin dynamics for high magnetic fields,

if the nuclear spin space-which is a commonly assumed to be in a fully mixed state-and the

electron spin space are not coupled for the initial nuclear spin space then the nuclear Zeeman

effect will not affect the fidelity measure because it does not evolve the electron spin states.

However, it is likely to affect the experimental readout, which is not addressed in this article.

D. Proposed Pulse Sequences

The most common two qubit quantum logical gates are the CNOT, SWAP, Controlled-Z,

and Controlled-Phase gates.36 Their propagators and pulses sequences are depicted in Table

I. The pulse sequences were derived with evolution under Eq. 10, but can easily be expanded
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to account for Eqs. 11 and 12 as we have already demonstrated. All derivations are shown

in Appendix B.

Operation Propagator Pulse Sequence

ÛCNOT



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


90◦1x+2x, 90◦−(1x+2x), 90◦−1x,

π
|D1| , 90◦2y

ÛSWAP



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


90◦1x+2x,

π
|D1| , 90◦−(1x+2x), 90◦1y+2y,

π
|D1| 90◦−(1y+2y),

π
|D1|

ÛCZ



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


90◦−1x, 90◦1y+2y, 90◦1x+2x, 90◦−2y,

π
|D1|

ÛCP (φ)



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ


90◦2x,

(
φ
2

)◦
−2y

, 90◦−2x, 90◦−1y,
(
φ
2

)◦
−1x

, 90◦1y,
φ
|D1|

Table I: Pulse sequences for Controlled-NOT (CNOT), SWAP, Controlled-Z (CZ), and

Controlled-Phase (CP) quantum logic gates for coupled electron spin systems. All of the

pulse sequences were derived assuming Ĥ1 in Eq. 10, yet the pulse sequences can be ex-

tended with the proposed correction terms for other Hamiltonians. Pulse sequences are read

from left to right.
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E. Simplification of the CNOT Gate Pulse Sequence for an Initial Singlet

State

The propagator for a CNOT gate according to Eq. 10 is:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2ye−iĤ1τei

π
2
Ŝ1xei

π
2 (Ŝ1y+Ŝ2y)e−i

π
2 (Ŝ1x+Ŝ2x) (49)

Here τ = π/D1. If the starting state is a pure singlet state, which is true in most cases

for radical pair systems, and owing to the fact that applying ÛCNOT to an initial density

matrix ρ̂(0) results in ρ̂ = ÛCNOT ˆρ(0)Û †CNOT , we note that the two non-selective pulses will

cancel:

ei
π
2 (Ŝ1y+Ŝ2y)e−i

π
2 (Ŝ1x+Ŝ2x)ρ̂(0)ei

π
2 (Ŝ1x+Ŝ2x)e−i

π
2 (Ŝ1y+Ŝ2y) = ρ̂(0) (50)

reducing the propagator for pure singlet initial state to:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2ye−iĤ1τei

π
2
Ŝ1x (51)

or to this pulse sequence:

90◦−1x, τ, 90◦2y (52)

If the spin evolution is done according to Eq. 11 and correction in Eq. 36 is employed,

the propagator is:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2ye−iĤ2

τ
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤ2

τ
2 eiπ(Ŝ1x+Ŝ2x)ei

π
2
Ŝ1x

= ei
π
4 e−i

π
2
Ŝ2ye−iĤ2

τ
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤ2

τ
2 ei

π
2
Ŝ1xeiπ(Ŝ1x+Ŝ2x)

(53)

We can do another simplification since:

eiπ(Ŝ1x+Ŝ2x)ρ̂(0)e−iπ(Ŝ1x+Ŝ2x) = ρ̂(0) (54)

reducing the operator:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2ye−iĤ2

τ
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤ2

τ
2 ei

π
2
Ŝ1x (55)

yielding a simple three pulse sequence:

90◦−1x, τ1, 180◦1x+2x, τ2, 90◦2y (56)

Here τ1 and τ2 are arbitrary spin evolution times and should be multiples of π/(2D1).
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Finally, evolution according to Eq. 12 provides the corrected sequence in Eq. 38:

ÛCNOT = ei
π
4 e−i

π
2
Ŝ2ye−iĤ3

τ
2 e−iπŜ1xe−iπŜ2ye−iĤ3

τ
2 eiπŜ1xeiπŜ2yei

π
2
Ŝ1x

= ei
π
4 e−i

π
2
Ŝ2ye−iĤ3

τ
2 eiπŜ1xeiπŜ2ye−iĤ3

τ
2 e−iπŜ1xe−iπŜ2yei

π
2
Ŝ1x

= ei
π
4 e−i

π
2
Ŝ2ye−iĤ3

τ
2 eiπŜ1xeiπŜ2ye−iĤ3

τ
2 e−i

π
2
Ŝ1xe−iπŜ2y

(57)

yielding the following five pulse sequence:

180◦2y, 90◦1x, τ1, 180◦−2y, 180◦−1x, τ2, 90◦2y (58)

(a) (b)

(c) (d)

Figure 2: Depiction of pulse EPR experiments for implementation of the CNOT gate. (a),

(b) show pulse sequences for Ĥ2 in Eq. 11, and (b), (d) show pulse sequences for Ĥ3 in Eq.

12. (a) the pulse sequence in Eq. 32 with added correction in Eq. 36, (b) is the sequence in

Eq. 59, (c) is the sequence in Eq. 32 with correction in Eq. 38 and (d) is the sequence in Eq.

58. (a),(c) show universal quantum logic gates and (b), (d) show quantum logic gates when

the initial state is |S〉. Each line corresponds to an electron with a Zeeman coupling strength

of ωi, frequency at which selective pulses are centred around. ti is initial time needed after

laser excitation for the formation of the radical pair, tf is the final time needed between

the end of the CNOT gate and read out, tspin are spin evolution times and the remaining

times are intervals between pulses. The blue pulses are non-selective rotations for S1 and

S2 electrons, and yellow pulses are selective rotations.
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V. ANALYTICAL DERIVATIONS OF FIDELITY VALUES

Considering ideal pulses, we have derived in this section a number of functions that detail

how the fidelity value would vary with time propagation and T2 relaxation time. They

provide a useful way to quantify the dynamics involved in application of a CNOT gate and

what results when the pulses in an experiment are non-ideal. Two cases were investigated:

pulse sequences in Eq. 56 with Ĥ2 for spin evolution, and 58 with Ĥ3 for spin evolution.

Finally, an upper bound will be given to the fidelity value for these systems that predicts the

theoretical maximum possible for a gate given a T2 relaxation time. Derivations are shown

in Appendix C (without T2) and Appendix D (with T2 and the upper bound).

A. Fidelity for CNOT Gate Pulse Sequences

At first, fidelity F3P for the three pulse sequence with arbitrary spin evolution times τ1,

τ2 is:

F3P =
1

4

(
cos2

(
∆ω

2
(τ1 − τ2)

)
+ cos2

(
Ω

2
(τ1 − τ2)

)
−2 sin

(
D1

2
(τ1 + τ2)

)
cos

(
∆ω

2
(τ1 − τ2)

)
cos

(
Ω

2
(τ1 − τ2)

))
(59)

When τ1 = τ2, F3P simplifies to:

F3P =
1

2

(
1− sin

(
D1

2
τ

))
(60)

As predicted by the derivations, F3P = 1 when τ = π/D1. Additionally, this equation

would predict the dynamics for the case when Ĥ1 would be used for time propagation.

Fidelity F5P for the five pulse sequence:

F5P =
1

8

(
1 + sin2

(
Θ

2
(τ1 − τ2)

)
cos(4ξ) + 2 cos2

(
Ω

2
(τ1 − τ2)

)
+ cos2

(
Θ

2
(τ1 − τ2)

)
+ 4 cos

(
Ω

2
(τ1 − τ2)

)(
cos

(
D1

2
(τ1 + τ2)

)
cos(2ξ) sin

(
Θ

2
(τ1 − τ2)

)
− sin

(
D1

2
(τ1 + τ2)

)
cos

(
Θ

2
(τ1 − τ2)

))) (61)
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F5P has a very similar form to F3P and also reduces to Eq. 60 when τ1 = τ2. As predicted

by the derivation, when τ1 = τ2 = π/(2D1), F5P = 1.

The fidelity equations with T2 are almost identical to Eqs. 59, 61, the only difference

being that some terms are multiplied by e−τ/T2 . They can be seen in Appendix D.

To recapitulate, these equations predict the fidelity value for a system with any number

of nuclear spins whose influence on the dynamics will be cancelled out due to the applied

pulse sequence.

B. Upper Bound to Fidelity

It is shown in Appendix D that both F3P and F5P will be bounded by:

1

2
+

1

2
e−

τ
T2 ≥ F (D1,D2, τ1, τ2,∆ω,Ω, T2) (62)

Here τ is the total gate time, i.e. τ = τ1 + τ2.

This provides a clear understanding of what would be the best values for certain experi-

ments. For instance, maximum F values for varying T2 for the model system are shown in

Table II. For the model system, π/|D1| = 142.9 ns. The table illustrates that for high T2,

F values around 0.9 or even higher can be achieved.

T2 = 1 µs T2 = 2 µs T2 = 4 µs T2 = 8 µs

τ = π
2|D1| 0.9310 0.9649 0.9823 0.9911

τ = π
|D1| 0.8668 0.9310 0.9649 0.9823

τ = 2π
|D1| 0.7514 0.8668 0.9310 0.9649

τ = 4π
|D1| 0.5646 0.7514 0.8668 0.9310

Table II: Maximum F values (in the middle) for various T2 and τ for a model SCRP system,

for which π/|D1| = 142.9 ns.

Two parameters ultimately determine the fidelity of the CNOT gate application, both

larger values of D1 and longer T2 relaxation times produce higher fidelity values. It fol-

lows that future engineering of these systems should be aimed at maximizing both of these

parameters because theoretically such systems could access fidelity values > 0.9.
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VI. SIMULATIONS OF THE EXPERIMENTS

A. Model System

We will introduce a model SCRP system TTF-ANI-PI, which consists of a tetrathia-

fulvalene (TTF) electron donor, a 4-amino-1,8-naphthalimide (ANI) chromophoric accep-

tor, and a pyromellitimide (PI) secondary acceptor that will be the basis for a computa-

tional analysis and has the necessary parameters for calculations already reported in the

literature.2,38–41 The structure of TTF-ANI-PI molecule can be seen in Fig. 3.

Figure 3: Molecular structure of TTF-ANI-PI with outlined forward electron transfers (1),

after initial photoexcitation, and backward electron transfer (2), during charge recombina-

tion. Adapted from Ref. 2.

Following laser excitation of TTF-ANI-PI, a rapid two-step electron transfer produces

a SCRP in an initial |S〉 state. The radical cation is localised on the TTF while the radical

anion is on the PI. The lifetime of the SCRP is sufficiently long (charge recombination

lifetime τCR = 35.6 µs2), as well as spin-spin relaxation lifetime (T2 = 1.8 µs2 but for

simplicity T2 = 2 µs will be used throughout the work), to be able to perform quantum

gate operations. The g-tensor ([gxx gyy gzz]) for TTF•+ is [2.0159 2.0076 2.0031]2 and for

PI•− is [2.0069 2.0069 2.0021].2 The g value in calculations will be the x-component of the

full tensor since the molecule is in a single orientation that aligns the dipolar axis, magnetic

field vector and the x-axis of the g-tensor. This molecular design was chosen in order to

exploit the g-value difference to perform qubit selective rotations. Moreover, the literature
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spin - spin coupling values are D1 = −3.50 MHz and J is taken to be much smaller than

D1.41 The dipolar interaction axis lies approximately parallel to the applied magnetic field

direction, i.e. θ = 0. Lastly, the radical around PI moiety will be defined as the target

qubit, whereas TTF will be the control qubit. This choice is arbitrary and can be tailored

to each experiment.

There are a number of magnetically active nuclei in this system that will give rise to

hyperfine couplings to the electron spins. Thus, it is important to quantify their effect on

the dynamics. Isotropic hyperfine couplings for TTF•+ and PI•− radicals (structure and

atom labels are shown in Fig. 4) calculated by Density Functional Theory (DFT) are shown

in Table III. The B3LYP functional,42,43 def2-TZVP basis set44,45 and D3BJ dispersion

correction46–48 were used for geometry optimization, while the BP86 functional,49 EPR-III

basis set for PI•−50 and cc-PV5Z basis set51,52 for TTF•+ were used to calculate the hyperfine

parameters. These calculations were done with ORCA.53,54 These values are not expected to

be accurate compared to the experimentally determined values (especially for TTF•+ that

contains sulphur for which hyperfine optimized EPR-III cannot be used and we had to use

hyperfine-unoptimized cc-PV5Z)55, and only provide qualitative comparison to the spin-spin

coupling. We will compare spin-spin coupling with the effective hyperfine field for radical

i:56

Bhyp,i =

√√√√ Ni∑
k=1

a2
ikIik(Iik + 1) (63)

Here aik are isotropic hyperfine constants for nuclei k coupled to electron i.

For TTF•+, Bhyp,1 = 6.0539 MHz, and for PI•−, Bhyp,2 = 5.4799 MHz. Since the mag-

nitude of the effective hyperfine fields are in the order of magnitude of D1, it is vital to

understand the influence of hyperfine interactions on the spin dynamics of applying quan-

tum logic gates.
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Molecule Nuclei aiso / MHz

H1 −3.32

TTF•+ H2 −3.19

H3 −5.26

H1 1.46

PI•− H2 1.46

N1 −2.59

N2 −2.59

Table III: Isotropic hyperfine interaction parameters in MHz for TTF•+ and PI•− radicals,

which structures and atom labels are shown in Fig. 4.

(a) (b)

Figure 4: Structures of (a) PI•− and (b) TTF•+ that were used to calculate the isotropic hy-

perfine coupling constants given in Table III. Atom labels highlight magnetically important

nuclei that have non-zero spin.

B. Simulations

Using the parameters obtained for TTF-ANI-PI, the fidelity following application of a

CNOT gate under varying magnetic field conditions was simulated. Typically, EPR experi-

ments are performed at X-band (9.5 GHz) or higher. We will first simulate the three pulse

sequence at 9.5 GHz, which is high enough to invoke the weak coupling approximation and

for the use of Eq. 36 for spin evolution. The simulation of Eq. 59 without T2 relaxation at

9.5 GHz is shown in Fig. 5a. The value of τ1 is held constant at τ1 = π/(2D1) = 71.43 ns
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(optimal value according to theory) and τ2 is varied from 0 to π/|D1|. There is a very fast

oscillation in the fidelity, for which the principal driving factor is the sum of the electron Zee-

man splitting, Ω, introducing a period of T = 0.0523 ns. The period of all of the important

motions at this microwave frequency are summarized in Table IV. In a real experiment,

pulses will not be ideal and spectral inhomogeneities will make it impossible to replicate

τ1 = τ2 = π/(2D1), where the maximum is theorized to occur. One solution is working at

a lower magnetic field strength. For instance, if the field is lowered by 20 times from the

X-band value, then the resonance frequency is about 0.475 GHz and the period for Ω would

be T = 1.05 ns, which is a more realistic timing parameter for digital electronics. The graph

of F5P for this magnetic field strength, with Ĥ3 for spin evolution is shown in Fig. 5b.
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(a) (b)

(c)

Figure 5: Graphs of fidelity versus spin evolution time for model system introduced in Sec.

VI A. (a) uses Eq. 59 for fidelity and Ĥ2 in Eq. 11 for spin evolution. (b), (c) uses Eq.

59 for fidelity and Ĥ3 in Eq. 12 for spin evolution. Case (c) has T2 relaxation included.

The resonance frequency is 9.5 GHz for (a) and 0.475 GHz for (b) and (c). In all cases,

τ1 = π/(2|D1|) = 71.43 ns and τ2 is varied from 0 to π/|D1| = 142.9 ns.

Also, it can be seen that the fidelity values are relatively high for this case before τ2 =

π/D2 and since T2 will decrease F5P values with total time τ , we note that it is possible

to achieve a maximum earlier when decoherence effects are taken into account. Fig. 5c

shows the same graph as Fig. 5b but with T2 relaxation included and the maximum for this

graph occurs at τ2 = 65.14 ns and it is F3P = 0.9658, which brings down the total time

to τ = 136.57 ns. This result exemplifies the fact that a better understanding of the spin
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dynamics results in ways to reduce the total gate times.

Term Frequency Period

|Ω| 19.11 GHz 0.0523 ns∣∣Ω
2

∣∣ 9.56 GHz 0.105 ns

|∆ω| 42.7 MHz 23.4 ns∣∣∆ω
2

∣∣ 21.4 MHz 46.7 ns∣∣D1
2

∣∣ 1.75 MHz 571.4 ns

Table IV: Frequencies and periods of oscillatory motions in F3P functions in Eqs. 59 at a

9.5 GHz resonance frequency.

Even though, the majority of issues of implementing quantum logic gates for these systems

are alleviated at lower magnetic field values, engineering pulses for these magnetic field

values propose another challenge. The spectral separation of the EPR lines of the two

radicals will be reduced at lower magnetic fields, so that their linewidths will be larger

than their separation, prohibiting the selective rotations that are necessary for the quantum

logic gate operations. Hence, designing new SCRPs in which hyperfine interactions are

minimized or eliminated and that can also be ordered in crystalline environments, may

provide the required linewidth reductions. In addition, alternative experimental protocols,

such as those done with the Gradient Ascent Pulse Engineering (GRAPE) approach,57–59

may prove beneficial. Nonetheless, our results indicate that a lower magnetic field may be

a prerequisite for controlling the spin states in these systems for QIS applications or that

there is a need for methods to alleviate the fast oscillations from the dynamics.

VII. CONCLUSIONS

In this article we introduced a variety of advances in pulse protocols for executing two

qubit quantum logic gates on SCRP systems and provided the theoretical framework for

understanding the dynamics of applying them to experiments. Specifically, we introduced

pulse sequences for CNOT, SWAP, CZ and CP gates that have the correct signs for the spin

propagation term. In addition, we have introduced corrections for the Hamiltonians in Eqs.

24



11, 12 in terms of extra pulse sequences, illustrating how these corrections cancel out static

hyperfine interactions from the dynamics, and how with a simplification for a singlet initial

state we can execute the CNOT gate in either 3 or 5 pulses. This is an improvement from

the previous state of the art and will enable new experiments to be executed that will utilize

these quantum logic gates. Lastly, a theoretical treatment was given for fidelity values for

varying spin evolution times and a set of analytical equations were derived for both three

and five pulse experiments. These equations highlight the upper bound for fidelity values

that is imposed by T2 relaxation and what are the important factors in the dynamics that

control the fidelity value. As a main conclusion, we have shown that high fidelity values are

possible for these systems, yet the resonance frequency has to be lower than the 9.5 GHz

value typical of X-band to ensure that the fast oscillations have a long enough period for

control.

There are many possible future directions of research that this study did not address, e.g.

simulations with realistic pulses, executing selective rotations at lower magnetic fields, theo-

retical treatments of echo detection, proposals of new ways to do quantum state tomography

for this system, using GRAPE for executing quantum logic gates, understanding how radi-

cal recombination affects the performance of the gate action, dynamic decoupling or other

schemes to make the gate execution easier and so on. Also, experimentally testing these

pulse sequences for different systems, magnetic field values and different pulse shapes will

shed light on future research directions. Lastly, we are currently planning to use these new

pulse sequences in experimental studies on several newly designed SCRP systems suitable

for QIS applications.

VIII. ACKNOWLEDGEMENTS

GJP is grateful to the European Research Council (under the European Unions Horizon

2020 research and innovation programme, Grant Agreement No. 810002, Synergy Grant:

QuantumBirds ). This research was supported by the US National Science Foundation under

award no. CHE-2154627 (M.R.W.).

25



Appendix A: Commutation of Hamiltonians with Hyperfine Interaction Terms

First, we will derive
[
Ĥhyp,2, Ĥ

′
hyp,2

]
, where

Ĥhyp,2 = Ĥ2 + Ĥhyp (A1)

Ĥ ′hyp,2 = Ĥ ′2 − Ĥhyp (A2)

Hence, by using properties of commutators we find that:[
Ĥhyp,2, Ĥ

′
hyp,2

]
=
[
Ĥ2 + Ĥhyp, Ĥ

′
2 − Ĥhyp

]
=
[
Ĥ2, Ĥ

′
2

]
−
[
Ĥ2, Ĥhyp

]
+
[
Ĥhyp, Ĥ

′
2

]
−
[
Ĥhyp, Ĥhyp

]
=
[
Ĥhyp, Ĥ2

]
+
[
Ĥhyp, Ĥ

′
2

] (A3)

By plugging in definitions of Ĥ2, Ĥ ′2 and Ĥhyp:[
Ĥhyp,2, Ĥ

′
hyp,2

]
=
[
Ĥhyp, ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z

]
+
[
Ĥhyp,−ω1Ŝ1z − ω2Ŝ2z +D1Ŝ1zŜ2z

]
=
[
Ĥhyp, ω1Ŝ1z

]
+
[
Ĥhyp, ω2Ŝ2z

]
+
[
Ĥhyp,D1Ŝ1zŜ2z

]
−
[
Ĥhyp, ω1Ŝ1z

]
−
[
Ĥhyp, ω2Ŝ2z

]
+
[
Ĥhyp,D1Ŝ1zŜ2z

]
= 2

[
Ĥhyp,D1Ŝ1zŜ2z

]
= 2

[
Ŝ1z

(
N1∑
k=1

(
A1kÎ1k,z +B1kÎ1k,x

))
+ Ŝ2z

(
N2∑
p=1

(
A2pÎ2p,z +B2pÎ2p,x

))
,D1Ŝ1zŜ2z

]
= 0

(A4)

The final result is zero because nuclear spin operators commute freely with electron spin

operators, hence, the final line is identical to the
[
Ŝ1z + Ŝ2z,D1Ŝ1zŜ2z

]
result, i.e. 0.

Evaluating
[
Ĥhyp,3, Ĥ

′
hyp,3

]
has equivalent initial steps and we find that:[

Ĥhyp,3, Ĥ
′
hyp,3

]
=
[
Ĥhyp, ω1Ŝ1z + ω2Ŝ2z +D1Ŝ1zŜ2z +D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)]
+
[
Ĥhyp,−ω1Ŝ1z − ω2Ŝ2z +D1Ŝ1zŜ2z −D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)]
=
[
Ĥhyp, ω1Ŝ1z

]
+
[
Ĥhyp, ω2Ŝ2z

]
+
[
Ĥhyp,D1Ŝ1zŜ2z

]
+
[
Ĥhyp,D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)]
−
[
Ĥhyp, ω1Ŝ1z

]
−
[
Ĥhyp, ω2Ŝ2z

]
+
[
Ĥhyp,D1Ŝ1zŜ2z

]
−
[
Ĥhyp,D2

(
Ŝ1xŜ2x + Ŝ1yŜ2y

)]
= 2

[
Ĥhyp,D1Ŝ1zŜ2z

]
= 0

(A5)
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Appendix B: Derivations of Pulse Sequences

1. SWAP Gate

The expression for the SWAP gate found by the expansion in Eq. 16:

ÛSWAP = E1,2
+ + 4Ŝ1xŜ2xE

1,2
− (B1)

This can further be decomposed to:

ÛSWAP = E1,2
+ + 4Ŝ1xŜ2xE

1,2
−

=
(
iE1,2
− + E1,2

+

) (
−4iŜ1xŜ2xE

1,2
− + E1,2

+

)
= ei

π
2
E1,2
− e−i2πŜ1xŜ2xE

1,2
−

(B2)

We notice that,

Ŝ1xŜ2xE
1,2
− = Ŝ1xŜ2x

(
1

2
I− 2Ŝ1zŜ2z

)
=

1

2
Ŝ1xŜ2x − 2Ŝ1xŜ2xŜ1zŜ2z =

1

2
Ŝ1xŜ2x +

1

2
Ŝ1yŜ2y

(B3)

Hence, the unitary for the SWAP gate is:

ÛSWAP = ei
π
4 e−iπŜ1zŜ2ze−iπŜ1xŜ2xe−iπŜ1yŜ2y (B4)

We do not have the right sign for the Ŝ1zŜ2z operator, hence, we can take a Hermitian

conjugate to get the right sign:

Û †SWAP = ÛSWAP = e−i
π
4 eiπŜ1yŜ2yeiπŜ1xŜ2xeiπŜ1zŜ2z (B5)

We can decompose the x and y terms as:

eiπŜ1xŜ2x = ei
π
2 (Ŝ1y+Ŝ2y)eiπŜ1zŜ2ze−i

π
2 (Ŝ1y+Ŝ2y) (B6)

eiπŜ1yŜ2y = ei
π
2 (Ŝ1x+Ŝ2x)eiπŜ1zŜ2ze−i

π
2 (Ŝ1x+Ŝ2x) (B7)

Hence, the final unitary:

ÛSWAP = e−i
π
4 eiπŜ1zŜ2zei

π
2 (Ŝ1y+Ŝ2y)eiπŜ1zŜ2ze−i

π
2 (Ŝ1y+Ŝ2y)ei

π
2 (Ŝ1x+Ŝ2x)eiπŜ1zŜ2ze−i

π
2 (Ŝ1x+Ŝ2x)

(B8)

Pulse Sequence:

90◦1x+2x,
π

|D1|
, 90◦−(1x+2x), 90◦1y+2y,

π

|D1|
, 90◦−(1y+2y),

π

|D1|
(B9)

27



2. CZ gate

The expression for the CZ gate found by the expansion in Eq. 16:

ÛCZ = 2Ŝ2zE
1
− + E1

+ (B10)

Note that:

2Ŝ2z = eiπ(
1
2
I−Ŝ2z) = e−iπE

2
− (B11)

Hence,

ÛCZ = e−iπE
2
−E1
− + E1

+ = e−iπE
2
−E

1
− = e−iπE

1
−E

2
− (B12)

E1
−E

2
− is equal to:

E1
−E

2
− =

(
1

2
I− Ŝ1z

)(
1

2
I− Ŝ2z

)
=

1

4
I− 1

2
Ŝ1z −

1

2
Ŝ2z + Ŝ1zŜ2z

(B13)

Plugging it into the exponent:

ÛCZ = e−i
π
4 ei

π
2
Ŝ1zei

π
2
Ŝ2ze−iπŜ1zŜ2z (B14)

The minus sign on the Ŝ1zŜ2z is a problem, hence we will take the hermitian conjugate

of this operator (which will leave it unchanged):

Û †CZ = ÛCZ = ei
π
4 eiπŜ1zŜ2ze−i

π
2
Ŝ2ze−i

π
2
Ŝ1z (B15)

There are different ways to expand the Ŝ1z and Ŝ2z, yet one of the ways:

e−i
π
2
Ŝ1z = e−i

π
2
Ŝ1xe−i

π
2
Ŝ1yei

π
2
Ŝ1x (B16)

e−i
π
2
Ŝ2z = ei

π
2
Ŝ2ye−i

π
2
Ŝ2xe−i

π
2
Ŝ2y (B17)

The final unitary for the CZ gate:

ÛCZ = ei
π
4 eiπŜ1zŜ2ze−i

π
2
Ŝ2ze−i

π
2
Ŝ1z

= ei
π
4 eiπŜ1zŜ2zei

π
2
Ŝ2ye−i

π
2
Ŝ2xe−i

π
2
Ŝ2ye−i

π
2
Ŝ1xe−i

π
2
Ŝ1yei

π
2
Ŝ1x

= ei
π
4 eiπŜ1zŜ2zei

π
2
Ŝ2ye−i

π
2 (Ŝ1x+Ŝ2x)e−i

π
2 (Ŝ1y+Ŝ2y)ei

π
2
Ŝ1x

(B18)

This reproduces the correct gate action, and the pulse sequence is:

90◦−1x, 90◦1y+2y, 90◦1x+2x, 90◦−2y,
π

|D1|
(B19)
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3. CP Gate

A general CP gate for controlling phase of the |ββ〉 state:

ÛCP (φ) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiφ

 (B20)

A decomposition of the propagation matrix into rotation matrices:60

ÛCP (φ) = ei
φ
4
Ie−i

φ
2
Ŝ1ze−i

φ
2
Ŝ2zeiφŜ1zŜ2z = ei

φ
4 eiφŜ1zŜ2ze−i

φ
2
Ŝ1ze−i

φ
2
Ŝ2z (B21)

The Ŝ1z and Ŝ2z exponents can be written as:

e−i
φ
2
Ŝ1z = e−i

π
2
Ŝ1yei

φ
2
Ŝ1xei

π
2
Ŝ1y (B22)

e−i
φ
2
Ŝ2z = ei

π
2
Ŝ2xei

φ
2
Ŝ2ye−i

π
2
Ŝ2x (B23)

The final CP gate:

ÛCP (φ) = eiφŜ1zŜ2ze−i
φ
2
Ŝ1ze−i

φ
2
Ŝ2z

= eiφŜ1zŜ2ze−i
π
2
Ŝ1yei

φ
2
Ŝ1xei

π
2
Ŝ1yei

π
2
Ŝ2xei

φ
2
Ŝ2ye−i

π
2
Ŝ2x

(B24)

Hence, the general pulse sequence is:

90◦2x,

(
φ

2

)◦
−2y

, 90◦−2x, 90◦−1y,

(
φ

2

)◦
−1x

, 90◦1y,
φ

|D1|
(B25)

Appendix C: Derivations of Fidelity Equations

Two cases will be derived in this section–the fidelity equation for the three pulse sequence

in Eq. 56 with Ĥ2 in Eq. 11 for spin evolution and equation for the five pulse sequence

in Eq. 58 with Ĥ3 for spin evolution. In each case, the fidelity definition in Eq. 22 will

be used. Both pulse sequences have two spin evolution times, these will be set as arbitrary

propagation times τ1 and τ2,
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1. Three Pulse Sequence

The Ĥ2 in matrix form (in |αα〉, |αβ〉, |βα〉, |ββ〉 basis):

Ĥ2 =


〈αα| Ĥ2 |αα〉 0 0 0

0 〈αβ| Ĥ2 |αβ〉 0 0

0 0 〈βα| Ĥ2 |βα〉 0

0 0 0 〈ββ| Ĥ2 |ββ〉

 (C1)

Where,

〈αα| Ĥ2 |αα〉 = H1 =
1

2
(ω1 + ω2) +

D1

4
=

Ω

2
+
D1

4

〈αβ| Ĥ2 |αβ〉 = H2 =
1

2
(ω1 − ω2)− D1

4
= −∆ω

2
− D1

4

〈βα| Ĥ2 |βα〉 = H3 =
1

2
(ω2 − ω1)− D1

4
=

∆ω

2
− D1

4

〈ββ| Ĥ2 |ββ〉 = H4 = −1

2
(ω1 + ω2) +

D1

4
= −Ω

2
+
D1

4

(C2)

The time-propagation operator in matrix form:

e−iĤ2τ =


e−iH1τ 0 0 0

0 e−iH2τ 0 0

0 0 e−iH3τ 0

0 0 0 e−iH4τ

 =


e−i

Ω
2
τe−i

D1
4
τ 0 0 0

0 ei
∆ω
2
τei

D1
4
τ 0 0

0 0 e−i
∆ω
2
τei

D1
4
τ 0

0 0 0 ei
Ω
2
τe−i

D1
4
τ


(C3)
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Hence, F3P for the three pulse sequence:

F3P =
∣∣∣〈S| Û †spinÛCNOT |S〉∣∣∣2

=

∣∣∣∣〈S|(eiπ4 e−iπ2 Ŝ2ye−Ĥ
τ1
2 e−iπ(Ŝ1x+Ŝ2x)e−iĤ

τ2
2 ei

π
2
Ŝ1x

)†
ÛCNOT |S〉

∣∣∣∣2
=

1

16

∣∣∣e−i∆ω
2

(τ1−τ2)ei
D1
4

(τ1+τ2) + ei
∆ω
2

(τ1−τ2)ei
D1
4

(τ1+τ2)

−i
(
ei

Ω
2

(τ1−τ2)e−i
D1
4

(τ1+τ2) + e−i
Ω
2

(τ1−τ2)e−i
D1
4

(τ1+τ2)
)∣∣∣2

=
1

4

(
cos2

(
∆ω

2
(τ1 − τ2)

)
+ cos2

(
Ω

2
(τ1 − τ2)

)
−2 sin

(
D1

2
(τ1 + τ2)

)
cos

(
∆ω

2
(τ1 − τ2)

)
cos

(
Ω

2
(τ1 − τ2)

))
=

1

4

(
1 +

1

2
cos (∆ω (τ1 − τ2)) +

1

2
cos (Ω (τ1 − τ2))

−2 sin

(
D1

2
(τ1 + τ2)

)
cos

(
∆ω

2
(τ1 − τ2)

)
cos

(
Ω

2
(τ1 − τ2)

))

(C4)

This equation is maximum, i.e. F = 1, when this set of simultaneous equations is solved:
cos
(

∆ω
2

(τ1 − τ2)
)

= ±1

cos
(

Ω
2
(τ1 − τ2)

)
= ±1

sin
(D1

2
(τ1 + τ2)

)
= 1

(C5)

Solutions: 
τ1 − τ2 = ±2πk1

∆ω

τ1 − τ2 = ±2πk2

Ω

τ1 + τ2 = π
D1

+ 2πk3

D1

(C6)

k1, k2, k3 ∈ Z. If τ1 + τ2 = π/D1, then solutions for τ1 and τ2:

τ1 =
π

2D1

± πk1

∆ω
=

π

2D1

± πk2

Ω

τ2 =
π

2D1

∓ πk1

∆ω
=

π

2D1

∓ πk2

Ω

(C7)

If τ1 = τ2 and τ1 + τ2 = τ , then:

F =
1

2

(
1− sin

(
D1

2
τ

))
(C8)

This is maximum when τ = π/D1 + 2πk/D1 for k ∈ Z, as expected from derivations.
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2. Five Pulse Sequence

Ĥ3 can be decomposed into:

Ĥ3 = RAR−1 (C9)

Here,

A =


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

 (C10)

R =


1 0 0 0

0 1√
2
(cos ξ + sin ξ) 1√

2
(cos ξ − sin ξ) 0

0 1√
2
(sin ξ − cos ξ) 1√

2
(cos ξ + sin ξ) 0

0 0 0 1

 (C11)

R−1 =


1 0 0 0

0 1√
2
(cos ξ + sin ξ) 1√

2
(sin ξ − cos ξ) 0

0 1√
2
(cos ξ − sin ξ) 1√

2
(cos ξ + sin ξ) 0

0 0 0 1

 (C12)

The matrix exponential of Ĥ3 can be expressed as:

e−iĤ3τ = Re−iAτR−1 =


H11 0 0 0

0 H22 H23 0

0 H32 H33 0

0 0 0 H44

 (C13)

Where,

H11 = e−i
Ω
2
τe−i

D1
4
τ ; H44 = ei

Ω
2
τe−i

D1
4
τ

H22 =

(
cos

(
Θ

2
τ

)
+ i sin(2ξ) sin

(
Θ

2
τ

))
ei
D1
4
τ

H33 =

(
cos

(
Θ

2
τ

)
− i sin(2ξ) sin

(
Θ

2
τ

))
ei
D1
4
τ

H23 = H32 = −i cos(2ξ) sin

(
Θ

2
τ

)
ei
D1
4
τ

(C14)

32



Finally, the F5P for the five pulse sequence:

F5P =
∣∣∣〈S| Û †spinÛCNOT |S〉∣∣∣2

=
1

4
|z|2

=
1

4

(
Re(z)2 + Im(z)2

) (C15)

Where,

Re(z) =− cos

(
Ω

2
(τ1 − τ2)

)
sin

(
D1

4
(τ1 + τ2)

)
+ cos

(
Θ

2
(τ1 − τ2)

)
cos

(
D1

4
(τ1 + τ2)

)
+ sin

(
Θ

2
(τ1 − τ2)

)
cos(2ξ) sin

(
D1

4
(τ1 + τ2)

)
(C16)

Im(z) =− cos

(
Ω

2
(τ1 − τ2)

)
cos

(
D1

4
(τ1 + τ2)

)
+ cos

(
Θ

2
(τ1 − τ2)

)
sin

(
D1

4
(τ1 + τ2)

)
− sin

(
Θ

2
(τ1 − τ2)

)
cos(2ξ) cos

(
D1

4
(τ1 + τ2)

)
(C17)

The equation after expansion:

F5P =
1

16
(5− 1

2
cos(Θ(τ1 − τ2)− 4ξ)− 1

2
cos(Θ(τ1 − τ2) + 4ξ)

+ cos(4ξ) + 2 cos(Ω(τ1 − τ2)) + cos(Θ(τ1 − τ2))

+ 8 cos

(
Ω

2
(τ1 − τ2)

)(
cos

(
D1

2
(τ1 + τ2)

)
cos(2ξ) sin

(
Θ

2
(τ1 − τ2)

)
− sin

(
D1

2
(τ1 + τ2)

)
cos

(
Θ

2
(τ1 − τ2)

)))
=

1

8

(
1 + sin2

(
Θ

2
(τ1 − τ2)

)
cos(4ξ) + 2 cos2

(
Ω

2
(τ1 − τ2)

)
+ cos2

(
Θ

2
(τ1 − τ2)

)
+ 4 cos

(
Ω

2
(τ1 − τ2)

)(
cos

(
D1

2
(τ1 + τ2)

)
cos(2ξ) sin

(
Θ

2
(τ1 − τ2)

)
− sin

(
D1

2
(τ1 + τ2)

)
cos

(
Θ

2
(τ1 − τ2)

)))
(C18)

When D2 = 0, the fidelity reduces to the form in F3P . When τ1 = τ2 = τ/2:

F5P =
1

2
− 1

2
sin

(
D1

2
τ

)
(C19)

In this form, F5P = 1 when τ = π/D1 + 2πk/D1 for k ∈ Z, as expected.
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Appendix D: Upper Bound to the Fidelity Value

To compute fidelity, we will use Eq. 20:

F = 〈Ψ| ρ̂(t) |Ψ〉 (D1)

Where ρ̂(t) is the density matrix after spin evolution that includes spin-spin relaxation

effects, and

|Ψ〉 = ÛCNOT |S〉 (D2)

This equation will be used because, due to relaxation, Tr ρ̂(t) 6= 1. The main difference

between these derivations and ones without relaxation effects is that spin evolution has to

be done in the Liouville space, by:

ˆ̂ρ(t+ δt) = exp
[
−
(
i

ˆ̂
H +

ˆ̂
K
)
δt
]

ˆ̂ρ(t) (D3)

Where ˆ̂ρ(t) is a vectorised density matrix,
ˆ̂
H is the Hamiltonian superoperator,

ˆ̂
H = Ĥ ⊗ Id − Id ⊗ ĤT , (D4)

and
ˆ̂
K is the relaxation superoperator for spin-spin (T2) relaxation:61

ˆ̂
K =

1

T2

diag
(

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
)

(D5)

Here T2 is spin-spin relaxation lifetime and diag(·) is a diagonal matrix. We assume that

T2 relaxation lifetimes are equal for both sites, that there are no cross-relaxation events,

and that spin-lattice relaxation lifetime T1 is much longer than T2 and is negligible in the

dynamics.

Ideal pulses do not involve spin evolution (they are approximated as being instantaneous)

and can be carried out in Hilbert space.

1. Three Pulse Sequence

The F3P for the pulse sequence in Eq. 56 with T2 relaxation:

F3P = 〈S| Û †CNOTσÛCNOT |S〉

=
1

4

(
1 +

1

2
cos (Ω(τ1 − τ2)) +

1

2
cos (∆ω(τ1 − τ2))

+ 2e
− (τ1+τ2)

T2 sin

(
D1

2
(τ1 + τ2)

)
cos

(
Ω

2
(τ1 − τ2)

)
cos

(
∆ω

2
(τ1 − τ2)

)) (D6)
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When T2 →∞, we get the right form without relaxation effects. Moreover, F3P is largest

when: 
cos (Ω(τ1 − τ2)) = 1

cos (∆ω(τ1 − τ2)) = 1

sin
(D1

2
(τ1 + τ2)

)
cos
(

Ω
2
(τ1 − τ2)

)
cos
(

∆ω
2

(τ1 − τ2)
)

= 1

(D7)

An upper bound to F3P naturally emerges for total gate time τ (τ can also include the

time it would normally take pulse sequences to act to get the ideal pulses sequence values,

so it can be extended to total gate time in a real experiment):

1

2
+

1

2
e
− τ1+τ2

T2 =
1

2
+

1

2
e
− τ
T2 ≥ F3P (τ,Ω,∆ω,D1, T2) (D8)

Here τ = τ1 + τ2.

2. Five Pulse Sequence

The F5P for the pulse sequence in Eq. 58 with T2 relaxation:

F5P = 〈S| Û †CNOTσÛCNOT |S〉

=
1

8

(
1 + sin2

(
Θ

2
(τ1 − τ2)

)
cos(4ξ) + 2 cos2

(
Ω

2
(τ1 − τ2)

)
+ cos2

(
Θ

2
(τ1 − τ2)

)
+ 4e

− τ1+τ2
T2 cos

(
Ω

2
(τ1 − τ2)

)(
cos

(
D1

2
(τ1 + τ2)

)
cos(2ξ) sin

(
Θ

2
(τ1 − τ2)

)
− sin

(
D1

2
(τ1 + τ2)

)
cos

(
Θ

2
(τ1 − τ2)

)))
(D9)

When T2 →∞ we get the right form without relaxation effects. Moreover, F5P is largest

with the same conditions as F3P and we get identical upper bound for total gate time τ :

1

2
+

1

2
e
− τ
T2 ≥ F5P (τ,Ω,∆ω,D1,D2, T2) (D10)
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