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ABSTRACT: Larval dispersal and connectivity between patchy, transient, deep-sea hydrothermal
vent communities are important for persistence and recovery from disturbance. We investigated
connectivity in vent metacommunities using the taxonomic similarity between larvae and adults
to estimate the extent of exchange between communities and determine the relative roles of larval
dispersal and environmental limitations (species sorting) in colonization. Connectivity at vent
fields in 3 Pacific regions, Pescadero Basin, northern East Pacific Rise (EPR), and southern Mari-
ana Trough, varied substantially and appeared to be driven by different processes. At Pescadero
Basin, larval and adult taxa were similar, despite the existence of nearby (within 75 km) vent com-
munities with different species composition, indicating limited larval transport and low connectiv-
ity. At EPR, larval and adult taxa differed significantly, despite the proximity of nearby vents with
similar benthic composition, indicating substantial larval transport and potentially strong species
sorting, but other factors may also explain these results. At the Mariana Trough, the larvae and
adults differed significantly, indicating high larval transport but environmental limitations on col-
onization. We demonstrate that analysis of routinely collected samples and observations provides
an informative indicator of metacommunity connectivity and insights into drivers of community
assembly.

KEY WORDS: Hydrothermal vent - Connectivity - Larval transport - Larval dispersal - Species

sorting - Metacommunity

1. INTRODUCTION

For most marine benthic species, dispersal takes
place during a planktonic larval stage. Larval disper-
sal between habitat patches influences many im-
portant processes at the population and community
level. These include regional persistence of popula-
tions and local and regional population dynamics
(Cowen & Sponaugle 2009) as well as community
assembly (cf. Weiher et al. 2011). However, the ex-
tent to which marine communities are open to larval
supply and colonization from distant sources (ecolog-
ical connectivity) and how this varies between sites
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remain important questions (Levin 2006). In patchy
marine habitats it can be useful to consider commu-
nities within a metacommunity framework (cf. Lei-
bold & Miller 2004) because the extent of connectiv-
ity between patches will influence the resilience of
the metacommunity to disturbance.

The study of exchange of individuals in marine sys-
tems is challenging and often implemented using a
population genetics approach focused on individual
species (Lowe & Allendorf 2010). However, character-
ising genetic connectivity of individual species typi-
cally provides insights on long (multi-generational)
time scales and may reveal little about the overall
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connectivity of a community. Some attempts have
been made to infer connectivity patterns at the com-
munity level by characterising the variation in popu-
lation genetic structure across many co-distributed
species (Selkoe et al. 2014). Although such approaches
can provide important information for designing ef-
fective marine protected areas (White et al. 2010),
they do not provide information on the relative
importance of larval dispersal and environmental
limitations on colonization as determinants of com-
munity assembly.

Deep-sea hydrothermal vents fit very well the
ephemeral-patch metacommunity archetype described
by Leibold et al. (2004); they comprise assemblages
occupying temporary habitat patches that vary in po-
sition with time and are distinct from the background
habitat matrix. Of the 4 paradigms those authors used
to study metacommunities, we adopt the species-sort-
ing framework. Under this paradigm we can charac-
terise larval dispersal between habitat patches in
terms of the extent to which the species composition
of plankton at the target site is similar to benthos at
other sites in the region. The strength of species sort-
ing in each habitat patch is measured by the differen-
tiation in species composition between plankton and
the resident benthos. The species composition of ben-
thos in each site is maintained by larval dispersal from
other sites and the strength of species sorting, which
in combination can lead to differences in the species
composition of benthic communities and, therefore,
the strength of ecological connectivity (hereafter re-
ferred to as connectivity).

Understanding these processes is important for
deep-sea hydrothermal vents, which are naturally
disturbed, patchy habitats that support abundant
faunal communities (Corliss et al. 1979) and may be
impacted by deep sea mining in the future (Miller et
al. 2018). Evidence from larval physiology and be-
haviour (Yahagi et al. 2017) and genetics (Teixeira et
al. 2012) indicates a potential for long-distance dis-
persal and high connectivity between vent communi-
ties. Long-distance dispersal events are important for
the colonisation of disturbed vent sites (Mullineaux
et al. 2010), but larval dispersal can be restricted by
currents and topographic barriers (Watanabe et al.
2005, Xu et al. 2018). These processes can lead to lar-
val retention near their natal site even if the species
has a long planktonic larval duration (Breusing et al.
2016). Larval behaviour can also act to increase lar-
val retention near natal vents, especially in situations
where larvae move vertically in sheared currents
near the seafloor (Mullineaux et al. 2013). However,
the inaccessibility of vent sites means that direct evi-

dence of self-recruitment, for example through larval
tagging as used in coastal systems (Jones et al. 2005),
is not available.

The extent of connectivity between marine com-
munities is difficult to quantify, but the more-con-
strained question of whether a community is largely
self-recruiting or ‘closed’ is often simpler to address
(Jones et al. 2005). The aim of this study is to explore
whether samples routinely collected from hydrother-
mal vents (larvae, recently settled juveniles, and
small adults) can be used to estimate the extent of
exchange between communities and determine rela-
tive roles of larval dispersal and environmental lim-
itations to colonization. We propose a conceptual
framework that uses the similarity in species compo-
sition between larvae in the plankton and adults in
the benthos at a vent site to assess the relative roles
of larval transport (whose geographic extent is set by
current-mediated larval transport) and species sort-
ing on community composition (Fig. 1). In this frame-
work, the larval/adult comparisons are most informa-
tive when nearby vent fields are dissimilar in species
composition to the target vent and become compli-
cated when communities have been disturbed re-
cently. Our general aim of assessing connectivity is
like that of many vent population genetics studies
(reviewed in Vrijenhoek 2010), but we investigate
connectivity at the community level and make a
direct connection between connectivity and commu-
nity assembly processes by documenting the geo-
graphic extent of the larval transport. Finally, by
comparing the larval supply to the local community,
we investigate the process of species sorting that ulti-
mately determines which species are present in the
benthos.

We focus on 3 Pacific vent regions that differ in
their geological and oceanographic setting, and
hence their expected larval dispersal: Pescadero
Basin, northern East Pacific Rise (EPR), and southern
Mariana Trough. For a target vent field in each of
these regions, we locate nearby vent fields and iden-
tify the closest one that hosts a distinctly different
benthic fauna, based on published species distribu-
tions. This information is used to predict the geo-
graphic extent of the larval pool and whether it is
likely to contain species that are dissimilar to the
local benthos. A comparison of species composition
of the benthos and plankton at each vent field allows
for a test of the relative importance of larval supply
and species sorting in driving community assembly
in deep thermal vents. The broader goals of this
study are to contribute new data on occurrence of
vent adults and larvae to global databases and to
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Fig. 1. Connectivity in a vent meta-community. Shape repre-
sents species composition of benthos (at seafloor) and larvae
(in plankton) at target and nearby vents. Different color
indicates different species composition. Horizontal arrows
show larval transport to target vent; vertical arrows show
species sorting. Scenarios: Benthos and larvae are (a) similar
to each other and dissimilar to nearby vent (limited larval
transport, closed community); (b) dissimilar (unlimited larval
transport, species sorting, closed community); (c) similar at
target and nearby vents (possible self-recruitment; larval
transport unclear); (d) dissimilar at recently disturbed vent;
nearby vent is destroyed (larval transport from remote vents,
potential for transition in benthic species)

develop conceptual approaches that extract informa-
tion on dynamic processes such as dispersal and con-
nectivity from observations that will become increas-
ingly available as part of ocean observing initiatives
(Levin et al. 2019).

2. MATERIALS AND METHODS
2.1. Study areas

This study uses existing samples that were col-
lected for other purposes from 3 regions in the
Pacific. The vent fields included in this study are
Auka in the Pescadero Basin, 9°50' N in the northern
EPR, and Snail and Pika in the southern Mariana
Trough (Fig. 2) as listed in the InterRidge vents data-
base (Beaulieu & Szafranski 2020). Snail and Pika are
separated by less than 5 km and for the purposes of
this study are considered as a single southern Mari-
ana Trough vent field. Hereafter the study sites are
referred to as Pescadero Basin, EPR and Mariana

Trough, respectively. Samples were collected from a
number of vents within each field (Table 1); a vent
incorporates the area surrounding active venting,
usually on the scale of tens of meters. Vent sampling
sites at Pescadero Basin were separated by less than
1 km, at the EPR by less than 2 km and in the Mari-
ana Trough by less than 5 km. Larval exchange at
this intra-field scale was not addressed in this study,
but sampling over multiple vents and vent habitat
types was needed to cover the full range of habitat
and faunal diversity. At all vent fields, the sample
dates for plankton and benthos were matched as
closely as possible.

The vent fields differ in their geological setting,
which influences their proximity to, and potential
connectivity with, other vent fields. The Pescadero
Basin is a heavily sedimented spreading centre in the
Gulf of California with unusual vent chemistry (Pad-
uan et al. 2018) and a modelled spreading at a rate
of 5 cm yr! (DeMets et al. 2010). The nearest vent
field with known community composition is located
on the Alarcén Rise, approximately 75 km away
(Beaulieu & Szafranski 2020). Vent communities at
Alarcon Rise differ in species composition from those
in the Pescadero Basin (Goffredi et al. 2017). Other
vent fields, not yet listed in the InterRidge database,
have been discovered in the Pescadero Basin (Gof-
fredi et al. 2021), but their faunal communities have
not yet been fully described, so we consider Pes-
cadero Basin as comprising one vent field (Auka).
Pescadero Basin vents are roughly 1300 m deeper
than those on the Alarcén Rise (Beaulieu & Sza-
franski 2020). Based on geographic distance and
topographic discontinuity, we expect that larval
exchange with Alarcén Rise vent fields to be lower
for the Pescadero Basin (Fig. la) than for the other
fields in our study.

The EPR near 9°50'N is a rapidly spreading mid-
ocean ridge (10 cm yr~!) with vent field spacing as
close as 3.3 km (Baker et al. 2016). Biophysical models
incorporating hydrodynamics, pelagic larval dura-
tion, and vent field spacing have demonstrated the
potential for both larval transport and recruitment
along the ridge (Xu et al. 2018). Faunal communities
across the northern EPR from 9° to 13°N tend to
share similar species composition (Desbruyeres et al.
2006), and the vents are similar in chemical charac-
teristics. The nearest vent field known to host sub-
stantially different species is Medusa, 77 km away
(Klein et al. 2013). For established communities in the
9°50' N vent field, larval and ecological connectivity
with other vent fields is expected to be relatively
high (Fig. 1c) but perhaps not easily distinguished
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Fig. 2. Vent field locations in the areas surrounding the 3 vent fields in this study: (a) Pescadero Basin (Auka vent field), (b)

northern East Pacific Rise (EPR) (9°50' N vent field), (c) southern Mariana Trough (Snail/Pika vent field). Target fields shown

with white border; nearest faunally dissimilar fields (Alarcon Rise at Pescadero, Medusa vent at EPR, and Seamount X and

TOTO Caldera at Mariana) shown with black border. Vent field locations are from the InterRidge vents database (Beaulieu &
Szafranski 2020). Maps created in GeoMapApp ver. 3.6.10 (Ryan et al. 2009)
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Table 1. Samples in the plankton and benthos at the 3 vent fields. Location and maximum depth of each vent field are from

Beaulieu & Szafranski (2020). For the plankton, the individual vent sites are annotated with the number of samples collected

(in parentheses; * denotes samples collected away from the vent), the height (m) above bottom (mab), and the kind of collector

used. For the benthos, vent sites are annotated with the number of samples in each zone (H: hot; W: warm, C: cool; zones not

distinguished for Mariana Trough), and the kind of collector. For the pre-eruption EPR, no benthic samples were available for
the precise dates when plankton were sampled, so samples from 17 mo earlier were used

Vent field Plankton Benthos
Name Location Depth Date Vent(s) Height Collector Date Vent(s) Collector
(m) (no. samples) (mab) (no. samples)
Pescadero 23°57.40'N, 3685 Oct 2017 C (1), Z (3), 1 Slurp  Oct 2017 C (2H,1W), Slurp
Basin 108°51.72'W Matterhorn (3) Z (1H,1C),
Matterhorn
(3H,1W, 2QC)
EPR: pre- 9°49.80' N, 2520 Dec 1998 East Wall (1), 1 Pump May 1998 East Wall Block
eruption  104°17.40'W X5 (1) (3H, 3W, 3C)
May 2000 Biovent (1),
Tica (1)
EPR: post-  9°49.80'N, 2520 Nov 2007 Tica (4) 3-4 Pump Nov 2007 P-Vent Sandwich
eruption 104°17.40'W (3H, 3W, 3C)
Mariana 12°57.20'N, 2880 Sept 2010 Snail (1, 1), 3-4 Pump Sept2010 Snail, Pika, Slurp
Trough 143°37.12'E  (Snail) Archaean (1%), Archaean,
(Snail) Urashima (1, 1%) Urashima

from a self-recruiting community, given the similar-
ity of vent community composition along the north-
ern EPR. Eruptive disturbance in this region is fre-
quent (Fornari et al. 2012), so the species composition
of individual benthic communities changes over time
(Shank et al. 1998), and the region may comprise a
mosaic of vent fields in different stages of succession.

At EPR we were able to compare the benthos and
plankton at 2 time points when the communities
were at different stages in assembly: the first in an
established community (pre-eruption) and the sec-
ond in a community that had been disturbed in a
2006 eruption (post-eruption). Post-eruption commu-
nities typically are low-density and low-diversity in
early successional stages (e.g. Mullineaux et al.
2012). As local larval production was likely reduced
directly after the eruption, and larval immigrants
from remote communities prevalent in the plankton
(Mullineaux et al. 2010), we expect the plankton and
benthos to be less similar in the post-eruption com-
munities (Fig. 1d) than in pre-eruption ones (Fig. 1c).

The southern Mariana Trough is a back-arc basin
in the western Pacific, with a spreading rate of
roughly 5 cm yr~! (Kato et al. 2003). The Snail/Pika
vent field included in this study is within 20 km of
other known back-arc basin vents, and within 30 km
of vents in the Mariana Arc (Beaulieu & Szafranski
2020). Faunal communities in the southern Mariana
Trough have not been extensively documented, al-

though 2 studies report that vents in the Mariana
Trough (back-arc basin) have similar community
composition that differs from the vent fauna found
at Mariana Arc vents (Kojima & Watanabe 2015,
Giguere & Tunnicliffe 2021). The nearest vent field
known definitively to have different community com-
position from Snail/Pika is 55 km away at Seamount
X (Giguere & Tunnicliffe 2021), although reports of
siboglinid tubeworms at TOTO Caldera, 27 km
away, suggest it may also differ substantially (Naka-
gawa et al. 2006). Both Seamount X and TOTO
Caldera are located in the Mariana Arc, with TOTO
Caldera at similar depth to Snail/Pika. The close
proximity of vent fields with both similar and dissim-
ilar community compositions suggests the potential
for high larval dispersal but not necessarily high eco-
logical connectivity (Fig. 1b or 1c).

2.2. Sampling

Larvae in the plankton were collected by pumping
and filtering seawater over a 63 pm mesh in the
vicinity of vent communities (Table 1). All larvae col-
lected were preserved in 95% ethanol. Plankton
sampling was done as consistently as possible across
the vent fields, but different submergence vehicles
and gear were available at each. At Pescadero Basin
a suction (slurp) sampler attached to ROV 'Hercules'
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was used to sample plankton at ~1 m above bottom.
Samples were collected from multiple locations
around Matterhorn, Z and C vents. The slurp sam-
pler suctioned seawater for 10 min at a rate of
approximately 1151 min™?, filtering a total volume of
1150 1 for each sample. At the EPR and Mariana
Trough, plankton samples were collected using a
McLane WTS-LV50 plankton pump attached to a
sub-surface mooring within ~4 m of the bottom, as in
Beaulieu et al. (2009). The pump sampled for 24 h at
a rate of 30 1 min?, filtering a sample volume of
roughly 40000 1. Where possible, plankton samples
were collected near a vent orifice, but due to the lim-
ited number of plankton pump samples available
from the Mariana Trough, pump samples collected
off-site (100-300 m away from the vent) were
included in the analysis of that region.

Benthic samples were collected on colonisation
surfaces or by seafloor slurp (Table 1), across envi-
ronmental gradients and their associated faunal zones.
The colonisation surfaces had long deployment peri-
ods and represented the surrounding benthic com-
munity, except for highly mobile species (e.g. fish
and large crustaceans). The slurps collected most
benthic species effectively, except for those firmly
attached to hard substrata (e.g. barnacles and ser-
pulid polychaetes).

For Pescadero Basin, the benthic samples were col-
lected by the slurp on the ROV ‘Hercules'. The slurp
intake was positioned within a few cm of the seafloor,
and the suction operated on decreased power (60 %)
until the 63 pm filter clogged. Benthic slurp samples
were collected at the same locations as the plankton
slurps. At each sampling location one sample was
collected close to the emerging vent fluid and another
collected 50 cm away. At one location an additional
sample was collected 75 cm away from the emerging
vent fluid due to the bacterial mat zonation present at
this site. The mean temperature recorded at each
sampling location was used to assign samples to
either the hot (>10°C), warm (2-10°C) or cool (<2°C)
zone. Each benthic sample was passed through a
38 pm sieve, split into quarters, then preserved in
95 % ethanol on board the vessel. One quarter was
provided to collaborators, and the other 3 were
retained for quantitative analyses.

The colonisation surfaces used for samples at EPR
were basalt blocks for pre-eruption and polycarbon-
ate sandwiches for post-eruption time points. Basalt
blocks measured roughly 10 cm on a side (Micheli et
al. 2002) and were deployed for 37 mo. Sandwiches
comprised 6 plates, 10 cm on a side and 0.7 cm thick,
separated by 1 cm (Mullineaux et al. 2010), and were

deployed for 11 mo. The colonisation surfaces were
deployed in 3 different zones: hot (10-30°C), warm
(2-10°C) and cool (<2°C), as recorded with a temper-
ature probe. On recovery, the colonisation surfaces
were placed into separate compartments and brought
up to the surface. The surfaces and any detached
individuals retained on a 63 pm sieve were pre-
served in 80 % ethanol.

In the Mariana Trough, the benthos was sampled
in 2010 by a slurp attached to the DSV Shinkai 6500,
as reported in Beaulieu et al. (2011). Quantitative
counts were not available, so a presence—absence list
of taxa was constructed for each vent site within the
(grouped) Mariana Trough vent field. Identifications
for benthic specimens collected during the 2010
cruise were reported in Kojima & Watanabe (2015)
and the Japan Agency for Marine-Earth Science and
Technology GODAC DARWIN database (JAMSTEC
2019).

2.3. Identification, inclusion, and grouping of taxa

Individual specimens retained on a 63 pm sieve
or present on a colonisation surface (including de-
tached individuals >1 mm) were identified mor-
phologically and counted under a dissecting micro-
scope. lIdentifications were made to the finest
taxonomic level possible. From the Pescadero Basin
and Mariana Trough, specimens of relatively abun-
dant taxa or morphotypes that lacked defining
characteristics were selected for genetic sequencing
(details in the Supplement section ‘Supplementary
sample analyses'; www.int-res.com/articles/suppl/
m14182_supp.pdf). The sequences were compared
to those in the GenBank database using a BLAST
search (nucleotide BLAST using a megablast search
level). In most cases, the results from the BLAST
search were insufficient to identify specimens down
to species level. Therefore, the genetic results were
used primarily as support for the morphological
identifications.

The taxa included in analyses were limited to vent-
endemic, metazoan species that were likely to be
sampled as adults using a slurp or colonization sur-
face (i.e. no highly mobile fish or crustaceans). For
groups of taxa in which taxonomic resolution dif-
fered between the plankton and benthos, the coars-
est grouping was used for both. Taxa with larvae that
could not be morphologically identified to a taxo-
nomic rank below class were excluded (details on
exclusion and grouping are in the Supplement ‘Sup-
plementary sample analyses’).
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2.4. Comparison of benthic and planktonic
taxonomic composition

We used published data for the benthos at EPR
(Mullineaux 2020) and Mariana Trough (Kojima &
Watanabe 2015, JAMSTEC 2019), and new results
from this study for the plankton and benthos at
Pescadero Basin, and the plankton at EPR and Mari-
ana Trough. Comparisons between the planktonic
and benthic samples were conducted using pres-
ence—absence for consistency across all vent fields
(counts were not available for the Mariana Trough
benthos). A Jaccard dissimilarity matrix was created
for the non-metric multidimensional scaling (NMDS)
analysis. A permutational analysis of variance (PERM-
ANOVA) was used to test for differences between
the plankton and benthic samples as well as differ-
ences between zones. PERMANOVA is a non-para-
metric approach that tests the null hypothesis that
there is no difference between the centroids of the
groups being tested (Anderson, 2001). All analyses
were conducted in R (version 4.0.3) (R Core Team
2020) using the ‘vegan’' package (version 2.5-6)
(Oksanen et al. 2013). To explore the influence of
individual prominent species on community patterns,
quantitative counts were also compared between
benthic and planktonic samples at Pescadero Basin
and EPR.

3. RESULTS

In the Pescadero Basin, the taxonomic composition
of the planktonic and benthic samples overlapped
substantially, with no significant difference detected
(Fig. 3a; PERMANOVA, F; 4 = 2.17, p = 0.10). All
taxa found in the plankton were also found in the
benthos (Fig. 4), except for the gastropods Lepe-
todrilus spp. (see Table S2). The benthos showed lit-
tle differentiation across the 3 temperature zones
(Fig. 3a). There was, however, a notable difference
between the plankton and benthos in the relative
abundance of some of the most numerous taxa
(Fig. 3e). Chaetosphaerid polychaetes were abundant
in the plankton but rare in the benthos, especially in
the hot and warm zones. In contrast, the polychaete
Ophryotrocha sp. occurred in all samples and domi-
nated the benthos samples except in the cool zone.
The neomphalid-like gastropods occurred in most
samples and were particularly abundant in the ben-
thic cool zone.

In the pre-eruption EPR, community composition
differed significantly between the plankton and ben-

thos (Fig. 3b; PERMANOVA, F, 1; = 10.13, p = 0.003).
Composition also differed significantly across sam-
ples collected in different benthic temperature zones
(PERMANOVA, F, =2.99, p =0.004), demonstrating
that it was important to have sampled across envi-
ronmental gradients. The plankton samples were
similar to each other in composition despite having
been collected 17 mo apart and at 4 different vent
sites (Table 1). Most samples tended to be dominated
by a single taxon which differed between the plank-
tonic and benthic samples (Fig. 3f). The gastropods
Lepetodrilus spp. and Cyathermia naticoides were
prominent in the plankton, whereas the nectochaete
polychaete group dominated most of the benthic
samples except in the cool zone where the chaeto-
sphaerid group was prominent. All the taxa found
only in the plankton were gastropods (Table S1).
Siboglinid tubeworms were found only in the benthic
samples, which is not unexpected as siboglinid lar-
vae have never been observed in plankton samples
despite being common at vents. The sole bivalve
taxon Bathymodiolus thermophilus was also found
only in the benthos. Despite being relatively abun-
dant in the plankton, only a single individual of C.
naticoides was found in the benthic samples. The hot
and warm zones in the benthos were dominated by
the nectochaete group (mostly Amphisamytha gala-
pagensis; Table S2). The benthic cool zone displayed
higher relative abundance of the chaetosphaerid
group (mostly Laminatubus alvini) than the other
zones (Fig. 3f).

In the post-eruption EPR, patterns in community
composition were similar to pre-eruption in that
plankton and benthos differed significantly (Fig. 3c;
PERMANOVA, F; ;; = 5.16, p = 0.004), and benthic
zones differed significantly from each other (PERM-
ANOVA, F, s = 4.67, p = 0.02). The fauna in the ben-
thic warm and cool zones were more similar in com-
position to each other than to fauna in the hot zone.
All plankton and benthic samples were collected on
the same cruise at vents within 1 km of each other, so
the observed patterns did not appear to be influ-
enced by the sampling design. Similar to the pre-
eruption EPR, most of the post-eruption planktonic
and benthic samples were dominated by a single
abundant taxon. The gastropods Lepetodrilus spp.
(Fig. 3g) were particularly prominent in the benthic
samples in warm and cool zones, whereas C. nati-
coides and siboglinids were abundant in the hot
zone. The siboglinids were the only polychaete
group not found in both the plankton and the ben-
thos. In contrast to the pre-eruption samples, the nec-
tochaete group or chaetosphaerid group were not
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prominent in the benthos. As in the pre-eruption
state, peltospirids were found only in the plankton
and B. thermophilus was found primarily in the ben-
thos. One striking pattern in the post-eruption sam-
ples was the presence of 5 larval taxa (4 polychaetes
and the bivalve B. thermophilus; Table S1) that were
absent in the pre-eruption plankton, despite being
present in the benthos both pre- and post-eruption.

In the Mariana Trough, community composition
differed significantly between the plankton and
the benthos (Fig. 3d; PERMANOVA, F, ; = 5.08, p-
value = 0.01). Composition in plankton samples did
not vary substantially between those collected
directly at the vents and those 100-300 m away. Sim-
ilar to the EPR, most taxa found only in the plankton
were gastropods (including peltospirids; Table S2).
No analysis of abundance was possible for Mariana
because the benthic data were available only as
presence/absence.

Across the 3 vent fields, the percentage of taxa
shared between the plankton and the benthos varied
substantially (Fig. 4). The overlap was highest (70 %)
in the Pescadero Basin and substantially lower
(<50%) in the EPR and Mariana Trough, with the
lowest value (29%) observed in the pre-eruption
EPR. The pre- and post-eruption EPR displayed a
similar percentage of taxa found only in the plankton
(38 and 35 %, respectively), but the percentage found
only in the benthos was much higher pre-eruption
(32 %) than post-eruption (18 %).

4. DISCUSSION

This study of 3 Pacific vent fields demonstrates that
ecological connectivity, as measured by similarity in
species composition of a benthic community and its
associated larval supply is consistent with some, but
not all, of our expectations derived from geographic
or oceanographic isolation. The high similarity in
taxonomic composition between larval and adult
communities in the Pescadero Basin is distinctly dif-
ferent from patterns in the EPR and Mariana Trough
and indicates limited larval transport from nearby
vent fields at the time of our study (Fig. 1a). Other
nearby vent communities (e.g. Alarcén Rise) differ in
faunal composition from our Pescadero samples
(Goffredi et al. 2017), but the detection of only 2 non-
resident taxa in plankton samples suggests a limited
role of species sorting. In contrast, on the EPR, larval
composition differed substantially from the local
benthic communities, suggesting that transport from
nearby vents with different faunal composition was

occurring, but species sorting prevented their colo-
nization (Fig. 1b). This result differs from our expec-
tation for EPR of high connectivity between vent
fields of similar community composition (Fig. 1c). In
the Mariana Trough, the community composition of
larvae in the plankton differed from that of adults in
the benthos, but in that region, nearby vents have
distinctly different faunal composition. Thus, it ap-
pears that larvae are arriving from nearby vents but
not colonizing, as at EPR (Fig. 1b). Note that a ‘snap-
shot' observation of dissimilarity in species composi-
tion between larvae and benthos at an individual
vent field is relevant to connectivity on ecological
time scales but does not mean that larval transport
cannot occur episodically on longer time scales to
maintain genetic connectivity.

At Pescadero Basin vent communities, the limited
larval transport from other vent fields is likely driven
by oceanographic isolation from the nearest vent
field, Alarcén Rise, which is 75 km away and 1300 m
shallower. Vents in the Pescadero Basin have un-
usual vent fluid chemistry due to being located on a
heavily sedimented spreading centre (Paduan et al.
2018), and Goffredi et al. (2017) suggest that these
environmental conditions may limit species richness
through species sorting in the benthos. Our direct
observations of larval presence at Pescadero differ
from Goffredi et al. (2017), who found DNA only of
non-resident larvae in the water column (3 taxa),

1004 10 34 34 23
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shared

50+

Percentage of taxa (%)

257

Fig. 4. Percentage of taxa found in the benthic samples only,

planktonic samples only, and shared across both for

Pescadero Basin, East Pacific Rise (EPR) pre-eruption, EPR

post-eruption, and Mariana Trough. Total number of taxa
displayed above each bar
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possibly due to sampling lower volumes at greater
heights above the seafloor. The distance from Pesca-
dero Basin to the Alarcén Rise is within the maximum
estimated dispersal range of some vent taxa (Marsh
et al. 2001), so long-distance transport events, though
rare, may occur (Mullineaux et al. 2018). For in-
stance, the presence of the gastropods Lepetodrilus
spp. (and the clam Calyptogena sp.; Supplement text
‘Supplementary sample analyses’) in the plankton
but not the benthos at Pescadero Basin suggests
these 2 taxa are widely dispersed. These taxa were
found at Alarcén Rise by Goffredi et al. (2017), listed
as 2 species in genus Lepetodrilus and 1 species in
unresolved genus 'Calyptogena’. It is certainly possi-
ble that 'false-positive’ matches of pooled taxa (e.g.
chaetosphaerids) between the plankton and benthos
at Pescadoro Basin obscure the transport of unidenti-
fied non-local species from Alarcén Rise or other vent
fields. This possibility cannot be assessed with our
data but may be resolved in the future as sequences
of identified adult vent specimens from this region
become available in genetic databases.

On the EPR, the taxonomic compositions of larval
and benthic communities were dissimilar, indicating
substantial larval transport from non-local sources.
Consistent along-ridge flows in this region, reported
in field observations (Thurnherr et al. 2011) and
models (Xu et al. 2018), could promote larval disper-
sal from other vent fields along the ridge, including
from Medusa vent which is located 77 km away and
hosts some different species than 9°50" N. The abun-
dance of more proximal fields with similar composi-
tion, however, makes the EPR pattern unexpected
and raises questions about whether it truly reflects
larval dispersal, or results instead from limitations in
sampling effectiveness. Plankton samples provide
only an instantaneous view of larval supply and com-
position. Larval supply can be disrupted by discon-
tinuous spawning (Tyler & Young 1999) and is known
to vary on time scales of days (Beaulieu et al. 2009) to
years (Mills et al. 2013), so it is possible that temporal
variation in larval supply results in the episodic
absence of some species from the plankton. The ben-
thic sampling methods used could also lead to the
under-sampling of some taxa. For example, colonisa-
tion surfaces cannot be deployed in the very high
temperature environments (>30°C) found on vent
chimneys meaning that they are less likely to sample
taxa such as peltospirids and Neomphalus fretterae
that prefer these conditions (Desbruyeres et al. 2006).

The comparison of community composition in the
pre-eruption and post-eruption states at EPR did not
show the expected increase in similarity of benthos

and plankton with time since eruption. The benthic
species richness and composition was similar in the 2
states (21 and 22 taxa for pre- and post-eruption
respectively, with 16 of those taxa the same), but the
percentage of shared taxa between plankton and
benthos was substantially lower pre-eruption (29 %)
than post-eruption (46 %) due to the absence of 5
taxa in the plankton before the eruption that were
found in both the plankton and benthos after the
eruption. This pattern is contrary to the expectation
from our conceptual framework, which predicted
that larval taxa would be more similar to the benthos
under pre-eruption conditions (Fig. 1c) than immedi-
ately after a disturbance (Fig. 1d). It is possible that
the pre-eruption plankton samples were collected at
a time when the missing taxa had not spawned
recently, or that post-eruption populations had already
become established and were spawning actively in
response to higher nutrient availability. This uncer-
tainty illustrates again the challenges of interpreting
the absence of taxa in the plankton.

At Mariana Trough, the community composition of
the plankton was significantly different from the
benthos, as expected for a vent field experiencing
larval transport from nearby fields that differ in ben-
thic fauna. This difference was apparent in plankton
samples collected directly at the vents, and from
those hundreds of meters away, showing that the
proximity to a vent did not influence the analysis.
Biophysical models indicate that dispersal is likely
between vents in the southern Mariana Trough on
these spatial scales, and between the back-arc basin
and the Mariana Arc (Mitarai et al. 2016). We suspect
that vents on the Mariana Arc, which support differ-
ent communities than those in the Mariana Trough
(Giguere & Tunnicliffe 2021), are the source of spe-
cies we found only in the plankton. However, the
inability to identify plankton to species level in our
study makes it difficult to match them to individual
species reported from the Mariana Arc benthos.

We show that a comparison between larval and
adult taxon composition in an individual vent field is
effective for detecting limited larval exchange with
other vent communities and distinguishing between
larval supply and species sorting as drivers of com-
munity assembly. The approach is most useful in
regions where species composition differs across
vent fields. In some cases, the larval/adult compari-
son confirms expectations based on geographic prox-
imity or oceanographic exchange, e.g. the determi-
nation of limited connectivity for Pescadero Basin
which may limit the role of species sorting in the local
community assembly. In others, however, it brings
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