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Abstract 

Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved 1 

insights into the interplay between ecology and evolution. However, intra-population genomic 2 

variation represents the outcome of both stochastic and selective forces, making it difficult to 3 

identify whether variants are maintained by adaptive, neutral, or purifying processes. This is partly 4 

due to the reliance on gene sequences to interpret variants, which disregards the physical 5 

properties of three-dimensional gene products that define the functional landscape on which 6 

selection acts. Here we describe an approach to analyze genetic variation in the context of 7 

predicted protein structures, and apply it to study a marine microbial population within the SAR11 8 

subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight 9 

association between the patterns of nonsynonymous polymorphism, selective pressures, and 10 

structural properties of proteins such as per-site relative solvent accessibility and distance to 11 

ligands, which explain up to 59% of genetic variance in some genes. In glutamine synthetase, a 12 

central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous 13 

variants from ligand binding sites as a function of nitrate concentrations in the environment, 14 

revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our 15 

data also reveals that rare codons are purified from ligand binding sites when genes are under 16 

high selection, demonstrating the utility of structure-aware analyses to study the variants that 17 

likely impact translational processes. Overall, our work yields insights into the governing principles 18 

of evolution that shape the genetic diversity landscape within a globally abundant population, and 19 

makes available a software framework for structure-aware investigations of microbial population 20 

genetics. 21 
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Significance 

Increasing availability of metagenomes offers new opportunities to study evolution, but the equal 22 

treatment of all variants limits insights into drivers of sequence diversity. By capitalizing on recent 23 

advances in protein structure prediction capabilities, our study examines subtle evolutionary 24 

dynamics of a microbial population that dominates surface oceans through the lens of structural 25 

biology. We demonstrate the utility of structure-informed metrics to understand the distribution of 26 

nonsynonymous polymorphism, establish insights into the impact of changing nutrient availability 27 

on protein evolution, and show that even synonymous variants are scrutinized strictly to maximize 28 

translational efficiency when selection is high. Overall, our work illustrates new opportunities for 29 

discovery at the intersection between metagenomics and structural bioinformatics, and offers an 30 

interactive and scalable software platform to visualize and analyze genetic variants in the context 31 

of predicted protein structures and ligand-binding sites.  32 
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Introduction 

Genetic diversity within populations emerges from and is shaped by a combination of stochastic 33 

and selective pressures, which often lead to phenotypic differences between closely related 34 

individuals, sometimes within a few generations (Burke et al. 2010; Lenski et al. 1991). Surveys 35 

of microbial communities within natural habitats through phylogenetic marker genes (Olsen et al. 36 

1986; Acinas et al. 2004; Sogin et al. 2006) and metagenomics (Simmons and DiBartolo et al. 37 

2008; Allen et al. 2007) have revealed a tremendous amount of genetic variation within 38 

environmental populations (T. P. Curtis and Sloan 2005; Thomas P. Curtis et al. 2006), and an 39 

ever-increasing number of available genomes and metagenomes have provided insight into the 40 

selective pressures that shape such variation. However, the overwhelming complexity and 41 

dynamicity of these selective pressures, which occur even in the simplest environments (Good et 42 

al. 2017), has hindered our ability to determine which variants are under the influence of which 43 

pressures (Ochman 2003; Mes 2008). 44 

Inferring selective pressures through the isolation of microbial strains and comparative genomics 45 

has been widely successful. More recently, metagenome-assembled genomes (L.-X. Chen et al. 46 

2020) and single-amplified genomes (Woyke, Doud, and Schulz 2017) have dramatically 47 

increased the number (Almeida et al. 2021; Pachiadaki et al. 2019; Paoli et al. 2021) and diversity 48 

(Hug et al. 2016) of microbial clades represented in genomic databases, offering an even larger 49 

sampling of environmental microbes to study the emergence and maintenance of genetic variation 50 

(Garud and Pollard 2020). Nevertheless, genomes represent static snapshots of individual 51 

members of often complex environmental populations, and thus, working with genomic 52 

sequences alone substantially undersamples genetic variability in natural habitats and its 53 

associations with environmental and ecological forces (Van Rossum et al. 2020). This 54 

shortcoming is partially addressed by shotgun metagenomics (Quince et al. 2017) and 55 
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metagenomic read recruitment, where environmental sequences that are aligned to a reference 56 

can be studied to identify genetic variants at the resolution of single nucleotides (Whitaker and 57 

Banfield 2006; Denef 2019). In particular, using genomes to recruit reads from metagenomes 58 

enables a comprehensive sampling of all genetic variants within environmental populations 59 

(Simmons and DiBartolo et al. 2008). Due to the immensity of sequencing data generated by 60 

metagenomic studies, even subtle genetic variation in natural populations is now resolvable, 61 

making it possible to explicitly correlate patterns of genomic variation with temporal or spatial 62 

environmental variables to elucidate the interplay between ecology and evolution (Schloissnig et 63 

al. 2013; Bendall et al. 2016; Anderson et al. 2017; Delmont et al. 2019; Garud et al. 2019; Zhao 64 

et al. 2019; Shenhav and Zeevi 2020; Olm et al. 2021; Conwill et al. 2022). Although quantification 65 

and analysis of sequence variants derived from metagenomic data has improved dramatically, 66 

inferring the functional impact of individual nucleotides remains a fundamental challenge in part 67 

due to the sole reliance on DNA sequences, which do not represent physical properties of proteins 68 

they encode, and thus disguise the functional impact of individual mutations. 69 

Given the intermediary role that structure plays within the ‘sequence-structure-function paradigm’ 70 

(Anfinsen 1973), including protein structures as a dimension of analysis is commonplace in 71 

studies of protein evolution (Siltberg-Liberles, Grahnen, and Liberles 2011; Harms and Thornton 72 

2013; Sikosek and Chan 2014), and it is appreciated that the accuracy of evolutionary models 73 

improves with combined analyses of protein structures and the evolution of underlying sequences 74 

(Wilke 2012). In contrast, the state-of-the-art approaches that quantify genetic variants in 75 

environmental microbial populations typically treat genes as strings of nucleotides (Schloissnig et 76 

al. 2013; Eren et al. 2015; Nayfach et al. 2016; Costea et al. 2017; Olm et al. 2021). While this 77 

strategy enables rapid surveys of population dynamics through single-nucleotide variants, it 78 

disregards the physical properties of three-dimensional gene products that selection acts upon, 79 

and thus misses a critical intermediate to understand the relationship between selection and 80 
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fitness (Golding and Dean 1998; K. Chen and Arnold 1993). The importance of mapping 81 

sequence variants on predicted protein structures to identify genetic determinants of phenotypic 82 

variation has been noted more than two decades ago (Sunyaev, Lathe, and Bork 2001), yet the 83 

limited availability of protein structures has historically rendered protein structure-informed 84 

microbial population genetics impractical. Given dramatic advances in both solving and predicting 85 

protein structures in recent years (Kuhlman and Bradley 2019), most notably deep learning 86 

approaches such as AlphaFold (Jumper et al. 2021) that offer highly accurate protein structure 87 

predictions, this constraint is likely a problem of the past. Altogether, open questions in microbial 88 

ecology and evolution, advances in computation, and increased availability of data are 89 

culminating in a research landscape that is ripe for new software solutions that integrate protein 90 

structures with 'omics data in order to observe and interpret evolutionary processes that shape 91 

sequence variation in natural populations. 92 

Here we develop an interactive and scalable software solution for the analysis and interactive 93 

visualization of metagenomic sequence variants in the context of predicted protein structures and 94 

ligand binding sites as a new module in anvi'o, an open-source, community-led multi-omics 95 

platform (https://anvio.org). By importing AlphaFold-predicted protein structures into anvi’o 96 

structure, we (1) demonstrate the shortcomings of purely sequence-based approaches to interpret 97 

patterns of polymorphism observed within complex microbial populations, (2) propose two 98 

structural features to interpret genetic variation, RSA and DTL, (3) illustrate that nonsynonymous 99 

polymorphism is more likely to encroach upon active sites when selection is low, but is purged 100 

from active sites when selection is high, and (4) provide evidence that common codons are more 101 

translationally robust than their rare synonymous counterparts, which appear within 102 

structurally/functionally noncritical sites when selection is low. 103 
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Results and Discussion 

To investigate selective pressures that drive protein evolution within microorganisms inhabiting 104 

complex naturally occurring environments, we chose a single microbial taxon and a set of 105 

metagenomes that match to its niche boundaries: SAR11 (Candidatus Pelagibacter ubique), a 106 

microbial clade of free-living heterotrophic alphaproteobacteria that dominates surface ocean 107 

waters (Morris et al. 2002), and Tara Oceans Project metagenomes (Sunagawa et al. 2015), a 108 

massive collection of deeply sequenced marine samples from oceans and seas across the globe. 109 

SAR11 is divided into multiple subclades with distinct ecology (Giovannoni 2017). Thus, we 110 

further narrowed our focus to HIMB83, a single SAR11 strain genome that is 1.4 Mbp in length. 111 

HIMB83 is a member of the environmental SAR11 lineage 1a.3.V, one of the most abundant 112 

(Nayfach et al. 2016) and most diverse (Delmont & Kiefl et al. 2019) microbial lineages in marine 113 

systems, which recruits as much as 1.5% of all metagenomic short reads in surface ocean 114 

metagenomes (Delmont & Kiefl et al. 2019). 115 

To quantify the genetic variability of 1a.3.V, we used HIMB83 as a reference genome of the 116 

subclade, and competitively recruited short reads (see Methods) from 93 low-latitude surface 117 

ocean metagenomes (Table S1), resulting in 390 million reads that were 94.5% identical to 118 

HIMB83 on average (Figure S1). As an individual member of a diverse subclade, HIMB83 119 

possesses a genomic context that is insufficient for resolving the extent of genetic diversity within 120 

1a.3.V. Regardless, HIMB83 possesses the 'core' gene set of 1a.3.V, and so reads recruited by 121 

these genes represent the diversity of the 1a.3.V core genome. Of the 1,470 genes in HIMB83, 122 

we restricted our analysis to 799 genes that we determined to form the 1a.3.V core genes, and 123 

74 metagenomes in which the average coverage of HIMB83 exceeded 50X (see Methods). The 124 

reads recruited to the 1a.3.V core represent a dense sampling of the diversity within this 125 

environmental lineage that far exceeds the evolutionary resolution and volume of sequence data 126 
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achievable through comparisons of cultured SAR11 genomes alone (Figure S1). As a result, 127 

these data provide a unique opportunity to zoom in and track how genomic variation in one of the 128 

most abundant microbial populations on Earth shifts in response to ecological parameters 129 

throughout the global ocean (Figure S2). 130 

Polymorphism rates reveal intense purification of nonsynonymous 

mutants 

To quantify genomic variation in 1a.3.V, in each sample we identified codon positions of HIMB83 131 

where aligned metagenomic reads did not match the reference codon. We considered each such 132 

position to be a single codon variant (SCV). Analogous to single nucleotide variants (SNVs), which 133 

quantify the frequency that each nucleotide allele (A, C, G, T) is observed in the reads aligning to 134 

a nucleotide position, SCVs quantify the frequency that each codon allele (AAA, …, TTT) is 135 

observed in the reads aligning to a codon position (see Methods for a more complete description). 136 

Since SCVs are defined to be ‘in-frame’, they provide inherent convenience when relating 137 

nucleotide variation in the genomic coordinates to amino acid variation in the corresponding 138 

protein coordinates, as well as for determining whether or not nucleotide variation leads to 139 

synonymous or nonsynonymous change. Within the 1a.3.V core genes, we found a total of 140 

9,537,022 SCVs, or 128,879 per metagenome on average. These SCVs distributed throughout 141 

the genome such that 78% of codons (32% of nucleotides) exhibited minor allele frequencies 142 

>10% in at least one metagenome. Despite this extraordinary level of diversity, our read 143 

recruitment strategy is stringent and yields reads that on average differ from HIMB83 in only 6 144 

nucleotides out of 100 (Table S2), precluding the possibility that this diversity is generated from 145 

excessive nonspecific mapping. While puzzling, this level of diversity is not surprising as it agrees 146 

with numerous studies that have pointed out the astonishing complexity of the SAR11 subclade 147 
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1a.3.V (Nayfach et al. 2016; Delmont and Kiefl et al. 2019; Haro-Moreno et al. 2020) that could 148 

not be further divided into sequence-discrete populations (Delmont and Kiefl et al. 2019). 149 

We found this diversity to be overwhelmingly synonymous. By splitting each SCV into its 150 

synonymous (s) and nonsynonymous (ns) proportions, we calculated per-site rates of s-151 

polymorphism and ns-polymorphism as pS(site) and pN(site), not to be confused with the related 152 

concepts dS and dN. While dS and dN quantify rates of synonymous and nonsynonymous 153 

substitution between diverged species, pN(site) and pS(site) can (1) resolve shorter evolutionary 154 

timescales than the characteristic fixation rate, (2) be calculated from metagenomic read 155 

recruitment data without complete haplotypes, and (3) define rates on a per-sample basis, thus 156 

enabling inter-sample comparisons. Overall, we found that the average pS(site) outweighed pN(site) 157 

by 19:1 (Table S3), revealing an overwhelming fraction of the 1a.3.V diversity to be synonymous 158 

and illustrating how nonsynonymous mutants are purified at a much higher rate than synonymous 159 

mutants in the population at large. 160 

 

Figure 1. Anvi’o workflow for structure-informed population genetics. 
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Nonsynonymous polymorphism avoids buried sites 

pN(site) values varied significantly from site-to-site and from sample-to-sample, but overall, more 161 

variation existed between sites in a given sample than between samples of a given site (Figure 162 

S3). The extent that a given site can tolerate ns-polymorphism is largely determined by the local 163 

physicochemical environment of the encoded residue, which is defined by the 3D structure of the 164 

protein. Thus, we broadened our focus by developing a computational framework, anvi’o structure 165 

(Supplementary Information), that enabled the integration of environmental sequence variability 166 

with predicted protein structures (Figure 1). 167 

We used two independent methods to predict protein structures for the 799 core genes of 1a.3.V: 168 

(1) a template-based homology modeling approach with MODELLER (Webb and Sali 2016), 169 

which predicted 346 structures, and (2) a transformer-like deep learning approach with AlphaFold 170 

(Jumper et al. 2021), which predicted 754. Our evaluation of the 339 genes for which both 171 

methods predicted structures (Supplementary Information) revealed a comparable accuracy 172 

between AlphaFold and MODELLER (Figure S4, Table S4). Thus, we opted to use AlphaFold 173 

structures for all downstream analyses due to its higher structural coverage. Indeed, AlphaFold-174 

predicted protein structures covered over 90% of the core genes, highlighting the emerging 175 

opportunities afforded by recent advances in de novo structure prediction. 176 

Aligning single-codon variants to predicted structures enabled us to directly compare the 177 

distributions of s-polymorphism and ns-polymorphism rates relative to biophysical characteristics 178 

of the encoded proteins. We first investigated the association between polymorphism rates and 179 

relative solvent accessibility (RSA), a biophysical measure of how exposed (RSA = 1) or buried 180 

(RSA = 0) a site is. Since nonsynonymous mutations at buried sites are more likely to disrupt 181 

folding and stability, RSA serves as a powerful proxy to discuss the strength of structural 182 

constraints acting at a site (Echave, Spielman, and Wilke 2016). By calculating RSA for each site 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482602doi: bioRxiv preprint 

https://paperpile.com/c/vfD0EO/5S7n
https://paperpile.com/c/vfD0EO/ZFNE
https://paperpile.com/c/vfD0EO/QjB2
https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

in the predicted structures, and then weighting every site by the pN (site) and pS(site) across all 184 

samples, we established proteome-wide distributions for pN(site) and pS(site) relative to RSA (Figure 185 

2a). These data showed that pS(site) closely resembled the null distribution, which illustrates the 186 

lack of influence of RSA on s-polymorphism, while pN(site) deviated significantly and instead 187 

exhibited strong preference for sites with higher RSA. This finding aligns well with the expectation 188 

that buried sites are likely to purify nonsynonymous change due to disruption of protein stability 189 

while being relatively more tolerant to synonymous change, and validates our methodology. 190 

Nonsynonymous polymorphism avoids active sites 

While structural constraints ensure a given protein folds properly and remains stable, they do not 191 

guarantee its function. Comprehensive analyses of diverse protein families show that residues 192 

that bind or interact with ligands are depleted of mutations (Kobren and Singh 2019) due to strong 193 

selective pressures that maintain active site conservancy. This constraint is not limited to the 194 

immediate vicinity of ligand-binding residues, and has been observed to radiate outwards from 195 

the active site with a strength inversely correlated with distance from active site (Dean et al. 2002). 196 

We considered this distance as the ‘distance-to-ligand’ (DTL), and hypothesized that DTL may be 197 

a suitable proxy for investigating functional constraints in a manner complementary to RSA, a 198 

proxy for investigating structural constraints. To test this, we investigated distributions of pN(site) 199 

and pS(site) as a function of DTL for each predicted structure by first predicting sites implicated in 200 

ligand binding using InteracDome (Kobren and Singh 2019), and then calculating a DTL for each 201 

site, given the closest predicted ligand-binding site (Table S5). 202 
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Figure 2. (A) Structural 
constraints shift the pN(site) 
distribution towards high relative 
solvent accessibility (RSA). The 

pN(site) distribution (red line) and 

pS(site) distribution (blue line) were 

created by weighting the RSA 

values of 239,528 sites (coming 

from the 754 genes with predicted 

structures) by the pN(site) and pS(site) 

values observed in each of the 74 

samples, totaling 17,725,072 pN(site) 

and pS(site) values. The average 

distribution of 10 independent, 

randomly shuffled datasets of 

pN(site) is depicted by the grey-

regions for pN(site), and represents 

the null distribution expected if no 

association between pN(site) and 

RSA existed. Since the null 

distribution for pS(site) so closely 

resembles the null distribution for 

pN(site), it has been excluded for 

visual clarity, but can be seen in 

Figure S5. (B) Functional 
constraint shifts the pN(site) 
distribution towards high 

distance-to-ligand (DTL) values. 
The pN(site) distribution (red line) 

and pS(site) distribution (blue line) were created by weighting the DTL values of 155,478 sites (coming from 415 genes 

that had predicted structures and at least one predicted ligand) by the pN(site) and pS(site) values observed in each of the 

74 samples, totaling 11,505,372 pN(site) and pS(site) values. The pN(site) null distribution was calculated according to the 

procedure described in panel A, where again, the pS(site) null distribution closely resembled the pN(site) null distribution, 

and can be seen in Figure S5. (C) Linear models reveal positive correlations between pN(site) and RSA. The two 

distributions show Pearson correlation coefficients produced by linear models of the form log10(pN(site)) ~ RSA (red-filled 

region) and log10(pS(site)) ~ RSA (blue-filled region). A model has been fit to each gene-sample pair that passed filtering 

criteria (see Supplementary Information), resulting in 16,285 nonsynonymous models and 24,553 synonymous models. 

Distribution means are visualized as dashed lines. (D) Per-group polymorphism rates explain the major selective 
pressure trends with respect to RSA and DTL. The left and right panels show heatmaps of pN(group) and pS(group). 

Each cell represents a group defined by RSA and DTL ranges shown on the x- and y- axes, respectively. The color of 

each cell represents the respective value for the group, where dark refers to low values and light refers to high values. 

White lines show the contour lines of smoothed data. 
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The average per-site ns-polymorphism rate throughout the 1a.3.V core genome was 0.0088, 203 

however, we observed a nearly 4-fold reduction in this rate to just 0.0024 at predicted ligand 204 

binding sites (DTL = 0), indicating stronger purifying selection at ligand-binding sites (Figure 2b). 205 

Sites neighboring ligand-binding regions also harbored disproportionately low rates of ns-206 

polymorphism, as indicated by the significant deviation towards larger DTL values. This illustrates 207 

that purifying selection that preserves proper ligand-binding functionality is not limited to residues 208 

at ligand-binding sites, but extends to proximal sites as well. When we defined DTL in sequence 209 

space rather than Euclidean space, this effect was no longer observable beyond sequence 210 

distances of ~5-10 amino acids (Figure S6). Comparatively, pS(site) deviated minimally from the 211 

null distribution. Overall, integrating predicted protein structures and ligand-binding sites into the 212 

analysis of the genetic diversity of an environmental population has enabled us to demonstrate 213 

that (1) structural constraints bias pN(site) distributions towards solvent exposed sites (i.e. high 214 

RSA) (Figure 2a), and (2) functional constraints bias pN(site) distributions towards sites that are 215 

distant from ligand-binding sites (i.e. high DTL) (Figure 2b).  216 

Proteomic trends in purifying selection are explained by RSA and 

DTL 

Given the clear shift in ns-polymorphism rates towards high RSA and DTL sites across genes, we 217 

next investigated the extent that RSA and DTL can predict per-site polymorphism rates. By fitting 218 

a series of linear models to log-transformed polymorphism data (Table S6), we conclude that RSA 219 

and DTL can explain 11.83% and 6.89% of pN(site) variation, respectively. Based on these models 220 

we estimate that for any given gene in any given sample, (1) a 1% increase in RSA corresponds 221 

to a 0.98% increase in pN(site), and (2) a 1% increase in DTL (normalized by the maximum DTL in 222 

the gene) corresponds to a 0.90% increase in pN(site). In a combined model, RSA and DTL jointly 223 

explained 14.12% of pN(site) variation, and after adjusting for gene-to-gene and sample-to-sample 224 
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variance, 17.07% of the remaining variation could be explained by RSA and DTL. In comparison, 225 

only 0.35% of pS(site) variation was explained by RSA and DTL. Using a complementary approach, 226 

we constructed models for each gene-sample pair (Supplementary Information), the correlations 227 

of which we used to visualize the extent that pN(site) can be modeled by RSA and DTL relative to 228 

pS(site) (Figures 2c, 2d). Analyzing gene-sample pairs revealed that the extent of ns-polymorphism 229 

rate that can be explained by RSA and DTL is not uniform across all genes (Table S7) and can 230 

reach up to 52.6% and 51.4%, respectively (Figures S7, S8). Finally, we averaged polymorphism 231 

rates within groups of sites that shared similar RSA and DTL values, which demonstrated the tight 232 

association between the rate of within population ns-polymorphism rate and protein structure 233 

(Table S8, Figure 2e). Linear regressions of these data show that 83.6% of per-group ns-234 

polymorphism rates and 20.7% of per-group s-polymorphism rates are explained by RSA and 235 

DTL (Supplementary Information). 236 

The true predictive power of RSA and DTL for polymorphism rates is most likely higher than we 237 

report, since our approaches suffer from methodological shortcomings. For instance, we calculate 238 

RSA from the steric configurations of residues in predicted structures. Thus, errors in structure 239 

prediction propagate to errors in RSA. Errors in structure also propagate to errors in DTL, since 240 

DTL is calculated using Euclidean distances between residues, which is exacerbated by the 241 

uncertainty associated with ligand-binding site predictions. Furthermore, RSA and DTL 242 

calculations assume that the protein is monomeric, even though oligomeric proteins are common, 243 

and they represent the majority of proteins in some organisms (Goodsell and and Olson 2003). 244 

In these cases, exposed sites in the monomeric structure could be buried once assembled into 245 

the quaternary structure, and this is similarly true for estimates of DTL. Even if we assume 246 

structural predictions are 100% accurate, it is notable that binding site predictions exclude (1) 247 

ligands that are proteins, (2) ligand-protein complexes that have not co-crystallized with each 248 

other, (3) ligands of proteins with no shared homology in the InteracDome database, and (4) 249 
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unknown ligand-protein complexes. Each of these shortcomings leads to missed binding sites, 250 

which leads to erroneously high DTL values in the proximity of unidentified binding sites (Figure 251 

S9). Furthermore, our predictions assume that if a homologous protein in the InteracDome 252 

database binds to a ligand with a particular residue, then so too does the corresponding residue 253 

in the HIMB83 protein. This leads to uncertain predictions, since homology does not necessitate 254 

binding site conservancy. Yet, despite these methodological shortcomings, our analyses show 255 

that RSA and DTL are significant predictors of per-site and per-group variation. 256 

Clear partitioning of environmental genetic variation by RSA and DTL (Figure 2) highlights the 257 

utility of these metrics for studies of evolution following the increasing availability of protein 258 

structures. Analyses of total genetic variation lacking the ability to delineate distinct processes of 259 

evolution limit opportunities to identify determinants of fitness in rich and complex data afforded 260 

by environmental metagenomes. Indeed, the application of RSA and DTL to SAR11 demonstrate 261 

that not all variants are created equal; a notion considered common knowledge by all life 262 

scientists, and yet such a treatment is lacking in studies of genomic heterogeneity that rely upon 263 

metagenomic read recruitment. RSA and DTL provide quantitative means to bring a level of 264 

scrutiny to distinguish variants based on their distributions in proteins. For instance, a collection 265 

of high-RSA and high-DTL sites will be more likely to be enriched in neutral variants. In contrast, 266 

residues under strong purifying selection will more likely be enriched in low-RSA and/or low-DTL 267 

sites of proteins. The ability to tease apart distinct evolutionary processes with absolute accuracy 268 

will indeed remain difficult due to a multitude of factors. But by providing structure-informed means 269 

to partition the total intra-population variation into distinct pools, RSA and DTL offer a quantitative 270 

framework that enables new opportunities to study distinct evolutionary processes. 271 
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Measuring purifying selection between genes and environments 

with pN/pS(gene) 

So far, our structure-informed investigation has focused on trends of sequence variation within 272 

the gene pool of an environmental population. Next, we shifted our attention to individual proteins. 273 

pN/pS(gene) is a metric that quantifies the overall direction and magnitude of selection acting on a 274 

single gene (Schloissnig et al. 2013; Shenhav and Zeevi 2020), where pN/pS(gene) < 1 indicates 275 

the presence of purifying selection, the intensity of which increases as the ratio decreases. Since 276 

pN/pS(gene) is defined for a given gene in a given sample, pN/pS(gene) values for a single gene can 277 

be compiled from multiple samples, enabling the tracking of selective pressures across 278 

environments (Shenhav and Zeevi 2020). Taking advantage of the large number of metagenomes 279 

in which 1a.3.V was present, we calculated pN/pS(gene) for all 799 protein-coding core genes 280 

across 74 samples (see Methods), resulting in 59,126 gene/sample pairs (Table S9). We 281 

validated our calculations by comparing sample-averaged pN/pS(gene) to dN/dS(gene) calculated 282 

from homologous gene pairs between HIMB83 and HIMB122, another SAR11 isolate genome 283 

that is closely related to HIMB83 (gANI: 82.6%), which we found to yield commensurable results 284 

(Figure S10, Table S12, Supplementary Information). 285 

We found significantly more pN/pS(gene) variation between genes of a given sample (‘gene-to-286 

gene’ variation) than between samples of a given gene (‘sample-to-sample’ variation) (ANOVA, 287 

Figure S11). All but one gene (gene #2031, unknown function) maintained pN/pS(gene) << 1 in 288 

every sample, whereby 95% of values were less than 0.15 (Figure S12, Table S9), indicating an 289 

intense purifying selection for the vast majority of 1a.3.V genes across environments. This was 290 

foreshadowed by our earlier analysis in which pS(site) outweighed pN(site) by 19:1 within the 291 

aggregated data across genes and samples. However, the magnitude of purifying selection was 292 

not uniform across all genes. In fact, gene-to-gene variance, as opposed to sample-to-sample 293 

variance, explained 93% of pN/pS(gene) variation (ANOVA, Figure S11). By analyzing the 294 
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companion metatranscriptomic data (Salazar et al. 2019) that were available for 50 of the 74 295 

metagenomes, we were able to explain  29% of gene-to-gene variance with gene transcript 296 

abundance (Table S13, Supplementary Information), a known predictor of evolutionary rate (Pál, 297 

Papp, and Hurst 2001). Overall, these data demonstrate the utility of pN/pS(gene) as a metric to 298 

understand the overall extent of selection acting on genes. 299 

The amount of pN/pS(gene) variation attributable to sample-to-sample variance was only 0.7% 300 

(Figure S11). While it represents a small proportion of the total variance, the sample-to-sample 301 

variance in pN/pS(gene) encapsulates the extent that polymorphism varies in response to the range 302 

of environmental parameters observed across samples. These data therefore provide the 303 

opportunity to relate how differences in genetic diversity of individual genes manifests from 304 

differences in environmental parameters (Table S10), which we focused on next. 305 

Nitrogen availability governs rates of non-ideal polymorphism at 

critical sites of glutamine synthetase 

To gain a more highly resolved picture of how selection shapes protein evolution, we searched 306 

for a biologically relevant gene within 1a.3.V that exhibited evolutionary patterns that could be 307 

understood by leveraging structural information. Glutamine synthetase (GS) is a critical enzyme 308 

for the recycling of cellular nitrogen (Bernard and Habash 2009), a limiting nutrient for microbial 309 

productivity in surface oceans (Bristow et al. 2017). GS yields glutamine and ADP from glutamate, 310 

ammonia, and ATP, an essential step in the biosynthesis of nitrogenous compounds. 311 

Given the central role that GS plays in nitrogen metabolism, we expected GS to be under high 312 

selection. Indeed, the sample-averaged pN/pS(GS) was 0.02, ranking GS amongst the top 11% 313 

most purified genes (Figure 3b, Table S9). Although highly purified, we observed significant 314 

sample-to-sample variation in pN/pS(GS) (min = 0.010, max = 0.036) suggesting that the strength 315 

of purifying selection on GS varies from sample to sample (Figure 3b inset), perhaps due to unique 316 
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environmental conditions (e.g., nutrient compositions) that differentially impact the need for 317 

glutamine synthesis. Since previous work has shown that SAR11 upregulates its transcriptional 318 

and translational production of GS in response to nitrogen limitation (Smith Daniel P. et al., n.d.), 319 

we hypothesized that purifying selection should be highest in nitrogen-limited environments, and 320 

lowest in nitrogen-replete environments. We utilized measured concentrations of nitrate as an 321 

indication of the level of nitrogen limitation in each sample, and found a positive correlation 322 

between measured nitrate concentrations and pN/pS(GS) values across samples (Pearson 323 

correlation p-value = 0.009, R2 = 0.11) (Figure 3c), which ranked amongst the top 12% of positive 324 

correlations between pN/pS(gene) and nitrate concentration (Figure 3c inset, Table S10). In 325 

summary, we find that although GS is under high selection, subtle differences in selection strength 326 

are observed between samples and are most likely driven by nitrogen availability.  327 

Next, we focused on the GS protein structure to further investigate the associations between GS 328 

polymorphism and processes of selection. Since the native quaternary structure of GS is a 329 

dodecameric complex (12 monomers), our monomeric estimates of RSA and DTL are 330 

unrepresentative of the active state of GS. We addressed this by aligning 12 copies of the 331 

predicted structure to a solved dodecameric complex of GS in Salmonella typhimurium (PDB ID 332 

1FPY), which HIMB83 GS shares 61% amino acid similarity with (Figure 3a). From this stitched 333 

quaternary structure we recalculated RSA and DTL, and as expected, this yielded lower average 334 

RSA and DTL estimates due to the presence of adjacent monomers (0.17 versus 0.24 for RSA 335 

and 17.8Å versus 21.2Å for DTL). With these quaternary estimates of RSA and DTL, we found 336 

that ns-polymorphism was 30x less common than s-polymorphism, and it strongly avoided sites 337 

with low RSA and the three glutamate active sites to which any given monomer was proximal 338 

(Figure 3d). In comparison, s-polymorphism distributed relatively homogeneously throughout the 339 

protein, whereby 17% of s-polymorphism occurred within 10Å of active sites (compared to 3% for 340 

ns-polymorphism) and 19% occurred in sites with 0 RSA (compared to 9% for ns-polymorphism). 341 
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Averaged across samples, the mean RSA was 0.15 for s-polymorphism and 0.33 for ns-342 

polymorphism (Figure 3e left panel). Similarly, the mean DTL was 17.2Å for s-polymorphism and 343 

22.9Å for ns-polymorphism (Figure 3f left panel). These observations highlight in a single gene 344 

what we previously observed across the 1a.3.V core: selection purifies the majority of ns-345 

polymorphism and does so with increased strength at structurally/functionally critical sites. 346 

We next investigated whether variance in selection strength (Figure 3b inset) affects the spatial 347 

distribution patterns of polymorphism. For each sample, we calculated how polymorphism rates 348 

in GS distributed with respect to RSA and DTL and associated these distributions with pN/pS(GS). 349 

While the mean RSA of s-polymorphism remained relatively invariant (standard deviation 0.005) 350 

(Figure 3e right panel), the mean RSA of ns-polymorphism varied dramatically from 0.27 to 0.37 351 

and was profoundly influenced by sample pN/pS(GS); samples exhibiting low selection of GS 352 

harbored lower mean RSA and samples exhibiting high selection of GS harbored higher mean 353 

RSA (Figure 3e right panel). In fact, 82.9% of mean RSA ns-polymorphism variance could be 354 

explained by pN/pS(GS) alone (Pearson correlation, p-value < 1x10-16, R2 = 0.829). ns-355 

polymorphism distributions with respect to DTL were equally governed by selection strength, 356 

where 80.4% of variance could be explained by pN/pS(GS) (Pearson correlation, p-value < 1x10-357 

16, R2 = 0.804, Figure 3f).  358 
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Figure 3. Polymorphism distribution patterns in glutamine synthetase (GS). (A) GS forms a dodecameric 
complex. The structure (PDB ID 1FPY) comes from Salmonella typhimurium (61% sequence similarity to HIMB83) 

and is shown from two different views. Pink molecules are ADP and phosphinothricin (steric inhibitor of glutamate), and 

are situated within the active site of GS. (B) GS is one of the most highly conserved genes in 1a.3.V. The main plot 

shows the distribution of sample-averaged pN/pS(gene) for all 799 genes in the 1a.3.V core (truncated at 0.30). The 

vertical green line depicts the sample-averaged pN/pS(gene) for GS (0.020). The inset plot shows the distribution of 

pN/pS(gene) value for GS as seen across the 74 samples, which vary from 0.010 to 0.036. (C) Selection strength on 
GS correlates with environmental concentration of nitrates. The main plot shows a histogram of Pearson 

correlation coefficients (one per gene) between pN/pS(gene) and measured concentration of nitrates in each sample. 

The vertical green line depicts the correlation coefficient for GS (0.34). The inset shows a scatter plot of pN/pS(gene) vs 

nitrate concentrations from which the GS correlation coefficient was calculated. (D) ns-polymorphism polymorphism 
rates are reduced in the vicinity of the active sites. Each image is a view of the predicted structure of monomeric 

GS. Phosphinothricin substrates were situated by aligning the predicted GS structure to the complex in panel A. Red 

surfaces are colored according to the sample-averaged log10pN(site) value of each residue, and blue surfaces are colored 

according to the sample-averaged log10pS(site) value of each residue. In each case, darker colors refer to higher rates. 

Left-to-right, each view is a 90o clockwise rotation of the previous view about the vertical axis. Each image was rendered 

programmatically using a PyMOL script that was generated from the anvi’o structure interactive interface. (E) As 
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selection decreases, ns-polymorphism creeps into low-RSA sites. The left panel shows the distribution of samples’ 

average RSA of nonsynonymous (red) and synonymous (blue) polymorphisms. The right panel shows how these 

average RSA values (y-axis) correlate with the samples’ pN/pS(gene) values (x-axis). Each data point is calculated by 

weighting the RSA of each residue by the pN(site) (red) or pS(site) (blue) values observed in that sample. The red and 

blue lines show the nonsynonymous and synonymous linear fits, respectively, and the corresponding shaded regions 

show the 95% confidence intervals for the fit. (F) As selection decreases, ns-polymorphism creeps closer to the 

binding site. The scheme is identical to panel E, where RSA is replaced with the distance-to-glutamate substrate 

(DTL). (G) Some sites exhibit amino acid minor allele frequencies that co-vary with pN/pS(GS). The top panel 

shows the extent that sites co-vary with pN/pS(GS). The x-axis shows the residue number and the y-axis the slope 

estimate of a linear regression between the sum of minor allele frequencies and pN/pS(GS). Sites with DTL values less 

than the average are indicated in red and are gray otherwise. All sites above an arbitrary cutoff (dashed horizontal line) 

are annotated with their residue number. Scatter plots below show the allele frequency trajectories for a select number 

of these sites. 

When selection is low, we observe high nitrate concentrations (Figure 3c inset) and ns-359 

polymorphism distributions towards lower RSA/DTL (Figures 3e, 3f). When selection is high, we 360 

observe low environmental nitrate concentrations (Figure 3c inset) and ns-polymorphism 361 

distributions towards higher RSA/DTL (Figures 3e, 3f). Given that proper functionality of GS is 362 

most critical in nitrogen-limited environments and that mutations with low RSA/DTL are more likely 363 

to be deleterious, the most likely explanation for the body of evidence presented is that GS 364 

accumulates non-ideal polymorphism in samples exhibiting low selection of GS that cannot be 365 

effectively purified at the given selection strength. As selection increases, so too does the 366 

purifying efficiency, which we indirectly measure as increases in mean RSA and DTL of ns-367 

polymorphism. Our approach illustrates this ‘use it or lose it’ evolutionary principle over a 368 

spectrum of selection strengths which have been sampled from natural in situ environmental 369 

conditions. 370 

Under this hypothesis, there should exist low DTL amino acid alleles that create a negative, yet 371 

tolerable impact on fitness when selection is low, yet incur an increasingly detrimental fitness cost 372 

as selection increases. One would expect such alleles to be at low frequency in low pN/pS (GS) 373 

samples, and to reach increasingly higher frequencies in higher pN/pS(GS) samples. We identified 374 

putative sites fitting this description by scoring sites based on the extent that their amino acid 375 
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minor allele frequencies co-varied with pN/pS(GS), including only sites with DTL less than the mean 376 

DTL of ns-polymorphisms (22.9Å). Using an arbitrary cutoff, we identified 9 top-scoring 377 

polymorphisms that co-varied with pN/pS(GS) (Figure 3g): I96V, L152I, Q175P/G, I176V, N230D, 378 

S288A/D, I323V, A364S, I379L. Though each of these sites exhibited DTL lower than the average 379 

ns-polymorphism, the closest site (residue number 323) was still 9Å away from the glutamate 380 

substrate. This suggests there are no ‘smoking gun’ polymorphisms occurring in the binding site 381 

that abrasively disrupt functionality. After all, in absolute terms GS is highly purified regardless of 382 

sample – the largest pN/pS(GS) is 0.036, which is just over half the genome-wide average 383 

pN/pS(gene) of 0.063. Our data therefore represents a subtle, yet resolvable signal of minute 384 

decreases in selection strength manifesting as minute shifts in the distribution of ns-polymorphism 385 

towards the active site.  386 

While identifying signatures of positive selection is typically the primary pursuit in evolutionary 387 

analysis, our data instead illustrates a highly resolved interplay between purifying selection 388 

strength and polymorphism distribution. The geography and unique environmental parameters 389 

associated with each sample yielded a spectrum of selection strengths which enabled us to 390 

quantify how polymorphism distributions of a gene under high selection shift in response to small 391 

perturbations in selection strength. In the case of GS, we were able to attribute these shifts to the 392 

availability of nitrogen, thereby linking together environment, selection, and polymorphism.  393 

Throughout the 1a.3.V core genes, we observed that samples exhibiting low overall selection of 394 

1a.3.V were strongly associated with increased accumulation of ns-polymorphism at low 395 

RSA/DTL sites (Figures 4a, 4b, Supplementary Information), suggesting this signal is not specific 396 

to GS, but rather a general feature of the 1a.3.V core genes. Though highly significant (one sided 397 

Pearson p-values 9x10-12 for RSA and 2x10-4 for DTL), the magnitude that ns-polymorphism 398 

distributions shift with respect to DTL and RSA were subtle: across samples, the mean DTL of 399 

ns-polymorphism varied by less than 1Å, and the mean RSA varied between 0.230 and 0.236. 400 
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Resolving such a minute signal with such robust statistical power is owed to the immense 401 

quantities of sequence data afforded by metagenomics. 402 

 

Figure 4. Polymorphism distribution patterns with respect to genome-wide selection strength. Each data point 

is a sample (metagenome). Lines represent lines of best fit and corresponding translucent areas represent 95% 

confidence intervals. The x-axis is pN/pS(core), which is calculated across the whole core genome and is an inverse 

proxy of genome-wide purifying selection strength (see Methods). (A) The ns-polymorphism distribution mean with 

respect to RSA is negatively associated with pN/pS(core) (one-sided Pearson p-value = 9x10-12). (B) The ns-

polymorphism distribution mean with respect to DTL is negatively associated with pN/pS(core) (one-sided Pearson p-

value = 2x10-4). (C) The s-polymorphism distribution mean with respect to RSA is negatively associated with pN/pS(core) 

(one-sided Pearson p-value = 1x10-5). (D) The s-polymorphism distribution mean with respect to RSA is negatively 

associated with pN/pS(core) (one-sided Pearson p-value = 3x10-7). (E) Rare synonymous codons are more abundant in 

samples with high pN/pS(core) (one-sided Pearson p-value = 4x10-5). (F) Rare synonymous codons avoid low RSA sites 

when pN/pS(core) is low (one-sided Pearson p-value = 1x10-10). (G) Rare synonymous codons avoid low DTL sites when 

pN/pS(core) is low (one-sided Pearson p-value = 7x10-9). 
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Synonymous but not silent: selection against rare codons at critical 

sites 

Thus far we have observed that purifying efficiency observably decreases in response to lowered 403 

selection strength, as evidenced by ns-polymorphism occurring nearer to binding sites and in 404 

more buried sites. Given the influence of synonymous substitutions in translational processes 405 

(Plotkin and Kudla 2011), as a final analysis we focused on within-population trends of s-406 

polymorphism. 407 

Compared to ns-polymorphism, s-polymorphism distributes more uniformly throughout protein 408 

structures (Figures 2a, 2b). Yet our data also revealed an association between selection strength 409 

and the distribution of s-polymorphism. In samples under higher selection, s-polymorphism 410 

systematically tended to occur (1) in more solvent-exposed sites (Figure 4c, one-sided Pearson 411 

p-value = 1x10-5) and (2) farther from binding sites (Figure 4d, one-sided Pearson p-value = 3x10-412 

7). These trends indeed mimic the nonsynonymous trends in glutamine synthetase (Figures 3d, 413 

3e, 3f) as well as the core genes in general (Figures 4a, 4b), and cannot be reasonably explained 414 

by neutral processes. The surprising association suggests a relationship between selection and 415 

synonymous change that is at least partly determined by structural features of proteins. 416 

With a GC-content lower than 30%, SAR11 genomes maintain a non-uniform yet conserved 417 

codon composition (Figure S13). Previous work has shown that rare codons can significantly 418 

reduce translation rates (Sørensen, Kurland, and Pedersen 1989), cause delays in the production 419 

of the polypeptide chain at the ribosome (Komar 2009), which can lead to protein misfolding 420 

(Drummond and Wilke 2008; Agashe et al. 2013), and impair fitness (Walsh et al. 2020). Thus, 421 

we hypothesized that rare codons in 1a.3.V may incur fitness costs relative to their more common, 422 

synonymous counterparts. To test this hypothesis, we investigated the relationship between 423 

selection strength and the occurrence of rare codons, which required us to define a 'codon rarity' 424 
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metric based on the frequency that codons are found in the HIMB83 genome relative to their 425 

synonymous counterparts (Table S11). We then attributed an overall rarity score to each sample 426 

by weighting the rarity of all synonymous codon alleles by the frequencies with which they were 427 

observed (see Methods). Our analysis of these data revealed a positive correlation between 428 

codon rarity in a sample and its pN/pS(core) (Figure 4d, one-sided Pearson p-value = 1x10-5), 429 

illustrating that rare codons are more likely to be found in samples where genome-wide selection 430 

is low. We found this to be the case for s-polymorphism within all 18 amino acids that possess 431 

two or more codons (Figure S14), illustrating that this evolutionary process acts ubiquitously 432 

throughout the genetic code of 1a.3.V. Rare codons did not distribute throughout protein 433 

structures uniformly, either. In samples with low genome-wide selection, where rarity was highest, 434 

rare codons occurred farther away from binding sites (one-sided Pearson p-value = 1x10-10) and 435 

occurred more frequently in more solvent-exposed sites (one-sided Pearson p-value = 7x10-9), as 436 

compared to low selection samples (Figures 4e, 4f). 437 

Overall, these data show that when genome-wide selection strength is low, rare codons both (1) 438 

incorporate into the genome with increased propensity, and (2) manifest in sites that are 439 

statistically more likely to be structurally/functionally important. As previous research suggests, 440 

the most likely explanation for these observations is that rare codons are less fit due to decreased 441 

translational accuracy compared to their more common, synonymous counterparts. Yet the 442 

environmental and structural dimensions of our data reveal the dynamic nature of the evolutionary 443 

processes that maintain synonymous polymorphism as a function of changing conditions in 444 

naturally occurring habitats and elucidates the intensity of such processes as a function of their 445 

physical locations in the structure. Indeed, 1a.3.V maintains the lowest proportion of rare codons 446 

in samples where genome-wide selection is highest, and rare codons in these samples are 447 

statistically more likely to be incorporated in noncritical sites of proteins, most likely due to the 448 

increased efficiency with which purifying selection operates in an environment- and site-449 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

dependent manner. These rare codon data provide a lens into the potential fitness costs 450 

associated with suboptimal translational accuracy in complex populations, and by including 451 

structural data, we demonstrate where optimal translational accuracy matters most.  452 
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Conclusions 

With recent breakthroughs in predicting protein structures and ligand binding sites, microbial 453 

ecology need not be limited to just sequences. By offering an interactive, scalable, and open-454 

source software solution that integrates environmental genetic variants with structural 455 

bioinformatics, our study takes advantage of recent advances to connect environmental ‘omics 456 

and structural biology. Indeed, by leveraging structure and ligand-binding predictions we were 457 

able to describe striking patterns of nucleotide polymorphism in an environmental microbial 458 

population that we could ascribe to evolutionary constraints that preserve protein structure (folding 459 

& stability) and protein function (ligand-binding activity). By tracking a SAR11 population across 460 

metagenomes we were able to demonstrate the presence of dynamic processes that purge both 461 

synonymous and nonsynonymous polymorphism from the vicinity of ligand binding sites of 462 

proteins as a function of selection strength. Overall, our study proposes a structure-informed 463 

computational framework for microbial population genetics and offers a glimpse into the emerging 464 

interdisciplinary opportunities made available at the intersection of ecology, evolution, and 465 

structural biology. 466 
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Methods 

Overview. The URL https://merenlab.org/data/anvio-structure/ provides a complete reproducible 467 

workflow for all analysis steps detailed below, including (1) downloading the publicly available 468 

metagenomes and genomes, (2) recruiting reads from metagenomes, (3) calculating single 469 

amino-acid and single codon variants, (4) predicting protein structures and ligand binding sites, 470 

and (5) visualizing metagenomic sequence variants and binding sites onto protein structures. 471 

Metagenomic and metatranscriptomic read recruitment and processing. To study the 472 

population structure of the environmental SAR11 population 1a.3.V defined previously (Delmont 473 

and Kiefl et al. 2019), we used anvi’o v7.1 (Eren et al. 2021), and its metagenomics workflow  474 

(Shaiber et al. 2020) which uses snakemake v5.10 (Köster and Rahmann 2012) to automate gene 475 

calling, gene function annotation, metagenomic and metatranscriptomic read recruitment steps. 476 

The compendium of anvi’o programs the metagenomics workflow called upon employed Prodigal 477 

v2.6.3 (Hyatt et al. 2010) for gene calling, NCBI’s Clusters of Orthologous Groups (COGs) 478 

database (Tatusov et al. 2003) and Pfams (El-Gebali et al. 2019) for gene function annotation, 479 

HMMER v3.3 (Eddy 2011) for profile HMM searches, DIAMOND v2.0.6 (Buchfink, Xie, and Huson 480 

2015) for sequence searches, Bowtie2 v2.4 (Langmead and Salzberg 2012) for read recruitment, 481 

and samtools v1.9 (Li et al. 2009) to generate BAM files. The metagenomic workflow resulted in 482 

a ‘contigs database’ and a ‘merged profile database’ (two anvi’o artifacts detailed at 483 

https://anvio.org/help/), which gives access to gene and genome coverages (with metagenomic 484 

or metatranscriptomic short reads), as well as the sequence variability data to study population 485 

genetics as detailed below. We adopted a competitive read recruitment strategy by using all 486 

SAR11 genomes, rather than only HIMB83, as reference to recruit reads from Tara Oceans 487 

Project metagenomes and metatranscriptomes to maximize the exclusion of reads that matched 488 

better to other known SAR11 genomes, thereby narrowing our scope of probed diversity and 489 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482602doi: bioRxiv preprint 

https://merenlab.org/data/anvio-structure/
https://paperpile.com/c/vfD0EO/90pf
https://paperpile.com/c/vfD0EO/90pf
https://paperpile.com/c/vfD0EO/XKm0
https://paperpile.com/c/vfD0EO/Fu4I
https://paperpile.com/c/vfD0EO/HIyn
https://paperpile.com/c/vfD0EO/JSG8
https://paperpile.com/c/vfD0EO/WBC5
https://paperpile.com/c/vfD0EO/w7J0
https://paperpile.com/c/vfD0EO/ispp
https://paperpile.com/c/vfD0EO/ed47
https://paperpile.com/c/vfD0EO/ed47
https://paperpile.com/c/vfD0EO/0vRX
https://paperpile.com/c/vfD0EO/Xtfr
https://anvio.org/help/
https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

minimizing the impacts of non-specific read recruitment. In all subsequent analyses we focused 490 

on the core genes of the 1a.3.V subclade by only considering (a) reads that mapped to HIMB83 491 

(b) the 74 metagenomes in which HIMB83 was found above 50X, and (c) the 799 HIMB83 genes 492 

that were previously found to maintain consistent coverage patterns (Delmont and Kiefl et al. 493 

2019). 494 

Quantifying SCVs and SAAVs in metagenomes. To characterize the variants in metagenomic 495 

read recruitment results we used and extended the microbial population genetics framework 496 

implemented in anvi’o. The program `anvi-profile` with the flag `--profile-SCVs` characterizes 497 

single codon variants (SCVs), from which single amino acid variants (SAAVs) can also be 498 

calculated. Anvi’o determines allele frequency vectors for SCVs by tallying the frequencies of 499 

codons observed in the 3-nt segments of reads that fully map to a given codon position. The 500 

frequencies of amino acids encoded by each 3-nt segment yield SAAVs observed in a given 501 

position, which represent allele frequency vectors of positions after collapsing synonymous 502 

redundancy. For a given codon position, anvi’o excludes any reads that do not map to all 3 503 

nucleotides, which can happen either if the read terminates within the codon position, or there 504 

exists a deletion in the read relative to the reference genome. Reads that contain insertions within 505 

the codon relative to the reference genome are also excluded during this step. We exported 506 

variant profiles as tabular data using the program `anvi-gen-variability-profile`, where each row is 507 

a SCV (or SAAV) and the columns specify (1) identifying information such as the corresponding 508 

gene, codon position, and sample id, (2) the number of mapped reads corresponding to each of 509 

the 64 codons (or 20 amino acids), and (3) numerous miscellaneous statistics, all of which can 510 

be explored at https://merenlab.org/analyzing-genetic-varaibility/. 511 

Calculations of polymorphism rates of individual codon sites, pN(site) and pS(site). We 512 

calculated the polymorphism rates of individual codon sites from allele frequencies defined from 513 

each SCV based on a recent study by Shenhav and Zeevi (2020), where a given codon allele 514 
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contributes (to either pN(site) or pS(site)) an amount that is equal to its observed relative abundance 515 

(frequency). To which rate the allele contributes is determined by its synonymity relative to the 516 

popular consensus, i.e. the allele most common across all samples. After summing the 517 

contributions for each of the 63 codons (excluding the popular consensus), we normalized the 518 

resulting values of pN(site) and pS(site) by the number of nonsynonymous and synonymous sites of 519 

the popular consensus, respectively. For example, if the popular consensus is ‘ACC’ (Thr), there 520 

are 9 possible single point mutations, 3 synonymous and 6 nonsynonymous, therefore pS(site) will 521 

be divided by 3/3 = 1 and pN(site) will be divided by 6/3 = 2. This procedure can be mathematically 522 

expressed as 523 

𝑝𝑁
(𝑠𝑖𝑡𝑒) =

1

𝑛𝑛
∑ 𝑓𝑐𝑁(𝑐, 𝑟)

𝑐∈𝐶\𝑟

,     𝑝𝑆
(𝑠𝑖𝑡𝑒) =

1

𝑛𝑠
∑ 𝑓𝑐𝑆(𝑐, 𝑟)

𝑐∈𝐶\𝑟

 524 

Where 𝐶\𝑟 is the set of all codons excluding the popular consensus 𝑟; 𝑛𝑛 and 𝑛𝑠 are the number 525 

of nonsynonymous and synonymous sites of 𝑟, respectively; 𝑓𝑐  is the frequency of the 𝑐th allele; 526 

𝑁(𝑐, 𝑟) is the indicator function where, 527 

𝑁(𝑐, 𝑟) = 1 𝑖𝑓 𝑛𝑜𝑡 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠(𝑐, 𝑟) 𝑒𝑙𝑠𝑒 0 528 

and 𝑆(𝑐, 𝑟) is the indicator function where, 529 

𝑆(𝑐, 𝑟) = 1 𝑖𝑓 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠(𝑐, 𝑟) 𝑒𝑙𝑠𝑒 0. 530 

We implemented this strategy into the program `anvi-gen-variability-profile` as a new flag `--531 

include-site-pnps`, which when declared, adds pN(site) and pS(site) values as additional columns to 532 

the tabular output after calculating them for 3 different choices of the reference codon 𝑟: (1) the 533 

popular consensus (as used in this paper), (2) the consensus (the allele with the highest 534 

frequency), and (3) the codon found in the reference sequence (the sequence used for read 535 

recruitment). For efficient computation, this calculation uses the Python package numba (Lam, 536 
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Pitrou, and Seibert 2015) for just-in-time compilation. For a dataset with 12,583,626 SCVs, the 537 

current implementation computes pN(site) and pS(site) terms in less than a minute on a laptop 538 

computer.  539 

Calculations of polymorphism rates within a group of sites, pN(group), pS(group), and 540 

pN/pS(group). We defined groups such that all sites in a group share similar RSA and DTL values. 541 

Formally, we defined pN(group) and pS(group) as 542 

𝑝𝑁
(𝑔𝑟𝑜𝑢𝑝) =

∑ ∑ 𝑓𝑐
(𝑔)

𝑐∈𝐶\𝑟
𝐺
𝑔=1 𝑁(𝑐,𝑟(𝑔))

∑ 𝑛𝑛
(𝑔)𝐺

𝑔=1

,     𝑝𝑆
(𝑔𝑟𝑜𝑢𝑝) =

∑ ∑ 𝑓𝑐
(𝑔)

𝑐∈𝐶\𝑟
𝐺
𝑔=1 𝑆(𝑐,𝑟(𝑔))

∑ 𝑛𝑠
(𝑔)𝐺

𝑔=1

. 543 

𝐺 is the number of sites in the group; 𝑟(𝑔) is the popular consensus of the 𝑔th site; 𝑓𝑐
(𝑔) is the 544 

frequency of the 𝑐th allele at the 𝑔th site; 𝑛𝑛
(𝑔) and 𝑛𝑠

(𝑔) are the number of nonsynonymous and 545 

synonymous sites of 𝑟(𝑔), respectively. All other definitions are the same as for pN(site) and pS(site). 546 

pN(group) and pS(group) can be expressed in terms of weighted sums of pN(site) and pS(site), 547 

respectively: 548 

𝑝𝑁
(𝑔𝑟𝑜𝑢𝑝) =

∑ 𝑛𝑛
(𝑔)

𝑝𝑁(𝑔,𝑠𝑖𝑡𝑒)𝐺
𝑔=1

∑ 𝑛𝑛
(𝑔)𝐺

𝑔=1

,     𝑝𝑆
(𝑔𝑟𝑜𝑢𝑝) =

∑ 𝑛𝑠
(𝑔)

𝑝𝑆(𝑔,𝑠𝑖𝑡𝑒)𝐺
𝑔=1

∑ 𝑛𝑠
(𝑔)𝐺

𝑔=1

. 549 

Finally, pN/pS(group) is defined as 550 

𝑝𝑁/𝑝𝑆(𝑔𝑟𝑜𝑢𝑝)  =  𝑝𝑁(𝑔𝑟𝑜𝑢𝑝)/𝑝𝑆(𝑔𝑟𝑜𝑢𝑝). 551 

Calculations of polymorphism rates for individual and core genes, pN(gene), pS(gene), 552 

pN/pS(gene), and pN/pS(core). We calculated rates of polymorphism for genes and the 1a.3.V core 553 

genome identically to the calculations of pN(group), pS(group), and pN/pS(group). For example, pN(gene) 554 

refers to the ns-polymorphism rate of all sites in a given gene, and pS(core) refers to the s-555 

polymorphism rate of all sites in the 1a.3.V core genome. 556 
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Predicting and processing protein structures. We attempted to predict protein structures for 557 

each gene in the HIMB83 genome that belonged to the 1a.3.V core using both AlphaFold (Jumper 558 

et al. 2021) and MODELLER (Webb and Sali 2016). To process, store, and access the resulting 559 

protein structures we developed a novel program, `anvi-gen-structure-database`, which gives 560 

access to all atomic coordinates as well as per-residue statistics such as relative solvent 561 

accessibility, secondary structure, and phi & psi angles calculated using DSSP (Touw et al., 2015; 562 

Kabsch and Sander, 1983).  For AlphaFold predictions we used a version of the codebase that 563 

closely resembles v2.0.1 (this URL gives access to its exact state) and ran predictions using 6 564 

GPUs, which took a week on a high-performance computing system. AlphaFold predicted 565 

structures for 795 of 799 proteins, and after removing structures with gene-averaged pLDDT 566 

scores <80, we were left with 754 structures we deemed ‘trustworthy’ for downstream analyses. 567 

To predict protein structures with MODELLER, we developed a pipeline that, for each gene, (1) 568 

searches the Research Collaboratory for Structural Bioinformatics Protein Data Bank (Berman et 569 

al. 2000) (RSCB PDB) for homologs using DIAMOND (Buchfink, Xie, and Huson 2015), then 570 

downloads tertiary structures for matching entries, and (2) uses these homologs as templates to 571 

predict the gene’s structure with MODELLER (Webb and Sali 2016). We discarded any proteins 572 

if the best template had a percent similarity of <30%. Unlike more sophisticated homology 573 

approaches that make use of multi-domain templates (Källberg et al. 2012), we used single-574 

domain templates which are convenient and are accurate up to several angstroms, yet can lead 575 

to physically inaccurate models when the templates’ domains match to some, but not all of the 576 

sequences’ domains. To avoid this, we discarded any templates if the alignment coverage of the 577 

protein sequence to the template was <80%. Applying these filters resulted in 408 structures from 578 

the 1a.3.V core, which was further refined by requiring that the root mean squared distance 579 

(RMSD) between the predicted structure and the most similar template did not exceed 7.5 Å, and 580 

that the GA341 model score exceeded 0.95. After applying these constraints, we were left with 581 

348 structures in the 1a.3.V that we assumed to be ‘trustworthy’ structures as predicted by 582 
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MODELLER. These structures were on average 44.8% identical to their templates, which is within 583 

the sequence similarity regime where template-based homology modeling generally produces the 584 

correct overall fold (Rost 1999). 585 

Predicting ligand-binding sites. For the 1a.3.V core genes we estimated per-residue binding 586 

frequencies for a diverse collection of ligands by using InteracDome, a database that annotates 587 

the sites (match states) of Pfam profile hidden Markov models (HMMs) with ligand binding 588 

frequencies predicted from experimentally-determined structural data (Kobren and Singh 2019). 589 

To associate match state binding frequencies of the profile HMMs to the sites of HIMB83 genes, 590 

we applied a protocol similar to that described in Kobren & Singh. 591 

First, we downloaded the Representable-NR Interactions (RNRI) from the InteracDome web 592 

server (https://interacdome.princeton.edu/) that “correspond to domain-ligand interactions that 593 

had nonredundant instances across three or more distinct PDB structures” (Table S5). Next, we 594 

downloaded the profile HMMs for Pfam v31.0 and kept only those 2,375 profiles that belonged to 595 

the RNRI dataset. Then, we searched each HIMB83 gene against this set using HMMER’s 596 

hmmsearch. After the removal of HMM hits that were below the gathering threshold (GA) noise 597 

cutoffs defined in Pfam models, 940 of the 1,470 HIMB83 coding genes had at least one domain 598 

hit, with a total of 1,770 domain hits from 832 unique profile HMMs. Of these, we removed 177 599 

for being too partial (length of the hit divided by the profile HMM length was less than 0.5), and 1 600 

hit because the query sequence did not match all the consensus residues for match states in 601 

which the information content exceeded 4 (Table S5). We then associated binding frequencies 602 

for a collection of ligand types to the HIMB83 genes by parsing alignments of the profile HMMs to 603 

the HIMB83 gene amino acid sequences, which are provided in the standard output of 604 

hmmsearch. If a given HIMB83 residue aligned to multiple match states, each which had the same 605 

ligand type, we attributed the average binding frequency to the HIMB83 residue. We then filtered 606 

out binding frequency scores less than 0.5, yielding 40,219 predicted ligand-residue interactions 607 
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across 11,480 unique sites (Table S5). We considered each of these sites to be ‘ligand-binding 608 

sites’. 609 

Our study includes two novel programs to automate this procedure and make it accessible to the 610 

community. The first, `anvi-setup-interacdome`, downloads the RNRI and Pfam datasets, and 611 

only needs to be run once. The second, `anvi-run-interacdome`, is a multi-threaded program that 612 

takes an anvi’o contigs database as input, and runs the remainder of the workflow described for 613 

each gene in the database. Predicted binding frequencies are stored internally in the database, 614 

which enables a seamless integration with other anvi’o programs to accomplish various tasks, 615 

such as the interactive visualization of the binding sites of predicted structures for any given gene 616 

with ̀ anvi-display-structure` (see Supplementary Information), or exporting the underlying data as 617 

TAB-delimited files with `anvi-export-misc-data`. In the present study, `anvi-run-interacdome` 618 

processed the HIMB83 genome in 53 seconds on a laptop computer using a single thread. 619 

Calculating relative solvent accessibility (RSA). We calculated RSA for each residue of each 620 

predicted structure, where RSA was defined as the accessible surface area (ASA) probed by a 621 

1.4Å radius sphere, divided by the maximum ASA, i.e. the ASA of a Gly-X-Gly tripeptide. RSA 622 

values were calculated in the program `anvi-gen-structure-database` using Biopython’s DSSP 623 

module (Cock et al. 2009). 624 

Calculating distance-to-ligand (DTL). DTL was calculated for all sites that belonged to genes 625 

with (a) a predicted structure and (b) at least one predicted ligand-binding residue. Ideally, one 626 

would calculate DTL as the Euclidean distance of a residue to the predicted ligand, however our 627 

predictions did not yield the 3D coordinates of ligands. Instead, we approximated DTL as the 628 

Euclidean distance of a residue to the closest ligand-binding residue (see Methods), which lies 629 

within a few angstroms of the predicted ligand. Specifically, we defined this distance according to 630 
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the sites’ side chain center of masses. A consequence of approximating DTL with respect to the 631 

closest ligand-binding sites is that by definition, any ligand-binding residue has a DTL of 0. 632 

As discussed in Proteomic trends in purifying selection are explained by RSA and DTL, missed 633 

binding sites lead to erroneously high DTL values. We assessed the magnitude of this error 634 

source by comparing our distribution of predicted DTL values in the 1a.3.V core to that found in 635 

BioLiP, an extensive database of semi-manually curated ligand-protein complexes (Yang, Roy, 636 

and Zhang 2013). We found the 1a.3.V DTL distribution had a much higher proportion of values 637 

>40 Å, suggesting these likely result from incomplete characterization of binding sites (Figure S9). 638 

To mitigate the influence of this inevitable error source, we conservatively excluded DTL values 639 

>40 Å (8.0% of sites) in all analyses after Figure 2b. 640 

Calculating polymorphism null distributions for RSA and DTL. The null distributions for 641 

polymorphism rates with respect to RSA and DTL were calculated by randomly shuffling the RSA 642 

and DTL values calculated for each site, yielding distributions one would expect if there was no 643 

association between polymorphism rate and RSA. To avoid biases, each null distribution is the 644 

average of 10 shuffled datasets. 645 

Proportion of polymorphism rate variance explained by RSA and DTL. To calculate the 646 

extent that RSA and DTL can explain polymorphism rates, we constructed 3 synonymous models 647 

(s-models) and 3 nonsynonymous models (ns-models) (Table S6). s-models fit linear regressions 648 

of log10(pS(site)) to RSA (s #1), DTL (s #2), and both RSA & DTL (s #3). Similarly, ns-models fit 649 

linear regressions of log10(pN(site)) to RSA (ns #1), DTL (ns #2), and both RSA & DTL (ns #3). 650 

Additionally, each model included the gene and sample of the corresponding polymorphism as 651 

independent variables, in order to account for gene-to-gene and sample-to-sample differences. 652 

Polymorphism rates were log-transformed because it helped linearize the data, yielding better 653 

models. The data used to fit each model included all codon positions across all samples in each 654 
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gene that had a predicted protein structure and at least 1 predicted ligand-binding residue. After 655 

excluding monomorphic sites (pN(site) = 0 for ns-models, pS(site) = 0 for s-models), this yielded 656 

5,838,445 data points for s-models and 3,850,182 for ns-models. While every protein has RSA 657 

values that span the domain [0,1], protein size creates dramatic gene-to-gene differences in 658 

observed DTL values. We accounted for this by standardizing DTL values on a per-gene basis, 659 

which improved variance explained by DTL. The variance explained by RSA, DTL, sample, and 660 

gene was determined by performing an ANOVA on each model and partitioning the sum of 661 

squares (Table S6). 662 

Calculating transcript abundance (TA). Since proper transcription level metrics such as 663 

molecules per cell are incalculable from metatranscriptomic data, we estimated the transcript 664 

abundance (TA) to be 665 

𝑇𝐴 =
𝐶(𝑀𝑇)

𝐷(𝑀𝑇) /
𝐶(𝑀𝐺)

𝐷(𝑀𝐺), 666 

Where 𝐶(𝑀𝑇) is the coverage of the gene in the metatranscriptome, 𝐷(𝑀𝑇) is the sequencing depth 667 

(total number of reads) of the metatranscriptome, 𝐶(𝑀𝐺) is the coverage of the gene in the 668 

metagenome, and 𝐷(𝑀𝑇) is the sequencing depth (total number of reads) of the metagenome. 669 

This means, for example, that a gene with a metatranscriptomic relative abundance 10% of its 670 

metagenomic relative abundance would have a TA of 0.10. 671 

Definition of codon rarity. We defined the rarity of a codon in the following way. First, we 672 

calculated the unnormalized codon rarity for each codon 𝑐, which we defined as 673 

𝑅′𝑐 = (1 − 𝑓𝑐), 674 

where 𝑓𝑐  is the frequency that a codon was observed in the HIMB83 genome sequence. Then, 675 

we normalized the values such that the codons with the lowest and highest values get rarity scores 676 

of 0 and 1, respectively: 677 
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𝑅𝑐 = ((𝑅′𝑐 − 𝑚𝑖𝑛(𝑅′)) / (𝑚𝑎𝑥(𝑅′) − 𝑚𝑖𝑛(𝑅′)), 678 

where 𝑚𝑖𝑛(𝑅′) and 𝑚𝑎𝑥(𝑅′) correspond to the smallest and largest unnormalized rarity scores. 679 

We utilized this definition to calculate codon rarity at polymorphic sites by weighting each codon’s 680 

rarity by the frequency that the codon was observed in the short reads mapping to that position. 681 

For example, a polymorphic site with a coverage of 200, where 50 reads resolve to GCC (𝑅𝐺𝐶𝐶 =682 

0.97) and 150 resolve to GCT (𝑅𝐺𝐶𝐶 = 0.75) would get a rarity score of 50/200 × 0.97 +683 

150/200 × 0.75 = 0.81. Extending this to multiple sites, we take the codon rarity of an entire 684 

sample to be the average rarity across all codon sites (polymorphic or not). 685 

Statistical data analysis and visualization. We used R v3.5.1 (R Development Core Team 686 

2011) for the analysis of numerical data reported from anvi’o. For data visualization we used 687 

ggplot2 (Ginestet 2011) library in R and anvi’o, and finalized images for publication using Inkscape 688 

v1.1 (https://inkscape.org/). 689 
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Supplementary Figures 

 690 

Figure S1. Regimes of sequence similarity probed by metagenomics, SAR11 cultured genomes, and protein 691 

families. Empirical distributions of gene-level percent similarity for HIMB83 compared with recruited metagenomic 692 

reads (pink), homologous SAR11 genomes (blue), and homologous Pfams (orange). For calculation details, see 693 

Supplementary Information.  694 
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 695 

Figure S2. Different environments exhibit substantial variation in their environmental parameters. Each subplot 696 

shows how the 74 selected metagenomes distribute according to various environmental variables measured by the 697 

TARA ocean metagenome project.  698 
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 699 

 700 

Figure S3. pN(site) varies more significantly between sites in a given sample than between samples for a given 701 

site. The x-axis is the log-transformed standard deviation of either a sample’s pN(site) values observed over many sites 702 

(orange), or a site’s pN(site) values observed over the 74 samples (gray).  703 
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 704 

Figure S4. Comparisons between structures predicted by AlphaFold and MODELLER. (A-B) Distributions of TM 705 

scores and RMSD between structures predicted by both MODELLER and AlphaFold. (C) Distribution of secondary 706 

structure fractions, between MODELLER (black) and AlphaFold (green). Secondary structure fraction was defined for 707 

each gene as the fraction of sites that DSSP predicted as part of an alpha helix or beta strand. (D) Comparison of 708 

secondary structure fractions between MODELLER and AlphaFold for two TM score groups. The y-axis is the 709 

secondary structure fraction of AlphaFold divided by the secondary structure fraction of MODELLER. The two groups 710 

were defined as having TM scores above or below 0.8, where the >0.8 group corresponded to the 291 best alignments 711 

(left) and the <0.8 group corresponded to the 48 worst alignments. (E-F) Distributions describing the mean pLDDT and 712 

protein sequence length of AlphaFold structures that either (1) had analog MODELLER structures (red) or (2) did not 713 

(blue).  714 
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 715 

Figure S5. Comparison of null distributions for pN(site) and pS(site) for RSA and DTL. Each distribution was 716 

calculated by averaging 10 independent, randomly shuffled datasets of either pN(site) (red line) or pS(site) (blue line). To 717 

better visualize differences between the null distributions, the blue lines depicting the pS(site) distributions were shifted 718 

right by half of a bin’s width.  719 
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 720 

Figure S6. Functional constraint is less resolved when using a sequence-distance metric of DTL. pN(site) (left 721 

panel) and pS(site) (right panel) distributions with respect to 1D DTL, which we defined as the number of sites in a 722 

protein’s sequence that separate a given site from a predicted ligand-binding site. Lines represent the observed 723 

distributions, and filled regions represent the null distributions, calculated via the shuffling procedure described in Figure 724 

2. Insets show the same data zoomed into the 1D DTL range [0, 20].  725 
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 726 

Figure S7. Select gene-sample pairs illustrate the diversity with which pN(site) associates with RSA. Scatterplots 727 

for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), mid (middle), and low 728 

(bottom). The right panel shows the distribution of Pearson coefficients, and the bin that each example was taken from 729 

is highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue, the x-axis is the RSA of the 730 

residue, and the y-axis is the observed log10(pN(site)). Lines of best fit are shown in red, with 95% confidence intervals 731 

visualized translucently. The Pearson coefficients of each fit are labeled on the scatterplot.  732 
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 733 

Figure S8. Select gene-sample pairs illustrate the diversity with which pN(site) associates with DTL. 734 

Scatterplots for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), mid 735 

(middle), and low (bottom). The right panel shows the distribution of Pearson coefficients, and the bin that each 736 

example was taken from is highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue, 737 

the x-axis is the DTL of the residue, and the y-axis is the observed log10(pN(site)). Lines of best fit are shown in red, 738 

with 95% confidence intervals visualized translucently. The Pearson coefficients of each fit are labeled on the 739 

scatterplot.  740 
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 741 

Figure S9. Incomplete ligand characterization leads to erroneously high DTL values. A comparison of DTL 742 

distributions (semi-log axis) for the 1a.3.V and the BioLiP database. The 1a.3.V core distribution (red) was calculated 743 

from all sites in the subset of genes with both a predicted structure and at least one predicted ligand-binding residue. 744 

The BioLiP distribution (gray) was calculated from the sites of 5,000 structures in the BioLiP database. For the 1a.3.V 745 

core, DTL was calculated as the distance to the closest predicted ligand-binding residue. For BioLiP, it was calculated 746 

as the distance to the closest annotated ligand-binding residue. For both methods, distance was calculated between 747 

the sites’ side chain center of masses. The dashed line marks the 40Å cutoff we used for all analyses besides Figure 748 

2b, which excludes 8.0% of the total sites. 749 

 750 
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 751 

Figure S10. Sample-averaged pN/pS(gene) values correlate with dN/dS(gene) values between HIMB83 and 752 

HIMB122. The x- and y-axes are the log-transformed dN/dS(gene) and sample-averaged pN/pS(gene) values (respectively) 753 

for the 743 genes that (1) belonged to the 1a.3.V core and (2) had HIMB122 homologs. The black line is the equation 754 

y = x, meaning that genes above this line maintain sample-averaged pN/pS(gene) values that exceed dN/dS(gene). The R2 755 

is for a linear regression of the log-transformed variables.  756 
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 757 

Figure S11. pN/pS(gene) varies more significantly between genes in a given sample than between samples for a 758 

given gene. The x-axis is the standard deviation of either a sample’s pN/pS(gene) values observed over genes (orange), 759 

or a gene’s pN/pS(gene) values observed over the 74 samples (gray). The gray box denotes the amount of variance 760 

explained by genes and samples in an ANOVA from the linear model pN/pS(gene) ~ gene + sample.  761 
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 762 

Figure S12. Distributions of pN/pS(gene). Left panel shows the distribution of pN/pS(gene), and the right panel shows 763 

the distribution of sample-averaged pN/pS(gene). Insets show the same distributions with a log10-transformed x-axis.  764 
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 765 

Figure S13. Codon usage of HIMB83 and 20 other genomes in the SAR11 clade.  766 
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 767 

Figure S14. Codon rarity measured for each amino acid reveals varied response to selection strength, with 768 

most amino acids preferring rare codons in high selection samples. Each plot is a different amino acid, and each 769 

datapoint is a sample. The x-axis is pN/pS(core), i.e. the ratio of nonsynonymous to s-polymorphism rates in the 1a.3.V 770 

core genome, and is shared between all plots. For a given plot, the y-axis was determined by first subsetting the 771 

polymorphism data to only include synonymous sites (in this instance we define synonymous as exhibiting pN(site) < 772 

0.0005) that corresponded to the given amino acid. Using lysine as an example, this led to on average 21,127 sites per 773 

sample. For each amino acid in each sample, we then calculated the overall codon rarity (y-axis) by averaging codon 774 

rarities across all included positions. A line of best fit (gray line) with 95% confidence intervals (light gray) is shown for 775 

each plot, with equation and Pearson correlation coefficient shown above.   776 
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Supplementary Tables 
Table S1. Read recruitment and coverage statistics of the 21 SAR11 genomes. (A-D) Genome-wide statistics for each 777 

genome in each metatranscriptomic and metagenomic sample. (A) is the mean coverage, (B) is the mean coverage, 778 

excluding nucleotide coverage values outside the interquartile range (IQR), (C) is the detection, and (D) is the 779 

percentage of reads mapping to a genome (sums to 100 for a given sample) (E) The mean coverage of each HIMB083 780 

gene in each metatranscriptomic and metagenomic sample. 781 

Table S2. Average percent similarity of recruited reads by HIMB083 for each (A) gene-sample pair, (B) gene 782 

(marginalized over samples), and (C) sample (marginalized over genes). 783 

Table S3. Mean per-site polymorphism rates (pN(site) and pS(site)) of HIMB083 (A) over all sites, genes, and samples, 784 

as well as (B) for each gene-sample pair (C) each gene (marginalized over samples), and (D) each sample 785 

(marginalized over genes). 786 

Table S4. Methodological comparisons between AlphaFold and MODELLER structures. (A) Key metrics for AlphaFold- 787 

and MODELLER-predicted structures and their alignments. (B) PDB structures used as templates for MODELLER 788 

predictions. (C) Per-residue pLDDT scores for AlphaFold-predicted structures. (D) Gene-averaged pLDDT scores for 789 

AlphaFold-predicted structures. (E-F) Genes with AlphaFold and MODELLER structures, respectively, that we 790 

determined to be of sufficiently high quality. 791 

Table S5. Summary of ligand-binding residue predictions with InteracDome. (A) All predicted ligand-binding sites, the 792 

predicted ligand, and the predicted ligand binding score. (B) Characterization of each HMM domain hit. (C) Each match 793 

state from the Pfam profile HMMs that contributed to each predicted ligand-binding residue of HIMB083.  794 
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 795 

 Sum of squares (% of total) 

Name Model RSA DTL Gene Sample Residuals 

s #1 log10(pS(site)) ~ RSA + gene + sample 0.12 - 4.05 1.01 94.83 

ns #1 log10(pN(site)) ~ RSA + gene + sample 11.83 - 10.61 6.71 70.85 

s #2 log10(pS(site)) ~ DTL + gene + sample - 0.30 4.07 1.00 94.63 

ns #2 log10(pS(site)) ~ DTL + gene + sample - 6.89 12.08 7.10 74.39 

s #3 log10(pS(site)) ~ RSA + DTL + gene + 
sample 

0.03 0.30 4.05 1.00 94.62 

ns #3 log10(pS(site)) ~ RSA + DTL + gene + 
sample 

7.23 6.89 10.83 6.42 68.62 

 796 

Table S6. Summary of models used for estimating the explanatory power of RSA and DTL on polymorphism rates (see 797 
Methods). 798 

Table S7. Summary statistics for the polymorphism models of gene-sample pairs. 799 

Table S8. Summary of per-group polymorphism data for (A) pN(group), (B) pS(group), (C) pN/pS(group), and (D) the size of 800 

each group. 801 

Table S9. Summary of per-gene polymorphism data for (A) pN/pS(gene), (B) sample-averaged pN/pS(gene), (C) pN(gene), 802 

(D) pS(gene) and (E) the number of potential synonymous and nonsynonymous point mutations of each gene. 803 

Table S10. Correlations of pN/pS(gene) for each 1a.3.V core gene with respect to the measured environmental 804 

parameters: nitrates, chlorophyll, temperature, salinity, phosphate, silicon, depth, and oxygen. 805 

Table S11. Codon metrics, including anti-codon, encoded amino acid, frequency and rarity in genome, and frequency 806 

and rarity compared to synonymous codons. 807 

Table S12. Comparison between dN/dS between HIMB83 and HIMB122 homologs and sample-averaged pN/pS(gene) 808 

of 1a.3.V genes. 809 

Table S13. Per sample and gene measures of transcript abundance (TA) and related quantities. 810 

Table S14. Bootstrap estimates of Pearson correlation coefficients and p-values from Figure SI6. 811 
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