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Abstract

Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved
insights into the interplay between ecology and evolution. However, intra-population genomic
variation represents the outcome of both stochastic and selective forces, making it difficult to
identify whether variants are maintained by adaptive, neutral, or purifying processes. This is partly
due to the reliance on gene sequences to interpret variants, which disregards the physical
properties of three-dimensional gene products that define the functional landscape on which
selection acts. Here we describe an approach to analyze genetic variation in the context of
predicted protein structures, and apply it to study a marine microbial population within the SAR11
subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight
association between the patterns of nonsynonymous polymorphism, selective pressures, and
structural properties of proteins such as per-site relative solvent accessibility and distance to
ligands, which explain up to 59% of genetic variance in some genes. In glutamine synthetase, a
central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous
variants from ligand binding sites as a function of nitrate concentrations in the environment,
revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our
data also reveals that rare codons are purified from ligand binding sites when genes are under
high selection, demonstrating the utility of structure-aware analyses to study the variants that
likely impact translational processes. Overall, our work yields insights into the governing principles
of evolution that shape the genetic diversity landscape within a globally abundant population, and
makes available a software framework for structure-aware investigations of microbial population

genetics.
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Significance

Increasing availability of metagenomes offers new opportunities to study evolution, but the equal
treatment of all variants limits insights into drivers of sequence diversity. By capitalizing on recent
advances in protein structure prediction capabilities, our study examines subtle evolutionary
dynamics of a microbial population that dominates surface oceans through the lens of structural
biology. We demonstrate the utility of structure-informed metrics to understand the distribution of
nonsynonymous polymorphism, establish insights into the impact of changing nutrient availability
on protein evolution, and show that even synonymous variants are scrutinized strictly to maximize
translational efficiency when selection is high. Overall, our work illustrates new opportunities for
discovery at the intersection between metagenomics and structural bioinformatics, and offers an
interactive and scalable software platform to visualize and analyze genetic variants in the context

of predicted protein structures and ligand-binding sites.
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Introduction

Genetic diversity within populations emerges from and is shaped by a combination of stochastic
and selective pressures, which often lead to phenotypic differences between closely related
individuals, sometimes within a few generations (Burke et al. 2010; Lenski et al. 1991). Surveys
of microbial communities within natural habitats through phylogenetic marker genes (Olsen et al.
1986; Acinas et al. 2004; Sogin et al. 2006) and metagenomics (Simmons and DiBartolo et al.
2008; Allen et al. 2007) have revealed a tremendous amount of genetic variation within
environmental populations (T. P. Curtis and Sloan 2005; Thomas P. Curtis et al. 2006), and an
ever-increasing number of available genomes and metagenomes have provided insight into the
selective pressures that shape such variation. However, the overwhelming complexity and
dynamicity of these selective pressures, which occur even in the simplest environments (Good et
al. 2017), has hindered our ability to determine which variants are under the influence of which

pressures (Ochman 2003; Mes 2008).

Inferring selective pressures through the isolation of microbial strains and comparative genomics
has been widely successful. More recently, metagenome-assembled genomes (L.-X. Chen et al.
2020) and single-amplified genomes (Woyke, Doud, and Schulz 2017) have dramatically
increased the number (Almeida et al. 2021; Pachiadaki et al. 2019; Paoli et al. 2021) and diversity
(Hug et al. 2016) of microbial clades represented in genomic databases, offering an even larger
sampling of environmental microbes to study the emergence and maintenance of genetic variation
(Garud and Pollard 2020). Nevertheless, genomes represent static snapshots of individual
members of often complex environmental populations, and thus, working with genomic
sequences alone substantially undersamples genetic variability in natural habitats and its
associations with environmental and ecological forces (Van Rossum et al. 2020). This

shortcoming is partially addressed by shotgun metagenomics (Quince et al. 2017) and
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metagenomic read recruitment, where environmental sequences that are aligned to a reference
can be studied to identify genetic variants at the resolution of single nucleotides (Whitaker and
Banfield 2006; Denef 2019). In particular, using genomes to recruit reads from metagenomes
enables a comprehensive sampling of all genetic variants within environmental populations
(Simmons and DiBartolo et al. 2008). Due to the immensity of sequencing data generated by
metagenomic studies, even subtle genetic variation in natural populations is now resolvable,
making it possible to explicitly correlate patterns of genomic variation with temporal or spatial
environmental variables to elucidate the interplay between ecology and evolution (Schloissnig et
al. 2013; Bendall et al. 2016; Anderson et al. 2017; Delmont et al. 2019; Garud et al. 2019; Zhao
et al. 2019; Shenhav and Zeevi 2020; OIm et al. 2021; Conwill et al. 2022). Although quantification
and analysis of sequence variants derived from metagenomic data has improved dramatically,
inferring the functional impact of individual nucleotides remains a fundamental challenge in part
due to the sole reliance on DNA sequences, which do not represent physical properties of proteins

they encode, and thus disguise the functional impact of individual mutations.

Given the intermediary role that structure plays within the ‘sequence-structure-function paradignm’
(Anfinsen 1973), including protein structures as a dimension of analysis is commonplace in
studies of protein evolution (Siltberg-Liberles, Grahnen, and Liberles 2011; Harms and Thornton
2013; Sikosek and Chan 2014), and it is appreciated that the accuracy of evolutionary models
improves with combined analyses of protein structures and the evolution of underlying sequences
(Wilke 2012). In contrast, the state-of-the-art approaches that quantify genetic variants in
environmental microbial populations typically treat genes as strings of nucleotides (Schloissnig et
al. 2013; Eren et al. 2015; Nayfach et al. 2016; Costea et al. 2017; Olm et al. 2021). While this
strategy enables rapid surveys of population dynamics through single-nucleotide variants, it
disregards the physical properties of three-dimensional gene products that selection acts upon,

and thus misses a critical intermediate to understand the relationship between selection and
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81 fitness (Golding and Dean 1998; K. Chen and Arnold 1993). The importance of mapping
82  sequence variants on predicted protein structures to identify genetic determinants of phenotypic
83  variation has been noted more than two decades ago (Sunyaev, Lathe, and Bork 2001), yet the
84 limited availability of protein structures has historically rendered protein structure-informed
85  microbial population genetics impractical. Given dramatic advances in both solving and predicting
86  protein structures in recent years (Kuhiman and Bradley 2019), most notably deep learning
87  approaches such as AlphaFold (Jumper et al. 2021) that offer highly accurate protein structure
88  predictions, this constraint is likely a problem of the past. Altogether, open questions in microbial
89 ecology and evolution, advances in computation, and increased availability of data are
90 culminating in a research landscape that is ripe for new software solutions that integrate protein
91 structures with 'omics data in order to observe and interpret evolutionary processes that shape

92  sequence variation in natural populations.

93 Here we develop an interactive and scalable software solution for the analysis and interactive
94  visualization of metagenomic sequence variants in the context of predicted protein structures and
95 ligand binding sites as a new module in anvi'o, an open-source, community-led multi-omics
96 platform (https://anvio.org). By importing AlphaFold-predicted protein structures into anvi'o
97  structure, we (1) demonstrate the shortcomings of purely sequence-based approaches to interpret
98 patterns of polymorphism observed within complex microbial populations, (2) propose two
99  structural features to interpret genetic variation, RSA and DTL, (3) illustrate that nonsynonymous
100  polymorphism is more likely to encroach upon active sites when selection is low, but is purged
101  from active sites when selection is high, and (4) provide evidence that common codons are more
102 translationally robust than their rare synonymous counterparts, which appear within

103  structurally/functionally noncritical sites when selection is low.
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Results and Discussion

104  To investigate selective pressures that drive protein evolution within microorganisms inhabiting
105 complex naturally occurring environments, we chose a single microbial taxon and a set of
106  metagenomes that match to its niche boundaries: SAR11 (Candidatus Pelagibacter ubique), a
107  microbial clade of free-living heterotrophic alphaproteobacteria that dominates surface ocean
108 waters (Morris et al. 2002), and Tara Oceans Project metagenomes (Sunagawa et al. 2015), a
109  massive collection of deeply sequenced marine samples from oceans and seas across the globe.
110 SAR11 is divided into multiple subclades with distinct ecology (Giovannoni 2017). Thus, we
111 further narrowed our focus to HIMB83, a single SAR11 strain genome that is 1.4 Mbp in length.
112  HIMB83 is a member of the environmental SAR11 lineage 1a.3.V, one of the most abundant
113  (Nayfach et al. 2016) and most diverse (Delmont & Kiefl et al. 2019) microbial lineages in marine
114  systems, which recruits as much as 1.5% of all metagenomic short reads in surface ocean

115  metagenomes (Delmont & Kiefl et al. 2019).

116  To quantify the genetic variability of 1a.3.V, we used HIMB83 as a reference genome of the
117  subclade, and competitively recruited short reads (see Methods) from 93 low-latitude surface
118 ocean metagenomes (Table S1), resulting in 390 million reads that were 94.5% identical to
119  HIMB83 on average (Figure S1). As an individual member of a diverse subclade, HIMB83
120  possesses a genomic context that is insufficient for resolving the extent of genetic diversity within
121 1a.3.V. Regardless, HIMB83 possesses the 'core' gene set of 1a.3.V, and so reads recruited by
122  these genes represent the diversity of the 1a.3.V core genome. Of the 1,470 genes in HIMB83,
123  we restricted our analysis to 799 genes that we determined to form the 1a.3.V core genes, and
124 74 metagenomes in which the average coverage of HIMB83 exceeded 50X (see Methods). The
125 reads recruited to the 1a.3.V core represent a dense sampling of the diversity within this

126  environmental lineage that far exceeds the evolutionary resolution and volume of sequence data
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127  achievable through comparisons of cultured SAR11 genomes alone (Figure S1). As a result,
128 these data provide a unique opportunity to zoom in and track how genomic variation in one of the
129 most abundant microbial populations on Earth shifts in response to ecological parameters

130 throughout the global ocean (Figure S2).

Polymorphism rates reveal intense purification of nonsynonymous

mutants

131 To quantify genomic variation in 1a.3.V, in each sample we identified codon positions of HIMB83
132  where aligned metagenomic reads did not match the reference codon. We considered each such
133  position to be a single codon variant (SCV). Analogous to single nucleotide variants (SNVs), which
134  quantify the frequency that each nucleotide allele (A, C, G, T) is observed in the reads aligning to
135 a nucleotide position, SCVs quantify the frequency that each codon allele (AAA, ..., TTT) is
136  observed in the reads aligning to a codon position (see Methods for a more complete description).
137 Since SCVs are defined to be ‘in-frame’, they provide inherent convenience when relating
138 nucleotide variation in the genomic coordinates to amino acid variation in the corresponding
139 protein coordinates, as well as for determining whether or not nucleotide variation leads to
140  synonymous or nonsynonymous change. Within the 1a.3.V core genes, we found a total of
141 9,537,022 SCVs, or 128,879 per metagenome on average. These SCVs distributed throughout
142  the genome such that 78% of codons (32% of nucleotides) exhibited minor allele frequencies
143 >10% in at least one metagenome. Despite this extraordinary level of diversity, our read
144  recruitment strategy is stringent and yields reads that on average differ from HIMB83 in only 6
145 nucleotides out of 100 (Table S2), precluding the possibility that this diversity is generated from
146  excessive nonspecific mapping. While puzzling, this level of diversity is not surprising as it agrees

147  with numerous studies that have pointed out the astonishing complexity of the SAR11 subclade
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1a.3.V (Nayfach et al. 2016; Delmont and Kiefl et al. 2019; Haro-Moreno et al. 2020) that could

not be further divided into sequence-discrete populations (Delmont and Kiefl et al. 2019).

We found this diversity to be overwhelmingly synonymous. By splitting each SCV into its
synonymous (s) and nonsynonymous (ns) proportions, we calculated per-site rates of s-
polymorphism and ns-polymorphism as pS®®) and pN©®), not to be confused with the related
concepts dS and dN. While dS and dN quantify rates of synonymous and nonsynonymous
substitution between diverged species, pN©®©) and pS®t) can (1) resolve shorter evolutionary
timescales than the characteristic fixation rate, (2) be calculated from metagenomic read
recruitment data without complete haplotypes, and (3) define rates on a per-sample basis, thus
enabling inter-sample comparisons. Overall, we found that the average pS®t® outweighed pNite)
by 19:1 (Table S3), revealing an overwhelming fraction of the 1a.3.V diversity to be synonymous
and illustrating how nonsynonymous mutants are purified at a much higher rate than synonymous

mutants in the population at large.

Structure-informed interpretations
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Figure 1. Anvi’o workflow for structure-informed population genetics.
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Nonsynonymous polymorphism avoids buried sites

161 pNEi®) values varied significantly from site-to-site and from sample-to-sample, but overall, more
162  variation existed between sites in a given sample than between samples of a given site (Figure
163  S3). The extent that a given site can tolerate ns-polymorphism is largely determined by the local
164  physicochemical environment of the encoded residue, which is defined by the 3D structure of the
165  protein. Thus, we broadened our focus by developing a computational framework, anvi’o structure
166  (Supplementary Information), that enabled the integration of environmental sequence variability

167  with predicted protein structures (Figure 1).

168  We used two independent methods to predict protein structures for the 799 core genes of 1a.3.V:
169 (1) a template-based homology modeling approach with MODELLER (Webb and Sali 2016),
170  which predicted 346 structures, and (2) a transformer-like deep learning approach with AlphaFold
171 (Jumper et al. 2021), which predicted 754. Our evaluation of the 339 genes for which both
172 methods predicted structures (Supplementary Information) revealed a comparable accuracy
173  between AlphaFold and MODELLER (Figure S4, Table S4). Thus, we opted to use AlphaFold
174  structures for all downstream analyses due to its higher structural coverage. Indeed, AlphaFold-
175  predicted protein structures covered over 90% of the core genes, highlighting the emerging

176  opportunities afforded by recent advances in de novo structure prediction.

177  Aligning single-codon variants to predicted structures enabled us to directly compare the
178 distributions of s-polymorphism and ns-polymorphism rates relative to biophysical characteristics
179  of the encoded proteins. We first investigated the association between polymorphism rates and
180 relative solvent accessibility (RSA), a biophysical measure of how exposed (RSA = 1) or buried
181 (RSA = 0) a site is. Since nonsynonymous mutations at buried sites are more likely to disrupt
182 folding and stability, RSA serves as a powerful proxy to discuss the strength of structural

183  constraints acting at a site (Echave, Spielman, and Wilke 2016). By calculating RSA for each site

10
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184  in the predicted structures, and then weighting every site by the pN©) and pS®t® across all
185  samples, we established proteome-wide distributions for pN©) and pS©ie) relative to RSA (Figure
186  2a). These data showed that pS©t® closely resembled the null distribution, which illustrates the
187 lack of influence of RSA on s-polymorphism, while pN©) deviated significantly and instead
188 exhibited strong preference for sites with higher RSA. This finding aligns well with the expectation
189 that buried sites are likely to purify nonsynonymous change due to disruption of protein stability

190  while being relatively more tolerant to synonymous change, and validates our methodology.

Nonsynonymous polymorphism avoids active sites

191  While structural constraints ensure a given protein folds properly and remains stable, they do not
192  guarantee its function. Comprehensive analyses of diverse protein families show that residues
193 thatbind or interact with ligands are depleted of mutations (Kobren and Singh 2019) due to strong
194  selective pressures that maintain active site conservancy. This constraint is not limited to the
195 immediate vicinity of ligand-binding residues, and has been observed to radiate outwards from
196 the active site with a strength inversely correlated with distance from active site (Dean et al. 2002).
197  We considered this distance as the ‘distance-to-ligand’ (DTL), and hypothesized that DTL may be
198  a suitable proxy for investigating functional constraints in a manner complementary to RSA, a
199  proxy for investigating structural constraints. To test this, we investigated distributions of pNie)
200 and pS®te) as a function of DTL for each predicted structure by first predicting sites implicated in
201 ligand binding using InteracDome (Kobren and Singh 2019), and then calculating a DTL for each

202  site, given the closest predicted ligand-binding site (Table S5).
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and pStite) distribution (blue line) were created by weighting the DTL values of 155,478 sites (coming from 415 genes
that had predicted structures and at least one predicted ligand) by the pN©i®) and pSsite) values observed in each of the
74 samples, totaling 11,505,372 pNite) and pSEite) values. The pNE&te) null distribution was calculated according to the
procedure described in panel A, where again, the pS©ite) null distribution closely resembled the pN©te) null distribution,
and can be seen in Figure S5. (C) Linear models reveal positive correlations between pNsi*) and RSA. The two
distributions show Pearson correlation coefficients produced by linear models of the form log1o(pN©t®)) ~ RSA (red-filled
region) and log1o(pS©t®)) ~ RSA (blue-filled region). A model has been fit to each gene-sample pair that passed filtering
criteria (see Supplementary Information), resulting in 16,285 nonsynonymous models and 24,553 synonymous models.
Distribution means are visualized as dashed lines. (D) Per-group polymorphism rates explain the major selective
pressure trends with respect to RSA and DTL. The left and right panels show heatmaps of pN(@°uP) gnd pS(eroup),
Each cell represents a group defined by RSA and DTL ranges shown on the x- and y- axes, respectively. The color of
each cell represents the respective value for the group, where dark refers to low values and light refers to high values.

White lines show the contour lines of smoothed data.
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203 The average per-site ns-polymorphism rate throughout the 1a.3.V core genome was 0.0088,
204  however, we observed a nearly 4-fold reduction in this rate to just 0.0024 at predicted ligand
205 binding sites (DTL = 0), indicating stronger purifying selection at ligand-binding sites (Figure 2b).
206  Sites neighboring ligand-binding regions also harbored disproportionately low rates of ns-
207  polymorphism, as indicated by the significant deviation towards larger DTL values. This illustrates
208 that purifying selection that preserves proper ligand-binding functionality is not limited to residues
209 atligand-binding sites, but extends to proximal sites as well. When we defined DTL in sequence
210 space rather than Euclidean space, this effect was no longer observable beyond sequence
211 distances of ~5-10 amino acids (Figure S6). Comparatively, pS®t) deviated minimally from the
212 null distribution. Overall, integrating predicted protein structures and ligand-binding sites into the
213  analysis of the genetic diversity of an environmental population has enabled us to demonstrate
214  that (1) structural constraints bias pN©t® distributions towards solvent exposed sites (i.e. high
215 RSA) (Figure 2a), and (2) functional constraints bias pN®) distributions towards sites that are

216  distant from ligand-binding sites (i.e. high DTL) (Figure 2b).

Proteomic trends in purifying selection are explained by RSA and
DTL

217  Given the clear shift in ns-polymorphism rates towards high RSA and DTL sites across genes, we
218 nextinvestigated the extent that RSA and DTL can predict per-site polymorphism rates. By fitting
219  aseries of linear models to log-transformed polymorphism data (Table S6), we conclude that RSA
220 and DTL can explain 11.83% and 6.89% of pN©® variation, respectively. Based on these models
221  we estimate that for any given gene in any given sample, (1) a 1% increase in RSA corresponds
222  toa0.98% increase in pN©®), and (2) a 1% increase in DTL (normalized by the maximum DTL in
223  the gene) corresponds to a 0.90% increase in pN©t), In a combined model, RSA and DTL jointly

224  explained 14.12% of pN®) variation, and after adjusting for gene-to-gene and sample-to-sample
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225  variance, 17.07% of the remaining variation could be explained by RSA and DTL. In comparison,
226  only 0.35% of pS®t) variation was explained by RSA and DTL. Using a complementary approach,
227  we constructed models for each gene-sample pair (Supplementary Information), the correlations
228  of which we used to visualize the extent that pN© can be modeled by RSA and DTL relative to
229  pS©t) (Figures 2c, 2d). Analyzing gene-sample pairs revealed that the extent of ns-polymorphism
230 rate that can be explained by RSA and DTL is not uniform across all genes (Table S7) and can
231 reach up to 52.6% and 51.4%, respectively (Figures S7, S8). Finally, we averaged polymorphism
232 rates within groups of sites that shared similar RSA and DTL values, which demonstrated the tight
233  association between the rate of within population ns-polymorphism rate and protein structure
234 (Table S8, Figure 2e). Linear regressions of these data show that 83.6% of per-group ns-
235  polymorphism rates and 20.7% of per-group s-polymorphism rates are explained by RSA and

236  DTL (Supplementary Information).

237  The true predictive power of RSA and DTL for polymorphism rates is most likely higher than we
238 report, since our approaches suffer from methodological shortcomings. For instance, we calculate
239 RSA from the steric configurations of residues in predicted structures. Thus, errors in structure
240  prediction propagate to errors in RSA. Errors in structure also propagate to errors in DTL, since
241 DTL is calculated using Euclidean distances between residues, which is exacerbated by the
242  uncertainty associated with ligand-binding site predictions. Furthermore, RSA and DTL
243  calculations assume that the protein is monomeric, even though oligomeric proteins are common,
244  and they represent the majority of proteins in some organisms (Goodsell and and Olson 2003).
245 In these cases, exposed sites in the monomeric structure could be buried once assembled into
246  the quaternary structure, and this is similarly true for estimates of DTL. Even if we assume
247  structural predictions are 100% accurate, it is notable that binding site predictions exclude (1)
248 ligands that are proteins, (2) ligand-protein complexes that have not co-crystallized with each

249  other, (3) ligands of proteins with no shared homology in the InteracDome database, and (4)
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250 unknown ligand-protein complexes. Each of these shortcomings leads to missed binding sites,
251  which leads to erroneously high DTL values in the proximity of unidentified binding sites (Figure
252  S9). Furthermore, our predictions assume that if a homologous protein in the InteracDome
253 database binds to a ligand with a particular residue, then so too does the corresponding residue
254  in the HIMB83 protein. This leads to uncertain predictions, since homology does not necessitate
255  binding site conservancy. Yet, despite these methodological shortcomings, our analyses show

256 that RSA and DTL are significant predictors of per-site and per-group variation.

257  Clear partitioning of environmental genetic variation by RSA and DTL (Figure 2) highlights the
258  utility of these metrics for studies of evolution following the increasing availability of protein
259  structures. Analyses of total genetic variation lacking the ability to delineate distinct processes of
260  evolution limit opportunities to identify determinants of fitness in rich and complex data afforded
261 by environmental metagenomes. Indeed, the application of RSA and DTL to SAR11 demonstrate
262 that not all variants are created equal; a notion considered common knowledge by all life
263  scientists, and yet such a treatment is lacking in studies of genomic heterogeneity that rely upon
264  metagenomic read recruitment. RSA and DTL provide quantitative means to bring a level of
265  scrutiny to distinguish variants based on their distributions in proteins. For instance, a collection
266  of high-RSA and high-DTL sites will be more likely to be enriched in neutral variants. In contrast,
267  residues under strong purifying selection will more likely be enriched in low-RSA and/or low-DTL
268 sites of proteins. The ability to tease apart distinct evolutionary processes with absolute accuracy
269  willindeed remain difficult due to a multitude of factors. But by providing structure-informed means
270  to partition the total intra-population variation into distinct pools, RSA and DTL offer a quantitative

271  framework that enables new opportunities to study distinct evolutionary processes.
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Measuring purifying selection between genes and environments
with pN/pSeene)

272  So far, our structure-informed investigation has focused on trends of sequence variation within
273  the gene pool of an environmental population. Next, we shifted our attention to individual proteins.
274  pN/pSen® is a metric that quantifies the overall direction and magnitude of selection acting on a
275  single gene (Schloissnig et al. 2013; Shenhav and Zeevi 2020), where pN/pS©e"® < 1 indicates
276  the presence of purifying selection, the intensity of which increases as the ratio decreases. Since
277  pN/pSee is defined for a given gene in a given sample, pN/pS©e"® values for a single gene can
278 be compiled from multiple samples, enabling the tracking of selective pressures across
279  environments (Shenhav and Zeevi 2020). Taking advantage of the large number of metagenomes
280 in which 1a.3.V was present, we calculated pN/pS©e® for all 799 protein-coding core genes
281 across 74 samples (see Methods), resulting in 59,126 gene/sample pairs (Table S9). We
282  validated our calculations by comparing sample-averaged pN/pS‘@®) to dN/dS@e") calculated
283  from homologous gene pairs between HIMB83 and HIMB122, another SAR11 isolate genome
284  thatis closely related to HIMB83 (gANI: 82.6%), which we found to yield commensurable results

285  (Figure S10, Table S12, Supplementary Information).

286  We found significantly more pN/pS@e®) variation between genes of a given sample (‘gene-to-
287  gene’ variation) than between samples of a given gene (‘sample-to-sample’ variation) (ANOVA,
288  Figure S11). All but one gene (gene #2031, unknown function) maintained pN/pS@"® << 1 in
289  every sample, whereby 95% of values were less than 0.15 (Figure S12, Table S9), indicating an
290 intense purifying selection for the vast majority of 1a.3.V genes across environments. This was
291  foreshadowed by our earlier analysis in which pS®®) outweighed pN®®) by 19:1 within the
292  aggregated data across genes and samples. However, the magnitude of purifying selection was
293 not uniform across all genes. In fact, gene-to-gene variance, as opposed to sample-to-sample

294  variance, explained 93% of pN/pS@e®) variation (ANOVA, Figure S11). By analyzing the
16


https://paperpile.com/c/vfD0EO/BBhC+xQCJ
https://paperpile.com/c/vfD0EO/xQCJ
https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482602; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

295 companion metatranscriptomic data (Salazar et al. 2019) that were available for 50 of the 74
296 metagenomes, we were able to explain 29% of gene-to-gene variance with gene transcript
297 abundance (Table S13, Supplementary Information), a known predictor of evolutionary rate (Pal,
298  Papp, and Hurst 2001). Overall, these data demonstrate the utility of pN/pS@e"® as a metric to

299 understand the overall extent of selection acting on genes.

300 The amount of pN/pS@e® variation attributable to sample-to-sample variance was only 0.7%
301 (Figure S11). While it represents a small proportion of the total variance, the sample-to-sample
302 variance in pN/pS‘@"®) encapsulates the extent that polymorphism varies in response to the range
303 of environmental parameters observed across samples. These data therefore provide the
304  opportunity to relate how differences in genetic diversity of individual genes manifests from

305 differences in environmental parameters (Table S10), which we focused on next.

Nitrogen availability governs rates of non-ideal polymorphism at

critical sites of glutamine synthetase

306 To gain a more highly resolved picture of how selection shapes protein evolution, we searched
307 for a biologically relevant gene within 1a.3.V that exhibited evolutionary patterns that could be
308 understood by leveraging structural information. Glutamine synthetase (GS) is a critical enzyme
309 for the recycling of cellular nitrogen (Bernard and Habash 2009), a limiting nutrient for microbial
310  productivity in surface oceans (Bristow et al. 2017). GS yields glutamine and ADP from glutamate,

311 ammonia, and ATP, an essential step in the biosynthesis of nitrogenous compounds.

312  Given the central role that GS plays in nitrogen metabolism, we expected GS to be under high
313  selection. Indeed, the sample-averaged pN/pS(®S) was 0.02, ranking GS amongst the top 11%
314  most purified genes (Figure 3b, Table S9). Although highly purified, we observed significant
315  sample-to-sample variation in pN/pS©® (min = 0.010, max = 0.036) suggesting that the strength

316  of purifying selection on GS varies from sample to sample (Figure 3b inset), perhaps due to unique
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317  environmental conditions (e.g., nutrient compositions) that differentially impact the need for
318 glutamine synthesis. Since previous work has shown that SAR11 upregulates its transcriptional
319  and translational production of GS in response to nitrogen limitation (Smith Daniel P. et al., n.d.),
320 we hypothesized that purifying selection should be highest in nitrogen-limited environments, and
321 lowest in nitrogen-replete environments. We utilized measured concentrations of nitrate as an
322 indication of the level of nitrogen limitation in each sample, and found a positive correlation
323  between measured nitrate concentrations and pN/pS©® values across samples (Pearson
324  correlation p-value = 0.009, R? = 0.11) (Figure 3c), which ranked amongst the top 12% of positive
325 correlations between pN/pS©"® and nitrate concentration (Figure 3c inset, Table S10). In
326 summary, we find that although GS is under high selection, subtle differences in selection strength

327  are observed between samples and are most likely driven by nitrogen availability.

328 Next, we focused on the GS protein structure to further investigate the associations between GS
329  polymorphism and processes of selection. Since the native quaternary structure of GS is a
330 dodecameric complex (12 monomers), our monomeric estimates of RSA and DTL are
331 unrepresentative of the active state of GS. We addressed this by aligning 12 copies of the
332  predicted structure to a solved dodecameric complex of GS in Salmonella typhimurium (PDB 1D
333  1FPY), which HIMB83 GS shares 61% amino acid similarity with (Figure 3a). From this stitched
334  quaternary structure we recalculated RSA and DTL, and as expected, this yielded lower average
335 RSA and DTL estimates due to the presence of adjacent monomers (0.17 versus 0.24 for RSA
336 and 17.8A versus 21.2A for DTL). With these quaternary estimates of RSA and DTL, we found
337  that ns-polymorphism was 30x less common than s-polymorphism, and it strongly avoided sites
338 with low RSA and the three glutamate active sites to which any given monomer was proximal
339  (Figure 3d). In comparison, s-polymorphism distributed relatively homogeneously throughout the
340 protein, whereby 17% of s-polymorphism occurred within 10A of active sites (compared to 3% for

341 ns-polymorphism) and 19% occurred in sites with 0 RSA (compared to 9% for ns-polymorphism).
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342  Averaged across samples, the mean RSA was 0.15 for s-polymorphism and 0.33 for ns-
343  polymorphism (Figure 3e left panel). Similarly, the mean DTL was 17.2A for s-polymorphism and
344  22.9A for ns-polymorphism (Figure 3f left panel). These observations highlight in a single gene
345 what we previously observed across the 1a.3.V core: selection purifies the majority of ns-

346  polymorphism and does so with increased strength at structurally/functionally critical sites.

347  We next investigated whether variance in selection strength (Figure 3b inset) affects the spatial
348  distribution patterns of polymorphism. For each sample, we calculated how polymorphism rates
349 in GS distributed with respect to RSA and DTL and associated these distributions with pN/pS(©9).
350  While the mean RSA of s-polymorphism remained relatively invariant (standard deviation 0.005)
351 (Figure 3e right panel), the mean RSA of ns-polymorphism varied dramatically from 0.27 to 0.37
352 and was profoundly influenced by sample pN/pS©®); samples exhibiting low selection of GS
353  harbored lower mean RSA and samples exhibiting high selection of GS harbored higher mean
354  RSA (Figure 3e right panel). In fact, 82.9% of mean RSA ns-polymorphism variance could be
355 explained by pN/pS(©®) alone (Pearson correlation, p-value < 1x107'%, R? = 0.829). ns-
356  polymorphism distributions with respect to DTL were equally governed by selection strength,
357  where 80.4% of variance could be explained by pN/pS©® (Pearson correlation, p-value < 1x10"

358 16, R?=0.804, Figure 3f).
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Figure 3. Polymorphism distribution patterns in glutamine synthetase (GS). (A) GS forms a dodecameric
complex. The structure (PDB ID 1FPY) comes from Salmonella typhimurium (61% sequence similarity to HIMB83)
and is shown from two different views. Pink molecules are ADP and phosphinothricin (steric inhibitor of glutamate), and
are situated within the active site of GS. (B) GS is one of the most highly conserved genes in 1a.3.V. The main plot
shows the distribution of sample-averaged pN/pS(©@ene) for all 799 genes in the 1a.3.V core (truncated at 0.30). The
vertical green line depicts the sample-averaged pN/pS(@ene) for GS (0.020). The inset plot shows the distribution of
pN/pS(eene) value for GS as seen across the 74 samples, which vary from 0.010 to 0.036. (C) Selection strength on
GS correlates with environmental concentration of nitrates. The main plot shows a histogram of Pearson
correlation coefficients (one per gene) between pN/pS(ee) and measured concentration of nitrates in each sample.
The vertical green line depicts the correlation coefficient for GS (0.34). The inset shows a scatter plot of pN/pS@ene) vs
nitrate concentrations from which the GS correlation coefficient was calculated. (D) ns-polymorphism polymorphism
rates are reduced in the vicinity of the active sites. Each image is a view of the predicted structure of monomeric
GS. Phosphinothricin substrates were situated by aligning the predicted GS structure to the complex in panel A. Red
surfaces are colored according to the sample-averaged log1opN®® value of each residue, and blue surfaces are colored
according to the sample-averaged log1opS®t) value of each residue. In each case, darker colors refer to higher rates.
Left-to-right, each view is a 90° clockwise rotation of the previous view about the vertical axis. Each image was rendered

programmatically using a PyMOL script that was generated from the anvi'o structure interactive interface. (E) As
20
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selection decreases, ns-polymorphism creeps into low-RSA sites. The left panel shows the distribution of samples’
average RSA of nonsynonymous (red) and synonymous (blue) polymorphisms. The right panel shows how these
average RSA values (y-axis) correlate with the samples’ pN/pS©ene) values (x-axis). Each data point is calculated by
weighting the RSA of each residue by the pN®©it®) (red) or pSsite) (blue) values observed in that sample. The red and
blue lines show the nonsynonymous and synonymous linear fits, respectively, and the corresponding shaded regions
show the 95% confidence intervals for the fit. (F) As selection decreases, ns-polymorphism creeps closer to the
binding site. The scheme is identical to panel E, where RSA is replaced with the distance-to-glutamate substrate
(DTL). (G) Some sites exhibit amino acid minor allele frequencies that co-vary with pN/pS(®S). The top panel
shows the extent that sites co-vary with pN/pS(®). The x-axis shows the residue number and the y-axis the slope
estimate of a linear regression between the sum of minor allele frequencies and pN/pS(©S). Sites with DTL values less
than the average are indicated in red and are gray otherwise. All sites above an arbitrary cutoff (dashed horizontal line)
are annotated with their residue number. Scatter plots below show the allele frequency trajectories for a select number

of these sites.

359 When selection is low, we observe high nitrate concentrations (Figure 3c inset) and ns-
360  polymorphism distributions towards lower RSA/DTL (Figures 3e, 3f). When selection is high, we
361 observe low environmental nitrate concentrations (Figure 3c inset) and ns-polymorphism
362  distributions towards higher RSA/DTL (Figures 3e, 3f). Given that proper functionality of GS is
363  mostcritical in nitrogen-limited environments and that mutations with low RSA/DTL are more likely
364 to be deleterious, the most likely explanation for the body of evidence presented is that GS
365 accumulates non-ideal polymorphism in samples exhibiting low selection of GS that cannot be
366 effectively purified at the given selection strength. As selection increases, so too does the
367  purifying efficiency, which we indirectly measure as increases in mean RSA and DTL of ns-
368  polymorphism. Our approach illustrates this ‘use it or lose it' evolutionary principle over a
369  spectrum of selection strengths which have been sampled from natural in situ environmental

370 conditions.

371 Under this hypothesis, there should exist low DTL amino acid alleles that create a negative, yet
372  tolerable impact on fitness when selection is low, yet incur an increasingly detrimental fitness cost
373 as selection increases. One would expect such alleles to be at low frequency in low pN/pS(©S)
374  samples, and to reach increasingly higher frequencies in higher pN/pS(©®) samples. We identified

375  putative sites fitting this description by scoring sites based on the extent that their amino acid
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376  minor allele frequencies co-varied with pN/pS(©S), including only sites with DTL less than the mean
377 DTL of ns-polymorphisms (22.9A). Using an arbitrary cutoff, we identified 9 top-scoring
378  polymorphisms that co-varied with pN/pS‘©® (Figure 3g): 196V, L1521, Q175P/G, 1176V, N230D,
379  S288A/D, 1323V, A364S, 1379L. Though each of these sites exhibited DTL lower than the average
380 ns-polymorphism, the closest site (residue number 323) was still 9A away from the glutamate
381  substrate. This suggests there are no ‘smoking gun’ polymorphisms occurring in the binding site
382 that abrasively disrupt functionality. After all, in absolute terms GS is highly purified regardless of
383 sample — the largest pN/pS©S) is 0.036, which is just over half the genome-wide average
384  pN/pSEe® of 0.063. Our data therefore represents a subtle, yet resolvable signal of minute
385 decreases in selection strength manifesting as minute shifts in the distribution of ns-polymorphism

386 towards the active site.

387  While identifying signatures of positive selection is typically the primary pursuit in evolutionary
388 analysis, our data instead illustrates a highly resolved interplay between purifying selection
389  strength and polymorphism distribution. The geography and unique environmental parameters
390 associated with each sample yielded a spectrum of selection strengths which enabled us to
391  quantify how polymorphism distributions of a gene under high selection shift in response to small
392  perturbations in selection strength. In the case of GS, we were able to attribute these shifts to the

393 availability of nitrogen, thereby linking together environment, selection, and polymorphism.

394  Throughout the 1a.3.V core genes, we observed that samples exhibiting low overall selection of
395 1a.3.V were strongly associated with increased accumulation of ns-polymorphism at low
396 RSA/DTL sites (Figures 4a, 4b, Supplementary Information), suggesting this signal is not specific
397 to GS, but rather a general feature of the 1a.3.V core genes. Though highly significant (one sided
398 Pearson p-values 9x107'? for RSA and 2x10* for DTL), the magnitude that ns-polymorphism
399 distributions shift with respect to DTL and RSA were subtle: across samples, the mean DTL of

400  ns-polymorphism varied by less than 1A, and the mean RSA varied between 0.230 and 0.236.
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Resolving such a minute signal with such robust statistical power is owed to the immense

quantities of sequence data afforded by metagenomics.
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Figure 4. Polymorphism distribution patterns with respect to genome-wide selection strength. Each data point
is a sample (metagenome). Lines represent lines of best fit and corresponding translucent areas represent 95%
confidence intervals. The x-axis is pN/pS(©®), which is calculated across the whole core genome and is an inverse
proxy of genome-wide purifying selection strength (see Methods). (A) The ns-polymorphism distribution mean with
respect to RSA is negatively associated with pN/pS(®® (one-sided Pearson p-value = 9x10-'2). (B) The ns-
polymorphism distribution mean with respect to DTL is negatively associated with pN/pS(°® (one-sided Pearson p-
value = 2x10#). (C) The s-polymorphism distribution mean with respect to RSA is negatively associated with pN/pS(core)
(one-sided Pearson p-value = 1x10%®). (D) The s-polymorphism distribution mean with respect to RSA is negatively
associated with pN/pS(©re) (one-sided Pearson p-value = 3x107). (E) Rare synonymous codons are more abundant in
samples with high pN/pS(re) (one-sided Pearson p-value = 4x10®). (F) Rare synonymous codons avoid low RSA sites
when pN/pS(°r) js low (one-sided Pearson p-value = 1x10-1%). (G) Rare synonymous codons avoid low DTL sites when
pN/pS(©oe js low (one-sided Pearson p-value = 7x107°).

23


https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482602; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Synonymous but not silent: selection against rare codons at critical

sites

403 Thus far we have observed that purifying efficiency observably decreases in response to lowered
404  selection strength, as evidenced by ns-polymorphism occurring nearer to binding sites and in
405 more buried sites. Given the influence of synonymous substitutions in translational processes
406  (Plotkin and Kudla 2011), as a final analysis we focused on within-population trends of s-

407  polymorphism.

408 Compared to ns-polymorphism, s-polymorphism distributes more uniformly throughout protein
409  structures (Figures 2a, 2b). Yet our data also revealed an association between selection strength
410 and the distribution of s-polymorphism. In samples under higher selection, s-polymorphism
411  systematically tended to occur (1) in more solvent-exposed sites (Figure 4c, one-sided Pearson
412  p-value = 1x10®) and (2) farther from binding sites (Figure 4d, one-sided Pearson p-value = 3x10-
413 7). These trends indeed mimic the nonsynonymous trends in glutamine synthetase (Figures 3d,
414  3e, 3f) as well as the core genes in general (Figures 4a, 4b), and cannot be reasonably explained
415 by neutral processes. The surprising association suggests a relationship between selection and

416  synonymous change that is at least partly determined by structural features of proteins.

417  With a GC-content lower than 30%, SAR11 genomes maintain a non-uniform yet conserved
418  codon composition (Figure S13). Previous work has shown that rare codons can significantly
419  reduce translation rates (Sgrensen, Kurland, and Pedersen 1989), cause delays in the production
420  of the polypeptide chain at the ribosome (Komar 2009), which can lead to protein misfolding
421 (Drummond and Wilke 2008; Agashe et al. 2013), and impair fitness (Walsh et al. 2020). Thus,
422  we hypothesized that rare codons in 1a.3.V may incur fithess costs relative to their more common,
423  synonymous counterparts. To test this hypothesis, we investigated the relationship between

424  selection strength and the occurrence of rare codons, which required us to define a 'codon rarity’
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425 metric based on the frequency that codons are found in the HIMB83 genome relative to their
426  synonymous counterparts (Table S11). We then attributed an overall rarity score to each sample
427 by weighting the rarity of all synonymous codon alleles by the frequencies with which they were
428 observed (see Methods). Our analysis of these data revealed a positive correlation between
429  codon rarity in a sample and its pN/pS°® (Figure 4d, one-sided Pearson p-value = 1x10%),
430 illustrating that rare codons are more likely to be found in samples where genome-wide selection
431 is low. We found this to be the case for s-polymorphism within all 18 amino acids that possess
432 two or more codons (Figure S14), illustrating that this evolutionary process acts ubiquitously
433  throughout the genetic code of 1a.3.V. Rare codons did not distribute throughout protein
434  structures uniformly, either. In samples with low genome-wide selection, where rarity was highest,
435 rare codons occurred farther away from binding sites (one-sided Pearson p-value = 1x107°) and
436  occurred more frequently in more solvent-exposed sites (one-sided Pearson p-value = 7x107?), as

437  compared to low selection samples (Figures 4e, 4f).

438  Overall, these data show that when genome-wide selection strength is low, rare codons both (1)
439 incorporate into the genome with increased propensity, and (2) manifest in sites that are
440  statistically more likely to be structurally/functionally important. As previous research suggests,
441 the most likely explanation for these observations is that rare codons are less fit due to decreased
442  translational accuracy compared to their more common, synonymous counterparts. Yet the
443  environmental and structural dimensions of our data reveal the dynamic nature of the evolutionary
444  processes that maintain synonymous polymorphism as a function of changing conditions in
445 naturally occurring habitats and elucidates the intensity of such processes as a function of their
446  physical locations in the structure. Indeed, 1a.3.V maintains the lowest proportion of rare codons
447 in samples where genome-wide selection is highest, and rare codons in these samples are
448  statistically more likely to be incorporated in noncritical sites of proteins, most likely due to the

449 increased efficiency with which purifying selection operates in an environment- and site-
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450 dependent manner. These rare codon data provide a lens into the potential fithess costs
451  associated with suboptimal translational accuracy in complex populations, and by including

452  structural data, we demonstrate where optimal translational accuracy matters most.
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Conclusions

453  With recent breakthroughs in predicting protein structures and ligand binding sites, microbial
454  ecology need not be limited to just sequences. By offering an interactive, scalable, and open-
455 source software solution that integrates environmental genetic variants with structural
456  bioinformatics, our study takes advantage of recent advances to connect environmental ‘omics
457  and structural biology. Indeed, by leveraging structure and ligand-binding predictions we were
458 able to describe striking patterns of nucleotide polymorphism in an environmental microbial
459  population that we could ascribe to evolutionary constraints that preserve protein structure (folding
460 & stability) and protein function (ligand-binding activity). By tracking a SAR11 population across
461 metagenomes we were able to demonstrate the presence of dynamic processes that purge both
462  synonymous and nonsynonymous polymorphism from the vicinity of ligand binding sites of
463 proteins as a function of selection strength. Overall, our study proposes a structure-informed
464  computational framework for microbial population genetics and offers a glimpse into the emerging
465 interdisciplinary opportunities made available at the intersection of ecology, evolution, and

466  structural biology.
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Methods

467  Overview. The URL https://merenlab.org/data/anvio-structure/ provides a complete reproducible

468  workflow for all analysis steps detailed below, including (1) downloading the publicly available
469 metagenomes and genomes, (2) recruiting reads from metagenomes, (3) calculating single
470 amino-acid and single codon variants, (4) predicting protein structures and ligand binding sites,

471  and (5) visualizing metagenomic sequence variants and binding sites onto protein structures.

472  Metagenomic and metatranscriptomic read recruitment and processing. To study the
473  population structure of the environmental SAR11 population 1a.3.V defined previously (Delmont
474  and Kiefl et al. 2019), we used anvi'o v7.1 (Eren et al. 2021), and its metagenomics workflow
475  (Shaiber et al. 2020) which uses snakemake v5.10 (Kdster and Rahmann 2012) to automate gene
476  calling, gene function annotation, metagenomic and metatranscriptomic read recruitment steps.
477  The compendium of anvi’'o programs the metagenomics workflow called upon employed Prodigal
478 v2.6.3 (Hyatt et al. 2010) for gene calling, NCBI's Clusters of Orthologous Groups (COGs)
479  database (Tatusov et al. 2003) and Pfams (El-Gebali et al. 2019) for gene function annotation,
480 HMMER v3.3 (Eddy 2011) for profile HMM searches, DIAMOND v2.0.6 (Buchfink, Xie, and Huson
481  2015) for sequence searches, Bowtie2 v2.4 (Langmead and Salzberg 2012) for read recruitment,
482 and samtools v1.9 (Li et al. 2009) to generate BAM files. The metagenomic workflow resulted in
483 a ‘contigs database’ and a ‘merged profile database’ (two anvi'o artifacts detailed at

484  https://anvio.org/help/), which gives access to gene and genome coverages (with metagenomic

485  or metatranscriptomic short reads), as well as the sequence variability data to study population
486  genetics as detailed below. We adopted a competitive read recruitment strategy by using all
487 SAR11 genomes, rather than only HIMB83, as reference to recruit reads from Tara Oceans
488  Project metagenomes and metatranscriptomes to maximize the exclusion of reads that matched

489  better to other known SAR11 genomes, thereby narrowing our scope of probed diversity and
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490 minimizing the impacts of non-specific read recruitment. In all subsequent analyses we focused
491  on the core genes of the 1a.3.V subclade by only considering (a) reads that mapped to HIMB83
492  (b) the 74 metagenomes in which HIMB83 was found above 50X, and (c) the 799 HIMB83 genes
493 that were previously found to maintain consistent coverage patterns (Delmont and Kiefl et al.

494  2019).

495 Quantifying SCVs and SAAVs in metagenomes. To characterize the variants in metagenomic
496 read recruitment results we used and extended the microbial population genetics framework
497 implemented in anvi'o. The program “anvi-profile® with the flag "--profile-SCVs' characterizes
498 single codon variants (SCVs), from which single amino acid variants (SAAVs) can also be
499 calculated. Anvi'o determines allele frequency vectors for SCVs by tallying the frequencies of
500 codons observed in the 3-nt segments of reads that fully map to a given codon position. The
501 frequencies of amino acids encoded by each 3-nt segment yield SAAVs observed in a given
502 position, which represent allele frequency vectors of positions after collapsing synonymous
503 redundancy. For a given codon position, anvi'o excludes any reads that do not map to all 3
504 nucleotides, which can happen either if the read terminates within the codon position, or there
505 exists a deletion in the read relative to the reference genome. Reads that contain insertions within
506 the codon relative to the reference genome are also excluded during this step. We exported
507 variant profiles as tabular data using the program “anvi-gen-variability-profile’, where each row is
508 a SCV (or SAAV) and the columns specify (1) identifying information such as the corresponding
509 gene, codon position, and sample id, (2) the number of mapped reads corresponding to each of
510 the 64 codons (or 20 amino acids), and (3) numerous miscellaneous statistics, all of which can

511 be explored at htips://merenlab.org/analyzing-genetic-varaibility/.

512 Calculations of polymorphism rates of individual codon sites, pN&i®) and pS®it). We
513 calculated the polymorphism rates of individual codon sites from allele frequencies defined from

514  each SCV based on a recent study by Shenhav and Zeevi (2020), where a given codon allele
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515  contributes (to either pN©® or pS©it®)) an amount that is equal to its observed relative abundance
516  (frequency). To which rate the allele contributes is determined by its synonymity relative to the
517  popular consensus, i.e. the allele most common across all samples. After summing the
518 contributions for each of the 63 codons (excluding the popular consensus), we normalized the
519  resulting values of pN©) and pS©t®) by the number of nonsynonymous and synonymous sites of
520 the popular consensus, respectively. For example, if the popular consensus is ‘ACC’ (Thr), there
521  are 9 possible single point mutations, 3 synonymous and 6 nonsynonymous, therefore pS‘®) will
522  be divided by 3/3 = 1 and pN&® will be divided by 6/3 = 2. This procedure can be mathematically

523  expressed as

. 1 . 1
524 pACO == 3 LN, pstt =— 3 £5(e)

n CEC\T s ceC\r

525  Where C\r is the set of all codons excluding the popular consensus r; n,, and ng are the number
526  of nonsynonymous and synonymous sites of r, respectively; f. is the frequency of the cth allele;

527 N(c,r) is the indicator function where,

528 N(c,r) = 1if not synonymous(c,r) else 0
529 and S(c,r) is the indicator function where,

530 S(c,r) = 1if synonymous(c,r) else 0.

531  We implemented this strategy into the program “anvi-gen-variability-profile’ as a new flag "--
532  include-site-pnps’, which when declared, adds pN®¢t®) and pS®t®) values as additional columns to
533 the tabular output after calculating them for 3 different choices of the reference codon r: (1) the
534  popular consensus (as used in this paper), (2) the consensus (the allele with the highest
535 frequency), and (3) the codon found in the reference sequence (the sequence used for read

536 recruitment). For efficient computation, this calculation uses the Python package numba (Lam,

30


https://paperpile.com/c/vfD0EO/FoUx
https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482602; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

537 Pitrou, and Seibert 2015) for just-in-time compilation. For a dataset with 12,583,626 SCVs, the
538  current implementation computes pN®&t® and pSE€t® terms in less than a minute on a laptop

539 computer.

540 Calculations of polymorphism rates within a group of sites, pN©™") pSeouw) and
541 pN/pSterovr) We defined groups such that all sites in a group share similar RSA and DTL values.

542  Formally, we defined pN©™'") and pSw) gs

Zg=1zcec\rfc(g)N(c,r(g)) p(group) — Yo-1Ycerr FDs(cr@)
1] S -
23:1 n1(19) 25:1 ngg)

543 py9TOUP) =

544 G is the number of sites in the group; r9) is the popular consensus of the gth site; fc(g) is the
545  frequency of the cth allele at the gth site; n,,(9 and n,(9) are the number of nonsynonymous and
546  synonymous sites of r(9), respectively. All other definitions are the same as for pN®*) and pS®ite),
547  pNG™w) and pS©@©) can be expressed in terms of weighted sums of pNG¢® and pS6ite)

548  respectively:

23:1 nflg)pN(g'Site) Zgzlngg)ps(g,site)

(group) — (group) —
o49 PN Z§=1 n;g) » Ps 25:1 ngg)
550  Finally, pN/pS©@w) js defined as
551 pN/pSW@roup) = pN(group) /pg(group)

552  Calculations of polymorphism rates for individual and core genes, pN(@") pSleene)
553  pN/pS@ee) and pN/pS(c®. We calculated rates of polymorphism for genes and the 1a.3.V core
554  genome identically to the calculations of pN©©uP) pSEow) gnd pN/pS©@™UP). For example, pN(@ee)
555 refers to the ns-polymorphism rate of all sites in a given gene, and pS©™® refers to the s-

556  polymorphism rate of all sites in the 1a.3.V core genome.

31


https://paperpile.com/c/vfD0EO/FoUx
https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482602; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

557  Predicting and processing protein structures. We attempted to predict protein structures for
558 each gene in the HIMB83 genome that belonged to the 1a.3.V core using both AlphaFold (Jumper
559 etal. 2021) and MODELLER (Webb and Sali 2016). To process, store, and access the resulting
560 protein structures we developed a novel program, "anvi-gen-structure-database’, which gives
561 access to all atomic coordinates as well as per-residue statistics such as relative solvent
562  accessibility, secondary structure, and phi & psi angles calculated using DSSP (Touw et al., 2015;
563 Kabsch and Sander, 1983). For AlphaFold predictions we used a version of the codebase that
564 closely resembles v2.0.1 (this URL gives access to its exact state) and ran predictions using 6
565 GPUs, which took a week on a high-performance computing system. AlphaFold predicted
566  structures for 795 of 799 proteins, and after removing structures with gene-averaged pLDDT
567  scores <80, we were left with 754 structures we deemed ‘trustworthy’ for downstream analyses.
568 To predict protein structures with MODELLER, we developed a pipeline that, for each gene, (1)
569 searches the Research Collaboratory for Structural Bioinformatics Protein Data Bank (Berman et
570 al. 2000) (RSCB PDB) for homologs using DIAMOND (Buchfink, Xie, and Huson 2015), then
571  downloads tertiary structures for matching entries, and (2) uses these homologs as templates to
572  predict the gene’s structure with MODELLER (Webb and Sali 2016). We discarded any proteins
573 if the best template had a percent similarity of <30%. Unlike more sophisticated homology
574  approaches that make use of multi-domain templates (Kallberg et al. 2012), we used single-
575 domain templates which are convenient and are accurate up to several angstroms, yet can lead
576 to physically inaccurate models when the templates’ domains match to some, but not all of the
577 sequences’ domains. To avoid this, we discarded any templates if the alignment coverage of the
578  protein sequence to the template was <80%. Applying these filters resulted in 408 structures from
579 the 1a.3.V core, which was further refined by requiring that the root mean squared distance
580 (RMSD) between the predicted structure and the most similar template did not exceed 7.5 A, and
581  that the GA341 model score exceeded 0.95. After applying these constraints, we were left with

582 348 structures in the 1a.3.V that we assumed to be ‘trustworthy’ structures as predicted by
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583 MODELLER. These structures were on average 44.8% identical to their templates, which is within
584  the sequence similarity regime where template-based homology modeling generally produces the

585  correct overall fold (Rost 1999).

586 Predicting ligand-binding sites. For the 1a.3.V core genes we estimated per-residue binding
587 frequencies for a diverse collection of ligands by using InteracDome, a database that annotates
588 the sites (match states) of Pfam profile hidden Markov models (HMMs) with ligand binding
589  frequencies predicted from experimentally-determined structural data (Kobren and Singh 2019).
590 To associate match state binding frequencies of the profile HMMs to the sites of HIMB83 genes,

591  we applied a protocol similar to that described in Kobren & Singh.

592  First, we downloaded the Representable-NR Interactions (RNRI) from the InteracDome web
593  server (https://interacdome.princeton.edu/) that “correspond to domain-ligand interactions that
594  had nonredundant instances across three or more distinct PDB structures” (Table S5). Next, we
595  downloaded the profile HMMs for Pfam v31.0 and kept only those 2,375 profiles that belonged to
596 the RNRI dataset. Then, we searched each HIMB83 gene against this set using HMMER’s
597 hmmsearch. After the removal of HMM hits that were below the gathering threshold (GA) noise
598 cutoffs defined in Pfam models, 940 of the 1,470 HIMB83 coding genes had at least one domain
599 hit, with a total of 1,770 domain hits from 832 unique profile HMMs. Of these, we removed 177
600 for being too partial (length of the hit divided by the profile HMM length was less than 0.5), and 1
601 hit because the query sequence did not match all the consensus residues for match states in
602  which the information content exceeded 4 (Table S5). We then associated binding frequencies
603 for a collection of ligand types to the HIMB83 genes by parsing alignments of the profile HMMs to
604 the HIMB83 gene amino acid sequences, which are provided in the standard output of
605 hmmsearch. If a given HIMB83 residue aligned to multiple match states, each which had the same
606 ligand type, we attributed the average binding frequency to the HIMB83 residue. We then filtered

607 out binding frequency scores less than 0.5, yielding 40,219 predicted ligand-residue interactions
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608 across 11,480 unique sites (Table S5). We considered each of these sites to be ‘ligand-binding

609 sites’.

610  Our study includes two novel programs to automate this procedure and make it accessible to the
611 community. The first, "anvi-setup-interacdome’, downloads the RNRI and Pfam datasets, and
612  only needs to be run once. The second, “anvi-run-interacdome’, is a multi-threaded program that
613 takes an anvi'o contigs database as input, and runs the remainder of the workflow described for
614  each gene in the database. Predicted binding frequencies are stored internally in the database,
615 which enables a seamless integration with other anvi’'o programs to accomplish various tasks,
616  such as the interactive visualization of the binding sites of predicted structures for any given gene
617  with “anvi-display-structure™ (see Supplementary Information), or exporting the underlying data as
618 TAB-delimited files with "anvi-export-misc-data’. In the present study, ‘anvi-run-interacdome’

619  processed the HIMB83 genome in 53 seconds on a laptop computer using a single thread.

620 Calculating relative solvent accessibility (RSA). We calculated RSA for each residue of each
621 predicted structure, where RSA was defined as the accessible surface area (ASA) probed by a
622  1.4A radius sphere, divided by the maximum ASA, i.e. the ASA of a Gly-X-Gly tripeptide. RSA
623 values were calculated in the program “anvi-gen-structure-database’ using Biopython’s DSSP

624  module (Cock et al. 2009).

625 Calculating distance-to-ligand (DTL). DTL was calculated for all sites that belonged to genes
626  with (a) a predicted structure and (b) at least one predicted ligand-binding residue. Ideally, one
627  would calculate DTL as the Euclidean distance of a residue to the predicted ligand, however our
628  predictions did not yield the 3D coordinates of ligands. Instead, we approximated DTL as the
629 Euclidean distance of a residue to the closest ligand-binding residue (see Methods), which lies

630  within a few angstroms of the predicted ligand. Specifically, we defined this distance according to
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631 the sites’ side chain center of masses. A consequence of approximating DTL with respect to the

632 closest ligand-binding sites is that by definition, any ligand-binding residue has a DTL of 0.

633  As discussed in Proteomic trends in purifying selection are explained by RSA and DTL, missed
634 binding sites lead to erroneously high DTL values. We assessed the magnitude of this error
635  source by comparing our distribution of predicted DTL values in the 1a.3.V core to that found in
636  BioLiP, an extensive database of semi-manually curated ligand-protein complexes (Yang, Roy,
637 and Zhang 2013). We found the 1a.3.V DTL distribution had a much higher proportion of values
638  >40 A, suggesting these likely result from incomplete characterization of binding sites (Figure S9).
639 To mitigate the influence of this inevitable error source, we conservatively excluded DTL values

640 >40 A (8.0% of sites) in all analyses after Figure 2b.

641  Calculating polymorphism null distributions for RSA and DTL. The null distributions for
642  polymorphism rates with respect to RSA and DTL were calculated by randomly shuffling the RSA
643 and DTL values calculated for each site, yielding distributions one would expect if there was no
644  association between polymorphism rate and RSA. To avoid biases, each null distribution is the

645  average of 10 shuffled datasets.

646  Proportion of polymorphism rate variance explained by RSA and DTL. To calculate the
647  extentthat RSA and DTL can explain polymorphism rates, we constructed 3 synonymous models
648 (s-models) and 3 nonsynonymous models (ns-models) (Table S6). s-models fit linear regressions
649  of log1o(pS©™) to RSA (s #1), DTL (s #2), and both RSA & DTL (s #3). Similarly, ns-models fit
650 linear regressions of log1o(pN®®) to RSA (ns #1), DTL (ns #2), and both RSA & DTL (ns #3).
651  Additionally, each model included the gene and sample of the corresponding polymorphism as
652 independent variables, in order to account for gene-to-gene and sample-to-sample differences.
653  Polymorphism rates were log-transformed because it helped linearize the data, yielding better

654 models. The data used to fit each model included all codon positions across all samples in each
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655 gene that had a predicted protein structure and at least 1 predicted ligand-binding residue. After
656  excluding monomorphic sites (pN®t) = 0 for ns-models, pS®*) = 0 for s-models), this yielded
657 5,838,445 data points for s-models and 3,850,182 for ns-models. While every protein has RSA
658 values that span the domain [0,1], protein size creates dramatic gene-to-gene differences in
659 observed DTL values. We accounted for this by standardizing DTL values on a per-gene basis,
660  which improved variance explained by DTL. The variance explained by RSA, DTL, sample, and
661 gene was determined by performing an ANOVA on each model and partitioning the sum of

662 squares (Table S6).

663 Calculating transcript abundance (TA). Since proper transcription level metrics such as
664 molecules per cell are incalculable from metatranscriptomic data, we estimated the transcript

665 abundance (TA) to be

666 cMT)  ~(MG)
TA = D(MT)/D(MG)’

667 Where CMT) is the coverage of the gene in the metatranscriptome, D7) is the sequencing depth
668 (total number of reads) of the metatranscriptome, C(M% is the coverage of the gene in the
669 metagenome, and D7) is the sequencing depth (total number of reads) of the metagenome.
670  This means, for example, that a gene with a metatranscriptomic relative abundance 10% of its

671 metagenomic relative abundance would have a TA of 0.10.

672  Definition of codon rarity. We defined the rarity of a codon in the following way. First, we

673 calculated the unnormalized codon rarity for each codon ¢, which we defined as
674 R'e=(1-fo),

675 where f, is the frequency that a codon was observed in the HIMB83 genome sequence. Then,
676  we normalized the values such that the codons with the lowest and highest values get rarity scores

677 of 0 and 1, respectively:
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R. = ((R';, —min(R")) / (max(R") — min(R")),

where min(R") and max(R") correspond to the smallest and largest unnormalized rarity scores.

We utilized this definition to calculate codon rarity at polymorphic sites by weighting each codon’s
rarity by the frequency that the codon was observed in the short reads mapping to that position.
For example, a polymorphic site with a coverage of 200, where 50 reads resolve to GCC (R;cc =
0.97) and 150 resolve to GCT (Rgcc = 0.75) would get a rarity score of 50/200 x 0.97 +
150/200 x 0.75 = 0.81. Extending this to multiple sites, we take the codon rarity of an entire

sample to be the average rarity across all codon sites (polymorphic or not).

Statistical data analysis and visualization. We used R v3.5.1 (R Development Core Team
2011) for the analysis of numerical data reported from anvi'o. For data visualization we used
ggplot2 (Ginestet 2011) library in R and anvi'o, and finalized images for publication using Inkscape

v1.1 (https://inkscape.org/).
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Figure S1. Regimes of sequence similarity probed by metagenomics, SAR11 cultured genomes, and protein
families. Empirical distributions of gene-level percent similarity for HIMB83 compared with recruited metagenomic
reads (pink), homologous SAR11 genomes (blue), and homologous Pfams (orange). For calculation details, see

Supplementary Information.
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Figure S2. Different environments exhibit substantial variation in their environmental parameters. Each subplot

shows how the 74 selected metagenomes distribute according to various environmental variables measured by the

TARA ocean metagenome project.
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701 Figure S3. pNsi*®) varies more significantly between sites in a given sample than between samples for a given

702 site. The x-axis is the log-transformed standard deviation of either a sample’s pN©'e) values observed over many sites

703 (orange), or a site’s pN©t®) values observed over the 74 samples (gray).
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Figure S4. Comparisons between structures predicted by AlphaFold and MODELLER. (A-B) Distributions of TM
scores and RMSD between structures predicted by both MODELLER and AlphaFold. (C) Distribution of secondary
structure fractions, between MODELLER (black) and AlphaFold (green). Secondary structure fraction was defined for
each gene as the fraction of sites that DSSP predicted as part of an alpha helix or beta strand. (D) Comparison of
secondary structure fractions between MODELLER and AlphaFold for two TM score groups. The y-axis is the
secondary structure fraction of AlphaFold divided by the secondary structure fraction of MODELLER. The two groups
were defined as having TM scores above or below 0.8, where the >0.8 group corresponded to the 291 best alignments
(left) and the <0.8 group corresponded to the 48 worst alignments. (E-F) Distributions describing the mean pLDDT and
protein sequence length of AlphaFold structures that either (1) had analog MODELLER structures (red) or (2) did not

(blue).
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Figure S5. Comparison of null distributions for pNsit®) and pS(it) for RSA and DTL. Each distribution was
calculated by averaging 10 independent, randomly shuffled datasets of either pNi) (red line) or pS¢ite (blue line). To

better visualize differences between the null distributions, the blue lines depicting the pS©ite) distributions were shifted

right by half of a bin’s width.
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721 Figure S6. Functional constraint is less resolved when using a sequence-distance metric of DTL. pNte) (left
722 panel) and pS®te) (right panel) distributions with respect to 1D DTL, which we defined as the number of sites in a
723 protein’s sequence that separate a given site from a predicted ligand-binding site. Lines represent the observed
724 distributions, and filled regions represent the null distributions, calculated via the shuffling procedure described in Figure

725 2. Insets show the same data zoomed into the 1D DTL range [0, 20].
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727  Figure S7. Select gene-sample pairs illustrate the diversity with which pN(it®) associates with RSA. Scatterplots
728 for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), mid (middle), and low
729 (bottom). The right panel shows the distribution of Pearson coefficients, and the bin that each example was taken from
730 is highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue, the x-axis is the RSA of the
731 residue, and the y-axis is the observed logio(pN©e). Lines of best fit are shown in red, with 95% confidence intervals

732 visualized translucently. The Pearson coefficients of each fit are labeled on the scatterplot.
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Figure S8. Select gene-sample pairs illustrate the diversity with which pNsi*) associates with DTL.

Scatterplots for handpicked gene-sample pairs are shown from three regimes of model quality: high (top), mid

(middle), and low (bottom). The right panel shows the distribution of Pearson coefficients, and the bin that each

example was taken from is highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue,

the x-axis is the DTL of the residue, and the y-axis is the observed logio(pN©'®). Lines of best fit are shown in red,

with 95% confidence intervals visualized translucently. The Pearson coefficients of each fit are labeled on the

scatterplot.
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741

742 Figure S9. Incomplete ligand characterization leads to erroneously high DTL values. A comparison of DTL
743 distributions (semi-log axis) for the 1a.3.V and the BioLiP database. The 1a.3.V core distribution (red) was calculated
744 from all sites in the subset of genes with both a predicted structure and at least one predicted ligand-binding residue.
745 The BioLiP distribution (gray) was calculated from the sites of 5,000 structures in the BioLiP database. For the 1a.3.V
746 core, DTL was calculated as the distance to the closest predicted ligand-binding residue. For BioLiP, it was calculated
747 as the distance to the closest annotated ligand-binding residue. For both methods, distance was calculated between
748 the sites’ side chain center of masses. The dashed line marks the 40A cutoff we used for all analyses besides Figure

749 2b, which excludes 8.0% of the total sites.
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751

752 Figure S10. Sample-averaged pN/pS(ee"®) values correlate with dN/dS(ee"®) values between HIMB83 and
753 HIMB122. The x- and y-axes are the log-transformed dN/dS(@ee) and sample-averaged pN/pS(@ere) values (respectively)
754 for the 743 genes that (1) belonged to the 1a.3.V core and (2) had HIMB122 homologs. The black line is the equation
755  y=x, meaning that genes above this line maintain sample-averaged pN/pS(@"®) values that exceed dN/dS(@ere), The R2

756 s for a linear regression of the log-transformed variables.
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Figure S11. pN/pS'9ee) varies more significantly between genes in a given sample than between samples for a
given gene. The x-axis is the standard deviation of either a sample’s pN/pS(©ene) values observed over genes (orange),
or a gene’s pN/pS(eee) values observed over the 74 samples (gray). The gray box denotes the amount of variance

explained by genes and samples in an ANOVA from the linear model pN/pS(@ere) ~ gene + sample.

49


https://doi.org/10.1101/2022.03.02.482602
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.02.482602; this version posted March 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12 4 15 4
91 z
[2]
10 1 c
= = o
‘@ B (=]
c 61 c
@ @
(=] [=]
0.001 0010 0100  1.000 51 001 003 010 030
31 pN/ps'eene) sample-averaged pN/pS'9®"®
0- - . . . 0- ,
0.00 0.25 0.50 0.75 1.00 0.0 0.2 0.4
pN/ps@e® sample-averaged pN/pS@°"

762

763 Figure S12. Distributions of pN/pS(eene), Left panel shows the distribution of pN/pS(@ene), and the right panel shows

764 the distribution of sample-averaged pN/pS(©ene). Insets show the same distributions with a log1o-transformed x-axis.
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Figure S13. Codon usage of HIMB83 and 20 other genomes in the SAR11 clade.
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Figure S14. Codon rarity measured for each amino acid reveals varied response to selection strength, with
most amino acids preferring rare codons in high selection samples. Each plot is a different amino acid, and each
datapoint is a sample. The x-axis is pN/pS(©°®), j.e. the ratio of nonsynonymous to s-polymorphism rates in the 1a.3.V
core genome, and is shared between all plots. For a given plot, the y-axis was determined by first subsetting the
polymorphism data to only include synonymous sites (in this instance we define synonymous as exhibiting pN(ite) <
0.0005) that corresponded to the given amino acid. Using lysine as an example, this led to on average 21,127 sites per
sample. For each amino acid in each sample, we then calculated the overall codon rarity (y-axis) by averaging codon
rarities across all included positions. A line of best fit (gray line) with 95% confidence intervals (light gray) is shown for

each plot, with equation and Pearson correlation coefficient shown above.
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Supplementary Tables

777  Table S1. Read recruitment and coverage statistics of the 21 SAR11 genomes. (A-D) Genome-wide statistics for each
778 genome in each metatranscriptomic and metagenomic sample. (A) is the mean coverage, (B) is the mean coverage,
779 excluding nucleotide coverage values outside the interquartile range (IQR), (C) is the detection, and (D) is the
780 percentage of reads mapping to a genome (sums to 100 for a given sample) (E) The mean coverage of each HIMB083

781 gene in each metatranscriptomic and metagenomic sample.

782 Table S2. Average percent similarity of recruited reads by HIMBO083 for each (A) gene-sample pair, (B) gene

783 (marginalized over samples), and (C) sample (marginalized over genes).

784 Table S3. Mean per-site polymorphism rates (pNsie) and pS(site)) of HIMB083 (A) over all sites, genes, and samples,
785 as well as (B) for each gene-sample pair (C) each gene (marginalized over samples), and (D) each sample

786  (marginalized over genes).

787 Table S4. Methodological comparisons between AlphaFold and MODELLER structures. (A) Key metrics for AlphaFold-
788 and MODELLER-predicted structures and their alignments. (B) PDB structures used as templates for MODELLER
789 predictions. (C) Per-residue pLDDT scores for AlphaFold-predicted structures. (D) Gene-averaged pLDDT scores for
790 AlphaFold-predicted structures. (E-F) Genes with AlphaFold and MODELLER structures, respectively, that we

791 determined to be of sufficiently high quality.

792 Table S5. Summary of ligand-binding residue predictions with InteracDome. (A) All predicted ligand-binding sites, the
793 predicted ligand, and the predicted ligand binding score. (B) Characterization of each HMM domain hit. (C) Each match

794 state from the Pfam profile HMMs that contributed to each predicted ligand-binding residue of HIMB083.
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795
Sum of squares (% of total)
Name Model RSA | DTL | Gene | Sample | Residuals
s #1 log1o(pSsite)) ~ RSA + gene + sample 0.12 - 4.05 1.01 94.83
ns #1 log1o(pNsite)) ~ RSA + gene + sample 11.83 - 10.61 6.71 70.85
s #2 log1o(pS©ie)) ~ DTL + gene + sample - 0.30 | 4.07 1.00 94.63
ns #2 log1o(pS¢ie)) ~ DTL + gene + sample - 6.89 | 12.08 | 7.10 74.39
s#3 logio(pS©t®) ~ RSA + DTL + gene + 0.03 | 030 | 405 | 1.00 94.62
sample
ns #3 logro(pSEte)) ~ RSA + DTL + gene + 7.23 | 6.89 | 10.83 | 6.42 68.62
sample
796

797 Table S6. Summary of models used for estimating the explanatory power of RSA and DTL on polymorphism rates (see
798  Methods).

799 Table S7. Summary statistics for the polymorphism models of gene-sample pairs.

800 Table S8. Summary of per-group polymorphism data for (A) pN@euw) (B) pSerow) (C) pN/pSteow) and (D) the size of

801 each group.

802 Table S9. Summary of per-gene polymorphism data for (A) pN/pS(@ene), (B) sample-averaged pN/pS(@ene), (C) pN(gene),

803 (D) pSteere) and (E) the number of potential synonymous and nonsynonymous point mutations of each gene.

804 Table S10. Correlations of pN/pS(@ne for each 1a.3.V core gene with respect to the measured environmental

805 parameters: nitrates, chlorophyll, temperature, salinity, phosphate, silicon, depth, and oxygen.

806 Table S11. Codon metrics, including anti-codon, encoded amino acid, frequency and rarity in genome, and frequency

807  and rarity compared to synonymous codons.

808  Table S12. Comparison between dN/dS between HIMB83 and HIMB122 homologs and sample-averaged pN/pS(@ene)

809  of 1a.3.V genes.
810 Table S13. Per sample and gene measures of transcript abundance (TA) and related quantities.

811 Table S14. Bootstrap estimates of Pearson correlation coefficients and p-values from Figure SI6.
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