

pubs.acs.org/OrgLett Letter

Pd-Catalyzed Arylation of Secondary α -Alkoxytricyclohexylstannanes

Haoran Zhao, Anju Treesa Jose, Alisajat Asany, Shahrukh M. Khan, and Mark R. Biscoe*

Cite This: https://doi.org/10.1021/acs.orglett.2c03729

ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: We have developed a general process for the formation of α -arylethers via the Pd-catalyzed arylation of secondary α -alkoxytricyclohexylstannanes. Incorporation of cyclohexyl spectator ligands into the alkylstannane and the use of the electron-deficient ligand JackiePhos (1) are critical for achieving

selective alkyl transfer in this process. This system circumvents the need for a coordinating/directing oxygen-protecting group to promote selective alkyl transfer and enables α -tetrahydropyran, α -tetrahydrofuran, and open-chain secondary α -alkoxy groups to be employed efficiently in Pd-catalyzed Stille reactions with a broad range of aryl electrophiles. These findings suggest that selective transmetalation of a single marginally activated secondary alkyl unit from Sn to Pd should be broadly achievable provided that unactivated secondary alkyl ligands comprise the other three groups of the tetraalkylstannane.

The biological properties of organic molecules are greatly influenced by the presence of heteroatoms within their molecular structures. Oxygen-containing heterocycles, commonly in furanose or pyranose forms, represent particularly significant components of biologically active molecules. Therefore, reliable strategies to structurally modify oxygencontaining heterocycles, as well as open-chain ethers, constitute important synthetic tools for use in medicinal chemistry applications. Though Pd-catalyzed cross-coupling reactions have revolutionized the manner in which organic synthesis can be approached, these reactions are much more readily employed in the construction of $C(sp^2)-C(sp^2)$ bonds than $C(sp^3)-C(sp^2)$ or $C(sp^3)-C(sp^3)$ bonds.³ Accordingly, the development of a general Pd-catalyzed approach for incorporation of α -oxygenated secondary alkyl groups into organic structures remains a significant and important synthetic challenge.4-6

Considering the expansive substrate scope and broad functional group tolerance commonly observed in Pd-catalyzed $C(sp^2)-C(sp^2)$ bond-forming Stille reactions, the development of C(sp³)-C(sp²) Stille variants using alkylstannanes is an attractive goal. However, the use of alkylstannanes in Pdcatalyzed Stille cross-coupling reactions is complicated by slow alkyl transmetalation as well as the general need for four substituents on the organotin nucleophile.8 In traditional $C(sp^2)-C(sp^2)$ bond-forming Stille reactions, such complications are circumvented due to the greater migratory aptitude of $C(sp^2)$ substituents from tin, relative to $C(sp^3)$ substituents.^{1,8} This enables alkyl groups to be employed as inert spectator ligands, thereby facilitating selective transfer of an aryl or alkenyl unit. Significant acceleration of alkyl transmetalation is thus necessary to effect successful cross-coupling reactions using alkylstannane nucleophiles. Development of a catalytic system that promotes alkyltin transmetalation does not

completely solve this problem, however, as selectivity of alkyl transfer from the tetraalkylstannane then becomes the new hurdle, particularly when transfer of a secondary alkyl group is desired. To achieve selective activation and transfer of an otherwise unactivated secondary alkyl group from tin, we have introduced the use of secondary alkylcarbastannatranes^{9,10} in Pd-catalyzed cross-coupling reactions supported by the electron-deficient biarylphosphine ligand JackiePhos (1) (Figure 1a). 11 This system combines the enhanced nucleophilicity of alkylcarbastannatrane reagents with the heightened Pd(II) electrophilicity that arises from ligation with electrondeficient 1, enabling selective and stereospecific alkyl transfer. Alternatively, selective alkyl transfer has also been achieved when a α -heteroatom bearing a coordinating protecting group is incorporated into the secondary alkyltin nucleophile (Figure 1b). 12,13 Falck pioneered this approach for Pd-catalyzed crosscoupling reactions of secondary α -alkoxytributylstannanes. In this system, the presence of a directing/coordinating oxygenprotecting group is a critical structural requirement for achieving selective transmetalation of the secondary α -alkoxy group. 12 In the absence of a directing group, the activating effect of the α -oxygen substituent is insufficient to promote efficient transfer of the secondary α -alkoxy group, which results in low yields and/or competitive butyl transfer.^{8,14} Recently, we demonstrated that a change from n-butyl spectator ligands to cyclohexyl spectator ligands is sufficient to enable the

Received: November 2, 2022

Organic Letters pubs.acs.org/OrgLett Letter

$$(a) \begin{array}{c} Pd(dba)_{2} \ (5 \ mol \ \%) \\ A(r) \ Ar \\ Ar \\ 94-99\% \ ee \end{array} \begin{array}{c} Pd(dba)_{2} \ (5 \ mol \ \%) \\ A(r) \ Ar \\ KF \ (2 \ equiv) \\ CH_{3}CN, \ 60 \ ^{\circ}C \end{array} \begin{array}{c} Ar \\ H_{3}C \ CH_{2}R \\ 97-98\% \ es \end{array} \begin{array}{c} OMe \ CF_{3} \\ MeO \ FP \\ FPr \ CF_{3} \\ FPr \ JackiePhos \ (1) \end{array}$$

Figure 1. Examples of selective Pd-catalyzed Stille cross-coupling reactions using (a) unactivated and (b, c) activated secondary alkyl

selective transmetalation and coupling of nitrogen-containing stereocenters in Pd-catalyzed cross-coupling reactions supported by ligand 1 (Figure 1c). 15 These results suggested that selective alkyl transfer of activated secondary alkyl groups should be broadly achievable using other marginally activated secondary alkyltricyclohexylstannane nucleophiles alongside ligand 1. Herein, we describe the use of secondary α alkoxytricyclohexylstannanes in Pd-catalyzed arylation reactions. We demonstrate that α -oxygenated secondary alkyl units without a directing group undergo selective transfer from tin when in the presence of cyclohexyl spectator ligands. Using this strategy, α -tetrahydropyran (THP), α -tetrahydrofuran (THF), and open-chain secondary α -alkoxy groups can be efficiently employed in Pd-catalyzed Stille reactions with a broad range of aryl electrophiles. In this system, the presence of cyclohexyl spectator ligands is essential to ensure selective transfer of the α -oxygenated secondary alkyl unit.

We initiated our investigations using α -tributylstannanyl tetrahydropyran (2a) in Pd-catalyzed cross-coupling reactions with ethyl 4-bromobenzoate. Reaction conditions previously used in stereospecific cross-coupling reactions with alkylcarbastannatranes 10a predominately generated the corresponding n-butylation product 4a (Table 1, entry 1). Though improved yields of α -arylated tetrahydropyran product 3 were obtained using t-butanol as solvent, 4a remained a significant product

Table 1. Optimization of Tetrahydropyran Transfer in Pd-Catalyzed Stille Reactions

0	∫SnR ₃	Jacki	Pd(dba) ₂ (5 mol %) JackiePhos (1) (10 mol %)		OAr	
	+ Ar-	-Br	CuCl (2 equiv) KF (2 equiv) 18 h	$\overline{}$	+ R– <mark>A</mark> r	
2	Ar = (4-C)	O ₂ Et)C ₆ H ₄		3	4	
entry	R	solvent	temp (°C)	3 yield (%) ^a	4 yield (%) ^a	
1	n-Bu (2a)	CH ₃ CN	80	19	78 (4a)	
2	n-Bu	toluene	80	<5	<5	
3	n-Bu	NMP	80	25	21	
4	n-Bu	t-BuOH	80	31	23	
5	n-Bu	t-BuOH	110	32	41	
6	n-Bu	1,4-dioxan	e 110	16	31	
7	Cy (2b)	CH ₃ CN	110	10	<5 (4b)	

110

81

Cy

t-BuOH

under these conditions. These results indicate that the activation effect arising from the presence of an α -alkoxy group on a secondary alkyltin substituent is insufficient to promote selective transfer of the secondary α -alkoxy substituent from the tributylstannane. In contrast, we found that use of α -tricyclohexylstannanyl tetrahydropyran **2b** successfully suppressed formation of undesired cross-coupling product 4b, while also generating α -arylated tetrahydropyran product 3 in high yield. Thus, selective transfer of the tetrahydropyran group from tin can be achieved in the presence of cyclohexyl spectator ligands, which undergo markedly slower transmetalation from tin to palladium than the corresponding *n*-butyl ligands.

The broad application of our optimized cross-coupling conditions using α -tricyclohexylstannyl tetrahydropyran (2b) in arylation reactions results in the product scope depicted in Table 2. Electron-rich, electron-neutral, and electron-deficient aryl electrophiles undergo Pd-catalyzed cross-coupling reactions with 2b in high yields. Aryl electrophiles bearing an ortho substituent or bearing an acidic NH or OH substituent are also well tolerated. Additionally, heteroaryl electrophiles show good compatibility with this process. 16 Importantly, none of these reactions shows more than a trace of cyclohexylated product.

The conditions developed for the Pd-catalyzed arylation of 2b were extended to cross-coupling reactions involving α tricyclohexylstannyl tetrahydrofuran (5b) (Table 3). Using the exact reaction conditions that were employed in Table 2, a similarly broad scope of α -arylated tetrahydrofuran products could be achieved. These identical reaction conditions were also employed in high-yielding arylation reactions with openchain α -alkoxystannane 7 (Figure 2). Again, competitive transfer of the cyclohexyl ligand from tin is not observed in these reactions. Taken together, the reactions depicted in Tables 2-3 and Figure 2 suggest that selective transfer of a secondary α -alkoxy unit from an organostannane can be universally achieved without a coordination oxygen-protecting group when cyclohexyl spectator ligands are employed in combination with bulky, electron-deficient ligand 1.

In addition to imparting improved selectivity in Pd-catalyzed cross-coupling reactions, use of cyclohexyl spectator ligands also has the following important practical advantages: (1) toxicity of X-SnCy₃ compounds is significantly lower than that of analogous X-SnBu₃ compounds; ¹⁷ (2) in contrast to ClSnBu₃, ClSnCy₃ is crystalline and odorless; (3) in contrast to RSnBu₃ compounds, which tend to be oils, RSnCy₃ compounds tend to be highly crystalline; and (4) ClSnCy3 is easily prepared 18 from Cy₃SnOH (a decommissioned pesticide available in bulk). Based on these advantages, we feel that RSnCy₃ use in Stille couplings may transcend its application to cross-coupling reactions of activated secondary alkyl units and can reasonably be extended to more traditional $C(sp^2)-C(sp^2)$ cross-coupling processes where aryl or vinyl SnBu₃ derivatives are commonly employed.

As previously noted, we have observed that *n*-butyl transfer competes extensively with THP and THF transfer when tributylstannane analogues 2a and 5a are employed in Pdcatalyzed cross-coupling reactions. Thus, we were surprised to find a report of high-yielding Pd-catalyzed arylation reactions using 2a and 5a in which competitive n-butyl transfer was seemingly suppressed. 19 Intrigued by this finding, we attempted to replicate the reported results using 2a and 5a. Direct comparison of our method using 2b and 5b (conditions B) and the reported method using 2a and 5a (conditions A)

<5

^aCalibrated GC yields.

Organic Letters pubs.acs.org/OrgLett Letter

Table 2. Pd-Catalyzed Couplings of α -Tricyclohexylstannyl Tetrahydropyran (2b) and Aryl Electrophiles

0 S	snCy ₃ + Ar–X	Pd(dba) ₂ (2.5 mol %) JackiePhos (1) (5 mol %) CuCl (2 equiv) KF (2 equiv) t-BuOH, 110 °C, 18 h	O A
entry	Х	product	yield (%) ^a
1	Br	O OEt	79
2	Br	OMe	59
3	Br	3c O	76
4	Br	OH	71
5	Br	HN-O	81
6	Br	O S	58
7	Br	0 3g	70
8	I	O NH	57
9	Br	Me O O O O O O O O O O O O O O O O O O O	58
10	Br	O Me	83

^aIsolated yields from duplicate runs.

are shown in Table 4. In our hands, reaction conditions A resulted in substantial formation of *n*-butylarene products alongside low yields of the desired THP and THF cross-coupling products. In contrast, only traces of cyclohexylarene products were observed using reaction conditions B, and the desired THP and THF cross-coupling products were obtained in high yield. We cannot explain the discrepancy between the reported results using conditions A and those obtained in our lab. However, based on our findings, use of cyclohexyl spectator ligands is essential for selective THP and THF transfer from tin in Pd-catalyzed Stille reactions.

In summary, we have developed a general process for the formation of α -arylethers via the Pd-catalyzed cross-coupling

Table 3. Pd-Catalyzed Couplings of α -Tricyclohexylstannyl Tetrahydrofuran (5b) and Aryl Electrophiles

O Sr 5b	ոCy ₃ + A	Pd(dba) ₂ (2.5 mol %) JackiePhos (1) (5 mol %) CuCl (2 equiv) KF (2 equiv) t-BuOH, 110 °C, 18 h	O Ar		
entry	Х	product	yield (%) ^a		
1	Br	6a OEt	79		
2	Br	OMe	75		
3	Br	o 6c Me	77		
4	Br	6d O OH	78		
5	I	H-V-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-	57		
6	Br	0 6f	80		
7	Br	0 6g	52		
8	I	O NH	80		
9	Br	Me OMe	75		
Isolated yields from duplicate runs.					
Pd(dba) ₂ (2.5 mol %)					

SnCy₃ JackiePhos (1) (5 mol %)
CUCI (2 equiv)

KF (2 equiv)

t-BuOH, 110 °C, 18 h

OMe

OMe

OMe

MeO

8a, 87%

8b, 80%

Figure 2. Use of open-chain α -alkoxytricyclohexylstannane 7 in Pd-catalyzed cross-coupling reactions.

reaction of secondary α -alkoxytricyclohexylstannanes and aryl halides. Incorporation of cyclohexyl spectator ligands into the alkylstannane and the use of the bulky electron-deficient ligand JackiePhos (1) are critical for achieving selective alkyl transfer in this process. This system circumvents the previous need for a coordinating/directing oxygen-protecting group to promote selective alkyl transfer and enables α -tetrahydropyran, α -

Organic Letters pubs.acs.org/OrgLett Letter

Table 4. Comparison of Pd-Catalyzed Arylation Reactions Using Tricyclohexylstannanes 2b and 5b to Arylation Reactions Using Tributylstannanes 2a and 5a

$$\begin{array}{c|c}
O & SnR_3 \\
or & SnR_3 \\
\hline
2 & SnR_3 \\
\hline
Conditions A or B
\end{array}$$

$$\begin{array}{c|c}
O & Ar \\
or & O \\
Ar \\
F = n-Bu (a) \text{ or Cy (b)}$$

$$\begin{array}{c|c}
Ar \\
F = n-Bu (a) \text{ or Cy (b)}
\end{array}$$

					yield (%) ^b	
entry	stannane	R	Z	conditions ^a	3 or 6	9
1a	2a	n-Bu	C(O)Me	A	26	27
1b	2b	Cy	C(O)Me	В	83	<5
2a	2a	n-Bu	CO ₂ Et	A	32	26
2b	2b	Cy	CO ₂ Et	В	79	<5
3a	2a	n-Bu	OMe	A	23	9
3b	2b	Cy	OMe	В	59	<5
4a	5a	n-Bu	C(O)Me	A	32	26
4b	5b	Cy	C(O)Me	В	77	<5
5a	5a	n-Bu	CO ₂ Et	A	40	29
5b	5b	Cy	CO ₂ Et	В	79	<5
6a	5a	n-Bu	OMe	A	35	8
6b	5b	Су	OMe	В	75	<5

"Conditions A (ref 19): RSnBu $_3$ (2 equiv), ArI (1 equiv), Pd $_2$ (dba) $_3$ (5 mol %), JackiePhos (20 mol %), CuCl (3 equiv), KF (2 equiv), 1,4-dioxane, 110 °C, 72 h; Conditions B: RSnCy $_3$ (1.2 equiv), ArBr (1 equiv), Pd(dba) $_2$ (2.5 mol %), JackiePhos (5 mol %), CuCl (2 equiv), KF (2 equiv), t-BuOH, 110 °C, 18 h. b Calibrated GC or NMR yields of 3 and 6 using conditions A (average of three runs) and for all yields of 9; isolated yields of 3 and 6 using conditions B (average of two runs).

tetrahydrofuran, and open-chain secondary α -alkoxy groups to be employed efficiently in Pd-catalyzed Stille reactions with a broad range of aryl electrophiles. These findings are particularly noteworthy as they show that use of JackiePhos (1) supports the selective transmetalation of marginally activated secondary alkyl units from Sn to Pd when unactivated secondary alkyl ligands comprise the other three groups on tin. Thus, we expect that alkylstannane activation arising from the presence of an α -heteroatom, an α -C(sp²) group, or ring strain will broadly enable selective alkyl (R) transfer from RSnCy₃ reagents. As a result, use of carbastannatranes should only be necessary in instances where the transmetalation of completely unactivated secondary alkyl units is desired. We are currently investigating stereospecific extensions of these methods for the formation of enantioenriched α -aryl ethers, as well as the use of other activated alkyl groups in coupling reactions involving RSnCy₃ reagents.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its online supplementary material.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c03729.

Procedural details, compound characterization, and spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Mark R. Biscoe — Department of Chemistry & Biochemistry, The City College of New York (CCNY), New York, New York 10031, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), New York, New York 10016, United States; orcid.org/0000-0003-1257-6288; Email: mbiscoe@ccny.cuny.edu

Authors

Haoran Zhao – Department of Chemistry & Biochemistry, The City College of New York (CCNY), New York, New York 10031, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), New York, New York 10016, United States

Anju Treesa Jose — Department of Chemistry & Biochemistry, The City College of New York (CCNY), New York, New York 10031, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), New York, New York 10016, United States

Alisajat Asany — Department of Chemistry & Biochemistry, The City College of New York (CCNY), New York, New York 10031, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York (CUNY), New York, New York 10016, United States

Shahrukh M. Khan — Department of Chemistry & Biochemistry, The City College of New York (CCNY), New York, New York 10031, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c03729

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the City College of New York, the National Science Foundation (CHE-1955472: early exploratory work on factors influencing selective alkyl transfer from tin), and the National Institutes of Health (R01GM131079: diversification of heterocycles through transition metal catalysis) for support of this work. We thank Prof. Donald Watson and Raphael Kim (Univ. of Delaware) for independently verifying the reaction comparisons shown in Table 4.

■ REFERENCES

- (1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. *J. Med. Chem.* **2014**, *57*, 10257–10274.
- (2) (a) Elshahawi, S. I.; Shaaban, K. A.; Kharel, M. K.; Thorson, J. S. A comprehensive review of glycosylated bacterial natural products. *Chem. Soc. Rev.* **2015**, *44*, 7591–7697. (b) Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Carreira, E. M. Oxetanes as versatile elements in drug discovery and synthesis. *Angew. Chem., Int. Ed.* **2010**, *49*, 9052–9067.
- (3) Metal-Catalyzed Cross-Coupling Reactions and more; de Meijere, A., Brase, S., Oestreich, M., Eds.; Wiley-VCH: Weinheim, 2014.
- (4) (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkylorganometallics as reaction partners. *Chem. Rev.* **2011**, *111*, 1417–1492. (b) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-

Organic Letters pubs.acs.org/OrgLett Letter

- coupling reactions of organometallic reagents to construct C–C bonds. *Chem. Rev.* **2015**, *115*, 9587–9652. (c) Lucas, E. L.; Jarvo, E. R. Stereospecific and stereoconvergent cross-couplings between alkyl electrophiles. *Nat. Rev. Chem.* **2017**, *1*, 65. (d) Ma, X.; Murray, B.; Biscoe, M. R. Stereoselectivity in Pd-catalyzed cross-coupling reactions of enantioenriched nucleophiles. *Nat. Rev. Chem.* **2020**, *4*, 584–599.
- (5) For photoredox approaches to the α -arylation of ethers, see: (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: Coupling of α -carboxyl sp³-carbons with aryl halides. Science 2014, 345, 437–440. (b) Jin, J.; MacMillan, D. W. C. Direct α -arylation of ethers through the combination of C-H functionalization and the Minisci reaction. Angew. Chem., Int. Ed. 2015, 54, 1565-1569. (c) Heitz, D. R.; Tellis, J. C.; Molander, G. A. Photochemical nickelcatalyzed C-H arylation: Synthetic scope and mechanistic investigations. J. Am. Chem. Soc. 2016, 138, 12715-12718. (d) Shields, B. J.; Doyle, A. G. Direct C(sp³)-H cross coupling enabled by catalytic generation of chlorine radical. J. Am. Chem. Soc. 2016, 138, 12719-12722. (e) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C-H bonds as latent nucleophiles. Science 2016, 352, 1304-1308.
- (6) For approaches to the α -arylation of ethers involving use of redox-active esters, see: (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-catalyzed aryl—alkyl cross-coupling of secondary redox-active esters. *J. Am. Chem. Soc.* **2016**, 138, 2174–2177. (b) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S. Redox-active esters in Fe-catalyzed C–C coupling. *J. Am. Chem. Soc.* **2016**, 138, 11132–11135.
- (7) (a) Espinet, P.; Echavarren, A. M. The mechanism of the Stille reaction. *Angew. Chem., Int. Ed.* **2004**, *43*, 4704–4734. (b) Cordovilla, C.; Bartolomé, C.; Martínez-Ilarduya, J. M.; Espinet, P. The Stille reaction, 38 years later. *ACS Catal.* **2015**, *5*, 3040–3053.
- (8) Labadie, J. W.; Tueting, D.; Stille, J. K. Synthetic utility of the palladium-catalyzed coupling reaction of acid chlorides with organotins. *J. Org. Chem.* **1983**, *48*, 4634–4642.
- (9) For pioneering examples of carbastannatrane studies, see: (a) Jurkschat, K.; Tszchach, A.; Meunier-Piret, J. Crystal and molecular structure of 1-aza-5-stanna-5-methyltricyclo[3.3.3.01,5]undecane. Evidence for a transannular donor-acceptor interaction in a tetraorganotin compound. J. Organomet. Chem. 1986, 315, 45-49. (b) Vedejs, E.; Haight, A. R.; Moss, W. O. Internal coordination at tin promotes selective alkyl transfer in the Stille coupling reaction. J. Am. Chem. Soc. 1992, 114, 6556-6558. (c) Jensen, M. S.; Yang, C.; Hsiao, Y.; Rivera, N.; Wells, K. M.; Chung, J. Y. L.; Yasuda, N.; Hughes, D. L.; Reider, P. J. Synthesis of an anti-methicillin-resistant Staphylococcus Aureus (MRSA) carbapenam via stannatrane-mediated Stille coupling. Org. Lett. 2000, 2, 1081-1084. (d) Fillion, E.; Taylor, N. J. cine-Substitution in the Stille coupling: Evidence for the carbenoid reactivity of sp³-gem-organodimetallic iodopalladio-trialkylstannylalkane intermediates. J. Am. Chem. Soc. 2003, 125, 12700-12701. (e) Theddu, N.; Vedejs, E. Stille coupling of an aziridinyl stannatrane. J. Org. Chem. 2013, 78, 5061-5066.
- (10) (a) Li, L.; Wang, C.-Y.; Huang, R.; Biscoe, M. R. Stereoretentive Pd-catalyzed Stille cross-coupling reactions of secondary alkyl azastannatranes and aryl electrophiles. *Nat. Chem.* **2013**, *5*, 607–612. (b) Wang, C.-Y.; Ralph, G.; Derosa, J.; Biscoe, M. R. Stereospecific Pd-catalyzed acylation of alkylcarbastannatrane reagents: A general alternative to asymmetric enolate reactions. *Angew. Chem. In. Ed.* **2017**, *56*, 856–860. (c) Ma, X.; Diane, M.; Ralph, G.; Chen, C.; Biscoe, M. R. Stereospecific electrophilic fluorination of alkylcarabastannatrane reagents. *Angew. Chem., Int. Ed.* **2017**, *56*, 12663–12667. (d) Ralph, G.; Biscoe, M. R. Preparation of enantioenriched alkylcarbastannatranes via nucleophilic inversion of alkyl mesylates for use in stereospecific cross-coupling reactions. *Organometallics* **2019**, *38*, 3912–3915.

- (11) Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. Pd-Catalyzed N-arylation of secondary acyclic amides: Catalyst development, scope, and computational study. *J. Am. Chem. Soc.* **2009**, *131*, 16720–16734.
- (12) (a) Ye, J.; Bhatt, R. K.; Falck, J. R. Stereospecific palladium/copper cocatalyzed cross-coupling of α -alkoxy- and α -aminostannanes with acyl chlorides. *J. Am. Chem. Soc.* **1994**, *116*, 1–5. (b) Belosludtsev, Y. Y.; Bhatt, R. K.; Falck, J. R. C–Glycosides: Pd/Cu co-catalyzed thiocarboxylation of stannyl glucopyranosides. *Tetrahedron Lett.* **1995**, 36, 5881–5882. (c) Goli, M.; He, A.; Falck, J. R. Pd-catalyzed cross-coupling of α -(acyloxy)-tri-n-butylstannanes with alkenyl, aryl, and heteroaryl electrophiles. *Org. Lett.* **2011**, *13*, 344–346.
- (13) For additional examples of the selective transfer of an activated alkyl group from tin to palladium, see: (a) Kells, K. W.; Chong, J. M. Stille coupling of stereochemically defined α -sulfonamido-organostannanes. J. Am. Chem. Soc. 2004, 126, 15666-15667. (b) Kalkofen, R.; Hoppe, D. First example of an enantiospecific sp³-sp² Stille coupling of a chiral allylstannane with aryl halides. Synlett 2006, No. 12, 1959-1961. (c) Hodgson, D. M.; Chung, Y. K.; Nuzzo, I.; Freixas, G.; Kulikiewicz, K. K.; Cleator, E.; Paris, J.-M. Intramolecular cyclopropanation of unsaturated terminal epoxides and chlorohydrins. J. Am. Chem. Soc. 2007, 129, 4456-4462. (d) Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Copper-catalyzed asymmetric three-component borylstannation: Enantioselective formation of C-Sn bond. Chem.— Eur. J. 2015, 21, 4918-4922. (e) Zhu, F.; Rodriguez, J.; O'Neill, S.; Walczak, M. A. Acyl glycosides through stereospecific glycosyl crosscoupling: Rapid access to C(sp³)-linked glycomimetics. ACS Cent. Sci. **2018**, 4, 1652–1662.
- (14) Previous attempts at Cu-catalyzed Stille couplings failed using secondary α -alkoxytricyclohexylstannanes not bearing a directing group, or when aryl electrophiles were used. See: Linderman, R. J.; Siedlecki, J. M. Selective copper-catalyzed coupling reactions of (α -acetoxyhexyl)tricyclohexyltin. *J. Org. Chem.* **1996**, *61*, 6492–6493.
- (15) Ma, X.; Zhao, H.; Binayeva, M.; Ralph, G.; Diane, M.; Zhao, S.; Wang, C.-Y.; Biscoe, M. R. A general approach to stereospecific cross-coupling reactions of nitrogen-containing stereocenters. *Chem.* **2020**, *6*, 781–791.
- (16) Cross-coupling reactions involving pyridyl bromide electrophiles were not successful using our reactions conditions.
- (17) Egorova, K. S.; Ananikov, V. P. Toxicity of metal compounds: Knowledge and myths. *Organometallics* **2017**, *36*, 4071–4090.
- (18) Aalla, S.; Gilla, G.; Bojja, Y.; Anumula, R. R.; Vummenthala, P. R.; Padi, P. R. An efficient and telescopic process for Valsartan, and an angiotensin II receptor blocker. *Org. Process. Res. Dev.* **2012**, *16*, 682–686.
- (19) Zhu, F.; Rodriguez, J.; Yang, T.; Kevlishvili, I.; Miller, E.; Yi, D.; O'Neill, S.; Rourke, M. J.; Liu, P.; Walczak, M. A. Glycosyl crosscoupling of anomeric nucleophiles: Scope, mechanism, and applications in the synthesis of aryl *C*-glycosides. *J. Am. Chem. Soc.* **2017**, *139*, 17908–17922.