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The topological nontriviality of insulating phases of matter are by now well understood through topological K
theory where the indices of the Dirac operators are assembled into topological classes. We consider in the context of
the Kitaev chain a notion of a generalized Dirac operator where the associated Clifford algebra is centrally
extended. We demonstrate that the central extension is achieved via taking rational operator powers of Pauli
matrices that appear in the corresponding BdG Hamiltonian. Doing so introduces a pseudometallic component to
the topological phase diagram within which the winding number is valued in Q. We find that this phase hosts a
mode that remains extended in the presence of weak disorder, motivating a topological interpretation of a
nonintegral winding number. We remark that this is in correspondence with recent paper demonstrating that
projective Dirac operators defined in the absence of spin® structure have rational indices.
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I. INTRODUCTION

Dirac’s proposal [1] of taking the square root of the Klein-
Gordon equation has had a remarkable impact on theoretical
physics. This simple manipulation doubled the number of par-
ticles and eventually led to the formalization of the quantum
field theoretic concept of spin. With our modern understand-
ing of the analytic-geometric aspects of spin, we know now
that this proposal, while simple, is far from naive. In the
context of topological materials, there has been a resurgence
of Dirac’s original intuition with the advent of square-root
topological insulators and also square-root Weyl semimetals.
Both systems emerge by taking the square root of either an
appropriate tight-binding model [2], which can lead to a new
class of topological insulator that allows robust edge states
with codimension larger than one [3—10] or by stacking such
two-dimensional (2D) square-root higher-order topological
insulators with interlayer couplings in a double-helix pat-
tern [11]. While both might seem artificial, the former has
been observed in a photonic cage [12]. The key prediction of
the square-root Weyl semimetal proposal [11] is the presence
of Fermi arcs and hinge states that connect the projection of
the Weyl points. Even the latter [11] has had an experimental
realization. There have also been exciting developments in
applying these ideas to Floquet systems [13,14] where the
latter paper considers gth roots of the Floquet operator and
makes contact with non-Hermitian physics, which is explored
further in a similar context in Ref. [15].

From a field theoretic perspective, a QFT with second-
order field equations defined on a manifold that admits spin
structure will indeed have a meaningful Fermionic “square-
root” theory. In fact, if the parent theory is not very exotic,
the local square-root counterpart will not be either. Since
taking a square-root is a topologically-nontrivial manipulation
of the space of sections of the parent theory, the emergence of
new/exotic topological features in these square root con-
densed matter systems is well motivated.
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The special importance of the square root is clear. Alhough,
one could ask if the (schematic) generalization (-)'/2 > (-)"/"
can be suitably made rigorous in a way that is applicable to
topological condensed matter systems. We answer this ques-
tion in the affirmative by a central extension of the Clifford
algebra that closes for rational powers of the Dirac matrices.
This new algebra is compatible not with the ordinary Dirac
operator but with a pseudodifferential analog that is locally
Dirac-like but only globalizes projectively. Such projective
Dirac operators defined in the absence of a spin structure
are shown to have rational topological index [16], albeit with
theoretical machinery absent in the traditional treatment of
topological Hamiltonian systems.

In this paper, we realize these formal ideas in a Kitaev
chain [17] of spinless Fermions, chosen for its simplicity as
well as its ubiquity, with the BdG doubled nearest-neighbour
coupling Hamiltonians carry Pauli matrices raised to a rational
power. The algebraic structures we need for our generalization
live entirely in particle-hole space where we show that taking
fractional powers gives rise to central extensions that lead to a
fundamentally altered topological phase space. Most notably,
we report the existence of a pseudometallic phase marked by a
dense set of midspectrum modes with rational winding that re-
sist localization in the presence of on-site disorder only when
the untwisted theory is tuned to its topological phase. We
conclude with a discussion of the field theoretic formulation
of projective Dirac physics that motivates the interpretation
of a rational winding number as a topological index and
relate it to an extended classification scheme of topological
phases.

II. RATIONAL POWERS OF BDG HAMILTONIANS

One of the standard models exhibiting topological super-
conductivity is a chain of spinless Fermions coupled by a
nearest-neighbor p-wave pairing. This is the so-called Kitaev
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FIG. 1. Evolution of the spectrum of the ordinary Kitaev chain (y = 1) as a function of (a) u, for1 =
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critical point where the gap closes corresponds to u = 1 at which point the winding number transitions from 1 to zero. For any 1 = 0, the
winding number is sgn 1 and vanishes when 1 = 0 and the fractional Kitaev chain with (c) y for u = 0, I = 1 and (d) its DOS along two
energy slices. The winding number is approximated in real space based on the prescription given in [23]. Beyond the appearance of the
delocalized midspectrum states, the 4 and 1 spectral evolution for y & (0, 1) does not provide any new information. We plot also the inverse
participation ratio (IPR) of the zero mode in (c) to indicate (de)localization.

chain [17] with minimal Hamiltonian,
X U q %
i Tt i)
H= - Cia1Ci ™ € + He + T @)

i

This model, being a Fermionic theory, is constrained by
Fermion parity. In general 1 & C. Time reversal symmetry is
present if the pairing is chosen in R and is broken otherwise.
This puts the model in the symmetry classes [18] BDI or D
respectively.

The standard way of dealing with the pairing term is to
work in the doubled Bogoliubov-de Gennes (BdG) basis, ¢;
= (ci, ¢, Jeading to the Hamiltonian
X L Hoou ;T 1
H= - 7@0;(&% + Pl o+ —ioy i+ He.

2
With open boundary conditions, there exist localized Majo-
rana modes on the boundaries of the chain in the topologically
nontrivial phase. The familiar phase diagram of this model can
be inferred from Figs. 1(a) and 1(b).

We view the standard BdG Hamiltonian in dimension one
as arising from the representation theory of spin,,,. We will fo-
cus on the case of BAG doubled spinless Fermions, where the
algebraic object of interest is the su(2) particle-hole algebra,
of which the blocks of the real-space Hamiltonians furnish

representations. One possible modification of standard BdG
Hamiltonians describing linearized superconducting pairing is
to enlarge this algebra.

To this end, one commonly defines a general operator
power by the integral

z
1 dt
0(-y) o t'*
for y @ [0, 1], though this requires a strictly positive spec-
trum. Of course, when the operator in question is Hermitian,
we have the more intuitive definition,

A" = Udiag(specd)' U". 4)

We now imagine taking rational powers of the BAG Hamilto-
nian sub-blocks in Eq. (2), valued in 2 x 2 Pauli matrices.

Indeed, o} is not in su(2) for y = 1. Recall that for (ijk),
any permutation of {1, 2, 3},

[0/, 0/]= 2ig"*oy. (5)
To close the algebra for ol?’, we proceed as follows. We first
define z, := (-1)¥. Using, Eq. (4), we obtain the relations

A =

(e -1, €)

1+ z -z
o,l'= 3 I+ 7 o1,
20) + 1
o= - Ok BTy (6)
z, -1 z,-1
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These relations can be used to bring the resultant commutator
£ X
VooV = k 2
g',0; = EEU (zy - 1Yo (7)
into the form
lz, + 1
2z,- 1"

o} .

o/, 0l = ie’al(1- z)+ )
where it is evident that the algebra has a central extension with
wl in the center of the algebra generated by the g/ ’s. This
importantly gives rise to a projective representation (due to
Bargmann’s theorem [19]), i.e., a homomorphism of SU(2)
into PGL(2, C). As we will see later, this is the main feature of
our paper. The topological nature—specifically the ratio-
nality of the winding number—is a fundamental property of
the projectivity of the representations involved in the construc-
tion of the Hamiltonian.

Particle-hole-space Hamiltonians that are valued in this
new algebra via

X :
o f(k) &)
i
are normal but non-Hermitian in general. While breaking from
Hermiticity is interesting on its own right, we opt to restore it
by defining a self-adjoint rational power,

The Hermitian central extension results in commutators of the
form

5 l-cosmy . 1+ cosmy
o = Oy + I, 1
k 2 k P (11)
Ey svF_ 11
dl{' 6‘; = iel]k&‘;c(l - COST[V) + - + cosmty (12)

21- cosmy

We note that wheny > 1, 6: goes smoothly over to k.

We can now define the fractionally twisted BdG Hamilto-
nian for the Kitaev chain,
7l 1 1

1
~ Vi . ~V, .
oY+ i~ 6y ¢:+ Hece. ,

(13)
where y;,, @ Q is the matrix power of the hopping and pairing
Hamiltonians respectively. The couplings are not included in
the power to ease comparisons between the fractional and
integral models. Further, we will initially develop the case
of y = yp, yi = 1. The cases where y; B (0, 1], y, = 1 and
Vpr B (0, 1] lead to qualitatively similar results, although the
modified hopping term furnishes a more interesting phase
diagram, as we discuss in Sec. [II C.

The off-diagonal Hamiltonian block can be expressed in
terms of o,,; and the identity matrix using Eq. (11). In that
regard, our model with the rational power of o, can be
reinterpreted as the Kitaev chain with an additional nearest-

X H
H= ' Zylopi+ ¢,

i

yoo0 % neighbour-coupling term that mixes the hopping and pairing
sv = 9, % 10 strengths,
Ok > 5 (10)
J
(TR 11 1
X + s 171 1
H= I%L/};UZL/J,' + i'+1 o:+ i? C;)ST[V Ok ! C;)S”VI ¢; + Hec. (14)

We opt for the former representation of the model as the latter
obfuscates the underlying algebraic structure from which the
model emerges. However, Eq. (14), appears to be more exper-
imentally transparent.

The choice of which Hamiltonian block to raise to a ra-
tional power is somewhat arbitrary. In discussing the phase
diagram, we consider also taking powers of the hopping
Hamiltonian.

III. TOPOLOGICAL CHARACTERIZATION OF THE
FRACTIONALLY TWISTED KITAEV CHAIN

In momentum spgce, we have the generic effective Dirac
Hamiltonian, Hp =  ; fi(k)o', where, roughly speaking, for
a 1 dimensional Brillouin zone (BZ), the degree of the
map between spheres, f; : S' > CP!, characterizes the in-
tegral winding number of the Hamiltonian. More precisely,
one is interested in casting the topological classification of
such Dirac-like Hamiltonians [20] as the classification of
Dirac operators acting on sections of Dirac bundles. This
objective is formalized using (twisted) topological K the-
ory to develop a periodic table of topological insulators
[21,22].

A. Winding number

In the case of the BDI class in dimension 1 the Dirac fibers
are particle-hole spaces and, index I)YB Z, corresponding to a
specific topological number like the 4 génus. Practically, this
topological invariant can be captured by computing the
winding number of the ground state.

In fact, more generally one can consider a family of such
theories where the Dirac operators 1), are parametrized by
some manifold, which, for concreteness, we take to be S'.
Then, there still holds a version of the index theorem. Namely,
the geometric incarnation, which is the Atiyah-Singer index
theorem and it comes from globalizing representations of
the Clifford algebras by means of spin® structures [whose
existence depends only on a topological invariant, the third
Stiefel-Whitney class, w3 (M) B H3(M; Z)], of the underlying
manifold M. What is more remarkable is that even in the
case in which such spin® structures exist only projectively,
a version of the index theorem where the index is valued in
twisted K theory and is now a rational number [16] still holds.

In our context, we take y @ S' = R/Z, by periodicity, and
we observe that in the geometric realization of the model in
the Brillouin zone, the effective base space of the projective
Dirac operator with parameters is M = CP! x S!. The work
of Melrose et al. [16] requires the twisted K theory be done
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by means of torsion classes in H3(M; Z) (which are absent in
our case). We therefore cannot infer that the analytic and
topological indices are equal here, since we would be twisting
with nontorsion classes. Instead, we probe the topological
nature of the fractional analytical index numerically in the
proceeding section. Further, we contend that the main prop-
erty that ensures their version of the index theorem holds
requires only projective representations. We further elaborate
on this in Sec. IV.

B. Computation of the real space winding number

In the conventional case of y = 1, one has that
VA

v= L tr[h”' (k)dh(k)] B Z (15)
2mi sl

where /(k) is one of the pairs of the BdG doubled Hamiltonian
blocks. In addition to being able to define a winding number in
the presence of disorder, we have the additional complication
of this integral expression holding only for some y B Q in
general. In reality, the distinction/separation of Bloch sub-
bundles over the Brillouin zone depends on y so we are in
need of a formulation of the winding number that can be
extended beyond the integers.

To this end, we follow the algorithm developed in
Ref. [23,24]. Their noncommutative geometric construction
of the real-space winding number remains well defined for
chiral systems in odd dimensions in the presence of arbitrarily
strong disorder. The latter feature enables the algorithm to
produce winding numbers valued in Q (though approximating
quantized integral winding numbers in their case) and hence
makes it suitable for computing the fractional winding number
as a proxy for the rational analytic index where there is an
analogous challenge of the fractional twist introducing mid-
spectrum states (see Ref. [25] for a comparison with other
common algorithms).

We begin by expressing the y = 1 Hamiltonian in block-
off-diagonal form

K 9
0 O
H QIT 0
where Q1 is taken to be the unitary that results in flat bands. In
this limit, Eq. (15) can be translated into real-space with the
noncommutative dictionary,

qlk) € 0,

(16)

dk
—tr(A4x) - Tr("),
27t

dq(k) <> -i[X, O1],

where Tr is the real space trace per unit volume and g(k).
Then, the winding number has the real-space representa-
tion [24],

i ¢
v=Tr 0;'[X, 0], (17)

with X the position operator. The real-space trace, while
not integral in general (and hence not a topological index),
remains well defined when the spectral gap closes. We can
therefore generalize immediately to 1 - y where the com-

mutator in question is written [26]

X IN+1
[X, Oyl = calXQyI™*, a = =7 (18)
I=1 -

Of course, these expressions hold only approximately in finite
volume.

C. Phase structure

We first concentrate on flat-band Hamiltonians, which oc-
cur at vanishing chemical potential. We will orient ourselves
with respect to the y = 1 case where y = 0 and I = 0 cor-
respond to a topologically nontrivial phase of the Majorana
chain. We compare in Fig. 1 the spectral evolution under y
(0, 1] to the familiar parametrization of the ordinary Ki-taev
chain phase space. For completeness, we provide also the
(v, w) and (y, 1) cuts of the topological phase space probed
by v in Figs. 2(a) and 2(b). For y > y?, with y? separating the
gapped and gapless phases, the phase diagrams of the ordinary
and fractionally twisted Kitaev chain are identical.

The most notable feature of the spectral evolution as a
function of y is the transition to a metallic region with rational
winding number for y < y2 = 1/2. Although this metallic
state is surprising in Dirac systems with two independent
moduli (which do not afford any additional tunable parameters
that allow the bands to cross generically), this metallic state is
in accordance with the von Neumann-Wigner theorem: A
Hamiltonian describing dynamics in an m dimensional phase
space will have level crossing on an m - 2 dimensional man-
ifold. In our case, the Hamiltonian has blocks valued in the
modified algebra of Eq. (8), which introduces a third inde-
pendent parameter y, controlling the central element. Hence,
levels can cross on curves (rather than points) in the moduli
space of the Kitaev chain spectra.

For y > y?, the topological phase remains robust, as indi-
cated by the winding number plateau at v = +1. A stable pair
of E = 0 boundary modes indicates that the bulk-boundary
correspondence is intact in this regime. The boundary Ma-
jorana modes delocalize as y > y? from above. This is
evidenced by the vanishing inverse-participation (IPR),

X 2
Iy o= 101,

of the midspectrum mode ¢ (x). In the present context, with g
= 2, the IPR is a direct measure of the inverse localization
length. A perfectly localized state has IPR 1 while a perfectly
delocalized state has IPR 0. This is not, however, accompa-
nied by a vanishing winding number. One normally expects v
- 0~ andv - 1" at a topological phase transition as we see
in Figs. 1(a) and 1(b). Curiously, the winding number
interpolates between +1 and O in the delocalized regime, in-
dependent of finite size effects. If we can interpret the rational
winding number as a form of topological obstruction, the
delocalized phase breaks the bulk-boundary correspondence,
as the presence of the metallic modes are insensitive to the
boundary.

Integer winding numbers are conventionally tied to the
existence of distinct static bands. Standard theory suggests
that if bands cross or touch, the winding of the ground state is
no longer unambiguously connected to some topological
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FIG. 2. Heatmap of winding number in the (v, u/t)|;-; and (v, 1/t)|,-1,> planes of phase space for (a), (b) fractional pairing, y = y,

and (c), (d) fractional hopping, y = yx.

invariant of a Hilbert sub-bundle (or an index). In the present
case, however, there do exist well defined band edges [see
Fig. 1(d)], albeit with a continuum of midspectrum modes.
We claim that the rational winding numbers obtained reflect
the rational (analytic) index of p, as in the discussion above.

Figures 2(c) and 2(d) depicts the phase diagram of the
case where y, = y, yp= 1 in Eq. (13). Common to both
configurations of the model is a robust regime of integral
winding number that transition to domains of rational winding
number. Further, the case where the hopping is fractionalized
indicates the existence of a locus of y? § that separate two
regimes of rational winding number with a kink [bright-red
curves in Figs. 2(c) and 2(d)]. We defer a detailed analysis of
the implications of this feature to later work. Our more press-
ing goal now is to interpret the rational analytic index (the
fractional winding number) as a rational topological index for
the pseudometallic phase.

The nontriviality of the pseudometallic phase

Returning to the case of fractional pairing, we further
probe the spectrum in the delocalized regime by partitioning
the chain into two regions with different values of y that
straddle y®. With open boundary conditions, this corresponds
to a Kitaev chain where the right half-chain is in the well
understood insulating v = 1 phase and the left half-ring hosts
the delocalized midspectrum modes. Tracking the two modes
closest to £ = 0 along the chain in Fig. 3, we find boundary
localization on the right and delocalization across the left
half-chain. When we tune the pseudometallic left half-chain to

be topologically trivial with u > || = 1 while maintaining
the right half-chain at v = 1, we notice that there exists a
midspectrum delocalized mode in the spectrum that coalesces
into a Majorana mode localized at the domain boundary.

This result is necessary but insufficient as an argument for
the topological nontriviality of a rational winding number.
Next, we introduce on-site disorder in the form of a random
Gaussian vector with mean p (the chemical potential) and
variance o2. That is, we have

Honsite = I]Uz; [1 N(“/ 02) (19)
3.0
o, u<|u’|
251 — (/7
20 Yo, u>
=
Z15
3
1.0 y=0.4 y=0.8
0.5
0.0 - . . - -
0 100 200 300 400 500

FIG. 3. |¢m(x)|? corresponding to the two states closest to E =
0, denoted ¢ .. One of these states is delocalized over the region with
y < y? while the other is localized at the boundary of the region with
y > y&. The left domain has a modulated on-site potential that can
switch between topological and trivial phases.
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FIG. 4. Inverse participation ratio for increasing normal disorder
variance for characteristic choices of y for (a) the topological phase
with y = 0 and (b) the trivial phase with u = 2. The light lines
indicate the evolution of ensembles of the disorder realizations and
the bold lines indicate ensemble averages.

for each diagonal block of the Hamiltonian. We compute
the inverse participation ratio of the midspectrum state for
different values of y . Notably, when u < 12|, the delocalized
mode that is in correspondence with a Majorana mode in the y
> y? phase initially resists localization. Around o @ 1 for
which Anderson localization [27] obtains is precisely where
the localized boundary modes present when y > y? take the
form of generic randomly localized states. When the chemical
potential is tuned to the trivial phase where a Majorana modes
is absent for y > y? but midspectrum states exist for y < &,
the onset of Anderson physics is immediate at ¢ > 0 with no
sensitivity to the choice of y. These facts are illustrated in
Fig. 4. Note that the two choices of mean chemical potential, u
= 0 and u = 2 have the same bandgap in the clean limit.

We conclude, therefore, that while the bulk-boundary cor-
respondence is lost for y < y2, there exist a particular pair of
extended states that are in correspondence with the topolog-
ical boundary modes present when y > y?. This is a strong
indication that the Q valued winding number should be taken
seriously as an indicator of nontrivial bulk topology in the
pseudometallic phase.

IV. FIELD THEORETIC PERSPECTIVE

Recall here that a Dirac bundle over a Riemannian mani-
fold is a bundle of Clifford modules equipped with a Clifford
connection. One can define the Dirac operator, D, as a first-
order differential operator acting on the space of sections of
such bundles. Further, by equipping the Dirac bundle with the

compatible action of the Clifford algebra Cl, one defines on its
sections the operator / := s - D, s B Cl. It is the index of this
operator, which also encodes the constraints of symmetries
S, T, and C, that can be related to the topological classifica-
tion of Dirac-like lattice systems realizing those symmetries. It
is therefore to be expected that nontrivially altering the Clif-
ford algebra action (say, by a central extension) will change
the index of .

Let us begin by defining a theory of Majorana fermions on,
for definiteness, CP', equipped with the spin structure 6,

4
S=i  yPsy. (20)
cp!
Here, the Dirac operator is chosen to be
Be = y'Di+ y’Dat yvim, yi=yly (2D

The free n-Majorana path integral is given by the Pffafian,

Z = Pf(Dcp ). (22)

This theory has two distinct phases, parameterized by mod 2
Index(Ps) @ {1, 0}. Depending on this (integral) index,

AR (_1)Index($5)z

under m - -m. The theory under consideration in our note
is one where the operator [J¢ is replaced by

DBos = P'Di+ p2Dy+ p3m, (23)

where p : C1 - PGL(n) is a projective representation arising
from a central extension of Cl and p’ = p(y?). In Ref. [16] the
authors show that when the global manifold M (representing
the parameter space of the family of generalized Dirac oper-
ators) does not admit a spin® structure but via a torsion class in
H3(M, Z), it admits one up to projective representations (or
up to central extension). This makes the 4  genus in the
familiar index theorem not an integer but a rational number.

In turn, under m - -m, the Pfaffian picks up a phase
(-1)*, with s B Q. Taking s = p/q with p, ¢ @ Z, one finds
that the g-Majorana theory with the projective Dirac oper-
ator recovers the topological phase structure of the standard
2-Majorana theory, where the sign change of the Pfaffian is
controlled by the number of zero-mode pairs present in the
spectrum. This prompts an analogy between the fractional
analytic index and a Majorana zero-mode carrying a fraction
of the topological index.

The intuitive connection to ordinary Majorana physics
makes use of the fact that a spin® structure exists whereas
one might think the introduction of the projective Dirac op-
erator demands the absence of spin structure. We argue that
the salient feature is not that the spin® structure does not
exist, but that the (generalized) Dirac operator comes about
from a central extension of the Clifford algebra. Hence the
rationality of the winding number. We remark that the operator
By, of equation (23) (by virtue of the periodicity in y B [0, 2])
defines an operator on M = CP! x S!. This manifold has no
torsion classes in H3(M, Z) and indeed does admit a spin®
structure, but the arguments of [16] carry through to the case
where the Dirac operator does not arise from a spin® but from a
projective representation.
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V. CONCLUDING REMARKS

The introduction of a twist in the Kitaev Hamiltonian in the
form of an operator power of a Pauli matrix centrally extends
the Clifford algebra and gives rise to Hamiltonian blocks that
are projective representations of the particle-hole symmetry.
This turns out to be intimately related to the notion of twisted K
theory, which now replaces K theory in the classification of
topological materials. The notable physical consequences of
this extension is the appearance of a pseudometallic phase
within which the winding number is valued in Q, with the
bulk gap closing precisely at y = 1/2, the square-root case. In
analogy with the rational analytic index of the projec-tive
Dirac operators remaining homotopy invariants [16], we

presented numerical evidence in the form of localization re-
sisting metallic modes for the topological nontriviality this
new metallic phase. Finally, we postulated that along with
class BDI topological insulators in dimension 1 (chosen for
their simplicity), the entire periodic table is interspersed with
nonintegral topological indices when the Dirac operator is re-
alized only projectively. Hence, the scheme posed here, based
on Eq. (14) opens up a potentially new route to engineering
topological materials.
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