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The two-stream instability (Buneman instability) is traditionally derived as a colli-

sionless instability with the presumption that collisions inhibit this instability. We

show here via a combination of a collisional two-fluid model and associated experi-

mental observations made in the Caltech plasma jet experiment, that in fact, a low

frequency mode of the two-stream instability is indifferent to collisions. Despite the

collision frequency greatly exceeding the growth rate of the instability, the instability

can still cause an exponential growth of electron velocity and a rapid depletion of par-

ticle density. High collisionality nevertheless has an important effect as it enables the

development of a double layer when the cross-section of the plasma jet is constricted

by a kink-instigated Rayleigh-Taylor instability.
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I. INTRODUCTION

The two-stream instability, also known as the Buneman instability, is a fundamental

plasma behavior that can lead to rapid, unstable growth of small perturbations, resulting

in effective dissipation of currents in plasmas1. This instability is typically triggered when

the electron drift velocity relative to ions is faster than the electron thermal velocity2. The

two-stream instability is believed to be related to the formation of a double layer (DL)3–9

which is a large, localized electric field parallel to the current flow or magnetic field inside a

plasma. This localized electric field is called a double layer because the associated charge den-

sity given by Poisson’s equation consists of two spatially-separated and oppositely-charged

layers of particles4. Studying the two-stream instability and double layers is of value in

understanding particle energization in astrophysical plasmas10, nuclear fusion11, plasmas

for space propulsion12, and laboratory plasma discharges13.

Traditionally, the two-stream instability is derived from two-fluid equations or Vlasov

equations by neglecting collision terms1,2,14, and it is commonly presumed that the inclusion

of collision terms damps the instability. In fact, many analytical and numerical studies15–19

have argued that collisions suppress the instability. However, these studies typically do not

account for the momentum change of ions as a result of collisions, resulting in violation

of momentum conservation. In this paper, we present a collisional two-fluid model which

conserves total momentum. The momentum conservation enables this two-fluid model to

describe a very low frequency two-stream instability which, contrary to conventional pre-

sumptions, maintains its characteristic behavior even if the plasma is extremely collisional.

This low frequency two-stream instability will be referred to as an evacuation instability

because it has similarities to an evacuation mechanism proposed long ago by Alfvén and

Carlqvist20 and then elaborated by Carlqvist21 in the context of density depletion and dou-

ble layer formation with the important exceptions that here (i) collisionality is taken into

account and (ii) the driver of the evacuation instability is a naturally occurring periodic

constriction of the plasma cross-section.

2



+

-
5 kV

GND

Plasma jet

Magne�c 
field lines

Gas nozzles

Outer electrode

Inner electrode

10 cm

FIG. 1. Setup of the Caltech plasma jet experiment with photo of one stage of plasma jet superim-

posed. A pair of coplanar, concentric electrodes in a large vacuum chamber launch the collimated

argon plasma jet shown in the photo. The green magnetic field lines are created by a coil located

behind the inner electrode. Neutral gas puffs are injected through 8 pairs of gas nozzles evenly

spaced on the electrodes, and then a capacitor bank charged to 5 kV is switched across the inner

and outer electrodes to break down the neutral gas. Initially, 8 plasma arches that follow the

magnetic field lines form. These 8 arches then merge into the collimated plasma jet shown in the

photo.

II. OBSERVATIONS IN THE CALTECH PLASMA JET EXPERIMENT

The motivation of this study is to explain previous extreme ultraviolet (EUV) and visible

light observations made in the Caltech plasma jet experiment22. The experiment setup,

illustrated in Figure 1, is described in detail elsewhere22–28, and here we describe some key

features. This experiment launches a magnetohydrodynamically-driven (MHD-driven), cold

(2 eV), dense (1022 m−3) argon plasma jet from a pair of coplanar, concentric electrodes

placed inside a large vacuum chamber. Just before the plasma jet is launched, a coil coaxial
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FIG. 2. A sequence of false color images of the plasma jet in the Caltech experiment. (a) The

plasma jet becomes helical due to the Kruskal-Shafranov kink instability. (b) – (c) The current

channel cross-section becomes constricted at the location of the Rayleigh-Taylor ripples and then

dims.

with and located behind electrodes generates a dipole-like magnetic field (0.03–0.06 T).

Neutral argon gas puffs are then transiently injected from 8 pairs of gas nozzles evenly

spaced on the electrodes. After the nozzles have injected a gas cloud localized near the

electrodes, a capacitor bank charged to 5 kV is switched across the electrodes to ionize

the gas cloud. The capacitor bank then drives an electric current that flows between the

electrodes along eight plasma arches that follow the dipolar magnetic field lines linking the

electrodes24. These eight arches then merge into a collimated plasma jet whose initial radius

is a few cm. This plasma jet then lengthens over time into regions well beyond the extent

of the initial gas cloud. Fig. 1 illustrates this collimated plasma jet after it has lengthened

to around 20 cm. The current is further sustained by a set of capacitors and inductors

connected to form a pulse forming network. Except for the initial 10 µs, the current is

maintained to be approximately 70 kA during the 40–50 µs duration of the plasma jet, and

the voltage across the electrodes varies between 2 to 3 kV. Since the plasma density in the

jet volume is many orders of magnitude larger than the density of argon gas that was present

immediately before the plasma jet was created, the jet cannot be considered as a discharge

in a pre-existing argon atmosphere.

Figure 2 shows a typical sequence of transient events that occur after the jet has length-

ened from several centimeters to tens of centimeters. At approximately 20 µs the jet develops

a helical instability (kink), and Fig. 2(a) shows this kink after it has grown in about 5 µs to a
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finite size; the kink identification and its onset being consistent with Kruskal-Shafranov the-

ory was presented previously23. Since kinking is a rapid exponential growth of a corkscrew

shape, kinking produces a strong lateral acceleration of each segment of the plasma jet away

from the initial axis of the jet. This lateral acceleration provides a large effective gravity

(1010 − 1011 m s−2) that causes a secondary instability called the Rayleigh-Taylor (RT)

instability; this rapid acceleration and the resulting RT instability ripples were reported

previously26. Fig. 2(a) and (c) show that in 1 µs these ripples significantly constrict the

cross-section of the plasma jet. Chai, Zhai and Bellan22 observed that the region constricted

by the RT ripples became bright in EUV radiation (20–60 eV, see Fig. 3 of Chai, Zhai and

Bellan22) but, as can be seen in Fig.3 of Chai, Zhai and Bellan and in Fig. 2(c) here, the

constricted region also became dim in visible light. The visible light dimming suggests a

reduction of the plasma density n has occurred since visible light emission is proportional

to n2, the EUV radiation suggests localized plasma heating. It has been unclear why the

dimming in visible light and the brightening in EUV should occur simultaneously.

III. MODEL DESCRIPTION

A. Overview of the model

We present here a collisional two-fluid model consistent with the observed behavior; this

model describes an evacuation instability that has a rapid growth rate γ despite γ ≪ νei,

where νei is the electron-ion collision frequency. The model critically depends on the plasma

jet having a large electric current flowing along the jet axis (z direction). Since magnetic

forces are perpendicular to currents, there are no magnetic forces in the z direction, so a

1-D electrostatic model describes the dynamics along the z direction. The jet current I is

constant because the power supply driving the jet operates in a constant current mode. This

means that the current density J = I/A must increase when the RT ripples constrict the

jet cross-sectional area A. MHD instabilities such as the kink and RT are incompressible29

and so imply the density n is constant when the plasma jet is perturbed by the kink and RT

instabilities. Because J = nqeue, where qe is the electron charge and ue < 0 is the electron

drift velocity relative to ions, ue should become more negative when J increases. Hence, the

absolute value |ue| will peak at the constricted location, as shown in Fig. 3 (a) and (b). Fig.
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FIG. 3. The cartoon in (a) illustrates the choking of the plasma jet current channel cross-section A

by RT ripples as shown in Fig. 2(b). Plots (b)–(d) illustrate the electron drift velocity |ue|, density

n, and electric field E at the constricted location respectively.

2(a) and (c) show that the radius of the plasma jet current channel is reduced from initially

greater than 1 cm to eventually less than 0.3 cm. As a result, A = πr2 is constricted

approximately by a factor of 10 to 20 (from > 3 cm2 to < 0.2 cm2). With I = 70 kA,

n = 1022 m−3, |ue| = I/Anqe can increase from below 1×105 m/s to above 2×106 m/s. The

electron thermal velocity of the 2 eV plasma jet is approximately vTe =
√
κTe/me ≈ 6×105

m/s. Therefore, the initially slower electron drift velocity will greatly exceed vTe due to the

constriction of A. It will be shown that this suprathermal electron drift velocity triggers the

evacuation instability that can create a density cavity at the constricted location, as shown

in Fig. 3(c). This density cavity would then cause the dimming of visible light.

Due to the combination of low temperature (Te ≈ Ti ≈ 2 eV) and high density (ne ≈

ni ≈ 1022 m−3), the characteristic electron-ion collision frequency for the plasma jet30 is

νei = 2.9× 10−12ni ln Λ

T
3/2
e

≈ 1011 s−1, (1)

where lnΛ is the Coulomb logarithm whose value is assumed to be around 10, and Te is

in units of electron volts. This fast collision frequency corresponds to a 10−10 s – 10−11 s

characteristic collision time scale. Since this collision time is five to six orders of magnitude

smaller than the 10−6 s – 10−5 s jet dynamic time scale, the jet dynamics is highly collisional.
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Thus, a model explaining how the RT ripples lead to simultaneous visible light dimming

(density evacuation) and EUV brightening must take into account that there are 105 - 106

electron-ion collisions in the 1 µs observed time scale of the visible light dimming and EUV

brightening. Clearly whatever is happening cannot be described by a collisionless instability.

One may argue that the subset of suprathermal electrons at the constricted region could

be collisionless because the electron-ion collision frequency for these fast electrons should

be significantly smaller31. A quick estimate of this smaller collision frequency shows that

this argument is not correct: we can roughly estimate the collision frequency by replacing

the Te in Eq. (1) with the kinetic energy of electrons traveling at ue ≈ 2 × 106 m/s, i.e.,

meu
2
e/2 ≈ 11 eV. This kinetic energy reduces the collision frequency to be around 8×109 s−1,

which corresponds to a 1× 10−10 s characteristic collision time.

Because the plasma jet is extremely collisional, we can consider the plasma jet as a resistor

whose resistance is inversely proportional to A. When A is constricted by RT ripples, the

resistance at the constricted location should increase. As the current carried by the plasma

jet flows through this location with larger resistance, a DL, as shown in Fig. 3(d), would

develop to heat the plasma locally. This heating can potentially explain the observed EUV

radiation. A collisional two-fluid model that contains the presumptions discussed above will

be derived in the next section.

B. Derivation of the collisional two-fluid model

We can derive our collisional two-fluid model by neglecting various small terms from

the familiar 1-dimensional, unmagnetized, two-fluid equations for a fully ionized, collisional

plasma, namely

∂ne

∂t
+

∂

∂z
(neue) = 0, (2)

∂ni

∂t
+

∂

∂z
(niui) = 0, (3)

me

(
∂ue

∂t
+ ue

∂ue

∂z

)
= qeE − 1

ne

∂Pe

∂z
− Rei

ne

, (4)

mi

(
∂ui

∂t
+ ui

∂ui

∂z

)
= qiE − 1

ni

∂Pi

∂z
− Rie

ni

, (5)

ε0
∂E

∂z
= niqi + neqe. (6)
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Variables in the above equations are defined in the usual way. The electron energy equation

is assumed to be the isothermal equation of state, i.e., Pe = neκTe with Te being a constant,

and the ion energy equation is assumed to be the adiabatic equation of state Pi ∝ nΓ
i where Γ

is an adiabatic constant of order unity. Justification of these energy equations can be found

below. The collision terms satisfy Rei + Rie = 0 because the collisions between electrons

and ions must conserve the overall momentum. The derivation of Eqs. (2–6) can be found

in several plasma physics textbooks32–34.

For simplicity, we consider the two-fluid equations in a reference frame that moves with

the plasma jet center of mass velocity. In this frame, ions are nearly stationary because the

mean ion velocity approximately equals the plasma jet center of mass velocity. As a result,

ue in this frame not only describes the mean electron drift velocity but also the electron drift

velocity relative to ions. This use of ue is consistent with the definition of ue in section IIIA.

We will analyze equations near an unstable equilibrium with an initial density n0 and an

initial suprathermal drift velocity ue0 that satisfies 1 ≪ ue0/vTe ≪
√

mi/me. This fast ue0

is achieved when the plasma jet cross-section is significantly constricted. This equilibrium

is perturbed by an evacuation instability that has a space-time dependence proportional

to exp(ikzz + γt) where the wavenumber kz = 2π/λ is defined by the wavelength λ of the

RT ripples (∼ 1 cm) and the growth rate γ is assumed to be faster than that of the RT

instability (γRT is experimentally measured to be on the order of 1 × 106 s−1) but slower

than kzvTe.

Fig. 4 shows the assumed γ is either much smaller or much bigger than several charac-

teristic frequencies relevant to the Caltech plasma jet experiment. After an expression for γ

is derived, it can be directly verified that γ indeed falls in the range indicated by this plot,

i.e.,

γa ≪ kzvT i ≪ γRT ≪ γ ≪ kzvTe ≪ kzue0 ≪ ωpi ≪ νei, (7)

where γa is the growth rate of the ion-acoustic instability (see section VB), and ωpi is the

ion-plasma frequency. The physically relevant inequality (7) establishes that a number of

terms in Eqs. (2)–(6) are extremely small and so may be neglected; the detailed arguments

for dropping these terms are as follows:

1. The plasma is quasi-neutral, so ne = ni = n when ions are singly charged. From now

on, n will be used to denote either the electron or ion density. This simplification is
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FIG. 4. A plot of various characteristic frequencies in the Caltech plasma jet as a function of kz.

The dashed lines represent characteristic frequencies estimated with experimental measurements.

The growth rate γRT of the RT instability is approximated by the formula γRT ≈
√
geffkz, where the

effective gravity geff is estimated from image data to be ∼ 1010 m/s2. The ion acoustic instability

growth rate γa is approximated to be an order of magnitude smaller than kzcs where cs is the

ion acoustic velocity
√

κTe/mi (see section VB). The growth rate γ of the evacuation instability,

indicated by the shaded ellipse, is assumed to be at a intermediate location that is either much

bigger or smaller than a characteristic frequency. This separation in frequencies enables several

simplifications of the original two-fluid equations.

equivalent to assuming the left-hand side (LHS) of Eq. (6) is negligible compared to

either one of the two terms on the right-hand side (RHS), i.e.,∣∣∣∣ε0∂E∂z
∣∣∣∣ ≪ |niqi| , |neqi| . (8)

so the two terms on the RHS approximately balance each other.

Justifying this quasi-neutral simplification requires the wavelength of the perturbation

to be much longer than the electron Debye length λDe =
√
εκTe/nq2e . This requirement

can be written as

k2
zλ

2
De ≪ 1, (9)
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FIG. 5. A current channel with varying cross-sectional area extending from z1 to z2. The product

nueA is independent of z.

which is satisfied when kzvT i ≪ γ ≪ ωpi because

k2
zλ

2
De =

k2
zv

2
Te

ω2
pe

=
k2
zv

2
T i

ω2
pi

≪ γ2

ω2
pi

≪ 1. (10)

2. The partial time derivative in Eq. (2) is negligible compared to the spatial derivative

of n, i.e., ∣∣∣∣∂n∂t
∣∣∣∣ ≪ ∣∣∣∣ue

∂n

∂z

∣∣∣∣ . (11)

Ignoring the time derivative simplifies Eq. (2) to be ∇ · (nueẑ) = 0 which when

integrated over the volume of a current channel extending from z1 to z2, as shown in

Fig. 5, gives n(z2)ue(z2)A(z2) − n(z1)ue(z1)A(z1) = 0. Since z1 and z2 are arbitrary,

the equation above is equivalent to n(z)ue(z)A(z) = constant for any z (specifically,

nueA is constant at the constriction location). This corresponds to stating that the

electric current flowing along the channel is independent of z.

This simplification is justified when γ is small compared to kzue0. This is because

the linearized form of inequality (11) can be reduced to γ ≪ kzue0 due to the

exp (ikzz + γt) dependence of perturbations.

3. Similar to simplification 2, the partial time derivative in Eq. (4) can be ignored com-

pared to the convective term, i.e.,∣∣∣∣∂ue

∂t

∣∣∣∣ ≪ ∣∣∣∣ue
∂ue

∂z

∣∣∣∣ . (12)

4. Electrons are isothermal, so the electron pressure is Pe = nκTe where Te is a constant.

The validity of this assumption relies on γ being much smaller than kzvTe. This is be-

cause electrons can be considered as isothermal for a perturbation with a characteristic

velocity γ/kz that is slow compared to the electron thermal velocity vTe.

10



5. The ion pressure term can be ignored compared to the partial time derivative in Eq. (5),

i.e., ∣∣∣∣ 1n ∂Pi

∂z

∣∣∣∣ ≪ ∣∣∣∣mi
∂ui

∂t

∣∣∣∣ . (13)

This simplification is equivalent to assuming kzvT i ≪ γ because the the linearized form

of inequality (13) can be rewritten as Γk2
zv

2
T i ≪ γ2 and the adiabatic constant Γ is of

order unity. To see how this can be done, we first multiply both sides of inequality (13)

by n0/mi and express Pi1 in terms of n1 using the linearized adiabatic equation of state

Pi1 = ΓκTin1: ∣∣∣∣ΓvT i
∂n1

∂z

∣∣∣∣ ≪ ∣∣∣∣n0
∂ui1

∂t

∣∣∣∣ . (14)

We can then differentiate both sides with respect to z and eliminate ui1 using the

linearized form of Eq. (3) (see Eq. [25]) to get∣∣∣∣ΓvT i
∂2n1

∂z2

∣∣∣∣ ≪ ∣∣∣∣∂2n1

∂t2

∣∣∣∣ . (15)

Assuming n1 is proportional to exp (ikzz + γt) gives us desired inequality Γk2
zv

2
T i ≪ γ2.

The 5 simplifications listed above reduce the original system of two-fluid equations to be

nqeueA = I = constant, (16)

∂n

∂t
+

∂

∂z
(nui) = 0, (17)

meue
∂ue

∂z
= qeE − κTe

n

∂n

∂z
− Rei

n
, (18)

mi

(
∂ui

∂t
+ ui

∂ui

∂z

)
= qiE − Rie

n
. (19)

Adding Eqs. (18) and (19) gives

meue
∂ue

∂z
+mi

(
∂ui

∂t
+ ui

∂ui

∂z

)
+

κTe

n

∂n

∂z
= 0. (20)

which has the interesting feature of being a two-fluid equation that, while taking collisions

into account, does not explicitly depend on collisions. By two-fluid, it is meant that the

equation is beyond the scope of MHD as there is an explicit dependence on electron mass.

The collision terms in Eqs. (18) and (19) can be arbitrarily large without affecting Eq. (20).

If the collision effects are neglected and the cross-sectional area A is assumed to be

uniform, the system of Eqs. (16)–(20) reduces to Carlqvist’s collisionless evacuation mech-

anism21 and to the collisionless equations studied by Galeev et al.35 and by Bulanov and
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Sarosov36. Because collision effects and a constricted A are not considered in Refs. 21, 35, and

36, these studies failed to describe the unidirectional DL electric field shown in Fig. 3(d)

(note that the electric field in Fig. 2d of Carlqvist21 is bidirectional). It will be shown in

section IIID that collision effects and a constricted A are critical for producing the unidi-

rectonal DL electric field.

C. Growth rate of the evacuation instability

We now consider the cross-section A to vary on the time scale of the RT instability

which is assumed to be much slower than the evacuation instability being derived. Thus,

A is a slowly varying parameter from the point of view of the evacuation instability, and

a decrease of A with a consequent increase of ue is effectively the “knob” that triggers the

fast evacuation instability. Because the decrease of A is caused by the RT instability, the

evacuation instability can be considered as a tertiary instability triggered by the secondary

RT instability.

The growth rate γ of the evacuation instability can be calculated in the jet frame (ion

velocity is nearly zero in this frame) by first linearizing Eqs. (16), (17), and (20) about an

initial equilibrium with a uniform density n0 and an electron drift velocity ue0 to obtain

n0ue1 + n1ue0 = 0, (21)

∂n1

∂t
+ n0

∂ui1

∂z
= 0, (22)

meue0
∂ue1

∂z
+mi

∂ui1

∂t
+

κTe

n0

∂n1

∂z
= 0, (23)

where the subscript 1 denotes a small perturbation to the initial equilibrium. The cross-

sectional area A is treated as a constant when linearizing Eq. (16). We can express ue1 and

ui1 in terms of n1 using Eqs. (21) and (22):

ue1 = −n1ue0

n0

, (24)

∂ui1

∂z
= − 1

n0

∂n1

∂t
. (25)

Multiplying Eq. (23) by −n0 and differentiating the resulting equation with respect to z give

−n0meue0
∂2ue1

∂z2
− n0mi

∂2ui1

∂t∂z
− κTe

∂2n1

∂z2
= 0. (26)
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We can get an equation that only involves n1 by eliminating ui1 and ue1 using Eqs. (24)

and (25):

meu
2
e0

∂2n1

∂z2
+mi

∂2n1

∂t2
− κTe

∂2n1

∂z2
= 0. (27)

We can then derive a dispersion relation by assuming the density perturbation n1 has an

exp (ikzz + γt) dependence:

−k2
zmeu

2
e0 + γ2mi + k2

zκTe = 0, (28)

which can be solved for γ to obtain

γ = kz

√
me

mi

(u2
e0 − v2Te). (29)

Equation (29) shows γ is real and positive when ue0 is greater than vTe, so this instability

is triggered when reduction of A causes the electron drift velocity to exceed the electron

thermal velocity. It is important to note that, while collisions have been taken into account,

this instability does not depend on whether or not the plasma is collisional. Thus, the

instability should occur in a highly collisional plasma such as the Caltech plasma jet. Using

kz = 700 m−1, me = 9.1×10−31 kg, mi = 6.7×10−26 kg, ue0 = 2×106 m/s, and vTe = 6×105

m/s, we can estimate the instability growth rate γ for the Caltech argon plasma jet to be

γ ≈ 5× 106 s−1, which is indeed consistent with Fig. 4.

D. Electric field

The electric field in the plasma jet can be found from Eq. (4):

E =
me

qe

(
∂ue

∂t
+ ue

∂ue

∂z

)
+

1

nqe

∂Pe

∂z
+

Rei

nqe
, (30)

As discussed in section IIIA and shown in Figure 4, the electron-ion collision frequency

νei is much larger than any other characteristics frequencies, such as kzue0 and kzvTe. The

collisional term Rei/nqe is proportional to νei:

Rei

nqe
=

νeime(ue − ui)

qe
≈ νeimeue

qe
. (31)

Thus, we can assume the collision term in Eq. (30) is the dominant term that balances the

electric field, i.e.,

E ≈ νeimeue

qe
. (32)
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This electric field is in fact a DL that is inversely proportional to the cross-sectional area A.

Before the plasma jet is constricted significantly, the electron drift velocity is slower than the

electron thermal velocity vTe. To first order, we can assume νei is initially proportional to

nT
−3/2
e ln Λ. Since Te is a constant for isothermal electrons and lnΛ does not vary much, νei

is approximately proportional to n. Thus, the electric field in Eq. (32) is approximately pro-

portional to the electron flux nue, which is inversely proportional to the cross-sectional area

A because nue = I/qeA. Therefore, this electric field is enhanced at the region constricted

by RT ripples and appears as a DL as shown in Fig. 3(d).

The combination of this DL and high collisionality of the plasma jet can possibly cause

Ohmic heating which can potentially explain the 20–60 eV EUV radiation observed in the

plasma jet experiment. Because the Caltech plasma jet is highly collisional, this DL electric

field can be quite large. For example, this DL can be as large as ∼ 6 × 104 V/m, when

the relative drift velocity is ue ≈ 1 × 105 m/s and the electron-ion collision frequency is

νei ≈ 1 × 1011 s−1. A complication associated with Ohmic heating is if the local electron

temperature is increased to become sufficiently large, then the condition ue ≫ vTe would

cease and the evacuation instability would be quenched; consideration of this higher order

issue will be left for future consideration and so will not be addressed here.

The 1/A dependence derived above depends on νei being proportional to nT
−3/2
e ln Λ.

However, assuming νei is proportional to nT
−3/2
e ln Λ is not valid when the electron drift

velocity becomes significantly faster than the electron thermal velocity31. As a result, the

DL due to collisions will probably not scale as 1/A when the plasma jet is constricted

significantly. In fact, the strength of the DL may decrease because the collisionality of

suprathermal electrons decreases as the relative drift velocity increases31. When the strength

of DL has decreased to a point that it no longer dominates the RHS of Eq. (30), we can

retain an extra term from Eq. (30):

E =
Rei

nqe
− me

2|qe|
∂u2

e

∂z
. (33)

The newly included term on the RHS of Eq. (33) is the leading order correction because

the linearized form of this term is proportional to kzue0, which is smaller than νei but larger

than other relevant characteristic frequencies according to Fig. 4.

The new correction term is proportional to the partial z derivative of u2
e. Across the

constricted region, the velocity profile in Fig. 3(b) has a maximum, so the partial z derivative
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of u2
e will be positive on the LHS of the maximum and negative on the RHS of the maximum.

Because the constant in front of the partial z derivative is negative, the second term should

point away from constricted region. Since ue can grow exponentially once the evacuation

instability is triggered, this initially insignificant bidirectional electric field will also grow

exponentially and possibly become stronger than the unidirectional DL eventually. Unlike a

unidirectional DL, this bidirectional electric field cannot accelerate the bulk of the streaming

electrons since the associated electric potential does not have a net jump (the integral of the

bidirectional electric field across the constricted region equals 0). However, a small fraction

of electrons can possibly be accelerated by this bidirectional electric field in two opposite

directions. These fast electrons could possibly explain why localized X-ray sources near the

electrode and far from the electrode have been observed simultaneously in the Caltech jet

experiment (see Fig. 9 of Zhou, Pree, and Bellan37).

IV. NUMERICAL SOLUTION

A numerical solution of the problem is now presented to demonstrate the evacuation

instability when the cross-sectional area of Caltech’s plasma jet is significantly constricted

by the RT instability. The evacuation instability manifests itself as a fast growth of electron

drift velocity and a rapid depletion of density in the numerical solution. This numerical

solution replicates and extends the linear analysis.

A. Dimensionless equations and Discretization

For the numerical treatment, we use Caltech-experiment-relevant reference quantities

defined in Table I to normalize the equations of our collisional two-fluid model. For the

reference quantities in Table I, the reference length zref, density nref, and electric current Iref

are experiment-specific independent quantities that need to be prescribed. Other reference

quantities can be derived from these three prescribed quantities, the elementary charge

e, and the electron mass me. With these reference quantities, the dimensionless form of
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TABLE I. Definitions of reference quantities relevant to the Caltech plasma jet experiment.

Symbol Reference quantity Value

zref length 1 cm

nref density 1022 m−3

Iref current 100 kA

qref charge e = 1.6021× 10−19 C

mref mass me = 9.1094×10−31 kg

Aref = z2ref cross-sectional area 1 cm2

uref = Iref/Arefnrefqref velocity 6.2× 105 m/s

tref = zref/uref time 16 ns

Tref = mrefu
2
ref Temperature 2.2 eV

Eqs. (16), (17), and (20) are

n̄ūeĀ = −Ī = constant, (34)

∂n̄

∂t̄
+

∂

∂z̄
(n̄ūi) = 0, (35)

1

2

∂ū2
e

∂z̄
+ m̄i

(
∂ūi

∂t̄
+

1

2

∂ū2
i

∂z̄

)
+ T̄e

∂

∂z̄
ln n̄ = 0, (36)

where the barred (dimensionless) variables are the original (dimensioned) variables divided

by their associated reference quantities.

The 3 dimensionless equations above are discretized with the Forward Time Centered

Space (FTCS) method. The spatial dimension z̄ is discretized over the interval [−π, π]

with a mesh width of h = π/128. The dimensionless time t̄ is discretized with a discrete

time step of k = 0.5h. For any variable f defined on the z̄ − t̄ space-time plane, fm
j

denotes the pointwise value f(z̄j, t̄m). All quantities are assumed to be periodic so that
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FIG. 6. The area function used in the numerical calculation. The area near z̄ = 0 has been reduced

significantly to trigger the evacuation instability.

f(−π, t̄m) = f(π, t̄m). The discretized equations read

ūm
e,j =

−Ī

n̄m
j Ā

m
j

, (37)

n̄m+1
j =n̄m

j − k

2h

(
n̄m
j+1ū

m
i,j+1 − n̄m

j−1ū
m
i,j−1

)
, (38)

ūm+1
i,j =ūm

i,j −
k

2hm̄i

[(
ūm
e,j+1

)2 − (
ūm
e,j−1

)2
2

+ T̄e

(
ln n̄m

j+1 − ln n̄m
j−1

)]
− k

4h

[(
ūm
i,j+1

)2 − (
ūm
i,j−1

)2]
. (39)

B. Numerical results

Given an area function Ā and parameters Ī, T̄e, and m̄i, Eqs. (37)–(39) can be solved

recursively for unknowns ūe, n̄, and ūi from an initial ion velocity ū0
i and an initial density

n̄0. For the numerical solution to be presented in this section, we choose the area function to

be Ā = π
[
1− 15/16et̄/1000sech(2πz̄)

]
, so that the cross-sectional area Ā at z̄ = 0 has been

exponentially reduced by RT instability to π/16 at t̄ = 0. A plot of this area function at t̄ = 0

is shown in Fig. 6. The e-folding time is chosen to be 1000, so that the area is essentially

constant on the time scale of the evacuation instability. The dimensionless parameters Ī,

T̄e, and m̄i are chosen to be 0.7, 1, and 70000 respectively to match the conditions in the

plasma jet experiment. For the initial condition, we use an initially uniform density profile

n̄0
j = 1 and an initially stationary ion velocity profile ū0

i,j = 0.
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(a)

(b)

FIG. 7. The numerically calculated (a) electron drift velocity and (b) density at different times

around z̄ = 0. The electron drift velocity becomes faster and the density dip becomes deeper due

to the evacuation instability triggered by the constriction of the plasma jet cross-section. ∆|ūe| in

(a) denotes the change in electron drift velocity. Fig. 8 shows how ∆|ūe| grows exponentially with

time due to the evacuation instability.

Fig. 7 shows the numerically calculated |ūe| and n̄ around z̄ = 0 at different times.

These numerical results agree with the apparent profiles illustrated in Fig. 3(b) and (c)

qualitatively. In Fig. 7(a), the absolute value of ūe peaks at z̄ = 0 due to the constriction

of the plasma jet. |ūe| then grows rapidly due to the evacuation instability. In order to

conserve the current Ī, a density dip starts developing as shown in Fig. 7(b). As time

increases, the density dip becomes deeper and deeper. This density dip is consistent with

the dimming of visible light observed in the plasma jet experiment. In Fig. 8, we compare

the numerical growth of |ūe| to the exponential growth obtained from linear theory. The

blue line represents the numerically calculated ∆|ūe| indicated in Fig. 7, and the red line is

18



FIG. 8. The change in electron drift velocity z̄ = 0 as a function of time is plotted in blue. The

red line is the exponential function 3.6e0.082t̄, where the 0.082 in the exponent is the normalized

growth rate calculated from Eq. 29. This normalized growth rate corresponds to a dimensioned

growth rate of approximately 5 × 106 s−1.

an exponential function that grows with a normalized growth rate calculated from Eq. (29)

using initial parameters from the numerical calculation . The numerical solution agrees well

with the linear theory until t̄ = 2.5. After t̄ = 2.5, the numerical solution starts to grow

faster than the growth obtained from linear theory.

V. DISCUSSION

A. Connection to the two-stream instability

The growth rate γ of the evacuation instability is related to a very low frequency approx-

imate solution to the classic dispersion for the two-stream instability1,3

1−
ω2
pi

ω2
−

ω2
pe

(ω − kzue0)2
= 0, (40)

where ω is the (complex) frequency of the two-stream instability and ue0 ≫ vTe is implied

since there is no mention of vTe. To obtain the approximate low frequency solution, ω2
pi/ω

2

and ω2
pe/(ω−kzue0)

2 are assumed to be much greater than 1 so that the 1 in Eq. (40) can be

ignored; this corresponds to assuming quasi-neutrality. In addition, ω in the denominator

of the electron term in Eq. (40) is neglected compared to kzue0. The resulting simplified
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dispersion
ω2
pi

ω2
+

ω2
pe

k2
zu

2
e0

= 0 (41)

has a positive (unstable) imaginary solution ω = ikzue0

√
me/mi, which is similar to γ if vTe

is ignored in Eq. (29).

However, there is a large difference between the evacuation instability derived here and

the classic two-stream instability. The classic two-stream instability ignores collisions, and

many studies have argued that including collisions would suppress the growth rate of the

instability15–19. Contrarily, the derivation of the evacuation instability shows that the exis-

tence of the instability, i.e., its threshold and growth rate, is indifferent to collisions since

the momentum lost by electrons as a result of collisions equals the momentum gained by

ions as demonstrated here in adding Eqs. (18) and (19) to obtain Eq. (20).

The evacuation instability’s indifference to collisions might have a connection to a new

kinetic theory38, recently studied by Tigik, Ziebell, and Yoon, on collisional damping rates for

plasma waves because this kinetic theory has predicted damping rates that are significantly

weaker than those according to the traditional theory. However, the situation considered by

Tigik, Ziebell, and Yoon has no initial electron drift velocity, i.e., ue0 = 0 while the situation

considered in this paper has a finite ue0. More studies are needed to understand the effect

of finite ue0 on the collisional damping rates calculated from the newly developed kinetic

theory.

B. Difference from the ion-acoustic instability

The ion-acoustic instability is a well-known instability that can be excited in a current-

carrying plasma if the electron drift velocity ue0 relative to ions is greater than the ion-

acoustic velocity cs =
√

κTe/mi. Readers who are familiar with this instability may recall

that the standard expression for the ion-acoustic instability growth rate is roughly

γa ≈
π1/2

2
√
2
kz (ue0 − cs)

√
me

mi

, (42)

in the limit that kzλDe ≪ 1 and Te ≫ Ti (see the textbook by Ichimaru39 for a derivation).

If ue0 ≫ cs, then γa ≈ kzue0

√
me/mi, which is seemingly similar in expression to the growth

rate γ of the evacuation instability (see Eq. [29]). However, γa is assumed to be much

smaller than kzcs in the calculation that leads to Eq. (42). In other words, equation (42) is
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only valid if γa is evaluated to be much smaller than kzcs. This requirement automatically

makes γa much smaller than γ because ue0 ≫ vTe is assumed in the derivation that leads to

γ ≈ kzue0

√
me/mi, so

γ ≫ kzvTe

√
me/mi = kzcs ≫ γa. (43)

VI. CONCLUSION

In summary, the collisional two-fluid model presented here extends the well-known two-

stream instability to a previously unknown high-collision regime, and this extension predicts

an evacuation instability when the current channel cross-section is constricted. Applying this

model to the Caltech plasma jet experiment demonstrates that electron acceleration, density

depletion, and an electric DL associated with localized plasma heating are developed when

the plasma jet cross-section is constricted by the RT instability. Therefore, the collisional

two-fluid model is consistent with the visible light dimming and EUV radiation observed

in the Caltech plasma jet experiment. This model is likely applicable to other collisional

plasmas, both in nature and in the laboratory, that can develop constricted cross-sections

of current channels. Examples include solar prominences and the formation of laboratory

spheromaks.
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Spheromak Formation,” Physical Review Letters 103, 105003 (2009).

26A. L. Moser and P. M. Bellan, “Magnetic reconnection from a multiscale instability cas-

cade,” Nature 482, 379–381 (2012).

27B. Seo and P. M. Bellan, “Spatially translatable optical fiber-coupled heterodyne interfer-

ometer,” Review of Scientific Instruments 88, 123504 (2017).

28P. M. Bellan, “Experiments relevant to astrophysical jets,” Journal of Plasma Physics 84,

755840501 (2018).

29W. A. Newcomb, “Hydromagnetic stability of a diffuse linear pinch,” Annals of Physics

10, 232–267 (1960).

30A. S. Richardson, 2019 NRL Plasma Formulary (2019).

31H. Dreicer, “Electron and Ion Runaway in a Fully Ionized Gas. I,” Physical Review 115,

238–249 (1959).

32P. M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, 2008).

33D. R. Nicholson, Introduction to Plasma Theory, Vol. 1 (Wiley New York, 1983).

34R. Fitzpatrick, Plasma Physics: an Introduction (CRC Press, 2015).

35A. A. Galeev, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, “Nonlinear theory of

the Buneman instability,” Soviet Physics-JETP 54, 306–309 (1981).

36S. V. Bulanov and P. V. Sasorov, “Ion acceleration at the nonlinear stage of the Buneman

instability,” Soviet Journal of Plasma Physics 12, 29 (1986).

37Y. Zhou, S. Pree, and P. M. Bellan, “Imaging suprathermal x-rays from a laboratory

plasma jet using PIN-diode-based and scintillator-based 1D pinhole/coded aperture cam-

eras,” Review of Scientific Instruments 94, 013504 (2023).

38S. F. Tigik, L. F. Ziebell, and P. H. Yoon, “Collisional damping rates for plasma waves,”

Physics of Plasmas 23, 064504 (2016).

24



39S. Ichimaru, Basic principles of plasma physics: a statistical approach (W. A. Benjamin,

1973).

25


