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Interaction-driven spontaneous ferromagnetic insulating states

with odd Chern numbers
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Motivated by recent experimental work on moiré systems in a strong magnetic field, we compute the compressibility as well as the
spin correlations and Hofstadter spectrum of spinful electrons on a honeycomb lattice with Hubbard interactions using the
determinantal quantum Monte Carlo method. While the interactions in general preserve quantum and anomalous Hall states,
emergent features arise corresponding to an antiferromagnetic insulator at half-filling and other incompressible states following
the Chern sequence * (2N + 1). These odd integer Chern states exhibit strong ferromagnetic correlations and arise spontaneously
without any external mechanism for breaking the spin-rotation symmetry. Analogs of these magnetic states should be observable
in general interacting quantum Hall systems. In addition, the interacting Hofstadter spectrum is qualitatively similar to the
experimental data at intermediate values of the on-site interaction.
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INTRODUCTION

The hallmark of nontrivial topology of filled bands is a quantized
Hall conductance, an integer multiple of the quantum of
conductance. The integer is set by the Chern number’. Typically,
deviations from integer Chern numbers indicate that electron-
electron interactions are important, as in the fractional quantum
Hall effect. However, there are several examples of physical
systems in which interactions dominate but the Chern number is
still an integer. One such mechanism that involves spin polariza-
tion and its generalizations is quantum Hall ferromagnetism?~°.
Moiré systems in a magnetic field provide a second example in
which symmetry-broken quantum Hall insulators appear at high
magnetic fields’~"". The extent to which these phenomena are
generic beyond graphene-based systems and independent of
lattice geometry is unknown.

Motivated by these phenomena, we report here a series of
insulating states on the honeycomb and square lattice which are
driven by interactions. The series we report has odd integer Chern
numbers, £1, 3,5, --- . An analysis of the spin correlations suggests
that the spin rotation symmetry is spontaneously broken resulting
in ferromagnetism. Our observations here add intrigue to the
mixed role played by topology and interactions in two-
dimensional (2D) materials. Our simulations reveal that explicit
single-particle symmetry breaking such as Zeeman splitting is not
required and the full ferromagnetic sequence arises sponta-
neously in a general bipartite lattice.

The evolution of electronic states in a perpendicular magnetic
field has a long history. Because a magnetic field preserves the
crystal momentum, the single-particle energy spectrum for non-
interacting electrons is easily obtained'>™'* by replacing the
momentum p with p —eA/c where A is the magnetic vector
potential, e the electron charge and c the speed of light. In 2D, the
resultant Hofstadter' spectrum adequately describes the evolu-
tion of the tight-binding electronic states as a function of the
magnetic flux. Hidden in the wings of the underlying butterfly
spectrum are gapped states indexed by Chern numbers which fix’

the quantization of the Hall conductance. Moiré systems as in the
case of magic-angle twisted bilayer graphene (MATBG) offer a new
route to engineering gaps in the electronic spectrum through the
competition between band filling and the interaction energy'>~'8,
As the twist angle controls'® the ratio of the kinetic to the
potential energy and leads to a complete quenching of the kinetic
energy at the magic angle, moiré systems in a magnetic field offer
the ultimate playground for studying the physics from the
interplay between strong correlation and magnetic field. With
the kinetic energy quenched, moiré systems encode the evolution
of the Hofstadter spectrum in the presence of strong interactions.
This is currently an unsolved non-trivial problem.

This problem is complicated by the fact that the simple
replacement of the momentum by p — eA/c fails in the presence
of interactions because interactions in general mix crystal
momenta as in the case of the Hubbard interaction. Consequently,
while theoretical efforts have addressed certain limits of the
interacting Hofstadter problem?°=°, no analytical method exists
to determine the complete spectrum in a magnetic field in the
presence of interactions. Nonetheless, this is an urgent problem in
condensed matter physics given the plethora of experiments on
MATBG and related systems that are focused on revealing the low-
energy physics resulting from the interplay between a magnetic
field and strong correlation.

Theoretically, one has three options: 1) phenomenology, 2)
some type of mean-field theory, dynamical*?33 or otherwise3*7
or 3) serious numerics which so far have been limited to exact
diagonalization333° on few-particle systems. We pursue the last
option in this paper as no benchmarks have been established for
even the simplest model of interacting electrons on any of the
lattices relevant to either MATBG or the transition metal
dichalcogenide systems. We focus on spinful fermions primarily
on a honeycomb lattice including only nearest neighbor hopping
and Hubbard interactions under an external magnetic field, and
perform a determinantal quantum Monte Carlo (DQMC) simula-
tion for all densities and magnetic fluxes. DQMC is an unbiased
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Fig. 1 Noninteracting compressibility for square and honeycomb lattice. Noninteracting compressibility as a function of magnetic flux ¢
and electron density (n) for (@) honeycomb lattice (Nsite = 36 X 36 X 2) and (b) square lattice (N = 40 x 40) at B/t = 20. The leading quantum

Hall states are labeled with the corresponding Chern number.

and numerically exact method to capture the full quantum
fluctuations for correlated systems. In a prior work with Hubbard
interactions, features such as the local compressibility and other
thermodynamic quantities were calculated using DQMC as a
function of the magnetic flux for the square lattice?” and no
ferromagnetism was reported. We focus here on a honeycomb
lattice as it is closer to the underlying geometry of most existing
moiré systems. In general, we find that the interactions preserve
the integer quantum and anomalous Hall states of the non-
interacting system. However, the interactions do generate an
antiferromagnetic insulating state at half-filling, as expected, and
also emergent interaction-driven insulating states in both of the
honeycomb and square lattices. The Chern sequence for these
states is (2N + 1). All such states exhibit strong ferromagnetic
correlations. This represents numerically exact evidence for such
interaction-driven states in the full density region based on the
Hubbard interaction.

RESULTS

Noninteracting quantum Hall effects

To begin with, we present the non-interacting charge compres-
sibility x =0(n)/0u in Fig. 1 as a function of magnetic flux and
electron density and compare with the results for the square
lattice at 8=20/t. In both the square and honeycomb lattices,
particle-hole symmetry obtains as both are bipartite and the
model contains only nearest neighbor hopping. The straight lines
in Fig. 1 correspond to solutions to the Diophantine equation’

<n>:r¢%+s, M

in which (n) = (Ne)/N. (N. is the number of unit cells), r is an
integer given by the inverse slope of the straight lines and s is the
offset given by the intercept. r defines the Chern number. We have
chosen to plot the filling from [0, 4] to take into account the spin
and sublattice degeneracy in the honeycomb lattice but from
[0, 2] for the square lattice in which only a spin degeneracy exists.
Hence, there is only a factor of 2 in translating the densities
between the two systems. In both Fig. 1 panels a and b, the
Diophantine lines' starting from the bottom left (right) corners
have r=+2N (the factor of 2 accounts for spin degeneracy) with
N=1,2 .- corresponding to spin-unpolarized quantum Hall states,
while in only Fig. 13, the lines that start from half-filling ((n) = 2) at
zero-field and have r==4(N + 1/2) (the factor of 4 accounts for
spin and sub-lattice degeneracy) with N=0, 1, 2 --- indicating the
anomalous quantum Hall effect®®=*2, Thus, the honeycomb lattice
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is more closely aligned to the physics observed in MATBG than is
the square lattice.

Turning on interactions

Next, we explore how interactions change this pattern in the
honeycomb lattice. We use DQMC to calculate the compressibility,

X =B =25 (mm) — (i), @
ij

in the presence of Hubbard interactions, where x. is the charge
correlation function. Due to the Fermionic sign problem, we are
only able to calculate the compressibility for the full density and
flux region for a system size N, =6 X 6x 2 with an interaction
strength up to U/t =4 and temperature as low as T/t =0.125 (or
B=28t""). In the first row of Fig. 2, as U increases, the non-
interacting lines in the compressibility are softened and a middle
vertical line appears as a single-particle gap develops. At the
largest U/t=4, we can still observe the dominant and sub-
dominant lines, indicating the resilience of the non-interacting
quantum Hall effect against interactions. Note that the lines not
merging at ¢/¢po=0,0.5 in Fig. 2b, c is due to strong finite size
effects (see Supplementary Figs. 1 and 2) and thus disregarded in
Fig. 2e, f. Also of note is the emergence of a new feature at (n) =2
for U/t =4. This corresponds to a dip in the density of states, a
precursor to the Mott gap****. The second row of these figures
corresponds to a simulation at the lower temperature of 3 =20/t
for U=0 and U/t=2. Figure 2d shows a sharpening of the
Diophantine features as the temperature is lowered by more than
a factor of two to 3= 20/t. At U/t =2, the vertical line at (n) =2
possibly indicates a gap opening for finite field. At this
temperature, even for such a modest value of U, the suppression
of the density of states is evident and the corresponding insulator
is antiferromagnetic (see Supplementary Fig. 6). Also of note is the
state indicated by the solid red line in Fig. 2¢, e. This line evolves
as a function of the magnetic flux with a slope of unity. Such a
state is absent from the non-interacting sequence as it has a
Chern number of +1. Notably this state is visible in the map of the
spin correlation (Fig. 2f),

Xe= 30500 = SIS, ®)

In fact, the light features in Fig. 2f reveal that these possibly
incompressible states all have a markedly enhanced spin
correlation with distinct slopes as a function of magnetic flux
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Fig. 2 Compressibility and spin correlation in the presence of interactions. Compressibility as a function of magnetic flux and electron
density in an Ng = 36 x 36 x 2 cluster for (a, d) U/t =0; an N =6 X6 x 2 cluster for (b, ) U/t=2 and (c) U/t =4. The first row is for the
inverse temperature 3 = 8/t and the second row for § = 20/t. Panel (f) shows the corresponding spin correlation at U/t =2 and 3 = 20/t. It has a

reverse color bar compared to those of the charge compressibilty.

and density which differ from those of the non-interacting system
even at much lower temperatures (see Supplementary Fig. 4). It is
the origin of these states that is the principal focus of this paper.

We gain further insight into the possible emergence of
incompressible states by taking slices through the charge
correlation, x. = x/B, at particular values of the magnetic flux. In
Fig. 3a—c, we show the charge correlation explicitly at ¢/¢po =11/
36, chosen to avoid finite-size effects (see Supplementary Figs. 1
and 2) for the honeycomb lattice and ¢/¢o = 2/9 for the square
lattice. For the honeycomb lattice, Fig. 3a, b illustrates that as the
temperature is lowered from B=8/t to f=20/t, the dual-dip
feature for U=0 in the vicinity of (n) =2 gives rise to a full
quantum Hall state. With the interaction increasing to U = 4t, this
dual-dip feature contains a depression precisely at (n) = 2. This is
the incompressible Mott gap at (n) = 2*344, Panel Fig. 3c displays
the analogous trend for the square lattice. Away from half-filling,
we find several emergent states which have a suppressed charge
correlation indicating the possible onset of a gap. The states occur
around fillings of (n) =11/36 and 11/12. The same is true of their
particle-hole equivalents. It is precisely the first of such states that
is highlighted in red in Fig. 2e. The analogous states are also
present for the square lattice in Fig. 3c. All such dips in x. are
enhanced as the interaction strength increases. Further, such
behavior persists even as the system size increases (see
Supplementary Fig. 3). To uncover the possible cause of these
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states, we focus on the spin susceptibility x,. For U=0, x. = 4xs.
However, the second row of Fig. 3 shows that whenever the
charge correlation exhibits an interaction-driven dip, the spin
correlation shows a peaked structure. Figure 3e shows that as the
temperature is lowered, the peak of the spin correlation increases
at the fillings where the charge correlation develops a dip.

Now we look at the full density- and magnetic-flux-dependent
spin correlation x, for U/t=2 and U/t=4 in Fig. 4a and b
respectively at their lowest temperatures. Straight lines with
inverse slope corresponding to Chern number C=+1,3,5 are
plotted and found to be aligned with the ridges of the spin
correlation. We choose one representative point (not the bright-
est) at each line and study its temperature evolution at different
values of U, presented in Fig. 4c-e. In all cases, when U =0, the
spin correlation deceases along with temperature. However, for a
finite U, the spin correlation blows up as the temperature
decreases (below a critical temperature for Fig. 4d and e). The
ultimate spin state is revealed from a spatial map of the real-space
static spin susceptibility:

B
srw=0) = [ 326, s 0 @

presented in Fig. 4f-h, at U/t=2 and the lowest temperature
(B =30/t as circled in Fig. 4c—e respectively). This quantity is more
sensitive in detecting fluctuating order at finite temperature than
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Fig. 3 Compressibility and spin correlation at a specific magnetic flux. The first row shows the charge correlation at varying interaction
strength with different fixed parameter sets. Panel (a) and (b) are for the honeycomb lattice at ¢/¢po = 11/36, while panel (c) is for the square
lattice at ¢p/¢po = 2/9. The corresponding temperatures are (a) 8 = 8/t, (b) B = 20/t, and (c) B = 5/t (tsq is the nearest neighbor hopping for the
square lattice). Panels (d-f) in the second row show the corresponding spin correlation and shares the same legend as does the first row.

the zero-time spin correlation**. The color map signifies positive
spin correlation across the lattice relative to the site at the origin.
Such same-sign correlations are indicative of ferromagnetism.
Figure 4f for a Chen number C =1 exhibits a strong ferromagnetic
susceptibility. Figure 4g with a Chen number C =3 also displays a
clear ferromagnetic pattern. Figure 4h corresponding to Chen
number C =15 reveals an evident tendency towards ferromagnet-
ism at lower T, though not fully ferromagnetic as in the other
cases. In addition, we also expect the C= %1 ferromagnetic states
to exist in the middle of Fig. 4a, b (as depicted by the dashed line)
with extrapolation to (n) =2 at zero flux. But limited by the sign
problem, we have not yet been able to investigate low enough
temperature to unearth a clear ferromagnetic pattern at these
densities.

The full picture is now apparent. The charge dips and enhanced
spin correlations, which have no counterpart in the non-
interacting system in Fig. 2, correspond to ferromagnetic
insulators with odd integer Chern numbers. Both the spin
correlations and magnitude of the charge gap are enhanced as
the temperature is lowered. The same trend holds for the square
lattice as is evident from Fig. 3c, f. This behavior matches
expectations from quantum Hall ferromagnetism, but here we
show that local interactions are sufficient to induce odd Chern
integer states on both the honeycomb and square lattices. We are
led to the conclusion that such insulating states are generically
present in bipartite lattices with interactions with no need for fine-
tuning or single-particle splitting. While there is some indication of
charge ordering (see Supplementary Fig. 5), it is not compelling at
this level of study and hence we leave this for a future publication.

We finally display the benchmark calculation of the Hofstadter
spectrum as defined by the local density of states, the quantity
directly measured experimentally. Our focus in Fig. 5 is at half-
filling and U/t=2,4, obtained from constructing an analytic
continuation with Differential Evolution for Analytic Continuation
(DEAC) on the DQMC local Green function. The comparison
between DEAC and the analytical result at U= 0 (see Supplemen-
tary Fig. 7) gives us some idea about the resolution of DEAC and
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offers a guide as to how to interpret the interacting system results.
Since there is no sign problem at half-filling, we are able to
conduct the calculation at a low temperature (8=30/t). Panels
Fig. 5a, b show how the antiferromagnetic gap comes into full
view by U/t = 4 and some hint of it appears already at the modest
value of U/t =2 only with finite magnetic field. The gap at U/t =2
is most likely to be of the Slater type*®*” because the interaction
strength is only around 1/3 of the bare bandwidth and the
insulating state appears at much lower temperature than that
required for the formation of antiferromagnetic correlation. On the
other hand, the gap at U/t =4 is closer to a Mott gap because it is
established at a much high temperature (shown in Fig. 2c),
consistent with previous studies on the Hubbard model in
honeycomb lattice®®*4. While the corresponding experimental
figure is at variable filling'®, which is inaccessible because of the
sign problem, the overall features qualitatively reproduce the
experimental results for moderate values of U/t = 2.

DISCUSSION

We have studied here the evolution of the excitation spectrum of
a Hubbard-interacting electron gas in the presence of a strong
perpendicular magnetic field on bipartite lattices. We have shown
that while the interactions preserve the non-interacting integer
guantum and anomalous Hall states, new states do emerge from
the interactions. In addition to the antiferromagnetic gap at half-
filling, we have discovered a series of odd-integer Chern insulating
ferromagnetic states which exhibit enhanced positive spin
correlations as the temperature is lowered. In light of ferromag-
netism as the underlying cause of the insulating states, that the
Chern number is odd is easily understood. Our work suggests
ferromagnetism is generic requiring just modest magnetic fields
and strong interactions to generate the full sequence of odd-
integer states. Note while the sequence we observe departs from
the middle or the edge of the band, an odd-integer sequence
emanating from the (n) =1 or (n) = 3 fillings on the honeycomb
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Fig. 4 Spin correlation and ferromagnetic states. The first row shows the spin correlation at (a) U/t =2, 3 =20/t and (b) U/t =4, 3 = 8/t, with
the green lines depicting the odd integer Chern states aligned with the ridge of the spin correlation. Panels (c-e) in the second row show the
spin correlation for selected points (marked at each Chern state in panels (a) and (b)) as a function of temperature under different interaction
strengths. Panels (f-h) in the third row present the real-space zero-frequency spin susceptibility pattern for the circled points in the

corresponding second row (at U/t =2 and the lowest temperature 3 =

lattice would require spin-orbit coupling in the Hamiltonian,
thereby generalizing the utility of this work.

METHODS
We study the Hofstadter-Hubbard model on a honeycomb lattice,

H= -t Z exp(l¢lj) io jO’ “ano
(ij)o (5)
+U (- i —3),

where t represents the nearest neighbor hopplng, . (Gio) creates
(annihilates) an electron with spin o at site i, u is the chemical
potential, U is the on-site interaction. Due to the presence of a
uniform magnetic field, we use the Peierls substitution’? to

Published in partnership with Nanjing University

30/t).

introduce the phase through the flux threading,

2m [N
== [ A-dl, 6
%A ©

where ¢ = h/e in the hopping term is a result of the quantized
magnetic field and the integration is over the straight line path
from site i to j.

We simulate this Hamiltonian Eq. (5) on a finite cluster
Ngie = 2L%. The honeycomb lattice contains two sub-lattices,
which explains the factor of 2, with lattice constant a=1 and L
the number of site along either lattice basis respectively for each
sub-lattice. We adjust the modified periodic boundary conditions
in Ref. %8 to the honeycomb lattice. To obtain a single-value wave
function requires the flux quantization condition ¢/¢¢ = n#/N, with

¢i,j
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Fig. 5 Density of states at half-filling. The density of states at half-
filling ((n) = 2) and B =30/t for (a) U/t=2 and (b) U/t =4.

nran integer and N, = L2 the number of unit cells. The symmetric
gauge A = (xy — yx)B/2 is chosen for this calculation.

We apply DQMC* to this model Eq. (5) and calculate the
compressibility and Green function. The jackknife resampling is
used to estimate the standard error of the mean as error bars in
DQMC results. With the local Green function, we compute the
local density of states using the recently developed DEAC>2,

DATA AVAILABILITY

The data for this study is available at https://zenodo.org/record/76081674.Y-
AxyezML6g.

CODE AVAILABILITY
The DQMC code used for this project can be obtained at https://github.com/edwnh.

Received: 4 October 2022; Accepted: 13 February 2023;
Published online: 09 March 2023

REFERENCES

1. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized hall
conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405-408
(1982).

2. Sondhi, S. L., Karlhede, A, Kivelson, S. A. & Rezayi, E. H. Skyrmions and the
crossover from the integer to fractional quantum hall effect at small zeeman
energies. Phys. Rev. B 47, 16419-16426 (1993).

3. Manfra, M., Goldberg, B., Pfeiffer, L. & West, K. Skyrmions and the v=1 quantum
hall ferromagnet. Acta Phys. Polonica A 92, 621 (1997).

4. Arovas, D. P., Karlhede, A. & Lillieh66k, D. SU(n) quantum hall skyrmions. Phys. Rev.
B 59, 13147-13150 (1999).

5. Ezawa, Z. F. & Hasebe, K. Interlayer exchange interactions, SU(4) soft waves, and
skyrmions in bilayer quantum hall ferromagnets. Phys. Rev. B 65, 075311 (2002).

6. Nomura, K. & MacDonald, A. H. Quantum hall ferromagnetism in graphene. Phys.
Rev. Lett. 96, 256602 (2006).

7. Spanton, E. M. et al. Observation of fractional chern insulators in a van der waals
heterostructure. Science 360, 62-66 (2018).

8. Wang, L. et al. Evidence for a fractional fractal quantum hall effect in graphene
superlattices. Science 350, 1231-1234 (2015).

9. Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum hall effect in
moirésuperlattices. Nature 497, 598-602 (2013).

10. Yu, G. L. et al. Hierarchy of hofstadter states and replica quantum hall ferro-
magnetism in graphene superlattices. Nat. Phys. 10, 525-529 (2014).

11. Hunt, B. et al. Massive dirac fermions and hofstadter butterfly in a van der waals
heterostructure. Science 340, 1427-1430 (2013).

12. Peierls, R. Zur theorie des diamagnetismus von leitungselektronen. Z. Phys. 80,
763-791 (1933).

13. Harper, P. G. Single band motion of conduction electrons in a uniform magnetic
field. Proc. Phys. Soc. Sect. A 68, 874-878 (1955).

14. Hofstadter, D. R. Energy levels and wave functions of bloch electrons in rational
and irrational magnetic fields. Phys. Rev. B 14, 2239-2249 (1976).

npj Quantum Materials (2023) 14

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45,

46.

47.

48.

. Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken chern

insulators in twisted bilayer graphene. Nat. Phys. 17, 478-481 (2021).

. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Flavour hund’s

coupling, chern gaps and charge diffusivity in moirégraphene. Nature 592, 43-48
(2021).

. Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted

bilayer graphene. Nature 589, 536-541 (2021).

. Yu, J. et al. Correlated hofstadter spectrum and flavour phase diagram in magic-

angle twisted bilayer graphene. Nat. Phys. 18, 825-831 (2022).

. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene.

Proc. Natl Acad. Sci. 108, 12233-12237 (2011).

Gudmundsson, V. & Gerhardts, R. R. Effects of screening on the Hofstadter but-
terfly. Phys. Rev. B 52, 16744-16752 (1995).

Pfannkuche, D. & MacDonald, A. H. Quantum Hall effect of interacting electrons in
a periodic potential. Phys. Rev. B 56, R7100-R7103 (1997).

Doh, H. & Salk, S.-H. S. Effects of electron correlations on the Hofstadter spectrum.
Phys. Rev. B 57, 1312-1315 (1998).

Czajka, K., Gorczyca, A, Maska, M. M. & Mierzejewski, M. Hofstadter butterfly for a
finite correlated system. Phys. Rev. B 74, 125116 (2006).

Apalkov, V. M. & Chakraborty, T. Gap Structure of the Hofstadter System of
Interacting Dirac Fermions in Graphene. Phys. Rev. Lett. 112, 176401 (2014).
Mishra, A, Hassan, S. R. & Shankar, R. Effects of interaction in the Hofstadter
regime of the honeycomb lattice. Phys. Rev. B 93, 125134 (2016).

Andrews, B. & Soluyanov, A. Fractional quantum Hall states for moir\'e super-
structures in the Hofstadter regime. Phys. Rev. B 101, 235312 (2020).

Ding, J. K. et al. Thermodynamics of correlated electrons in a magnetic field.
Commun. Phys. 5, 204 (2022).

Shaffer, D., Wang, J. & Santos, L. H. Theory of hofstadter superconductors. Phys.
Rev. B 104, 184501 (2021).

Shaffer, D., Wang, J. & Santos, L. H. Unconventional self-similar hofstadter
superconductivity from repulsive interactions. Nat. Commun. 13, 7785 (2022).
Wang, X. & Vafek, O. Narrow bands in magnetic field and strong-coupling hof-
stadter spectra. Phys. Rev. B 106, L121111 (2022).

Herzog-Arbeitman, J., Chew, A, Efetov, D. K. & Bernevig, B. A. Reentrant correlated
insulators in twisted bilayer graphene at 25 t (277 flux). Phys. Rev. Lett. 129, 076401
(2022).

Acheche, S., Arsenault, L-F. & Tremblay, A.-M. S. Orbital effect of the magnetic
field in dynamical mean-field theory. Phys. Rev. B 96, 235135 (2017).

Markov, A. A., Rohringer, G. & Rubtsov, A. N. Robustness of the topological
quantization of the hall conductivity for correlated lattice electrons at finite
temperatures. Phys. Rev. B 100, 115102 (2019).

Gudmundsson, V. & Gerhardts, R. R. Effects of screening on the hofstadter but-
terfly. Phys. Rev. B 52, 16744-16752 (1995).

Doh, H. & Salk, S.-H. S. Effects of electron correlations on the hofstadter spectrum.
Phys. Rev. B 57, 1312-1315 (1998).

Tu, W.-L,, Schindler, F., Neupert, T. & Poilblanc, D. Competing orders in the hof-
stadter t — — j model. Phys. Rev. B 97, 035154 (2018).

Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-fock study of the moiré hubbard
model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104,
075150 (2021).

Barelli, A, Bellissard, J., Jacquod, P. & Shepelyansky, D. L. Double butterfly spec-
trum for two interacting particles in the harper model. Phys. Rev. Lett. 77,
4752-4755 (1996).

Czajka, K., Gorczyca, A, Maska, M. M. & Mierzejewski, M. Hofstadter butterfly for a
finite correlated system. Phys. Rev. B 74, 125116 (2006).

Semenoff, G. W. Condensed-matter simulation of a three-dimensional anomaly.
Phys. Rev. Lett. 53, 2449-2452 (1984).

Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in gra-
phene. Nature 438, 197-200 (2005).

Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the
quantum hall effect and berry’s phase in graphene. Nature 438, 201-204 (2005).
Assaad, F. F. & Herbut, I. F. Pinning the order: The nature of quantum criticality in
the hubbard model on honeycomb lattice. Phys. Rev. X 3, 031010 (2013).

. Ostmeyer, J. et al. Semimetal-mott insulator quantum phase transition of the

hubbard model on the honeycomb lattice. Phys. Rev. B 102, 245105 (2020).
Mai, P., Karakuzu, S., Balduzzi, G., Johnston, S. & Maier, T. A. Intertwined spin,
charge, and pair correlations in the two-dimensional hubbard model in the
thermodynamic limit. Proc. Natl Acad. Sci. 119, €2112806119 (2022).

Gull, E,, Werner, P, Wang, X., Troyer, M. & Millis, A. J. Local order and the gapped
phase of the hubbard model: A plaquette dynamical mean-field investigation.
Europhys. Lett. 84, 37009 (2008).

Schéfer, T. et al. Fate of the false mott-hubbard transition in two dimensions.
Phys. Rev. B 91, 125109 (2015).

Assaad, F. F. Depleted kondo lattices: Quantum monte carlo and mean-field
calculations. Phys. Rev. B 65, 115104 (2002).

Published in partnership with Nanjing University


https://zenodo.org/record/7608167#.Y-AxyezML6g
https://zenodo.org/record/7608167#.Y-AxyezML6g
https://github.com/edwnh

49. Blankenbecler, R. Scalapino, D. J. & Sugar, R. L. Monte carlo calculations of
coupled boson-fermion systems. i. Phys. Rev. D. 24, 2278-2286 (1981).

50. Hirsch, J. E. Two-dimensional hubbard model: Numerical simulation study. Phys.
Rev. B 31, 4403-4419 (1985).

51. White, S. R. et al. Numerical study of the two-dimensional hubbard model. Phys.
Rev. B 40, 506-516 (1989).

52. Nichols, N. S., Sokol, P. & Del Maestro, A. Parameter-free differential evolution
algorithm for the analytic continuation of imaginary time correlation functions.
Phys. Rev. E 106, 025312 (2022).

53. Towns, J. et al. Xsede: Accelerating scientific discovery. Comput. Sci. Eng. 16,
62-74 (2014).

ACKNOWLEDGEMENTS

B.E.F., P.M,, P.W.P., and J.Y. acknowledge support for the computation and conception
of this project from Quantum Sensing and Quantum Materials (QSQM), an Energy
Frontier Research Center funded by the US Department of Energy (DOE), Office of
Science, Basic Energy Sciences (BES), under award no. DE-SC0021238. EW.H. was
supported by the Gordon and Betty Moore Foundation EPIQS Initiative through the
grants GBMF 4305 and GBMF 8691. This work used an analysis of insulating states in
MATBG funded through DMR-2111379 for his work on MATBG. P.M. thanks Nathan
Nichols for the help on DEAC simulation. The DQMC calculation of this work used the
Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)
Expanse supercomputer through the research allocation TG-PHY220042, which is
supported by National Science Foundation grant number ACI-1548562°3,

AUTHOR CONTRIBUTIONS
E.W.H. and P.M. developed the DQMC code. P.M. carried out the calculations. All authors
analyzed the results and wrote the manuscript. B.E.F. and P.W.P. supervised the project.

Published in partnership with Nanjing University

P. Mai et al.

npj

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541535-023-00544-z.

Correspondence and requests for materials should be addressed to Philip W. Phillips.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

5Y Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

npj Quantum Materials (2023) 14


https://doi.org/10.1038/s41535-023-00544-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Interaction-driven spontaneous ferromagnetic insulating states with odd Chern numbers
	Introduction
	Results
	Noninteracting quantum Hall effects
	Turning on interactions

	Discussion
	Methods
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




