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Abstract

Predicting environmental fate requires an understanding of the underlying,
spatiotemporally variable interaction of transport and transformation processes.
Photolytic compounds, for example, interact with both time-variable photolysis and the
perennially dark hyporheic zone, generating potentially unexpected dynamics that arise
from time-variable reactivity. This interaction has been found to significantly impact
environmental fate but is commonly oversimplified in predictive models. Our primary
objective was to explore how time-variable photolysis and hyporheic storage interact
across a range of photolysis rates to control the fate and transport of photolytic'solutes in
stream-hyporheic systems. In this study, we simulated variable release timing and
durations of photolytic compounds spanning half-lives of 2.8 minutes to 908 hours. To
contextualize these results, we interpret results 3-trifluoromethyl-4-nitrophenol (TFM), as
its photolysis rate is controlled by environmental conditions and is known to vary by
several orders of magnitude. Ultimately, we found the environmental fate and transport of
photolytic compounds is highly variable as a function of release timing, which controls
when, where, and for how long solute is stored in the hypoerheic zone or exposed to in-
channel photolysis. This knowledge can be used to improve predictions for photolytic
compounds or assess potential impacts for an anticipated discharge or treatment.
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Synopsis

Release timing of photolytic compounds interacts with transport and time-variable
transformation processes to control exposure and persistence in stream-hyporheic
systems.
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1. Introduction

The environmental fate of organic chemicals released into surface waters is controlled by
intrinsic properties of the compound, spatiotemporally variable drivers of transformation,
and transport processes.! Controlling for differential reactivity of compounds to
spatiotemporally variable reactivity in natural systems is necessary to advance‘our ability
to predict their fate and transport.2 For example, solar radiation and temperature are
commonly accounted for as dynamic drivers of reaction rates at both seasonal3* and
diurnal timescales, including impacts on dissolved oxygen, dissolved organic carbon,
nitrogen species, carbonate species, algae, and metals.>-12 Sub-diel timescales also exhibit
the time-variability in response to forcing (e.g., cloud cover blocking solar radiation,
predictable dynamics of sunrise and sunset), but are often overlooked or oversimplified in
the name of parsimony.1314 While many diel-varying processes have been studied
individually, their interaction with reactive transport processes, such as temporary storage
in the hyporheic zone where photolysis cannot occur, are seldom studied.'>1¢ The
interaction of diurnal variation in'solar radiation with reactivity is known to be important
for environment transport and fate in riparian ecosystems, having been considered in a
limited number of empirical studies.>17-20 Here, we systematically study how release
timing and duration interact with sub-diel variation in reactivity to control the transport

and fate of photolytic compounds in river corridors.

Physical transport and reactive processes have been widely studied as individual controls
on photolytic compounds, with a limited number of studies incorporating interactions

between the two.1521-23 For example, in the case of a stream at steady flow conditions, the
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interaction of time-variable photolysis with the transient storage of photolytic compounds
in the perennially dark hyporheic zones is critical to forecasting environmental fate of
photolytic compounds.1® While the hyporheic zone has been found to shield hyporheic
water from changes in solar radiation1624 and air temperature,2>26 few studies have
incorporated the time-variability of reactive processes with storage in the hyporheic
zone.?’ It is well documented that hyporheic storage processes vary under short timescales
around perturbations such as changes in discharge from storm events.28-31 Still other
applications account for time-variable photolysis rates, but fail to consider transport
dynamics that account for temporary storage within permanently dark hyporheic zones.17-
19,32,33 Thus, advancing our predictive understanding of the environmental fate of
photolytic compounds requires an improved integration of stream-hyporheic exchange

with time-variable transformation processes.

To motivate our study, we consider the transport and fate of 3-trifluoromethyl-4-
nitrophenol (TFM; used to control invasive sea lamprey in the Great Lakes) as a
representative case to study. TFM is a photolytic compound that is fatal to invasive sea
lamprey larvae that spend the early years of their lifecycle in the hyporheic zone.
Application of TFM occurs in tributaries of the Great Lakes on a 1-to-5-year rotation to
control sea lamprey populations. Although sea lamprey are particularly sensitive to TFM,
chemical application may precede amphibian deaths, decreased algal productivity, and loss
of coordination in birds.34-3¢ Major losses of TFM that are accounted for in planning
treatments include losses due to in-stream photolysis and dilution due to transport into

hyporheic zones.3” TFM photolysis in natural systems occurs primarily through direct,
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rather than indirect, photolysis.38 Additionally, reach-scale effective TFM photolysis rates
will vary as a function of water column depth, pH, incident solar radiation (itself a function
of location and time of year), and the in-stream concentration of TFM. Taken together,
these controls cause effective decay rates realized during treatments to span several orders
of magnitude.3? Thus, TFM provides a useful case study given its well-known reactive
pathways, widespread application to stream-hyporheic systems in the Great Lakes Basin;

and potential risk to ecosystem and human health.

The overarching goal of this study is to advance our understanding of how time-variable
reactivity and hyporheic exchange interact to control the fate and transport of photolytic
solutes in stream-hyporheic systems. Specifically, we seek to characterize changes in
exposure to and persistence of photolytic compounds as a function of release timing and
duration in stream-hyporheic systems: To achieve these objectives, we conducted a series
of numerical experiments for photolytic compounds in an idealized headwater stream.
While we interpret these results.in the.context TFM applications in the tributaries of the
Great Lakes, we also model the fate of a more photolabile and less photolabile compound
(i.e., ketoprofen and carbamazepine, respectively) to more completely explore the range of
loss rates expected for polar organic compounds. By assessing a range of light-sensitive
organic chemicals our findings are generalizable to other compounds subject to photolysis

in stream-hyporheic systems.

2. Methods

2.1 Simulation of compound release timing and duration
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We implement here a model to simulate transport and transformation of photolytic
compounds in stream hyporheic systems, following Ward et al., 2015.40 Briefly, the model
simulates advection, dispersion, first-order decay proportional to a half-sinusoid
representing solar radiation occurring from 06:00-18:00, and transient storage in a well-
mixed hyporheic zone with an exponential residence time distribution.?141 We tested peak
photolysis rates to represent the maximum (k.= 5.56x10->s'1), median (k3=7.44x106s:1),
and minimum (k4=4.98x10-7 s°1) rates for TFM reported in Great Lakes tributaries.3® To
expand our study beyond consideration of only TFM, we selected an additional compound
that is highly photoreactive and an additional compound thatis more resistant to
photolysis : (1) ketoprofen, an anti-inflammatory drug, with a peak photolysis rate of
ki=4.18x10-3s1 and (2) carbamazepine, an anticonvulsant, with a photolysis rate of
ks=2.12x107 s-1.42.43 Reaction rate subscripts are ordered from fastest (k) to slowest (ks) to
aid in interpretation of results. The model assumes a stream at steady baseflow, with fixed
stream geometry, hyporheic geometry; dispersion, exchange rate, and spatial and temporal
discretization at the valuesused by Ward et al. (2015). In all cases, we simulated an 80-km
total length of stream to ensure downstream boundary were isolated from the model

behavior immediately downstream of the injection.

To assess the impact of release timing and duration on environmental fate, we simulated a
series of releases beginning every hour of the day and varied release durations from 1 to 24
hours in one-hour increments, plus 36 and 48 hr durations (totaling 624 simulations per k;
3,120 overall). In-stream persistence was calculated as the distance along the stream until

the peak concentration was reduced by 50% of the input concentration (90% and 99%
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were also calculated). We also tabulated the total mass flux of the parent compound at each
location along the reach. Finally, we calculated the total time that the stream concentration
is greater than 10% of the input concentration at a given location to represent a combined
concentration and duration criteria like that used to confirm successful TFM treatment. For
time above treatment concentration, we selected a point 6-km downstream of the injection
to compare mass flux (the median treatment length for small tributaries in the Great Lakes
Basin). The simulated treatment concentration (3.6 mg L-1) represents the mean

concentration applied during the 2015 seasons38.

2.2 TFM treatment of Great Lakes tributaries

TFM is intentionally released in more than 100 Great Lakes tributaries per year by the U.S.
Fish and Wildlife Service and Fisheries.and Oceans Canada to control invasive sea lamprey
populations. The standard applicationof TEM invelves a constant-rate release typically
beginning in the morning and continuing through the day.** Effective treatment is defined
as a concentration 1.1-1.4 times greater than the minimum lethal concentration for sea
lamprey for a duration of 12 hours in the stream. This is assumed to also represent
effective treatment of the hyporheic zone where lamprey spend a portion of their
lifecycle394546, We simulated 12 hr constant-rate releases beginning at 06:00 as
representative of this strategy. Based on the targeted minimum lethal concentration
reported by the U.S. Fish and Wildlife Service and Fisheries and Oceans Canada, from 1961-
2016, the minimum targeted concentration for an effective treatment was 0.3 mg L-1.
Therefore, treatment is reasonably approximated as the stream concentration at or above

10% (or 0.36 mg L-1) of the average well-mixed concentration at the treatment location of
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36 mg/L. In practice, dosing rates are adjusted in the field to achieve concentration
thresholds in each system based on monitoring during treatment. Additionally, we
interpret the places and times where concentrations are above 50% of the input
concentration as potential locations of over-treatment, with anomalously high exposure to
TFM. The location and duration of concentrations above 10% of the input concentration in

both the stream and hyporheic zone are interpreted to represent effective treatment.

3. Results and Discussion

3.1 How do release timing and duration control in-stream transport?

3.1.1. Release timing controls persistence for releases less than 24 hour in duration
In-stream persistence had a maximum distance of 41 km (Fig. 1). Persistence varies from
<1 km to 22 km (k) and from <1 km to 30 km (k:), depending on release timing (Fig. 1a-b).
Distances to achieve 90% reduction in peak concentration also varied with release timing
for the fastest rate (k;), ranging from <1 km to 24 km, while k; and slower were insensitive
to release timing (90% reduction occurring around 45 km for kz; Fig. 1b). Distances to
achieve 99% reduction for k; vary from about 1 to 25 km, with maximum persistence
occurring forthe injection at 16:00). The slowest three rates (k3, k4, ks) each persisted for
about 40 km for nearly every release time (Table 1; Fig. 1c-e). Distances to achieve both
90% and 99% reduction in peak concentration were 80 km (maximum simulated stream
reach), regardless of release time for k; through ks (Fig. 1b-e). Across all reaction rates,

minimum persistence occurs for the injection beginning at 12:00, when photolysis is at its
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Figure 1. Distance until peak stream concentration drops to 50% (blue), 90% (purple), and 99% (green)
input concentration for varying photolysis rates simulated for 1 hour releases beginning every hour of
the day. The radius from center corresponds to downstream distance, and radial lines indicate the
start time for simulated releases. Photolysis rates were selected based on the analog compounds

ketoprofen (a), TFM (b-d), and Carbamazepine (e), ordered from fasted to slowest (top to bottom).

Table 1. Summary of ranges observed for each photolysis rate for each metric explored in this

study.

Metric ki k2 k3 k4 ks
Photolysis rate (s-1) 4.18x10-3 | 5.56x10-5| 7.44%x10-6 | 4.98x10-7 2.12x10-7
Analog Chemical Ketoprofen TFMmax TFMmed TFMmin Carbamazepine
Maximum persistence (km) 22 30 36 41 41
Minimum persistence (km) <1 7 30 38 39
Maximum mass at 6km (% of input) 35.52% 44.73% 45.42% 45.53% 45.56%
Minimum mass at 6km (% of input) 0.21% 31.04% 43.22% 45.00% 45.07%
Release time for max. persistence (hr) 18:00 12:00 Insensitive | Insensitive Insensitive
Release time for min. persistence (hr) 05:00 00:00 Insensitive | Insensitive Insensitive

Persistence in the stream is maximized when mass is injected into the system immediately

at or after the end of the photoperiod (sunset). For example, the maximum in-stream

persistence for k; occurred for the injection beginning at 18:00, immediately after sunset

(Fig. 1a). The result of mass entering coincident with sunset is that the mass is advected

downstream for the 12 hr (i.e., from 18:00 to 06:00) with no photolysis occurring, exposing

the longest possible reach to high concentrations. In our study system, the effects of

longitudinal dispersion and hyporheic dilution on the solute concentrations are minimal
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compared to photolysis for k; and k; as evidenced by the gradually decreasing persistence
observed for releases between 18:00 and 06:00, compared to the rapidly decreasing, and
minimal persistence observed between 06:00 and 18:00 (Fig. 1a-b). In contrast,
longitudinal dispersion and hyporheic dilution are comparable to photolysis for k3.5, as

evidenced by the comparable persistence independent of release timing (Fig: 1¢-e):

As release durations increase, the release time for maximum persistence becomes
systematically earlier for the fastest photolysis rates (Fig. 2a-b): This is in good agreement
with the interpretation of timing, where persistence is controlled by mass that enters the
system just after sunset. For example, maximum persistence for k; occurs for injections
beginning at 18:00, the end of the photoperiod (Fig. 2a). Additionally, maximum
persistence occurs for a 2 hr duration starting at 17:00 (1 hr before the end of photolysis),
a 3 hr duration starting at 16:00, and so forth (Fig:2a). Again, the timing of the last mass
entering the system is key to the observed behavior, rather than the timing of when the
release begins. This pattermis consistent for compounds with faster photolysis rates (i.e.,
ki.2). In contrast, compounds with slower rates (ks.5) are broadly insensitive to release
timing (Fig. 2c-e). For these compounds, photolysis becomes minimally important and

persistence scales directly with release duration.
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Figure 2. Distance to achieve 50% reduction in peak in-stream concentration for varying release times,
durations, and photolysis rates. For each photolysis rate, releases were simulated every hour of the
day (y-axis), for release durations of 1-24, 36, and 48 hours (x-axis). The color of each cell corresponds
to the along-stream distance to achieve 50% removal of the input concentration for each injection.
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For compounds with rapid reaction rates (k;.z), maximum persistence across all
simulations of varying release timing and duration was between 25-33 km. As release
duration increased, a larger range of release times result in a downstream persistence
greater than 30 km because multiple combinations of starting time and duration result in
mass being released at sunset (Fig. 2). As release durations become longer than one day,
there is little variation as a function of release timing because there is always mass entering
the system at sunset (18:00). In contrast, persistence is always greater than 30 km for
compounds with k3.5. In these cases, removal via photolysis is slow enough that every
combination of release timing and duration results in less than 50% reductions at the end
of one photoperiod. Thus, relatively high concentrations always advect for 12 hours of

darkness regardless of timing or duration of chemical addition for k3z.s.

Photolysis at rates k; and k2 remove mass faster than it is ever returned to the stream from
the hyporheic zone (i.e., a net removal from water column for injections during
photoperiods). However, the inverse is true for kz.5, where a net gain of mass by the water
column can occur during the photoperiod. For k3.5, as the release duration increases and
photolysis remains a minimal removal mechanism, the hyporheic zone begins to saturate
with TEM. This ultimately causes increased persistence of the chemical in the downstream

direction, extending well beyond the 80-km study reach to achieve even 50% removal.

Depending upon release timing, both short- and long-duration releases can result in equal
persistence and equally high concentrations at downstream locations. Persistence of a

short (1-2 hr) release can be as great as the persistence of a 24-48 hr release for k; and k:
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(Fig. 2a-b). For example, for k; both a 1 hr and 24 hr release at 18:00 persists for 22 km
downstream because the 12-hr of nighttime advection dominates the response. However,
less variability to release timing was observed in slower photolysis rates (kz.5), and release
duration dominated persistence. For k3.5, durations ranging between 2-10 hr resulted in
the same persistence, regardless of release timing. The insensitivity to release timing can
also be observed across every photolysis rate, mass added to the system (release duration),
and removal via photolysis approach steady state. For rapid photolysis rates (k;-2), longer
release durations are required to approach steady state, while slow photolysisrates

approach steady state at shorter release durations.

3.1.2 Spatial and temporal variation as a function of release timing and duration
Release timing and duration interact with transport and transformation to yield highly
variable exposure (i.e., the time-integrated total mass passing a given spatial location)
along the stream. For 1 hr injections, release timing leads to three orders of magnitude in
variation for mass exposure for k7 (Fig. 3a, vertical range at any x-coordinate). For ko,
exposure varies by up to a factor of 2 for 1 hr injections (Fig. 3b), while variation in
exposure forks.s isnearly identical regardless of release time (Fig. 3c-e). The greatest
variability in exposure for 1 hr releases represents the difference between injections
occurringat 18:00 (12 hours of transport prior to photolysis) and 12:00 (immediate
photolysis at the maximum rate). For 12 hr releases, reduced sensitivity to release timing
manifests as a smaller range in total mass exposure, with a range of two orders of

magnitude variation for k; (Fig. 3a), three-fold variation for k; (Fig. 3b), and minimal
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Figure 3. Impact of release timing and duration on the fraction of input mass passing each location

along the simulated stream for 1-hr (green) and 12-hr (red) releases.

For ki, the range of exposures for 1 hr durations encompasses the range for 12 hr durations
(Fig. 3a). The 12 hr exposures are partially (kz-3) or entirely (k+5) below the range
experienced for 1 hr injections for other reaction rates. For kj, release timing is the most
dominant variable in determining downstream mass flux. As a result, short release
durations could potentially be used to estimate the fate of longer release durations for

compounds with fast photolysis rates.

Hyporheic zones are time-variable sources and sinks of mass to the stream, both limiting
and exacerbating exposure depending.on the location and time of interest (Fig. 4). Initially
after the release begins, while there isho photolysis (advection after sunset), or the
photolysis rate is low (k4-5), concentration gradients result in mass being stored in the
hyporheic zone where it is shielded from further photolysis. During peak photolysis, in-
stream mass is rapidly removed and concentration gradients result in the net transfer of
mass from the hyporheic zone into the stream. At the end of the photoperiod, high
concentration “pulses”occur as mass that was previously stored in the hyporheic zone is
returned to the stream each night. This results in downstream concentrations at either
higher concentrations or above concentration thresholds for longer durations at

downstream locations that those observed upstream (Fig. 4e-j).
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Figure 4. Time that the stream (left column) and hyporheic zone (right column) concentrations remain
>10% of the input concentration (or 0.36 mg/L) for 12 hour release durations across varying release
times, representing effective treatment for invasive sea lamprey. Rows are arranged from the fastest-
to-slowest photolysis rate from top to bottom.
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305 3.2 How do effective TFM treatment and TFM legacies vary with release time?
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For the range of TFM photolysis rates (i.e., kz-4), the first 20 km from the injection point is
effectively treated regardless of injection timing (i.e., stream concentrations at or greater
than 0.36 mg/L for 12 hours). Downstream from this point, treatment efficacy varies with
photolysis rate as in-stream concentrations are dominated by photolysis (kz) and storage in
the hyporheic zone (ks.s5; Fig. 4c, e, g). For kz, the maximum distance treated was about 42
km (for treatment beginning at 14:00; Fig. 4c). The impact of storage in the hyporheic zone
can be best observed in (ks-4). For these cases, high concentrations stored in the hyporheic
zone during the 12-hr treatment act as a net source to the stream after the treatment has
ended, resulting in in-stream treatment much than the designed 12-hr period (Fig. 4e, g).
For k3.4, about 20 km are treated regardless of release time, while downstream stream
reaches are may ultimately maintain in-stream concentrations sufficient for treatment for

more than 36-hr based on the designed 12-hr release.

Although TFM is expected to be rapidly removed from the tributaries of the Great Lakes
through photolysis,3* our recent work demonstrates photolysis removes less mass than
indicated by early studies.3”=3? Our simulations indicate extensive legacies of TFM in the
stream and hyporheic zone should be expected (Fig. 4, right column). We find measurable
streamand hyporheic concentrations should be expected for up to 48 hr after treatment
ends (Fig. 4h). Forkz, about 40 km of stream are effectively treated (Fig. 4c), but hyporheic
locations near the injection site remain above the treatment threshold for more than three
times as long as treatment requires. The maximum downstream distance of hyporheic zone
treated is about 30 km for the release beginning at 09:00, with sensitivity in treatment

distance as a function of release time (Fig. 4d).
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As the photolysis rate decreases, other processes (e.g., transient storage, dispersion) grow
in importance and a nonintuitive trend appears (Fig. 4e). For k3, the in-stream
concentrations remain above 10% of the input concentration for 12 to 24 hr along the
entire study reach. However, the longest duration occurs around 45 km downstream of the
injection for release times beginning between 08:00 to 14:00 rather than near the injection
site as might be expected. In this case, the increasing treatment duration up to 22 hours for
stream reaches between 30-65 km downstream and mid-day-injections is explained by
mass stored in the hyporheic zone raising in-stream concentrations at night. Beyond the
maximum duration at about 45 km, mass is increasingly photolyzed and dispersed such
that the minimum threshold for treatment is not. met. Putanother way, interactions
between hyporheic storage, photolysis, and advection in the absence of photolysis (at
night) raise in-stream concentrations at specific,down-stream locations along the study

reach.

For k4, treatment is achieved for the entire stream length across all injection timings (Fig
4g). Importantly, because photolysis is minimal for this case, downstream locations remain
above the treatment threshold for substantially longer than is required for effective sea
lamprey control. These extended timescales are attributable to TFM storage in hyporheic
zones at the upstream end of the reach. The longest timescales of treatment in the
hyporheic zone occur around 40 km downstream (Fig. 4h). This is due to the combination
of (a) a relatively slow photolysis rate resulting in minimal removal during daylight hours,

and (b) more upstream hyporheic zones to temporarily store and slowly release TFM.
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Across all photolysis rates and injection timings simulated, at least some portions of the
stream and hyporheic zone exceed concentrations and durations for the desired treatment
(i.e., 1.1-1.4 times greater than the minimum lethal concentration) present for 2-4 times
longer than the desired treatment of 12 hours. The extended treatment duration isa result
of the steep concentration gradient between the stream and hyporheic zone near the
release point causing high TFM concentrations to be stored in the hyporheic zone. This
stored mass is slowly released over several days, resulting in-elevated concentrations in the
stream and downstream hyporheic zones well beyond the active treatment window. This
phenomenon is particularly important in systems with relatively slow photolysis (k3-4).
These results indicate that modifying release times could tailor lampricide treatments
based on stream reach and desired hyporheic treatment time. Moreover, results suggest
that there is possible overtreatment occurring in.some places and times in the river

network, and that there is an opportunity for optimization of treatment practices.

4. Conclusions & Implications

Our primary objective was to advance our understanding of how time-variable reactivity
and temporary storage of solutes in hyporheic zones interact to control the fate and
transportof photolytic solutes in stream-hyporheic systems. For compounds with rapid
photolysis rates (ki-2), persistence varied by around 40 km in response to changes in
release timing. Across all rates that represent TFM photolysis (kz.4), persistence varied
from <1 km to >80 km depending upon release time and the effective photolysis rate. For

compounds with slow photolysis rates (e.g., carbamazepine, ks) persistence was
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independent of release timing. Similarly, in-stream concentrations and mass flux varied by
several orders of magnitude as a function of release timing alone, with all other parameters

held constant.

Release timing controls when, where, and for how long solute is stored in the hyporheic
zone. For the rates simulated in this study, interactions between photolysis rate, hyporheic
exchange, and stream transport are dominated by individual processes. Fate in systems
with the fastest photolysis rates (ki-kz) is dominated by removal, while fate for reaches
with slower photolysis rates (k4-ks) is dominated by transient storage and transport
mechanisms, with minimal mass removal via photolysis. However, a moderate photolysis
rate - representing the median reported TFM rate (k3) - results in complex interactions of
transport, removal, and storage processes, which produces complex behavior due to

interactions between transport and transformation processes.

Shorter release durations have the greatest variability in persistence, in-stream
concentrations, and mass flux as a function of release time. Less variation is observed as
release duration/increases, with a dynamic steady-state being achieved after about 48 hr of
injection duration. These results highlight an opportunity to improve our predictive
abilities and best management practices for photolytic compounds. For example, these
findings could be operationalized to protect sensitive environments or drinking water
intakes by adding consideration of release timing to the usual considerations of mass and

concentrations being released.
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The results of our study take the case of TFM as an example, given its widespread use and
the risk of potential human and environmental risk. For TFM’s fastest photolysis rate (kz),
release times after peak photolysis require significantly lower input concentrations and
retain mass in the system longer than early releases, while TFM’s slowest photolysis rate
(k4) is insensitive to release timing. Of the 139 tributaries treated in 2015 and 2016, 98
tributaries had estimated photolysis rates the same order of magnitude as the fastest
expected photolysis rate for TFM (kz).3° From these results, we expect modified timing and
duration could be improved to reduce the mass required for treatment. Moreover, our
simulations suggest the impacts and legacy of TFM application are less understood than
previously thought. Indeed, we found the dynamic interactions of storage, transport, and
transformation confound our predictive abilities. Finally, we underscore that our analysis
here is limited to an idealized system. Still, we provide a framework to analyze the
transport and fate of photolytic compounds whichcould be applied to a broad range of

solutes and systems.
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