
1 **The Channel Source Hypothesis: Empirical Evidence for In-Channel Sourcing of Dissolved
2 Organic Carbon to Explain Hysteresis in a Headwater Mountain Stream**

3 Steven M. Wondzell* & Adam S. Ward

4 Organic matter from litter fall or autochthonous production is stored in dead zones within the
5 wetted stream channel under low-flow conditions. Leaching and microbial processes generate
6 DOC within the organic matter. As water depth and flow velocity increase during the rising leg of
7 the storm hydrograph, organic matter can be scoured out of dead zones, releasing the accumulated
8 DOC into the active stream channel.

9
10

Channel Source Hypothesis

13 **The Channel Source Hypothesis: Empirical Evidence for In-Channel Sourcing of Dissolved**
14 **Organic Carbon to Explain Hysteresis in a Headwater Mountain Stream**

15
16 Steven M. Wondzell¹ & Adam S. Ward²

17
18 1. US Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
19 2. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN
20 47405, USA

21
22 **Corresponding Author:** Steve Wondzell, US Forest Service, Pacific Northwest Research
23 Station, 3200 SW Jefferson Way, Corvallis OR 97331. steven.wondzell@usda.gov

24
25 **Abstract**

26 Catchment hydrologists have long puzzled over the question: How can catchments rapidly
27 generate storm flows and pulses of solutes in response to storm events? Conceptual models
28 viewing catchments as composed of discrete source areas generating flow at unique time scales
29 and with unique chemical characteristics have been used to explain the observed changes in flow
30 and water chemistry. Surprisingly, those conceptual models usually do not treat the stream
31 channel as one of the potential source areas. Here, we propose the *channel source hypothesis* in
32 which the stream itself should be considered as a potential source with the same rigor as other
33 contributing areas. We pose this in the spirit of the scientific use of the word: a hypothesis¹ is not
34 a proven idea but rather a provisional supposition serving as the basis for further study. We
35 suggest that the channel should be considered as a potential source for dissolved organic carbon
36 (DOC). Channels store substantial amounts of organic matter, and stream ecologists have long
37 studied stream carbon cycling. From those studies we know that leaching and decomposition can
38 generate DOC from particulate organic carbon (POC). Further, POC is stored in channel “dead-
39 zones” - regions of low flow velocity - that can be activated as flow velocity increases, thus
40 releasing accumulated DOC during storms. All catchments are different; there is no reason to
41 assume that channel sources are always important, in every catchment, in every storm. Thus, the
42 channel source hypothesis does not replace existing conceptual models. Instead, it adds another
43 potential mechanism that may explain DOC dynamics observed in streams. The channel source
44 hypothesis has substantial implications for catchment studies examining sources of DOC in
45 stream water or using DOC as a tracer to determine the locations of, and proportional
46 contributions of, different source areas for streamflow generation.

47
48 **Keywords:** dissolved organic carbon; storm flow; concentration-discharge relationships;
49 headwater mountain stream.

¹ Hypothesis: "a provisional supposition from which to draw conclusions that shall be in accordance with known facts and serves as a starting point for further investigation by which it may be proved or disproved and the true theory arrived at" quoted from the Oxford English Dictionary (OED), 1985.

50 **1. INTRODUCTION**

51 Catchment hydrology has long puzzled over the seemingly simple question: *How can*
52 *catchments rapidly generate storm flows in response to storm events?* Hydrologists quickly
53 eliminated streams and their channels from consideration because calculations based on the
54 wetted surface area of the stream network and the amount of rainfall conclusively showed that
55 direct channel precipitation did not contribute significantly to peak storm flows. Thus, the earliest
56 studies turned to the catchment as a source of storm flows. In 1933, Horton proposed a simple
57 overland flow model, in part, because subsurface flows are too slow to reach the stream and
58 generate peak flows over short periods of time. Today, this is known as “Hortonian” or
59 “infiltration-excess” overland flow and is well documented in locations with low rates of
60 infiltration. In forested catchments with relatively undisturbed soils, however, infiltration rates are
61 almost always higher than precipitation rates so that surface runoff is almost never observed.
62 These observations challenged Horton’s view, eventually leading Hewlett and Hibbert (1967) to
63 propose a translatory flow mechanism through which increased pressure from infiltrating rainfall
64 “pushes” water that was already stored in the soil out the bottom of the hillslope and into streams,
65 thus providing a mechanism through which slow subsurface flows could rapidly generate peak
66 flows. Since then, a variety of other mechanisms have been proposed (e.g., variable source areas,
67 Dunne and Black, 1970; preferential flow, Beven, 1989; but see section 4.1 for a more complete
68 treatment of these mechanisms).

69

70 A serious shortcoming of direct observational studies is that catchments are complex,
71 composed of many discrete source areas (McDonnell, 2003), and direct observation cannot
72 distinguish the relative contribution of water draining from different areas to the generation of
73 peak flows. To solve this problem, catchment hydrologists turned to naturally occurring tracers. If
74 these were conservative (i.e., they moved through the catchment identically to the flow of water,
75 neither being generated, retained, nor transformed), and their concentrations were sufficiently
76 different among end members, then they could be used to identify the relative contribution of
77 each end member. The use of tracers led to an explosion of hydrological studies exploring the role
78 of different end members in generating flows, not only peak flows during storms but also
79 baseflows during long, precipitation free periods. The stable isotopes $\delta^{18}\text{O}$ and $\delta^2\text{H}$ are among the

80 most conservative of potential tracers and thus ideal for this purpose. However, with only a small
81 number of isotopes to choose from and many potential end members, additional tracers were
82 needed. Consequently, catchment hydrologists turned to elements such as Ca, K, Mg, Na, Cl,
83 SO₄, and Si (Barthold et al., 2011). While these might not be perfectly conservative, if they were
84 present in sufficiently high concentrations and sufficiently distinct from other source areas, it was
85 generally accepted that these tracers would suffice for end-member separation. Surprisingly,
86 DOC, many forms of which are highly reactive, has also been used as a tracer because its
87 concentrations are high in throughfall and in shallow soil flow paths, and over the short time
88 scales of a single storm event, its behavior is thought to be sufficiently conservative to be used as
89 a tracer.

90

91 End member mixing and hydrograph separation techniques conceptualize streams as a mixture
92 of water from different sources, each with a unique chemical signature and a unique travel time to
93 the stream, and the relative contribution to stream flow from each source area can vary over time
94 (Bishop, Seibert, & Stephan, 2004). However, there is no guarantee that the resulting mixing
95 model provides a unique solution to the sources of stream flow. In fact, the end member solution
96 will be sensitive to the number of tracers used and the elements selected as tracers (Barthold et al.,
97 2011), in part because the tracers are not perfectly conservative and because the relative
98 similarities or differences in tracer concentrations among potential end members will not be
99 uniform across all tracers. Further, it is not possible to collect a statistically representative sample
100 of all possible end members in all locations throughout a catchment. Consequently, these
101 analytical techniques identify potential end members, which, if mixed in different proportions,
102 can reasonably account for the changes in stream solute concentrations over the period of study.
103 This does not guarantee, however, that all important source areas and/or end members are
104 included in the mixing model.

105

106 End member mixing analyses and hydrograph separation techniques are now commonly used
107 to identify the likely source areas and flowpaths determining the whole watershed export of
108 specific solutes and their dynamic responses during storms. For example, this approach underpins
109 the explanation of hysteresis in streamwater DOC based on a wide range of mechanisms

110 including sequenced delivery of water, from riparian zones early in the storm and from hillslopes
111 late in the storm (McGlynn & McDonnell, 2003), activation of distal patches of high DOC runoff
112 (Gannon, Bailey, McGuire, and Shanley, 2015), and rapid connection of hillslope organic horizon
113 water to streams via preferential flow paths (van Verseveld, McDonnell, & Lajtha, 2008). While
114 the specifics of the runoff generation mechanisms that ultimately explain observed DOC
115 concentration-discharge dynamics vary, they all share one essential feature: DOC enrichment
116 during storm events is always attributed to the mobilization of sources outside of the stream
117 channel. Hydrologists are not alone in assuming sources of water and DOC must be coupled. For
118 example, Raymond, Saiers, & Sobczak (2016) invoke pulses of DOC generated from terrestrial
119 sources during storms as a dominant feature of the Pulse-Shunt Concept. Consequently, current
120 conceptual models require a runoff generation mechanism to transport DOC from its source to the
121 stream channel.

122

123 As an alternative hypothesis, we conceptualize a system in which runoff generation and solute
124 sources may be decoupled, with solutes generated within the stream itself and runoff generated
125 from the riparian zone and hillslopes (hereafter the ‘channel source hypothesis’). We propose that
126 DOC may be generated and/or stored at high concentrations in channel dead zones and can be
127 mobilized or otherwise connected to the active stream during storm events. This hypothesis is
128 grounded in three established concepts. First, in-channel sources are already accepted for
129 particulate loads, including stream sediment (e.g., Vansickle & Beschta, 1983; Gomi, Moore, &
130 Hassan, 2005) and mobilization of stored particulate organic carbon previously input to the
131 stream from allochthonous sources (e.g., McDowell and Fisher, 1976; Vannote, Minshall,
132 Cummins, Sedell, & Cushing, 1980; Argerich et al., 2016). Next, POC deposits in streams and
133 streambeds are ubiquitous and serve as an in-stream source of DOC (Meyer, Wallace, & Eggert,
134 1998). In-channel DOC production provides a mechanism by which DOC can be produced in the
135 channel without a corresponding inflow of water. Finally, dead zones - locations in the stream
136 with residence times that functionally decouple them from the stream channel (Gooseff, LaNier,
137 Haggerty, & Kokkeler, 2005; Jackson, Haggerty, Apte, Coleman, & Drost, 2012) are likely to
138 collect and store organic matter at low flows but can be readily mobilized during storms. Taken
139 together, these well-established mechanisms underpin the conceptual basis for the channel source

140 hypothesis. Notably, a few studies invoke channel sources as a possible explanation for
141 observations, but have not had sufficient field data to reject other, equally plausible mechanisms
142 (Meyer & Tate, 1983; Buffam, Galloway, Blum, & McGlathery, 2001).

143
144 Here, we examine the channel source hypothesis as an explanation for observed DOC
145 dynamics during a small storm in a temperate, mesic, forested catchment. We start by assessing
146 alternative hypotheses (commonly ‘conceptual models’) that have been invoked to explain
147 observed in-stream DOC dynamics. We use our data and results of other published studies from
148 our study site to critically evaluate those conceptual models and show that none of those models
149 plausibly explains our observations. An additional source of DOC is needed to explain the DOC
150 dynamics we observed. Our data suggest that the stream channel is a plausible source for that
151 DOC. This source has been previously overlooked by catchment hydrologists, and we suggest it
152 should at least be considered as a potential explanation for DOC dynamics during storms and in
153 the interpretation of concentration-discharge relationships.

154
155 **2. STUDY SITE AND METHODS**
156 The study site is located near the mouth of WS1 (Fig. 1), a 96-ha gaged watershed at the H. J.
157 Andrews Experimental Forest in western Cascade Mountains, Oregon, USA (44.2070N,
158 122.2575W). The watershed is deeply incised with steep hillslopes. Occasional outcrops of more
159 weathering resistant bedrock are present on hillslopes and along the valley bottom where the
160 stream is constrained to bedrock chutes. Soils average about 2.0 m in depth across the basin
161 (range <0.2 m to >5.0 m), and in most locations are underlain by deeply weathered saprolite
162 (Jarecke, Bladon, & Wondzell, 2021). Hillslope soils are well drained and saturation does not
163 occur within 2 m of the soil surface at any time of year (Jarecke et al., 2021). Stream channels are
164 steep, with longitudinal gradients of ~14% in the well network reach, and the length of the
165 network expands and contracts with changes in stream discharge. The stream network becomes
166 spatially intermittent in summer and the length of the continuously flowing channel shrinks
167 significantly under the driest conditions (Ward, Schmadel, & Wondzell, 2018; Ward, Wondzell,
168 Schmadel, Herzog, 2020).

169

170 A well network was installed near the mouth of the watershed in 1997 and was composed of 6
171 transects of wells (Fig. 1). Transects usually had a center piezometer located in the thalweg, and
172 three wells located on each side of the stream (see detailed descriptions in Corson-Rikert,
173 Wondzell, Haggerty, & Santelmann, 2016). An additional hillslope well was installed in 2013,
174 approximately 150 m upstream of the well network, just below a hillslope hollow but above a
175 bedrock outcrop where a shallow saturated soil layer persisted year-round. Data from the WS1
176 catchment and well network allows us to calculate representative travel times of water through the
177 riparian zone. Surface channels in WS1 range from 0.4 to 1.9 m wide and valleys from 2.5 to 39.2
178 m wide (mean 10.3 m, median 9.0m) (Ward et al., 2018). For a stream centered in the valley,
179 hillslope runoff needs to move laterally from the hillslope to the stream an average of 4.7 m
180 (range 1.0 to 19.4, median 4.0 m, st. dev. 2.4 m). This lateral transport would occur via saturated
181 flow through the valley-floor colluvium. Cross-valley hydraulic gradients average about 0.05 m/m
182 (Voltz et al., 2013) and the geometric mean of hydraulic conductivity measured in all 41 wells
183 within the network was 7×10^{-5} m/s (Kasahara & Wondzell, 2003). Assuming a porosity 0.30 and
184 making cross-valley estimates using Darcy's Law (Ward, Schmadel, Wondzell, Gooseff, &
185 Singha, 2017) we estimate that travel from the base of a hillslope to the stream channel would
186 take about 25 hr and 100 hr to cross the minimum and mean valley width, respectively.

187
188 We sampled the stream, the hillslope well, and 9 wells in the hyporheic and riparian zones
189 during a storm from 15 to 17 November 2013 including pre-storm, peak flow, and recession
190 samples (Fig. 2). For additional details on sampling and analytical protocols see Corson-Rikert
191 (2014). This was an early wet-season storm, typical of the transition phase between dry and wet
192 seasons (McGuire & McDonnell, 2010) during which soil moisture storage is being recharged so
193 that hillslope contributions to storm flows are reduced compared to fully-wet antecedent
194 conditions.

195
196 **3. RESULTS**
197 Over the 72-hour period of storm sampling, DOC concentrations were higher in the stream
198 than in any of the other locations sampled with the exception of one sample in well G3 (Fig. 2B).
199 Stream DOC increased early in the storm and decreased thereafter, even though discharge

200 remained high. We observed increased DOC in the riparian and hyporheic wells, but the mean
201 concentrations were more dilute than stream water. We also found low and constant
202 concentrations of DOC in both the hillslope well (UHH) and well D7 which was located along the
203 valley margin, directly below a large hillslope hollow.

204
205 Both stream water and water from well UHH had low and temporally constant concentrations
206 of NO_3^- (Fig. 2B). The riparian and hyporheic wells were quite different, with NO_3^- increasing at
207 the beginning of the storm and only decreasing slowly thereafter. Well D6 showed surprisingly
208 high peak concentrations of NO_3^- , Cl^- , Mg^{2+} , and Ca^{2+} during the first peak in stream discharge
209 (Figs. 2B, 2C). Concentrations of NO_3^- and base cations increased in well D7 late in the storm
210 (Fig. 2B, 2C), suggesting delayed arrival of a more distal source of water that is relatively rich in
211 solutes produced from mineral weathering reactions. Well D7, located at the base of a large
212 hillslope hollow, most likely captures deep soil water and groundwater fracture flow from the
213 adjacent hillslope (Pennington, 2019).

214
215 Two wells showed unexpected responses during the storm. Concentrations of DOC in well G3
216 increased rapidly at the onset of the storm and then decreased substantially as the storm
217 progressed. This bankside well historically exhibits anomalous behavior during stream tracer
218 tests, with very long travel times required for tracer to reach the well (Ward et al., 2017;
219 Wondzell, 2006; Voltz et al., 2013) and persistently elevated concentrations of pCO_2 (Dosch,
220 2014). The well recovered rapidly during slug tests (Kasahara & Wondzell, 2003), however,
221 suggesting that it was well connected to the aquifer. These characteristics might be expected from
222 deep groundwater flowing upward into the hyporheic zone from fracture flow through the
223 bedrock underlying the stream. However, relatively low concentrations of base cations suggest
224 that this water is not likely to be long residence-time groundwater. Note that the high
225 concentrations of NO_3^- , Cl^- , Mg^{2+} , and Ca^{2+} observed in one hyporheic well at the onset of the
226 storm were from well D6, not well G3. Clearly, we cannot explain all the patterns we observe in
227 the timing and concentrations of all solutes measured in every location within the study site.
228 However, our data do conclusively show that no mixture of water from the sources we sampled
229 can account for the changes in stream water chemistry we observed during the storm.

230

231 **4. DISCUSSION**

232 **4.1 Critical evaluation of existing conceptual models**

233 In this section, we present a critical evaluation of alternative conceptual models for runoff
234 generation and solute time series. We use the data collected during the storm, information from
235 previously published studies from this site, and our *in-situ* field observations to evaluate whether
236 existing conceptual models are plausible explanations for the patterns we observed. If viewed
237 from a hypothesis testing paradigm, then these conceptual models stand as null hypotheses, and
238 the data and other observations are used to test them. If the null hypothesis is falsified, then we
239 reject the conceptual model as a plausible explanation. If we fail to falsify or reject the
240 hypothesis, the conceptual model remains a plausible explanation for our observations.

241

242 **4.1.1 Infiltration Excess Overland Flow**

243 The soils at WS1, like most mesic forest soils, are highly permeable (Jarecke et al., 2021) so
244 that infiltration excess overland flow (Figure 3A; *sensu* Horton, 1933) is rare (Harr, 1977;
245 McGuire & McDonnell, 2010; Amatya et al., 2016), likely only generating runoff from the few
246 locations where bedrock outcrops to the surface and is adjacent to the stream. Because such
247 bedrock outcrops are rare in WS1, this cannot be an important mechanism generating runoff and
248 DOC at our site.

249

250 **4.1.2 Saturation Excess Overland Flow**

251 Lateral Saturation Excess Overland Flow.

252 Saturation excess overland flow (Figure 3B) is generated when the water table reaches the
253 surface, generating overland flow composed of both groundwater and precipitation falling on the
254 saturated areas (Dunne & Black, 1970), carrying with it a combination of the pre-event DOC in
255 the groundwater, precipitation or throughfall DOC from the rainfall, and DOC leached from the
256 organic and litter layers at the surface of the soil. This mechanism appears to be most common in
257 low relief catchments (Dunne & Black, 1970; Western, Grayson, Blöschl, & Willgoose, 1999), or
258 where soils are shallow. In contrast, hillslopes in WS1 are steep as are longitudinal valley
259 gradients which support significant subsurface hillslope (McGuire & McDonnell, 2010) and
260 down-valley flow (Kasahara & Wondzell, 2003; Voltz et al., 2013; Ward et al., 2018). Field

261 observations during storms and multi-year monitoring of 11 hillslope wells located in a variety of
262 topographic positions all confirm that saturation to the soil surface is exceedingly rare, even at the
263 bases of large hillslope hollows near the valley floor (Jarecke et al., 2021). Taken together, the
264 geomorphic structure of the catchment, the deep soils with high infiltration capacity underlain by
265 relatively permeable and deeply weathered saprolite and or fractured bedrock (Gabrielli,
266 McDonnell, & Jarvis, 2012), observations from hillslope wells, and field observations during
267 storms all indicate that saturation excess overland flow is neither a significant source of runoff nor
268 a viable mechanism to mobilize DOC from hillslopes to the active channel.

269

270 Channelized Saturation Excess Overland Flow

271 Channelized saturation excess overland flow (Gomi et al., 2005) is the mechanism by which
272 the length of the channel network expands during storms, where convergent subsurface flows in
273 steep headwater hollows cause the riparian water table to rise and initiate channelized flow (Ward
274 et al., 2018; 2020). During the event we studied, discharge at the watershed outlet rose from about
275 7.8 to 28.5 L/s, which would expand the contiguously flowing channel from 1456 m to 1542 m,
276 based on previous modeling of channel expansion and contraction (Ward et al., 2018). The
277 primary source of runoff generation via this mechanism would be pre-event water stored within
278 the riparian zone along ephemeral streams or within unchannelized hillslope hollows. Pre-event
279 riparian and hyporheic observations show that DOC ranged from 0.2 to 1.11 mg/L, all too dilute
280 to explain the observed in-stream peak of 3.3 mg/L. Thus, while this mechanism is hydrologically
281 plausible, the DOC concentrations in the pre-event water are too dilute to explain observed DOC
282 concentrations.

283

284 **4.1.3 Hillslope Subsurface Stormflow Generation**

285 At least two somewhat unique mechanisms have been proposed to explain how subsurface
286 drainage from hillslopes can generate rapid stream flow responses during storms. Hewlett and
287 Hibbert (1967) described a translatory-flow mechanism (Figure 3C) through which pressure
288 generated in the saturated zone by rainwater infiltrating hillslope soils is rapidly transmitted
289 through connected pore spaces and pushes water from the bottom of the hillslope into the stream.
290 This mechanism allows for rapid response and is consistent with observations that rising limbs of

291 hydrographs are dominated by “old” or “pre-event” water (Neal & Rosier, 1990; Kirchner, 2003).
292 The translatory-flow mechanism, as initially described, assumed that unsaturated flows occurred
293 through the soil matrix. However, DOC leached from organic-rich horizons is often adsorbed in
294 the mineral soil (Yano, Lajtha, Sollins, & Caldwell, 2005) so that DOC concentrations are quite
295 low in deep soil-water (McGlynn & McDonnell, 2003; van Verseveld et al., 2008). Thus, the
296 concentrations of DOC or other solutes in “old water” may not suffice to explain changes in
297 stream water chemistry. Further, isotopic data suggest some proportion of “new” or “event” water
298 is present (Brown, McDonnell, Burns, & Kendall, 1999). Thus, attempts to explain the observed
299 changes in the concentration of solutes in stream water during storms often require that some
300 portion of the infiltrating rainfall flow rapidly from hillslopes to streams, bringing with it
301 chemical signatures acquired in the canopy or the organic soil horizons.

302
303 Preferential flow (Figure 3D & E) allows water from various sources and chemistries to move
304 rapidly from hillslopes to streams and can occur through macropores (Beven, 1989), even when
305 the soil matrix is not saturated, along contacts between soils and bedrock (McDonnell, 1990) or
306 through bedrock fractures (Figure 3F; Gabrielli et al., 2012). Further, because of limited contact
307 with mineral surfaces of the soil matrix, preferential flows can preserve chemical signatures of the
308 source water. Thus, throughfall, stem flow (Qualls & Haines, 1992; Hinton, Schiff, & English,
309 1998; Brown et al., 1999), and drainage from the soil litter and organic horizons can all be routed
310 to the stream with “new” or “event” water signatures.

311
312 It is clear that, like most mesic forested catchments, the primary runoff generation mechanism
313 in the H.J. Andrews Experimental Forest is subsurface stormflow (Harr, 1977; McGuire &
314 McDonnell, 2010; Gabrielli et al., 2012). The combination of highly porous soils and highly
315 fractured or deeply weathered bedrock, combined with steep hillslopes, drive saturated subsurface
316 flow down hillslopes to the valley margin or directly to the stream in headwater channels lacking
317 a floodplain (after Hewlett & Hibbert, 1967). Preferential flow paths through the mineral soil and
318 the network of fractures in the bedrock, however, have been identified as a mechanism to route
319 relatively DOC-rich, new (or “event”) water to the stream (Gabrielli et al., 2012). Thus, runoff
320 generated at the hillslope becomes a source of solutes to subsurface stormflow. Indeed, this

321 mechanism has been studied in some detail at WS10 in a nearby 10-ha catchment with a highly
322 instrumented hillslope draining into a trench; elsewhere in WS10, the hillslopes drain directly to
323 the stream because the riparian zone was removed by a debris flow in 1986 (McGuire &
324 McDonnell, 2010).

325
326 The subsurface flow mechanisms described above appear to be a plausible mechanism, both
327 to generate peak flows and the DOC loads necessary to explain the patterns we observed during
328 the storm. However, unlike WS10, the stream channel in WS1 is separated from the adjacent
329 hillslopes by a narrow riparian zone along most of its length. The sediment of the riparian zone is
330 saturated, with the water table in equilibrium with the height of water in the stream. Therefore,
331 hillslope water must pass through this saturated sediment before reaching the stream.

332
333 Riparian zones can substantially alter the time scales at which hillslope water can reach
334 streams during storms. First, our calculations for travel times across even the very narrow
335 floodplains present in WS1 suggest that neither runoff nor DOC generated from the hillslopes can
336 reach the stream channel quickly enough to explain changes in DOC concentrations on the rising
337 leg of the storm hydrograph given that only 15 hr elapsed from the beginning of the storm to the
338 observed peaks in discharge and DOC. In fact, the lateral vector of head gradients and subsurface
339 flow velocities through the saturated colluvium of the valley floor suggest that water will flow
340 only 0.65 m in those 15 hours. (Note, we do not see saturation of organic-rich, near-surface soil
341 horizons in the riparian zone that could speed delivery of riparian water to the stream (Figure 3H,
342 but see Section 4.1.5).

343
344 Not only are travel times too long for hillslope water to reach the stream in advance of the
345 peak in discharge, but the DOC concentrations in this water are too dilute to serve as a source of
346 DOC to the stream water. Wells at the valley margin, penetrating the full depth of the saturated
347 zone and located immediately below hillslope hollows should capture hillslope water because
348 both matrix flows as well as preferential flows through macropores in hillslope soils, or along the
349 soil-bedrock interface, cannot bypass the saturated sediment of the valley floor. Well UHH is
350 located on the lower hillslope, several meters above the valley floor and can only receive hillslope

351 sources of water. The distinct chemistry of well D7, compared to all other riparian/hyporheic
352 wells, suggests it receives some combination of deep soil water and longer residence-time
353 groundwater. Both stream tracer tests (Voltz et al., 2013; Ward, Gooseff, & Singha, 2013) and
354 damped and lagged seasonal temperature fluctuations (Pennington, 2019) suggest that this well
355 has limited connectivity to stream water, even at baseflows. Well D7 also has relatively high
356 concentrations of base cations indicative of bedrock weathering, and late in the storm,
357 concentrations of base cations increase suggesting that storm flows push additional long-residence
358 time groundwater into the floodplain margin. The observed maximum DOC concentrations in
359 well UHH was 0.64 mg/L and was 0.32 mg/L in well D7. In contrast, stream water DOC
360 concentrations peaked at 3.29 mg/L. Clearly, the observed concentrations of DOC in hillslope
361 subsurface storm flows – including the shallow soil water likely captured by well UHH and the
362 deeper soil water or groundwater captured by well D7 – cannot serve as a source for the stream
363 DOC concentrations. Thus, both the timescales of cross-valley flows and the dilute concentrations
364 of DOC observed in the hillslope source waters rule out the hillslopes as an explanation for the
365 high DOC concentrations observed in the stream during the storm.

366

367 *4.1.4 Fracture flow bypassing the riparian zone*

368 Unlike hillslope-source soil water, fracture flow (Figure 3F) could bypass valley margin
369 wells. Further, both flow through fractured bedrock (van Verseveld et al., 2008; Gabrielli et al.,
370 2012) and transient groundwater (van Verseveld et al., 2008) have been identified as the dominant
371 source of DOC during storms in the nearby WS10 catchment. Thus, groundwater upwelling from
372 the fracture network in bedrock beneath the valley floor could be a potential source of water that
373 could explain the DOC concentrations we observed in the stream. It seems unlikely, however, that
374 fracture flows could bypass the entire riparian zone and our well network, and flow directly into
375 the stream channel. Rather, if large inputs of DOC-rich groundwater from fractures in the bedrock
376 of the valley floor were present, they should mix with other sources of water in the shallow
377 floodplain aquifer and we should observe high DOC concentrations throughout the well network.
378 Instead, we only observed high DOC concentrations in a single well. Thus, we see no evidence
379 that fracture flow of shallow groundwater can be an important source of DOC.

380

381 **4.1.5 Riparian Zone Subsurface Stormflow Generation**

382 Near-stream areas, especially the riparian zone and near-stream wetlands, can be an important
383 source of DOC to streams (e.g., Fiebig, Lock, & Neal, 1990). This DOC can be flushed to streams
384 over a period of weeks as “variable source areas” expand during snowmelt (Hornberger, Bencala,
385 & McKnight, 1994; Boyer, Hornberger, Bencala, & McKnight, 1997). Similarly, near stream
386 saturated areas have been documented as an important source of both runoff and DOC to streams
387 during storms since this mechanism was first described by Dunne and Black (1970).

388 Alternatively, water tables in the riparian zone often rise rapidly during storms, and if they reach
389 more organic-rich shallow soil horizons, these soils can serve as a source of DOC (Figure 3H).
390 Further, saturated conductivity is often greater in organic rich surface horizons than deeper soil
391 horizons, or rising water tables can activate preferential flow paths. Regardless the specific
392 mechanism, flow through shallow, organic rich horizons can move rapidly to the stream so that
393 the riparian zone is a source of both runoff and DOC early in the storm hydrograph (McGlynn &
394 McDonnell, 2003; Bishop et al., 2004).

395
396 The riparian source hypothesis has been previously invoked as an explanation for the
397 clockwise hysteresis between DOC and discharge observed in our study site (WS1) and other
398 small catchments at the H. J. Andrews Experimental Forest (Hood, Gooseff, & Johnson, 2006).
399 This conclusion, however, was based only on observations at the catchment outlet; supporting
400 measurements were not made within the catchments’ riparian zones. Our observations, however,
401 reject near-stream saturated areas as a source of DOC because we do not observe surface
402 saturation at our site. Our data also suggest that shallow preferential flows could not have
403 occurred during the storm we monitored. The storm responses of WS1’s riparian/hyporheic
404 subsurface flow dynamics were carefully monitored during a storm in 2010 (Voltz et al., 2013)
405 when peak discharge exceeded 1.5 mm/hr. Despite heavy rainfall and very high peak flows, the
406 overall shape of the subsurface flow net changed very little. And the 2010 storm was much larger
407 than the storm we monitored in November 2013 when peak discharge only reached 0.1 mm/hr.
408 Thus, during the storm subsurface water flows through the saturated layer of colluvium for which
409 we have calculated flow velocities (see Section 2). At the timescale of the storm, matrix flows
410 could only contribute water and solutes to the stream from portions of the riparian zone that are <
411 1.0 m from the channel. Clearly, there is no evidence that water in the riparian zone could be

412 mobilized rapidly enough to contribute to observed in-channel DOC dynamics. Moreover, even if
413 this mobilization were hydrologically plausible, DOC concentrations in this water are too dilute to
414 explain the observed concentrations of DOC in the stream water. Our data conclusively show that
415 the riparian zones of WS1 cannot be the source of significant runoff nor DOC to the stream early
416 in the storm.

417

418 *4.1.6 Activation of Distal Patches*

419 Gannon et al. (2015) attributed in-channel DOC dynamics in headwaters by carefully tracing
420 water and DOC from rapidly activated patches high in the catchment (Figure 3I). Critically, these
421 patches had a direct, rapid mechanism to hydrologically connect to 0 and 1st order streams
422 draining the basin. Similar patterns have been observed at the Panola Mountain Research
423 Watershed where a rock outcrop covers 35% of the studied catchment and contributed 50% and
424 85% of stream discharge during the two storms studied (Burns et al., 2001). While our study
425 catchment has outcrops of bedrock, their area is small and they are not readily connected to the
426 surface stream network. We do not see well defined ephemeral channels below the larger
427 outcrops, high on the hillslopes. Consequently, bedrock runoff infiltrates the soils below the
428 outcrops, remaining subsurface as it flows through hillslope hollows, and only emerges into the
429 stream network where channelized saturation overland flow activates a stream channel (Ward et
430 al., 2018; 2020). While we did not sample runoff from any distal patches, the lack of a mechanism
431 to transport any runoff generated to the outlet at the timescales observed is the basis for deeming
432 this mechanism implausible.

433

434 **4.2 Channel Source Hypothesis**

435 We were surprised that DOC concentrations in the water samples from both the riparian and
436 hillslope wells were lower than the stream water. We had expected that the riparian zone would
437 have been the predominant source of DOC to the stream early in the storm hydrograph as
438 suggested by a previous study of storm exports of DOC from WS1 (Hood, Gooseff, & Johnson,
439 2005). This unexpected observation forced us to consider other explanations for the patterns we
440 observed in the stream chemistry. However, as we detailed above, none of the widely accepted
441 conceptual models appear to provide a plausible explanation when critically examined against our

442 observations and other studies within the catchment, forcing us to consider an alternative or
443 “missing” source for the DOC.

444

445 Treating the channel as a source for DOC (Figure 3J) in WS1 appears plausible based on
446 seasonal patterns in both litter fall and stream DOC concentrations as well as the amount of
447 organic matter stored on and in the streambed. Tree cover in the WS1 riparian zone is dominated
448 by red alder, an early-successional deciduous tree that colonized the riparian zone after logging.
449 Leaf fall occurs from October through November. Litterfall studies in WS1 suggest that 160 g/m²
450 of the dry season litterfall (Frady, Johnson, & Li, 2007) could be stored in the channel at the time
451 of our storm event after accounting for rapid leaching losses of 30% of the mass of freshly fallen
452 leaf litter. Given an approximate channel area of 1550 m², the channel could store as much as 250
453 kg of recently fallen leaves. If 100% of the increased DOC over pre-event concentrations were
454 due to in-channel sources, the stored DOC would have had to supply some 4.45 kg carbon during
455 the storm we monitored. Assuming 40% of the mass of organic matter is carbon (stoichiometry
456 based on CH₂O), the DOC load associated with the storm would represent 11.1 kg of organic
457 matter, or 4.5% of the direct litterfall accumulated during and after one growing season.
458 Importantly, our estimate above is conservative. Frady et al. (2007) did not measure litter inputs
459 during November so our flux calculations do not include any litter inputs for the first two weeks
460 of November when alders would still be losing their leaves. Also, our estimates only consider the
461 current growing season’s leaf litter and neglect longer-term storage of fine- and coarse-particulate
462 organic matter. Organic matter budgets for the nearby WS10 suggest that standing stocks of
463 particulate OM < 10 cm in diameter typically range between 700 and 800 g C m⁻² in 1st- and 2nd-
464 order streams (Cummins et al., 1983). Their data suggest that the channel network in WS1 would
465 store between 1,000 and 1,200 kg of C; exports from this single storm would equal ~0.4% of that
466 carbon. Finally, our flux estimates do not include the potential for large in-stream wood to
467 contribute DOC during the storm. In WS10, solubilization of only 0.1% of the large in-stream
468 wood would account for the entire annual DOC flux from that stream (Sedell, Triska, Hall,
469 Anderson, & Lyford, 1974). Clearly, the export of DOC during the November storm was small,
470 given these estimates of annual litter fall inputs and OM storage, supporting the idea that the
471 channel is a plausible source for this DOC.

472

473 **4.3 Catchment Hydrologists' and Aquatic Ecologists' Conceptual Models**

474 We, like other catchment hydrologists, did not start out considering the channel as a potential
475 source for solutes in stream water during storms. In some ways, this is surprising. As catchment
476 hydrologists, we already accept the channel as the source of suspended sediment, including
477 particulate organic carbon (POC). Suspended sediment often shows concentration responses
478 similar to DOC – with concentrations increasing rapidly on the rising leg of the hydrograph, a
479 clockwise hysteresis, and a flushing response of in-channel storage between successive storms
480 (e.g., Vansickle & Beschta, 1983). Further, the distinction between particulate and dissolved is
481 operationally determined by retention or passage through a filter, but the choice of filter was
482 determined by the smallest pore size that could be reliably manufactured and was available in
483 early studies, resulting in an arbitrarily defined pore size of 0.45 μm (Ward and Harr, 1990).
484 However, there is little reason to think that there would be significant difference in the properties
485 of organic matter that was 0.046 μm versus 0.044 μm in diameter. Yet, this arbitrary size
486 threshold marks a paradigm gap in our commonly accepted conceptual models. Particles are
487 eroded, usually from the channel bed and banks but also from surface soils if overland flow
488 occurs. Solutes are sourced with, and transported with, the water and therefore cannot be “eroded”
489 from the channel.

490

491 Stream ecologists have long studied carbon cycling, although primarily during baseflow
492 periods (Butturini et al., 2016). Stream ecosystem processes are complex so that streams can both
493 produce, retain and respire DOC (Hotchkiss & Hall, 2015). Water residence times (or flow
494 velocities) are a primary control on DOC processing, with retention dominating at low flows, but
495 as flows increase, the channel increasingly functions as a passive conduit transporting DOC
496 through the stream network (Butturini et al., 2016; Casas-Ruiz et al., 2017) – the “pulse” in the
497 Pulse-Shunt Concept (Raymond, Saiers, & Sobczak, 2016). It is difficult to separate
498 allochthonous and autochthonous sources and similarly difficult to separate the effect of
499 allochthonous OM previously stored in the channel from new inputs. However, a 3-year litter
500 exclusion study in a headwater stream in a deciduous-forest catchment in the eastern USA
501 suggested that about 30% of total annual DOC exports were likely sourced from the channel

502 (Meyer et al., 1998). Further, they noted that in-channel DOC sources were bigger in the fall and
503 winter than in the spring and summer and bigger during periods of increasing stream discharge
504 than during baseflow periods. Perhaps not surprisingly then, stream ecologists have previously
505 suggested that a channel source could explain the rapid response observed for DOC during storms
506 (Meyer & Tate, 1983; Buffam et al., 2001).

507
508 Here, we focus on the rapid responses in DOC observed during storms and, following the
509 insights of Meyer & Tate (1983), Meyer et al. (1998) and Buffam et al. (2001), suggest that
510 organic matter stored in the bottoms of pools, channel edges, secondary channels, and in the
511 ephemeral portions of the upper extent of the channel network can serve as a source for the pulses
512 of DOC observed during storms and can explain clockwise patterns of hysteresis. We hypothesize
513 that the layered structure of OM mats combined with the paucity of advective flow through dead
514 zones would allow DOC to accumulate within the stored organic matter. This DOC would be
515 released into the stream water as increasing discharge scoured OM from the streambed. The
516 channel source hypothesis (Figure 3J) is unique among the conceptual models of runoff
517 generation because it decouples the solute source from runoff generation. This decoupling is at
518 odds with most previously published conceptual models and adds a dimension that should be
519 considered amongst possible explanations for observations of hysteresis at catchment outlets.
520 While we do not presently know the importance of this mechanism across all networks, the fact
521 that it relies only upon the presence of a stream responding to a storm, which is itself a necessary
522 condition for hydrologic interpretations of in-stream dynamics, suggests it could be ubiquitous.
523

524 We suggest that the channel is likely to be a source of DOC in temperate forested headwater
525 streams during and after autumnal leaf fall. At that time of year, stores of recently deposited
526 particulate organic matter should be large relative to the size of the stream, week- to multi-week-
527 long intervals between storms will provide time for DOC to accumulate in the deposits, after
528 which occasional storm events physically disturb the POC and mobilize the DOC stored within.
529 Further, we expect channel sources of DOC to respond much like channel sources of suspended
530 sediment that show seasonal depletion (VanSickle and Beschta, 1983). A storm will deplete DOC
531 stored in the channel so that a subsequent storm will need to be larger to show the same DOC

532 response or a substantial period of time will be needed for new DOC to accumulate. Further, as
533 DOC is lost through a sequence of storms throughout the fall and winter, and under colder winter
534 stream temperatures, the remaining carbon in the organic matter deposits will be less readily
535 mobilized. Consequently, channel sources of DOC will be much reduced by late winter and
536 spring. The storms that mobilize DOC do not necessarily need to be large, especially the first
537 storms after leaf fall, they only need to be large enough to mobilize deposited organic matter. We
538 also expect that intermittent streams may be 'hot spots' for the accumulation of DOC, for
539 example in disconnected pools or locations where beds remain wet but not flowing. Further,
540 intermittent streams constitute significant lengths of the headwater portions of river networks. In
541 contrast to temperate, forested, headwater streams, we would not expect channel sources of DOC
542 to be important in larger streams and rivers where litter inputs are less important (Vannote,
543 Minshall, Cummins, Sedell, & Cushing, 1980), or in streams without distinct seasonal peaks in
544 litter inputs. Nor would we expect channel sources of DOC to be equally important throughout
545 the year.

546

547 **5. CONCLUSIONS**

548 Stream channels can store, transform, and release substantial amounts of organic matter.
549 Because the standing stocks of POC are quite large in headwater streams of the Pacific
550 Northwest, it would seem reasonable to expect that in-channel POC could also be an important
551 source of DOC in these streams. However, this mechanism has not been systematically studied as
552 a DOC source by catchment hydrologists in comparison to terrestrial sources. Catchment
553 hydrologists have traditionally used stream water DOC as a basis for inferring runoff generation
554 mechanisms from the landscape, requiring that sources of water and DOC are coupled. Further,
555 direct precipitation on streams has long been recognized as a minor contribution to storm flow.
556 Thus, these conceptual models require that DOC must be generated in the catchment and
557 transported into the stream channel along with runoff. In contrast, stream ecologists take DOC as
558 part of the aquatic carbon cycle; DOC is part of a continuum of size fractions that is not
559 necessarily associated with an inflow of water. As a consequence of these different perspectives
560 on DOC, it is perhaps unsurprising that conceptual models of DOC sources are not perfectly
561 aligned. In this study, we elevate the visibility of long-studied in-channel production of DOC as a

562 source that should be considered in future studies of DOC hysteresis and when using DOC - or
563 other solutes potentially generated in the stream channel - as hydrological tracers.

564
565 This study does not conclude that one mechanism is predominant in comparison to others in
566 the basin. Instead, we posit that any or all of the mechanisms detailed above may be working in
567 concert to explain observed in-channel dynamics. Critically, the evidence of in-channel hysteresis
568 in DOC at a study site is potentially explainable by a host of different mechanisms (Fig. 3),
569 meaning any mechanistic attribution must be based on characterization of runoff generation
570 mechanisms and source waters within a basin. Put plainly, the shape of the concentration-
571 discharge relationship, alone, is not a sufficient basis for inference of watershed processes.
572 Measurements internal to catchments are required to falsify a body of potential explanations (i.e.,
573 rejecting one conceptual model over another). Based on the evidence at our field site, we contend
574 that studies of runoff generation and/or solute dynamics should explicitly consider two additional
575 factors. First, the channel itself may serve as a source of dissolved mass independently of any
576 runoff generation. Second, the presence of a riparian zone and the requirement of lateral transport
577 from hillslopes to streams may rule out several potential and previously published mechanisms
578 when critically evaluated.

579

580 **ACKNOWLEDGEMENTS**

581 We thank Haley Corson-Rikert who collected the storm water samples and analyzed them at
582 the Cooperative Chemistry Analytical Laboratory at Oregon State University. Her work was
583 supported by agreement 10-JV- 11261991-055-PNW and she received additional funding and
584 support from the Water Resources Graduate Program and Oregon State University Provost's
585 Distinguished Fellowship. We thank the H.J. Andrews staff for field support. We thank the IWW
586 Collaboratory and Kathy Motter for laboratory equipment and training, as well as technical
587 support. Data were also provided by the HJ Andrews Experimental Forest research program,
588 funded by the National Science Foundation's Long-Term Ecological Research Program (DEB
589 2025755), US Forest Service Pacific Northwest Research Station, and Oregon State University.
590 Wondzell and Ward were support in part by Department of Energy awards DE-SC000022 and
591 DE-SC0019377. Data collection was supported by NSF Award EAR 1417603. Ward's time was

592 supported in part by NSF Awards EAR 1652293, the Burnell and Barbara Fischer fellowship
593 from Indiana University, and sabbatical support from J. Selker and Oregon State University. Any
594 views or opinions expressed in this study are those of the authors and not positions of their
595 employers.

596

597 **DATA AVAILABILITY**

598 All data included in this study are available in the H.J. Andrews Data Catalog, including
599 stream flow (Johnson et al., 2020), meteorology (Daly & McKee, 2019), and water chemistry
600 collected during the storm (Wondzell & Corson-Rikert, 2016).

601

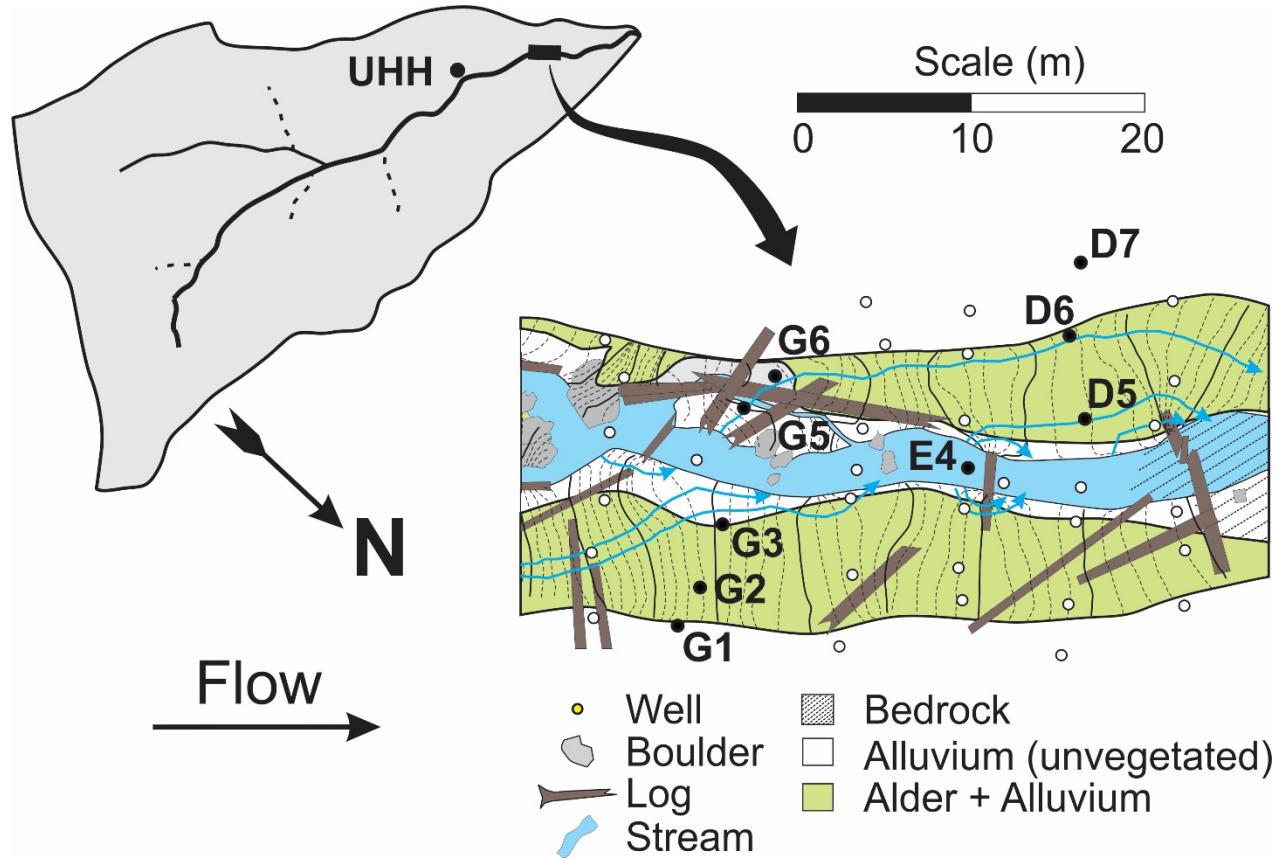
602 **REFERENCES**

- 603 Amatya D, Campbell J, Wohlgemuth P, Elder K, Sebestyen S, Johnson SL, Keppeler E, Adams
604 M, Caldwell P, Misra D. 2016. Hydrological processes of reference watersheds in
605 experimental forests , USA. In Forest Hydrology: Processes, Management and Assessment,
606 Amatya D, Williams T, Bren L, de Jong C (eds).CAB International: Oxfordshire, UK; 219–
607 239.
- 608 Argerich A, Haggerty R, Johnson SL, Wondzell SM, Dosch N, Corson-Rikert HA, Ashkenas LR,
609 Pennington R, Thomas CK. 2016. Comprehensive multiyear carbon budget of a temperate
610 headwater stream. *Journal of Geophysical Research - Biogeosciences* 121: 1306–1315 DOI:
611 10.1002/2015JG003050.
- 612 Barthold, F. K., C. Tyralla, K. Schneider, K. B. Vache', H.-G. Frede, and L. Breuer (2011), How
613 many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis,
614 *Water Resour. Res.*, 47, W08519, doi:10.1029/2011WR010604.
- 615 Beven KJ. 1989. Interflow. In *Unsaturated Flow in Hydrologic Modeling: Theory and Practice*,
616 Morel-Seytoux HJ (ed.).Springer, Dordrecht; 191–219.
- 617 Bishop K, Seibert J, Stephan K. 2004. Resolving the double paradox of rapidly mobilized old
618 water with highly variable responses in runoff chemistry. *Hydrological Processes* 18: 185–189
619 DOI: 10.1002/hyp.5209
- 620 Bishop KH, Grip H, O'Neill A. 1990. The origins of acid runoff in a hillslope during storm
621 events. *Journal of Hydrology* 116: 35–61

- 622 Boyer EW, Hornberger GM, Bencala KE, McKnight DM. 1997. Response characteristics of doc
623 flushing in an alpine catchment. *Hydrological Processes* 11: 1635–1647
- 624 Brown VA, McDonnell JJ, Burns DA, Kendall C. 1999. The role of event water, a rapid shallow
625 flow component, and catchment size in summer stormflow. *Journal of Hydrology* 217: 171–
626 190
- 627 Buffam I, Galloway JN, Blum LK, McGlathery KJ. 2001. A stormflow / baseflow comparison of
628 dissolved organic matter concentrations and bioavailability in an Appalachian stream.
629 *Biogeochemistry* 53: 269–306
- 630 Burns DA, McDonnell JJ, Hooper RP, Peters NE, Freer JE, Kendall C, Beven K. 2001.
631 Quantifying contributions to storm runoff through end-member mixing analysis and
632 hydrologic measurements at the Panola Mountain Research Watershed (Georgia , USA).
633 *Hydrological Processes* 15: 1903–1924 DOI: 10.1002/hyp.246
- 634 Butturini A, Guarch A, Romaní AM, Freixa A, Amalfitano S, Fazi S, Ejarque E. 2016.
635 Hydrological conditions control in situ DOM retention and release along a Mediterranean
636 river. *Water Research* 99: 33-45.
- 637 Casas-Ruiz, JP, Catalán N, Gómez-Gener L, von Schiller D, Obrador B, Kothawala DN, López P,
638 Sabater S, Marcé R. 2017. A tale of pipes and reactors: Controls on the in-stream dynamics of
639 dissolved organic matter in rivers. *Limnology and Oceanography* 62(S1):S85-S94.
- 640 Corson-Rikert HA. 2014. Carbon dynamics in the hyporheic zone of a headwater mountain
641 stream in the Cascade Mountains, Oregon. MS Thesis, Oregon State University. 132 p.
- 642 Corson-Rikert HA, Wondzell SM, Haggerty R, Santelmann M V. 2016. Carbon dynamics in the
643 hyporheic zone of a headwater mountain streamin the Cascade Mountains, Oregon. *Water*
644 *Resources Research* 52: 7556–7576 DOI: 10.1029/2008WR006912.M
- 645 Cummins KW, Sedell JR, Swanson FJ, Minshall GW, Fisher SG, Cushing CE, Petersen R,
646 Vannote RL. 1983. Organic matter budgets for stream ecosystems: Problems in their
647 evaluation. In *Stream Ecology: Application and Testing of General Ecological Theory*, Barnes
648 JR, , Minshall GW (eds).New York, NY; 299–353.
- 649 Daly C, McKee WA. 2019. Meteorological data from benchmark stations at the Andrews
650 Experimental Forest, 1957 to present. v36 Environmental Data Initiative Available at:
651 <https://doi.org/10.6073/pasta/c021a2ebf1f91adf0ba3b5e53189c84f> [Accessed 3 March 2021]

- 652 Dosch NT. 2014. Spatiotemporal dynamics and drivers of stream pCO₂ in a headwater catchment
653 in the western Cascade Mountains, Oregon. MS Thesis, Oregon State University. 121 p.
- 654 Dunne T, Black RD. 1970. Partial area contributions to storm runoff in a small New England
655 watershed. *Water Resources Research* 6 (5): 1296–1311
- 656 Fiebig DM, Lock MA, Neal C. 1990. Soil water in the riparian zone as a source of carbon for a
657 headwater stream. *Journal of Hydrology* 116: 217–237
- 658 Frady C, Johnson SL, Li J. 2007. Stream macroinvertebrate community responses as legacies of
659 forest harvest at the H.J. Andrews Experimental Forest, Oregon. *Forest Science* 53 (2): 281–
660 293
- 661 Gabrielli CP, McDonnell JJ, Jarvis WT. 2012. The role of bedrock groundwater in rainfall-runoff
662 response at hillslope and catchment scales. *Journal of Hydrology* 450–451: 117–133 DOI:
663 10.1016/j.jhydrol.2012.05.023
- 664 Gannon J, Bailey SW, McGuire KJ, Shanley JB. 2015. Flushing of distal hillslopes as an
665 alternative source of stream dissolved organic carbon in a headwater catchment. *Water
666 Resources Research* 51: 8114–8128 DOI: 10.1002/2015WR016927. Received
- 667 Gomi T, Moore RD, Hassan MA. 2005. Suspended sediment dynamics in small forest streams of
668 the pacific northwest. *Journal of the American Water Resources Association*: 877–898
- 669 Gooseff MN, LaNier J, Haggerty R, Kokkeler K. 2005. Determining in-channel (dead zone)
670 transient storage by comparing solute transport in a bedrock channel-alluvial channel
671 sequence, Oregon. *Water Resources Research* 41 (6): 1–7 DOI: 10.1029/2004WR003513
- 672 Harr R. 1977. Water flux in a soil and subsoil on a steep forested slope. *Journal of Hydrology* 33:
673 37–58
- 674 Hewlett JD, Hibbert AR. 1967. Factors affecting the response of small watersheds to precipitation
675 in humid areas. *Forest Hydrology*: 275–290
- 676 Hinton MJ, Schiff SL, English MC. 1998. Sources and flowpaths of dissolved organic carbon
677 during storms in two forested watersheds of the Precambrian Shield. *Biogeochemistry* 41:
678 175–197
- 679 Hood E, Gooseff MN, Johnson SL. 2006. Changes in the character of stream water dissolved
680 organic carbon during flushing in three small watersheds , Oregon. *Journal of Geophysical
681 Research* 111 (February): G01007 DOI: 10.1029/2005JG000082

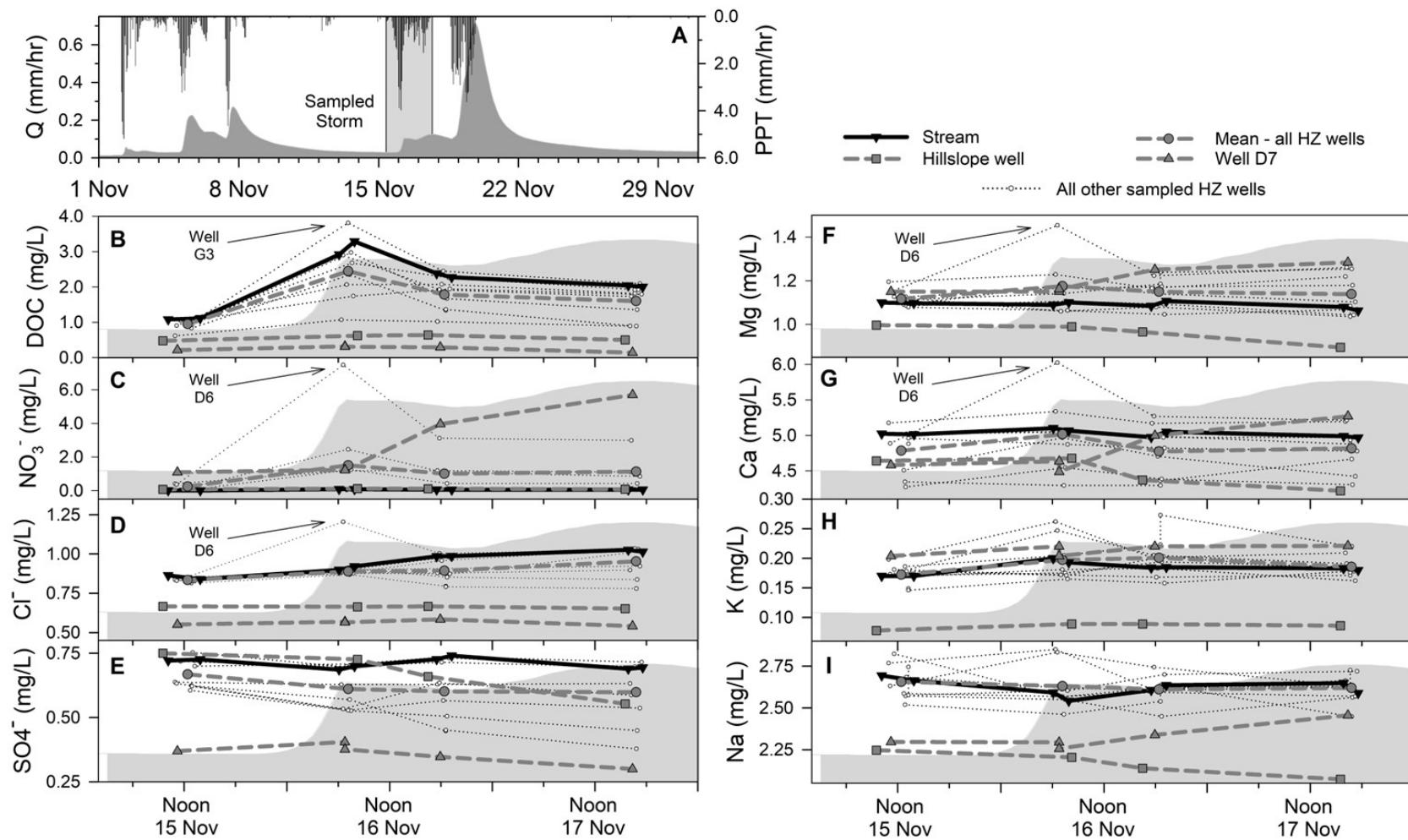
- 682 Hornberger GM, Bencala KE, McKnight DM. 1994. Hydrological controls on dissolved organic
683 carbon during snowmelt in the Snake River near Montezuma, Colorado. *Biogeochemistry* 25
684 (3): 147–165 DOI: 10.1007/BF00024390
- 685 Horton RE. 1933. The role of infiltration in the hydrologic cycle. *Eos, Transactions of the*
686 *American Geophysical Union* 14 (1): 446–460
- 687 Hotchkiss ER, Hall RO, Jr. 2015. Whole-stream ^{13}C tracer addition reveals distinct fates of newly
688 fixed carbon. *Ecology*, 96(2):403–416
- 689 Jackson TR, Haggerty R, Apte S V., Coleman A, Drost KJ. 2012. Defining and measuring the
690 mean residence time of lateral surface transient storage zones in small streams. *Water*
691 *Resources Research* 48 (10): 1–20 DOI: 10.1029/2012WR012096
- 692 Jarecke KM, Bladon KD, Wondzell SM. 2021. The influence of local and nonlocal factors on soil
693 water content in a steep forested catchment. *Water Resources Research*: e2020WR028343
694 DOI: 10.1029/2020WR028343
- 695 Johnson SL, Rothacher JS, Wondzell SM. 2020. Stream discharge in gaged watersheds at the HJ
696 Andrews Experimental Forest, 1949 to present. v33 Environmental Data Initiative Available
697 at: <https://doi.org/10.6073/pasta/0066d6b04e736af5f234d95d97ee84f3> [Accessed 3 March
698 2021]
- 699 Kasahara T, Wondzell SM. 2003. Geomorphic controls on hyporheic exchange flow in mountain
700 streams. *Water Resources Research* 39 (1): 1005
- 701 Kirchner JW. 2003. A double paradox in catchment hydrology and geochemistry. *Hydrological*
702 *Processes* 17: 871–874 DOI: 10.1002/hyp.5108
- 703 Klaus J, McDonnell JJ. 2013. Hydrograph separation using stable isotopes: Review and
704 evaluation. *Journal of Hydrology* 505: 47–64 DOI: 10.1016/j.jhydrol.2013.09.006
- 705 McDonnell JJ. 1990. A rationale for old water discharge through macropores in a steep, humid
706 catchment. *Water Resources Research* 26 (11): 2821–2832
- 707 McDowell, WH, Fisher, SG. 1976. Autumnal porcessing of dissolved organic matter in a small
708 woodland stream ecosystem. *Ecology* 57: 561-569.
- 709 McGlynn BL, McDonnell JJ. 2003. Quantifying the relative contributions of riparian and hillslope
710 zones to catchment runoff. *Water Resources Research* 39 (11) DOI: 10.1029/2003WR002091


- 711 McGlynn BL, McDonnell JJ, Shanley J., Kendall C. 1999. Riparian zone flowpath dynamics
712 during snowmelt in a small headwater catchment. *Journal of Hydrology* 222 (1–4): 75–92
713 DOI: 10.1016/S0022-1694(99)00102-X
- 714 McGuire KJ, McDonnell JJ. 2010. Hydrological connectivity of hillslopes and streams:
715 Characteristic time scales and nonlinearities. *Water Resources Research* 46 (10): W10543
716 DOI: 10.1029/2010WR009341
- 717 Meyer JL, Tate CM. 1983. Leaf litter as a source of dissolved organic carbon in streams.
718 *Ecosystems* 1: 240–249
- 719 Meyer JL, Wallace JB, Eggert SL. 1998. Leaf litter as a source of dissolved organic carbon in
720 streams. *Ecosystems* 1: 240–249
- 721 Neal C, Rosier PTW. 1990. Chemical studies of chloride and stable oxygen isotopes in two
722 conifer afforested and moorland sites in the British uplands. *Journal of Hydrology* 115 (1–4):
723 269–283 DOI: 10.1016/0022-1694(90)90209-G.
- 724 OED, 1985. The compact edition of the Oxford English Dictionary. 24th printing. Oxford
725 University Press.
- 726 Pennington RS. 2019. Measurement of gas exchange, stream metabolism, and carbon fluxes of
727 headwater streams. MS Thesis, Oregon State University. 106 p.
- 728 Qualls RG, Haines BL. 1992. Biodegradability of dissolved organic matter in forest throughfall,
729 soil solution, and stream water. *Soil Science Society of America Journal* 56 (2): 578–586
730 DOI: 10.2136/sssaj1992.03615995005600020038x
- 731 Raymond PA, Saiers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on
732 watershed dissolved organic matter transport: pulse- shunt concept. *Ecology*, 97(1):5–16
- 733 Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon P. 1997. Export of DOC from
734 forested catchments on the Precambrian Shield of Central Ontario : Clues from ^{13}C .
735 *Biogeochemistry* 36: 43–65
- 736 Sedell JR, Triska FJ, Hall J, Anderson N, Lyford J. 1974. Sources and fates of organic inputs in
737 coniferous forest streams. pgs 57-69. in: R. H. Waring and R. L. Edmonds (eds.). *Integrated*
738 *research in the coniferous forest biome. Coniferous Forest Biome Bulletin* 5. U. S.
739 International Biome Program, University of Washington, Seattle, WA

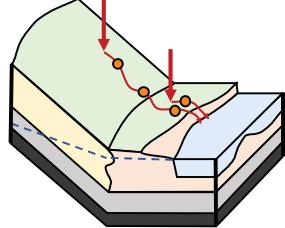
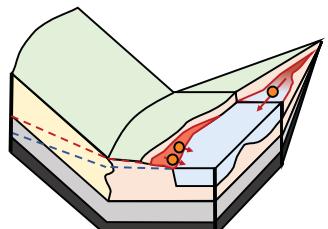
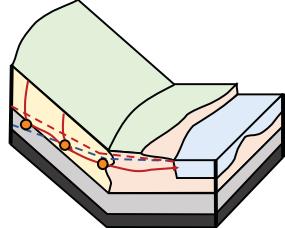
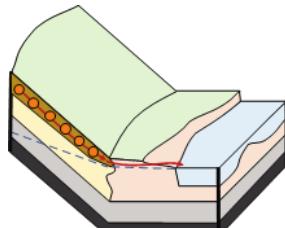
- 740 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum
741 concept. *Canadian Journal of Fisheries and Aquatic Sciences* 37: 130–137
- 742 Vansickle J, Beschta RL. 1983. Supply-based models of suspended sediment transport in streams.
743 *Water Resources Research* 19 (3): 768–778
- 744 van Verseveld WJ, McDonnell JJ, Lajtha K. 2008. A mechanistic assessment of nutrient flushing
745 at the catchment scale. *Journal of Hydrology* 358: 268–287 DOI:
746 10.1016/j.jhydrol.2008.06.009
- 747 Voltz TJ, Gooseff MN, Ward AS, Singha K, Fitzgerald M, Wagener T. 2013a. Riparian hydraulic
748 gradient and stream-groundwater exchange dynamics in steep headwater valleys. *Journal of
749 Geophysical Research: Earth Surface* 118 (2): 953–969 DOI: 10.1002/jgrf.20074
- 750 Voltz TJ, Gooseff MN, Ward AS, Singha K, Fitzgerald M, Wagener T. 2013b. Riparian hydraulic
751 gradient and stream-groundwater exchange dynamics in steep headwater valleys. *Journal of
752 Geophysical Research: Earth Surface* 118 (2): 953–969 DOI: 10.1002/jgrf.20074
- 753 Ward AS, Gooseff MN, Singha K. 2013. How does subsurface characterization affect simulations
754 of hyporheic exchange? *Ground water* 51 (1): 14–28 DOI: 10.1111/j.1745-6584.2012.00911.x
- 755 Ward AS, Schmadel NM, Wondzell SM. 2018. Simulation of dynamic expansion, contraction,
756 and connectivity in a mountain stream network. *Advances in Water Resources* 114: 64–82
757 DOI: 10.1016/j.advwatres.2018.01.018
- 758 Ward AS, Schmadel NM, Wondzell SM, Gooseff MN, Singha K. 2017. Dynamic hyporheic and
759 riparian flowpath geometry through baseflow recession in two headwater mountain stream
760 corridors. *Water Resources Research*
- 761 Ward AS, Wondzell SM, Schmadel NM, Herzog SP. 2020. Climate change causes river network
762 contraction and disconnection in the H.J. Andrews Experimental Forest, Oregon, USA.
763 *Frontiers in Water* 2 (April): 1–10 DOI: 10.3389/frwa.2020.00007
- 764 Ward, J.R., and Harr, C.A. 1990. Methods for collection and processing of surface-water and bed-
765 material samples for physical and chemical analyses: U.S. Geological Survey Open-File
766 Report 90-140, 71 p.
- 767 Western AW, Grayson RB, Blöschl G, Willgoose GR, McMahon TA. 1999. Observed spatial
768 organization of soil moisture and its relation to terrain indices. *Water Resources Research* 35
769 (3): 797–810

- 770 Wondzell SM. 2006. Effect of morphology and discharge on hyporheic exchange flows in two
771 small streams in the Cascade Mountains of Oregon, USA. *Hydrological Processes* 20 (2):
772 267–287
- 773 Wondzell SM, Corson-Rikert HA. 2016. Carbon dynamics in the hyporheic zone of a headwater
774 mountain stream in the Cascade Mountains, Oregon – Watershed 1 at HJA – June 2013 to
775 March 2014. v4 Environmental Data Initiative Available at:
776 <https://doi.org/10.6073/pasta/7a070aab134c1add4f239fab6318b4d7> [Accessed 3 March 2021]
- 777 Yano Y, Lajtha K, Sollins P, Caldwell BA. 2005. Chemistry and dynamics of dissolved organic
778 matter in a temperate coniferous forest on andic soils : effects of litter quality. *Ecosystems* 8:
779 286–300 DOI: 10.1007/s10021-005-0022-9
- 780 Zimmer MA, McGlynn BL. 2017. Ephemeral and intermittent runoff generation processes in a
781 low relief, highly weathered catchment. *Water Resources Research* 53 (8): 7055–7077 DOI:
782 10.1002/2016WR019742

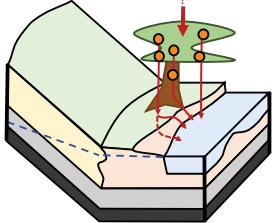
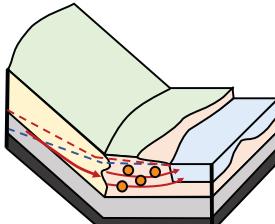
783 **FIGURE LEGENDS**

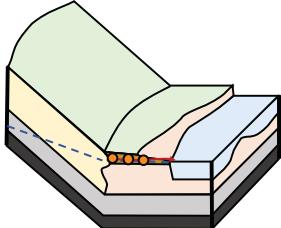
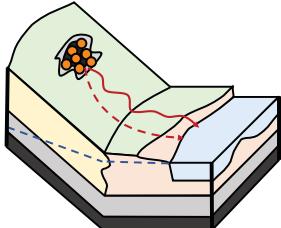
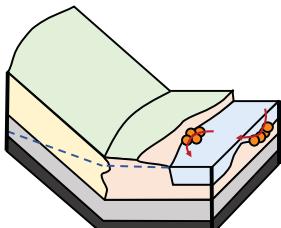

784

785





786 **Figure 1:** (A) Location of the well network (black rectangle) within the 96-ha Watershed 1 and
 787 the location of the hillslope well (UHH) upstream of the well network. Both the mainstem and
 788 primary tributary (solid lines) are spatially intermittent in summer; dashed lines indicate
 789 ephemeral tributaries. Perennial surface flow is maintained throughout the well network reach in
 790 most summers. (B) Close-up detail of the valley floor of Watershed 1 and the location of
 791 individual wells. Wells sampled during the storm are filled circles labeled "D5, etc.". Note that
 792 maps are rotated so that flow through the well network reach is from left to right.

793




794

795 **Figure 2:** (A) Hourly precipitation from PRIMET benchmark station (black bars; Daly & McKee, 2019)) and hourly mean
 796 discharge recorded at the WS1 gage (dark gray shading; Johnson, Rothacher, & Wondzell, 2020). Shaded rectangle, spanning 15 to
 797 17 November indicates the storm during which samples were collected. (B-I) Solute concentrations measured in the stream and the
 798 well network during the storm (Wondzell & Corson-Rikert, 2016).

Conceptual Model & Literature	Hydrological Requirements	DOC Requirements	Key Literature
<p>A. Hortonian overland flow and DOC</p>	<p>Infiltration excess overland flow generation</p> <p><i>Evidence: Flow generation mechanism never observed nor reported at our study site.</i></p>	<p>DOC source along land surface mobilized by runoff</p> <p><i>Evidence: Not measured.</i></p>	<p>(Horton, 1933)</p>
<p>B. Dunne overland flow</p>	<p>Saturation excess overland flow generation in lateral or longitudinal dimension</p> <p><i>Evidence. No lateral expansion observed. Longitudinal expansion of channel network expected from prior modeling.</i></p>	<p>High DOC source in (a) the water that rises to intersect the land surface and/or (b) precipitation</p> <p><i>Evidence: Pre-event DOC in riparian waters too low to explain DOC concentrations in-stream.</i></p>	<p>(Dunne and Black, 1970; Schiff et al., 1997)</p>
<p>C. Hillslope source translatory flow</p>	<p>Piston flow (or translatory flow) from hillslopes to valley bottom</p> <p><i>Evidence: Expected based on studies in nearby hillslopes and dominant runoff generation mechanism in our basin. However, timescales across riparian zone limit contributions to rapid DOC response in the stream.</i></p>	<p>Low DOC in subsurface runoff from hillslopes due to adsorption in mineral soil</p> <p><i>Evidence: DOC observed in translatory flow (wells UHH & D7) too low to explain DOC concentrations in stream water at peak storm flow.</i></p>	<p>(McGlynn and McDonnell, 2003)</p>
<p>D. Hillslope source translatory flow (O-horizon source via preferential flow)</p>	<p>Rapid flow through highly permeable, transiently saturated shallow, organic-rich soil horizons in near-stream zones</p> <p><i>Evidence: Shallow water tables not observed on hillslopes; change in water table elevation in riparian zone is small. Transport across riparian zone too slow to contribute to rising limb of DOC.</i></p>	<p>High DOC source in the water is near-surface soil horizons</p> <p><i>Evidence: DOC observed in translatory flow (wells UHH & D7) too low to explain DOC concentrations in stream water at peak storm flow. DOC in riparian wells does not rise fast enough to connect hillslope to stream.</i></p>	<p>(Bishop et al., 1990; McGlynn et al., 1999)</p>

Running Title: The Channel Source Hypothesis

<p>E. Hillslope source translatory flow (throughfall source via preferential flow)</p>	<p>Preferential flow of throughfall or stemflow through soil macropores or along soil-bedrock contact from hillslope to stream</p> <p><i>Evidence: Mechanism cited in nearby WS10. Transport across riparian zone too slow to contribute to rising limb of DOC.</i></p>	<p>Various event-water DOC signatures from through fall or soil organic horizons preserved enroute to stream.</p> <p><i>Evidence: High DOC concentrations not observed in wells UHH & D7.</i></p>	<p>(McDonnell, 1990; Verseveld <i>et al.</i>, 2008; Gabrielli <i>et al.</i>, 2012)</p>
<p>F. Hillslope source translatory flow (via preferential flow in fractures)</p>	<p>Preferential flow through fractures in saprolite or bedrock from hillslope <u>can</u> bypass saturated valley-floor sediment enroute to stream.</p> <p><i>Evidence: Likely - WS10 studies, but must expect upwelling across/along whole valley floor so riparian mixing & transport makes it too slow to reach stream</i></p>	<p>Various event-water DOC signatures from throughfall or soil organic horizons preserved enroute to stream.</p> <p><i>Evidence: High DOC concentrations not observed in any hyporheic or floodplain wells. No observation of base cation changes in stream that would be expected with this mechanism.</i></p>	<p>(Gabrielli <i>et al.</i>, 2012)</p>
<p>G. Translatory flow displaced riparian water</p>	<p>Translatory flow from hillslopes displaced pre-event water in riparian zone</p> <p><i>Evidence: Minimal response of riparian wells to larger storm events [Voltz <i>et al.</i>, 2013] suggests no discernable pressure wave is generated.</i></p>	<p>High pre-event DOC concentrations in riparian zone</p> <p><i>Evidence: Pre-event riparian samples do not have sufficiently high DOC to explain in-stream observations.</i></p>	<p>(McGlynn and McDonnell, 2003)</p>

<p>H. O-Horizon DOC from riparian zone</p>	<p>Preferential flow laterally from riparian zone to stream</p> <p><i>Evidence: No mechanism to connect source water to stream at relevant timescales for observed hysteresis.</i></p>	<p>High DOC in shallow subsurface preferential flow</p> <p><i>Evidence: Not observed in hyporheic nor riparian wells</i></p>	<p>(Schiff <i>et al.</i>, 1997)</p>
<p>I. Mobilization of DOC from rapidly connected distal patches</p>	<p>Runoff generation from bedrock outcrops and locations with shallow soils rapidly connected to stream</p> <p><i>Evidence: No mechanism to connect source water to stream at relevant timescales for observed hysteresis.</i></p>	<p>High DOC in runoff from distal patches</p> <p><i>Evidence: Not measured</i></p>	<p>(Burns <i>et al.</i>, 2001; Gannon <i>et al.</i>, 2015; Zimmer and McGlynn, 2017)</p>
<p>J. Channel source</p>	<p>Hydrological response generates high flow in stream channel</p> <p><i>Evidence: observed in-channel hydrograph regardless of runoff generation mechanism(s)</i></p>	<p>Mobilization of DOC from in-channel leaf packs</p> <p><i>Evidence: Large store of in-channel leaf litter, seasonally high DOC at start of rainy season.</i></p>	<p>(Meyer and Tate, 1983; Meyer <i>et al.</i>, 1998; Buffam <i>et al.</i>, 2001) & this study</p>

799

800

801 **Figure 3.** Alternative conceptual models that have been used to explain in-stream DOC hysteresis. Each model includes a summary
 802 of the evidence that would need to be observed to support the conceptualization, the evidence we found (italics), and key papers
 803 invoking or describing the conceptual model.