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BACKGROUND: Landau’s Fermi liquid theory

provides the bedrock on which our under-

standing of metals has developed over the

past 65 years. Its basic premise is that the

electrons transporting a current can be treated

as “quasiparticles”—electron-like particles

whose effective mass has been modified, typ-

ically through interactions with the atomic

lattice and/or other electrons. For a long

time, it seemed as though Landau’s theory

could account for all the many-body inter-

actions that exist inside a metal, even in the

so-called heavy fermion systemswhose quasi-

particle mass can be up to three orders of

magnitude heavier than the electron’s

mass. Fermi liquid theory also lay the

foundation for the first successful micro-

scopic theory of superconductivity.

In the past few decades, a number of

newmetallic systems have been discovered

that violate this paradigm. The violation is

most evident in the way that the electrical

resistivity changes with temperature or

magnetic field. In normal metals in which

electrons are the charge carriers, the

resistivity increases with increasing tem-

perature but saturates, both at low tem-

peratures (because the quantized lattice

vibrations are frozen out) and at high

temperatures (because the electronmean

free path dips below the smallest scatter-

ingpathwaydefinedby the lattice spacing).

In “strange metals,” by contrast, no satu-

ration occurs, implying that the quasipar-

ticle descriptionbreaksdownand electrons

are no longer the primary charge carriers.

When the particle picture breaks down, no

local entity carries the current.

ADVANCES: A new classification of metal-

licity is not a purely academic exercise,

however, as strange metals tend to be the

high-temperature phase of some of the

best superconductors available. Under-

standing high-temperature superconduc-

tivity stands as a grand challenge because

its resolution is fundamentally rooted in

the physics of strong interactions, a re-

gimewhere electronsno longermove inde-

pendently. Precisely what new emergent

phenomena one obtains from the inter-

actions that drive the electron dynamics

above the temperature where they super-

conduct is oneof themosturgentproblems

in physics, attracting the attention of con-

densed matter physicists as well as string

theorists. One thing is clear in this regime:

The particle picture breaks down. As particles

and locality are typically related, the strange

metal raises the distinct possibility that its

resolution must abandon the basic building

blocks of quantum theory.

We review the experimental and theoretical

studies that have shaped our current under-

standing of the emergent strongly interacting

physics realized in a host of strange metals,

with a special focus on their poster-child: the

copper oxide high-temperature superconduc-

tors. Experiments are highlighted that attempt

to link the phenomenon of nonsaturating re-

sistivity to parameter-free universal physics. A

key experimental observation in such mate-

rials is that removing a single electron affects

the spectrum at all energy scales, not just the

low-energy sector as in a Fermi liquid. It is

observations of this sort that reinforce the

breakdown of the single-particle concept. On

the theoretical side, the modern accounts

that borrow from the conjecture that strongly

interacting physics is really about gravity are

discussed extensively, as they have been the

most successful thus far in describing the

range of physics displayed by strangemetals.

The foray into gravity models is not just a

pipe dream because in such constructions,

no particle interpretation is given to the

charge density. As the breakdown of the

independent-particle picture is central to

the strange metal, the gravity constructions

are a natural tool to make progress on this

problem. Possible experimental tests of this

conjecture are also outlined.

OUTLOOK:Asmore strangemetals emerge

and their physical properties come under

the scrutiny of the vast array of ex-

perimental probes now at our disposal,

their mysteries will be revealed and

their commonalities and differences

cataloged. In so doing, we should be

able to understand the universality of

strange metal physics. At the same

time, the anomalous nature of their

superconducting state will become

apparent, offering us hope that a

new paradigm of pairing of non-

quasiparticles will also be formalized.

The correlation between the strength

of the linear-in-temperature resistivity

in cuprate strange metals and their

corresponding superfluid density, as

revealed here, certainly hints at a fun-

damental link between the nature of

strange metallicity and superconduc-

tivity in the cuprates. And as the gravity-

inspired theories mature and overcome

the challenge of projecting their power-

ful mathematical machinery onto the

appropriate crystallographic lattice,

so too will we hope to build with con-

fidence a complete theory of strange

metals as they emerge from the horizon

of a black hole.▪
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Curved spacetime with a black hole in its interior and the

strange metal arising on the boundary. This picture is

based on the string theory gauge-gravity duality conjecture by

J. Maldacena, which states that some strongly interacting

quantum mechanical systems can be studied by replacing them

with classical gravity in a spacetime in one higher dimension.

The conjecture was made possible by thinking about some of the

fundamental components of string theory, namely D-branes

(the horseshoe-shaped object terminating on a flat surface in

the interior of the spacetime). A key surprise of this conjecture

is that aspects of condensed matter systems in which the

electrons interact strongly—such as strange metals—can be

studied using gravity.
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In traditional metals, the temperature (T) dependence of electrical resistivity vanishes at low or high

T, albeit for different reasons. Here, we review a class of materials, known as “strange” metals, that can

violate both of these principles. In strange metals, the change in slope of the resistivity as the mean

free path drops below the lattice constant, or as T → 0, can be imperceptible, suggesting continuity

between the charge carriers at low and high T. We focus on transport and spectroscopic data on

candidate strange metals in an effort to isolate and identify a unifying physical principle. Special

attention is paid to quantum criticality, Planckian dissipation, Mottness, and whether a new gauge

principle is needed to account for the nonlocal transport seen in these materials.

T
o understand the essential tension be-
tween quantum mechanics and gravity,
simply imagine two electrons impinging
on the event horizon of a black hole.
Whereas classical gravity predicts that

they meet at the center, quantum mechanics
forbids this if the electrons have the same
spin. In essence, classical gravity has no way
of preserving Pauli exclusion. Replacing clas-
sical general relativity with a quantum theory
of gravity at small enough scales resolves the
problem, but what is this scale?
In 1899, Planck formulated a universal length

now regarded as the scale belowwhich a quan-
tum theory of gravity supplants its classical
counterpart. The Planck scale,

‘P ¼

ffiffiffiffiffiffiffi

ħG

c3

r

ð1Þ

obtains by pure dimensional analysis on three
fundamental constants: the speed of light,
c, Newton’s gravitational constant, G, and the
quantum of uncertainty, ħ (Planck’s constant, h,
divided by 2p). This leads naturally to a Planck
time as the ratio of the Planck length to the
speed of light, ‘P/c. Such a Planckian analysis
can be extended tomany-body systems in con-
tact with a heat bath. All that is necessary is to
include the temperature T. A similar dimen-
sional analysis then leads to

tP ¼
ħ

kBT
ð2Þ

as the shortest time for heat loss in a many-
body system obeying quantum mechanics,
where kB is Boltzmann’s constant. Because

no system parameters enter tP, this quantity
occupies a similar fundamental role in anal-
ogy to the Planck length and is referred to as
the Planckian dissipation time. Equation 2 has
had previous incarnations (1, 2); in the realm
of charge transport, relevant to this article, it
defines the time scale for scale-invariant or
Planckian dissipation (3). Scale invariance fol-
lows because there is no scale other than tem-
perature appearing in tP. Achieving such scale
invariance necessitates a highly entangledmany-
body state. Such a state would lead to the break-
down of a local single-particle framework and
the advent of new collective nonlocal entities as
the charge carriers. Identifying the new prop-
agating degrees of freedom constitutes the key
mystery of strange metals.
Whereas the Planck scale ‘P requires high-

energy accelerators much beyond anything
now in use, such is not the case with physics
at the Planckiandissipation limit. Early tabletop
experiments on cuprate superconductors, for
example, revealed a “strange metal” regime
defined by a robust T-linear resistivity extend-
ing to the highest temperatures measured (4–6)
(Fig. 1), a possible harbinger of Planckian dissi-
pation. Recall that in a Fermi liquid, the con-
ductivity can be well described by a Drude
formula,

s ¼
nee

2

m
ttr ð3Þ

where ne is the charge carrier density, e is the
charge of an electron,m is its mass, and ttr is
the transport lifetime, defined as

ttr ¼
ħEF

ðkBTÞ
2 ¼

EF

kBT
tP ð4Þ

which contains the Fermi energy EF of the
quasiparticles. No such energy scale appears
in Eq. 2. If the scattering rate in cuprates is
directly proportional to the resistivity, as it is
in simplemetals,T-linear resistivity is equivalent
to scale-invariant Planckian dissipation only

if ttr = a1tP with a1 (the coefficient of T-linear
resistivity) ~ 1. Although this state of affairs
seems to be realized in a host of correlated
metals, including the cuprates (7–10), there is
no consensus concerning how accurately a1 can
be known and the assumptions that go into its
determination. Regardless of the possible rela-
tionship with Planckian dissipation, what
makes T-linear resistivity in the cuprates truly
novel is its persistence—from millikelvin tem-
peratures (in both the electron- and hole-
doped cuprates) (11, 12) up to 1000 K (in the
hole-doped cuprates) (4, 6)—and its omni-
presence, the strangemetal regime dominating
large swathes of the temperature versus doping
phase diagram (13). In normalmetals (14, 15) as
well as some heavy fermion materials (16), the
resistivity asymptotically approaches a satura-
tion value at which the mean free path ‘ be-
comes comparablewith the interatomic spacing
a or more generally the Fermi wavelength lF—

the minimum length over which a Bloch wave
and its associated Fermi velocity and wave vec-
tor can be defined. In many correlated metals,
collectively referred to as “bad metals,” ‘ < a at
high T, which violates the so-called Mott-Ioffe-
Regel (MIR) limit (5, 6, 1, 16–18). Remarkably,
no saturation occurs in these badmetals across
the MIR threshold, implying that the whole
notion of a Fermi velocity of quasiparticles
breaks down at high T. In certain cases, an
example of which is shown in Fig. 1, there is no
discernible change in slope as the MIR limit is
exceeded. Although this circumstance occurs
only in a narrow doping window (in cuprates)
(18), such continuity does suggest that, even
at low T, quasiparticles (19) cannot be the
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Fig. 1. T-linear resistivity in strange metals.

Shown is the in-plane resistivity of La2–xSrxCuO4

(x = 0.21). The dotted points are extrapolated from

high-field magnetoresistance data (8). The shaded

area shows the Mott-Ioffe-Regel (MIR) boundary

defined here as when the mean free path becomes

comparable to the Fermi wavelength lF. [Adapted

from (8, 18)]
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effective propagating degrees of freedom.
Evidently, in strongly correlated electron mat-
ter, the current-carrying degrees of freedom in
the infrared (IR) need not have a particle
interpretation.
Over time, the label “strange metal” has

seemingly become ubiquitous, used to describe
anymetallic systemwhose transport properties
display behavior that is irreconcilable with
conventional Fermi liquid or Boltzmann trans-
port theory. This catch-all phraseology, how-
ever, is unhelpful, as it fails to differentiate
between the various types of non–Fermi liquid
behavior observed, some of which deserve spe-
cial deliberation on their own. We attempt
to bring strange metal phenomenology into
sharper focus by addressing a number of per-
tinent questions. Does the term refer to the
resistive behavior of correlated electron sys-
tems at high or low temperatures, or both?
Does it describe any T-linear resistivity asso-
ciatedwith the Planckian time scale, or some-
thing unique? Does it describe the physics of
a dopedMott insulator or the physics associated
with quantum criticality (whose underlying
origins may or may not include Mottness as
a key ingredient)? Finally, does anything local

carry the current, and if not, does explicating
the propagating degrees of freedom in the
strange metal require a theory as novel as
quantum gravity?

Is strange metallicity ubiquitous?

A survey of the DC transport properties of
several strange metal candidates is presented
in Table 1 (4, 6, 8, 10, 20–61). In addressing
the above question, we must first acknowl-
edge the many definitions of strange metallic
behavior that exist, the simplest being a ma-
terial hosting a metallic-like resistivity in the
absence of quasiparticles. A more precise, if
empirical, definition centers on the T-linear
resistivity, specifically one that is distinguish-
able from the resistivity manifested by simple
metals (which is attributed to electron-phonon
scattering). For a metal to be classified as
strange, the T-linearitymust extend far beyond
the typical bounds associated with phonon-
mediated resistivity. At low T, this is typically
one-third of the Debye temperature, whereas
at high T, it is the temperature at which the
magnitude of the resistivity is roughly half the
value corresponding to theMIR limit. A subset
of correlated metals, such as SrRuO3 (62) and

Sr2RuO4 (36), exhibitT-linear resistivity at high
T with a magnitude that clearly violates the
MIR limit, but as the system cools down, con-
ventional Fermi-liquid behavior is restored
(37, 63). Hence, although they are bona fide
badmetals—exhibitingmetallic resistivity be-
yond the MIR limit—they do not classify as
strange (16, 64).
Another subset, identified here as quantum

critical metals, exhibit T-linear resistivity down
to the lowest temperatures studied, but only at
a singular quantum critical point (QCP) in their
T versus tuning parameter g phase diagram at
which a continuous quantum phase transition
to a symmetry-broken phase is suppressed to
T = 0. Here, g can be pressure, magnetic field,
doping level, or even strain. Inmost cases, the
phase transition in question is associated with
finite-momentum antiferromagnetism [as in
pure YbRh2Si2 (49), CeCoIn5 (55), and BaFe2
(As1–xPx)2 (45)], although similar behavior has
recently been reported in systems exhibit-
ing zero-momentum order, such as nematic
FeSe1–xSx (41) or ferromagnetic CeRh6Ge4
(57). Away from the QCP, the low-T resistivity
recovers the canonical T2 Fermi liquid form,
albeit with a coefficient that is enhanced as the

Phillips et al., Science 377, eabh4273 (2022) 8 July 2022 2 of 10

Table 1. Summary of the DC transport properties of various strange

metal candidates. First column: Candidate compound or family of

compounds. For the hole-doped cuprates, underdoped (UD), optimally

doped (OP) and overdoped (OD) compounds are treated separately; the

transport properties of individual compounds within each subset are

generic. For the electron-doped cuprates, only La2–xCexCuO4 is listed;

Pr- and Nd-based compounds show similar behavior. Second column: Bad

metallic behavior; a check mark indicates T-linear resistivity beyond the

Mott-Ioffe-Regel (MIR) limit. A cross indicates either a tendency toward

saturation or a marked reduction in slope near the MIR limit. Third

column: A check mark identifies systems that at any point in their

respective phase diagram(s) exhibit T-linear resistivity down to the lowest

temperatures studied. Fourth column: “Extended criticality” refers to

systems where a predominant T-linear resistivity at low T extends over a

finite region of the phase diagram. Fifth column: T2 dependence of the

inverse Hall angle cot QH in the same temperature range where r(T)

is T-linear. Sixth column: Compounds satisfying the “Modified Kohler’s”

label have a low-field magnetoresistance (MR), defined as [r(H, T) –

r(0, T)]/r(0, T), that exhibits a T dependence similar to that of tan2 QH.

Seventh and eighth columns: High-field MR behavior of strange metal

candidates. The observation of an H-linear MR at high fields does not

imply that the MR exhibits quadrature scaling over all fields and

temperatures. *FeSe1–xSx H-linear/quadrature MR seen in this family

coexists with a more conventional MR contribution, indicating the

presence of both strange metal and Fermi liquid–like components in the

DC transport. **In YbBAl4, although T-linear resistivity is observed over a

wide pressure range, its limiting low-T dependence is T1.5. A dash

indicates no reports confirming or disproving the considered behavior.

rº T as

T → ∞

rº T as

T → 0

Extended

criticality

cot QHº T
2

(at low H)

Modified Kohler’s

(at low H)

H-linear MR

(at high H)

Quadrature

MR

UD p-cuprates √ (6) × (20) × (21) √ (22) √ (23) — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

OP p-cuprates √ (4) — — √ (24) √ (25) √ (26) × (27)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

OD p-cuprates √ (6) √ (8) √ (8) √ (28) × (29) √ (29) √ (29)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

La2–xCexCuO4 × (30) √ (31, 32) √ (31, 32) × (33) × (34) √ (35) × (35)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

Sr2RuO4 √ (36) × (37) × (38) × (39) × (37) × (37) × (37)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

Sr3Ru2O7 √ (10) √ (10) × (10) × — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

FeSe1–xSx × (40) √ (41) × (41) √ (42) √ (42) √* (43) √* (43)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

BaFe2(As1–xPx)2 × (44) √ (45) × (45) — √ (46) √ (47) √ (47)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

Ba(Fe1/3Co1/3Ni1/3)2As2 — √ (48) × (48) — — √ (48) √ (48)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

YbRh2Si2 × (49) √ (50) √ (51) √ (52) — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

YbBAl4 × (53) √** (53) √** (53) — — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

CeCoIn5 × (54) √ (55, 56) × (55, 56) √ (54) √ (54) — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

CeRh6Ge4 × (57) √ (57) × (57) — — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

(TMTSF)2PF6 — √ (58) √ (58) — — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..

MATBG √ (59) √ (60) √ (60) √ (61) — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... ..
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QCP is approached and the order parameter
fluctuations soften.
By contrast, in overdoped cuprates [both

hole- (8, 9) and electron-doped (31, 32)], Ge-
doped YbRh2Si2 (51), YbBAl4 (53), and the
organic Bechgaard salts (58), r(T) is predom-
inantly T-linear down to low T not at a singular
point in these materials’ respective phase dia-
grams, but over an extended range of the
relevant tuning parameter. At first sight, this
“extended criticality” is difficult to reconcile
with current theories of quantum criticality,
which predict a crossover to a purely T2 resis-
tivity and thus a recovery of Fermi liquid be-
havior at low T everywhere except at the
(singular) QCP. Arguably, it is this feature—
incompatibility with both standard Fermi liquid
and quantum critical scenarios—that distin-
guishes a genuine strange metal. Intriguingly,
in many of these systems, a1 is found to scale
with the superconducting transition temper-
ature Tc. Moreover, for La2–xCexCuO4 (31, 32)
and bis-(tetramethyltetraselenafulvalene)
hexafluorophosphate [(TMTSF)2PF6] (58),
extended criticality emerges once the spin
density wave transition has been fully sup-
pressed, suggesting an intimate link between
the strange metal transport, superconductivity,
and the presence of critical or long-wavelength
spin fluctuations. In hole-doped cuprates, how-
ever, the strange metal regime looks different,
in the sense that the extended criticality em-
erges beyond the end of the pseudogap regime
that does not coincidewith a magnetic quan-
tum phase transition (65). Furthermore, al-
though the pseudogapplays host to amultitude
of broken-symmetry states, the jury is still out
as to whether any of these are responsible for
pseudogap formation or are merely instabil-
ities of it.
Besides T-linear resistivity, strange metals

also exhibit anomalous behavior in their mag-
netotransport, including (i) a quadratic tem-
perature dependence of the inverse Hall angle
cot QH = sxy/sxx (24), (ii) a transverse mag-
netoresistance (MR) that at low field exhibits
modified Kohler’s scaling [Dr/r(0) º tan2

QHº (1/T2)2 or 1/(A + BT
2)2 (25)], and/or (iii)

an H-linear MR at high fields that may or
may not follow quadrature scaling [whereby
Dr/Tº

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g H=Tð Þ2
q

] (43, 47). The combination
of a modified Kohler’s rule and T

2 Hall angle
has been interpreted to indicate the presence
of distinct relaxation times, either for differ-
ent loci in momentum space (22) or for relax-
ation processes normal and tangential to the
underlying Fermi surface (24). The H-linear
MR, on the other hand, is inextricably tied to
the T-linear zero-field resistivity via its H/T

scaling relation, a relation that can also extend
over a broad range of the relevant tuning
parameter (29). In some cases, this link can be
obscured, either because r(T) itself is not strict-
ly T-linear (29) or because the quadrature-

scaling MR coexists with a more conventional
orbital MR (43). Both sets of behavior highlight
once again the possible coexistence of two re-
laxation times or two distinct charge-carrying
sectors in real materials. Curiously, in single-
band materials, quadrature scaling breaks
down inside the pseudogap regime (26, 27),
whereas modified Kohler’s scaling is recov-
ered (23, 25), suggesting that the two pheno-
mena may be mutually exclusive in such
materials. In multiband materials such as
FeSe1–xSx, on the other hand, these differ-
ent manifestations of strange metallic trans-
port appear side by side (42, 43). Irrespective
of these caveats and complexities, what is
striking about the quadrature-scaling MR is
that it occurs in systems with varied Fermi
surface topologies, dominant interactions, and
energy scales, hinting at some universal but as
yet unidentified organizing principle.
Restricting the strange metal moniker, as

done here, to materials that exhibit low-T
T-linear resistivity over an extended region of
phase space likewise restricts strange metal-
licity to a select “club.” The following sections
explore various possible attributes that they
have in common.

Is it quantum criticality?

Scale-free T-linear resistivity is highly sugges-
tive of some form of underlying quantum crit-
icality in which the only relevant scale is the
temperature governing collisions between
excitations of the order parameter (66). In
fact, following the advent of marginal Fermi
liquid (MFL) phenomenology and its associated
(T, w)-linear self energies (67), the common
interpretation of such T-linear resistivity was
and still remains the nucleus of ideas centered
on quantum criticality. The strict definition of
quantum criticality requires the divergence of
a thermodynamic quantity. In heavy fermion
metals, the electronic heat capacity ratio Cel/T

indeed grows as ln(1/T) as the antiferromag-
netic correlations diverge (49, 55, 68). In cer-
tain hole-doped cuprates, Cel/T also scales as
ln(1/T) at doping levels close to the end of
the pseudogap regime (69), although here,
evidence for a divergent length scale of an
associated order parameter is currently lacking
(70). Moreover, photoemission suggests that at
a T-independent critical doping pc ≈ 0.19, all
signatures of incoherent spectral features that
define the strange metal cease, giving way to a
more conventional coherent response (71). The
abruptness of the transition suggests that it is
first-order, posing a challenge to interpreta-
tions based solely on criticality.
As mentioned above, another major hurdle

for the standard criticality scenario is that the
T-linear resistivity persists over a wide range
of the relevant tuneable parameter, whether
doping [as is the case for cuprates (8, 9, 31, 32, 72)
and magic-angle twisted bilayer graphene

(MATBG) (60)], pressure [for YbBAl4 (53) and
the organics (58)], or magnetic field [for Ge-
doped YbRh2Si2 (51)]. If quantum criticality is
the cause, then it is difficult to fathom how a
thermodynamic quantity can be fashioned to
diverge over an entire phase.
Despite these difficulties, it is worth explor-

ing the connection T-linear resistivity has with
continuousquantumcritical phenomena,which
for the sake of argument we presume to be tied
to a singular point in the phase diagram. Re-
gardless of the origin of the QCP, universality
allows us to answer a simple question: What
constraints does quantum criticality place on
the T dependence of the resistivity? The answer
to this question should be governed only by the
fundamental length scale for the correlations.
The simplest formulation of quantum critical-
ity is single-parameter scaling in which the
spatial and temporal correlations are governed
by the same diverging length (see Fig. 2).
Making the additional assumption that the
relevant charge carriers are formed from the
quantum critical fluctuations, we find that a
simple scaling analysis on the singular part of
the free energy results in the scaling law

s w ¼ 0;Tð Þ ¼
q2

ħ
f w ¼ 0ð Þ

kBT

ħc

� �d�2ð Þ=z

ð5Þ

(73) for the T dependence of the conductivity,
where f(w = 0) is a nonzero constant, q is the
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Fig. 2. Single-parameter scaling hypothesis.

Depicted here is the collective scaling of a physical

system near a critical point. The essential idea is

that the correlations within each of the blocks

shown are independent of one another. That is,

spatial correlations in a volume smaller than the

correlation volume, xd, and temporal correlations on

a time scale shorter than xt are small, and space-

time regions of size xdxt behave as independent

blocks. At the critical point, the correlation length

diverges. The single-scaling parameter hypothesis

assumes that temporal correlations diverge

also as a simple power of the spatial correlation

length, namely xt º xz, where z is known as the

dynamical critical exponent and by causality

must exceed unity.

RESEARCH | REVIEW
D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 at U
n
iv

ersity
 o

f Illin
o
is - U

rb
an

a o
n
 M

ay
 0

1
, 2

0
2
3



charge, and z is the dynamical exponent, which
from causality must obey the inequality z ≥ 1.
Absent from this expression is any dependence
on an ancillary energy scale—for example,EF or
the plasma frequency wp—as the only assump-
tion is scale-invariant transport irrespective of
the details of the system. The analogous ex-
pression for the optical conductivity is

s w;T ¼ 0ð Þºw d�2ð Þ=z ð6Þ

(74). In pure YbRh2Si2, for example, s–1(w) fol-
lows anw-linear dependence at low frequencies
in the same region of the (T,H) phase diagram—

the quantum critical “fan”—where r(T) is also
linear, consistent with this notion of single-
parameter scaling (75). In cuprates, on the
other hand, the situation is more nuanced. At
intermediate frequencies—sometimes referred
to as the mid-IR response—s(w) exhibits a
ubiquitous w–2/3 dependence (7). Although this
feature in s(w) has been interpreted in terms of
quantum critical scaling (7), it is inconsistent
with the single-parameter scaling described
above. At any doping level, s(w) in the cuprates
exhibits a minimum at roughly the charge
transfer scale of 1 eV. This is traditionally
(76, 77) used as the energy scale demarcating
the separation between intraband and inter-
band transitions and hence serves to separate
the low-energy from the high-energy continua.
It has long been debated whether the broad
sub-eV s(w) response in cuprates is best an-
alyzed in terms of one or two components
(77, 78). In the former case, the w–2/3 tail is
simply a consequence of the strong w-linear
dependence in 1/ttr(w)—as in MFL—whereas
in the latter, it forms part of an incoherent
response that is distinct from the coherent
Drude weight centered at w = 0, which itself is
describedwith either a constant orw-dependent
scattering rate.
Returning to the DC resistivity, we find that

in cuprates, where d = 3, an exponent z = –1 is
required to account for the T-linear depen-
dence; this value is strictly forbidden by cau-
sality (73). For d = 2, as in the case of MATBG,
the T dependence vanishes. This can be fixed
with the replacement of d → d* = 1 for both
materials. Although d* can be construed as the
number of dimensions (79) transverse to the
Fermi surface, it is difficult to justify such a
procedure here, as the persistence of T-linearity
with no change in slope above and below the
MIR requires a theory that does not rely on FL
concepts such as a Fermi velocity or energy.
Furthermore, it is well known that introducing
d* yields a power law for the heat capacity, Cº
T
3/2, which is not seen experimentally (80). On

dimensional grounds, the z = –1 result in the
context of the Drude formula is a consequence
of compensating the square power of the plasma
frequency with powers of T so that the scaling
formof Eq. 5 ismaintained. A distinct possibility
is that perhaps some other form of quantum

criticality beyond single-parameter scaling, such
as a noncritical form of the entropy suggested
recently (81), is at work here (see below).
Another critical feature of the conductivity is

its behavior at finitewave vectork, whichmay be
quantified by the dynamic charge susceptibility,

c″ k;wð Þ ¼ �
k2

we2
ℜs k;wð Þ ð7Þ

determined from electron energy-loss spec-
troscopy (EELS). A restriction on EELS is that
it measures the longitudinal charge response,
whereas optics yields the transverse. At van-
ishingmomentumthey are expected to be equal.
Because optics has no momentum resolution,
comparison with EELS can only be made as
k→0. The primary charge excitation in strange
metals is a 1-eV plasmon thatwas long believed
to exhibit the same behavior as in a normal
Fermi liquid (82, 83). Recent high-resolution
momentum-resolved EELS (M-EELS) measure-
ments have called this belief into question,
showing that the large-k response is domi-
nated by a continuum that remains flat to
high energies, roughly 2 eV (84–86). Such
behavior is reminiscent of the MFL (67) sce-
nario except in that picture, the continuum
persists up to a cutoff scale determined by
the temperature, and not the Mott scale of
2 eV. In addition, the continuum exhibits
scale-invariant features but with a dynamical
critical exponent, z ~ ∞, not possible from a
simple QCP.
We conclude, then, that no form of tradi-

tional quantum criticality can account easily
for the power laws seen in strange metallic
transport (although we recognize that T-linear
resistivity is observed above what appear to be
genuine singular QCPs). The photoemission
experiments (71) indicating a first-order transi-
tion pose an additional problem exacerbated by
the possibility that the criticality might be rele-
vant to awhole region (8,9, 51, 53, 58,60,65,87,88)
rather than a point. Such criticality over an
extended region is reminiscent of critical
chargedmatter (89, 90) arising fromdilatonic
models in gauge-gravity duality. These ideas
have been the most successful thus far in
reproducing the various characteristics of
strange metal physics (see below and Table 2).

Is it Planckian dissipation?

Whereas the electrical resistivity in metals can
be measured directly, the scattering rate is
entirely an inferred quantity. Herein lies the
catchwith Planckiandissipation. Angle-resolved
photoemission (ARPES) experiments on cup-
rates as early as 1999 reported that the width
of the momentum distribution curves (MDCs)
at optimal doping along the nodal direction
[(0, 0) to (p, p)] scale as a linear function of
temperature and a0 + 0.75w for frequencies
that exceed 2.5kBT (91). The momentum line-
width, which in photoemission enters as Im

S—the imaginary part of the self energy—can
be used to define a lifetime through

ħvkDk ¼ Im S k;wð Þ ¼ 2
ħ

t
ð8Þ

where vk is the group velocity for momentum
state k. Extracting the slope from the data in
Fig. 2 of (92) and using the experimentally
reported Fermi velocity vF = 1.1 eV/Å, we find
that the single-particle scattering rate ħ/t ~
1.7kBT (i.e., on the order of the Planckian limit).
Similar results were obtained in subsequent
ARPES studies (92–94) with a key extension
introduced in (88) whereby the width of nodal
states was observed to obey a quadrature form
described by the expression [(ħw)2 + (bkBT)

2]l,
where l is a doping-dependent exponent equal
to ½ at optimal doping.
This extraction of the scattering rate from

ARPES, however, is not entirely problem-free,
as vF is hard to define in ARPES experiments
at energies close to the Fermi level and where,
for the most part, the width of the state ex-
ceeds its energy. Indeed, the integral of the
density of states using as input the vF extracted
from APRESmeasurements is found to account
for only half of the as-measured electronic spe-
cific heat coefficient (95). Furthermore, this
reliance on Fermiology (fermion phenome-
nology), present also in (10), leaves open the
precise meaning of figure 2 of (10), in which
the magnitude of the T-linear transport
scattering rate extracted from the DC
resistivity is found to scale as 1/vF for a
series of materials that violate the MIR limit
at intermediate to high temperatures. Despite
this, a similar extraction in (9), again using
Fermiology but focusing on the low-T resistiv-
ity, also found a transport scattering rate close
to the Planckian bound. This consistency be-
tween the two analyses reflects the curious
fact that the T-linear slope of the DC resistivity
does not vary markedly as the MIR threshold
is crossed. It does not, however, necessarily jus-
tify either approach in validating T-linear scat-
tering at the Planckian limit. Finally, although
T-linearity and Planckian dissipation appear
synonymous in the cuprates, this is not uni-
versally the case. In YbRh2Si2 (75), for example,
the T-linear scattering rate is found to deviate
strongly from the Planckian limitwith ttr~ 0.1tP
(52), and in the electron-doped cuprates, the
notion of a Planckian limit to the scattering
rate has recently been challenged (96). This cer-
tainly adds to the intrigue regarding quantum
criticality as the underlying cause of Planckian
dissipation, for which several alternative pro-
posals have recently emerged (97, 98).
In principle, the optical conductivity per-

mits an extraction of t without recourse to
Fermiology.Within aDrudemodel, the optical
conductivity

s wð Þ ¼
1

4p

w2
pttr

1þ iwttr
ð9Þ
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contains only ttr andwp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pnee
2=m

p

. At zero
frequency, the Drude formula naturally yields
the DC conductivity sDC and an estimate for
the relaxation rate can be extracted from the
width at half maximum of the full Drude re-
sponse. However, there is an important caveat:
ttr is frequency-dependent in the cuprates, a
condition that is consistent with various phys-
ical models including both the Fermi liquid
and MFL scenarios as well as the large body
(88, 91) of MDC analysis performed on the
cuprates. Although this prevents a clean sep-
aration of the conductivity into coherent and
incoherent parts, it was shown in (7) that in
the low-frequency limit,w < 1.5kBT/ħ, ttr ~ 0.8tP,
in agreement with the DC analysis of (9).
A second key issue remains: How can such

Drude analysis be justified for those strange
metals in which the MIR limit is violated and
the Drude peak shifts to finite frequencies (16)?
Indeed, in the high-T limit, “bad metallicity”
can be ascribed to a transfer of spectral weight
from low to high w, rather than to an ever-
increasing scattering rate (that within a Drude
picture results in a continuous broadening of
the Lorentzian fixed at zero frequency). Given
themarked crossover in the formof s(w) at low
frequencies, it is indeed mysterious that the
slope of the T-linear resistivity continues un-
abated with no discernible change.

Is it Mottness?

Table 1 encompasses a series of ground states
fromwhichT-linear resistivity emerges. In some
of these materials, such as the heavy fermions,
the high- and low-energy features of the spec-
trum are relatively distinct in the sense that

spectral weight transfer from the UV to the IR
is absent. On the other hand, hole or electron
doping of the parent cuprate induces amarked
transfer of spectral weight of roughly 1 to 2 eV.
As a result, the low-energy spectral weight
grows (77, 99–102) at the expense of the degrees
of freedom at high energy, a trend that persists
(76) even inside the superconducting state.
This is an intrinsic feature of Mott systems,
namely that the number of low-energy degrees
of freedom is derived from the high-energy
spectral weight. As this physics is distinct
from that of a Fermi liquid and intrinsic to
Mott physics, it is termed “Mottness” (102).
Notably, the mid-IR response with its charac-
teristic w–2/3 scaling is absent from the parent
Mott insulating state. Hence, it must reflect the
doping-induced spectral weight transfer across
theMott gap. It is perhaps not a surprise, then,
that no low-Tc material exhibits such a mid-
IR feature. In fact, some theories of cuprate
superconductivity (103) credit its origin to
the mid-IR scaling. We can quantify the total
number of low-energy degrees of freedom that
arise from the UV-IR mixing across the Mott
gap by integrating the optical conductivity,

Neff Wð Þ ¼
2mVcell

pe2
∫
W

0 s wð Þdw ð10Þ

up to the optical gap W ≈ 1.2 eV, where Vcell is
the unit cell volume. The energy scale of 1.2 eV
corresponds to the minimum of the optical con-
ductivity, as mentioned above. In a rigid-band
semiconductor model in which such spectral
weight transfer is absent,Neff = x, where x is the
number of holes. In the cuprates, however, Neff

exceeds x (Fig. 3). This is the defining feature of

Mottness (99–102), as it is ubiquitous in Mott
systems and strictly absent in weakly correlated
metals. Even inmany of the strange or quantum
critical metals described in Table 1, there is little
or no evidence thatMottness is playing a notable
role. Such a distinction may thus offer a hint
to the source of the uniqueness of the cuprate
strangemetal. In badmetals, on the other hand,
a gradual transfer of low-frequency spectral
weight out to energies on the order of the Mott
scale is almost universally observed with in-
creasing temperature (16), suggesting that
Mottness is one of the key components of
bad metallic transport.
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Fig. 3. Integrated optical conductivity Neff

exceeds dopant concentration. Shown is Neff for

electron-doped Pr2–xCexCuO4–d (triangles) and hole-

doped La2–xSrxCuO4–d (circles) The dashed line

indicates what is expected for doping a semi-

conductor. The expectation is that each Ce or Sr

atom contributes just a single charge carrier.

[Reprinted with permission from (77)]

Table 2. Snapshot of current theoretical modeling of the strange metal

regime. Indicated are consistency with T-linear resistivity, w–2/3 scaling of

the mid-IR optical conductivity, quadrature-scaling magnetoresistance,

extended quantum criticality, and what predictions are made in terms of

experimental observables. Scenarios: MFL, marginal Fermi liquid; EFL, ersatz

Fermi liquid; SYK, Sachdev-Ye-Kitaev; AdS/CFT, anti–de Sitter space/

conformal field theory conjecture; AD/EMD, anomalous dimensions/

Einstein-Maxwell-dilaton; HM, Hubbard model; QMC, quantum Monte Carlo;

ED, exact diagonalization; CA, cold atoms; DMFT/EDMFT, dynamical mean-

field theory/embedded dynamical mean-field theory; A-B, Aharonov-Bohm

effect; ECFL, extremely correlated Fermi liquid; QCP, quantum critical point.

*T-linear resistivity is an input. **A slope change occurs through the MIR.

***Quadrature scaling obtained only for a bivalued random resistor model

(121) with equal weights (27). ****Although this scaling was thought to arise

in pure AdS with an inhomogeneous charge density (123), later studies

(124, 125) found otherwise.

rº T as T → 0 rº T as T → ∞ sº w
–2/3 Quadrature MR Extended criticality Experimental prediction

Phenomenological
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

MFL √ (67) × (67) × × × Loop currents (107)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

EFL — * — — × × Loop currents (108)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Numerical
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

ECFL × (109) — — × ×
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

HM (QMC/ED/CA) — (110) √ (110–114) × — — —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

DMFT/EDMFT √ (115) √ (116, 117) × — √ (117) —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

QCP (118) — — — × —
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Gravity-based
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

SYK √ (119, 120) √** (120) × √*** (121) — ×
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

AdS/CFT √ (122) √ (122) √**** (90, 126) × × ×
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

AD/EMD √ (127–129) √ (90, 126, 127, 129, 130) √ (90, 126, 130) × √ (126) Fractional A-B (129)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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The optical response in cuprates tells us that
there are degrees of freedom that couple to
electromagnetism that have no interpretation
in terms of doped holes. That is, they are not
local entities, as they arise from the mixing
of UV and IR degrees of freedom. It is such
mixing that could account for the lack of any
distinctive energy scale (102)—that is, scale
invariance—underlying the strange metal.
Additionally, optical conductivity studies showed
(104) that throughout the underdoped regime of
the cuprate phase diagram, the effective mass
remains constant. As a result, theMott transition
proceeds by a vanishing of the carrier number
rather than themass divergence of the Brinkman-
Rice scenario (105). [Note that although quan-
tum oscillation experiments on underdoped
cuprates show evidence for mass enhancement
(106), this is thought to be tied to the charge
order around 1/8 doping.] Such dynamical
mixing between the UV and IR scales in Mott
systems is well known to give rise to spectral
weight in the lower Hubbard band (100–102)
that exceeds the number of electrons, strictly
1 + x, that the band can hold. Consequently,
part of the electromagnetic response of strange
metals at low energies has no interpretation
in terms of electron quasiparticles, as it arises
strictly from UV-IR mixing. Precisely how such
mixing leads to scale-invariant T-linear resis-
tivity remains unresolved.

Is it about gravity?

To frame the theoretical modeling of strange
metallicity, we group the work into three prin-
cipal categories: phenomenological, numerical,
and gravity-related. Table 2 lists some repre-
sentative contributions (67, 90, 107–130); be-
cause of space limitations, it is not possible to
cite all relevant work. Both phenomenological
models considered here require (such as the
ersatz Fermi liquid or EFL) or predict (MFL)
loop currents, but they do so for fundamentally
different reasons. For EFL (108), such current
order is needed to obtain a finite resistivity in
the absence ofmomentum relaxation (certainly
not a natural choice given the Drude fit to
the optical conductivity discussed previously),
whereas inMFL, loop currents (107) are thought
to underpin the local fluctuation spectrum (67).
The extremely correlated Fermi liquid theory
(ECFL) (109) predicts a resistivity that interpo-
lates between Fermi liquid–like T2 at low T to
T-linear for T >> TFL. Quantum Monte Carlo
(QMC) simulations (110, 111, 113, 114) as well as
cold atom experiments (112) on the Hubbard
model have established that at high temper-
atures, the resistivity is indeed T-linear. The
fermion-sign problem, however, prevents any
definitive statement about the low-T behavior
in the presence of Mott physics. Non–Fermi
liquid transport in Sachdev-Ye-Kitaev (SYK)–
based models (131–133) is achieved by an
all-to-all random interaction. Although such

interactions might seem initially unphysical,
SYKmodels are nonetheless natural candidates
to destroy Fermi liquids, which, by their nature,
permit a purely local description in momen-
tum space. As a result, Fermi liquids are im-
pervious to generic repulsive local-in-space
interactions (134). Coupling a Fermi liquid to
an array of disordered SYK islands, however,
leads (120, 121) to a nontrivial change in the
electron Green function across the MIR, and
hence a change in slope of the resistivity is
unavoidable (121), although it can be mini-
mized through fine tuning (120).
An added feature of these disordered mod-

els is that in certain limits, they have a gravity
dual (132, 133, 135, 136). This state of affairs
arises because the basic propagator (132, 133, 135)
in the SYK model in imaginary time describes
themotion of fermions,with appropriate bound-
ary conditions, between two points of the as-
ymptotic boundary of a hyperbolic plane. In
real time, simply replacing the hyperbolic plane
with the spacetime equivalent, namely two-
dimensional anti–de Sitter (AdS) space (a max-
imally symmetric Lorentzian manifold with
constant negative curvature), accurately de-
scribes all the correlators. It is from this re-
alization that the dual description between a
random spin model and gravity in AdS2 lies
(132, 133, 137). Hence, although the origins of
SYK were independent of gravity, its correla-
tors can be deduced from the asymptotics of
the corresponding spacetime. At the asymptote,
only the time coordinate survives and hence,
ultimately, SYK dynamics is ultralocal in space
with correlations diverging only in time, an
instantiation of local quantum criticality.
Such local quantum criticality is not a new

concept in condensed matter systems and
indeed lies at the heart of MFL phenome-
nology (67) as well as dynamical mean field
theory (DMFT) (116), and is consistent with
the momentum-independent continuum found
in the M-EELS data discussed earlier (85). The
deeper question is why gravity has anything
to do with a spin problem with nonlocal in-
teractions. The issue comes down to critical-
ity and to the structure of general relativity.
The second equivalence principle on which
general relativity is based states that no local
measurement can detect a uniform gravita-
tional field. A global measurement is required.
The same is true for a critical system because
no local measurement can discern criticality.
Observables tied to the diverging correlation
length are required. Hence, at least concep-
tually, it is not unreasonable to expect a link
between critical matter and gravity. The mod-
ern mathematical machinery that makes it
possible to relate the two is the gauge-gravity
duality or the AdS/CFT (anti–de Sitter/conformal
field theory) conjecture. The key claim of this
duality (138–140) is that some strongly inter-
acting quantum theories, namely ones that

are at least conformally invariant in d dimen-
sions, are dual to a theory of gravity in a d +
1 spacetime that is asymptotically AdS. The
radial direction represents the energywith the
quantum theory residing at the UV boundary,
whereas the IR limit is deep in the interior at
the black hole horizon. Hence, intrinsic to
this construction is a separation between bulk
(gravitational) and boundary (quantum me-
chanical) degrees of freedom.That the boundary
of a gravitational object has features distinct
from the bulk dates back to the observations
of Beckenstein (141) and Hawking (142, 143)
that the information content of a black hole
scales with the area, not the volume. The re-
quirement that the boundary theory be strongly
coupled then arises by maintaining that the
AdS radius of curvature exceeds the Planck
length ‘P. More explicitly, because the AdS ra-
dius and the coupling constant of the bound-
ary theory are proportional, the requirement
R >> ‘P translates into a boundary theory that
is strongly coupled.
The first incarnation (122, 144, 145) of this

duality in the context of fermion correlators
involved modeling fermions at finite density
in 2 + 1 dimensions. From the duality, the con-
formally invariant vacuum of such a system
corresponds to gravity in AdS4, the extra di-
mension representing the radial direction
along which identical copies of the boundary
CFT lie (albeit with differing energy scales).
Surprisingly, what was shown (122) is that
the low-energy (IR) properties of such a sys-
tem in the presence of a charge density are
determined by an emergent AdS2 × R

2 (with
R
2 representing a plane) spacetime at the black

hole horizon. The actual symmetry includes
scale invariance and is denoted by SL(2,R) (a
special Lie group of real 2 × 2matrices with a
unit determinant). Once again, the criticality
of boundary fermions is determined entirely
by the fluctuations in time, that is, local quan-
tum criticality as seen in SYK. The temperature
and frequency dependence of the conductivity
are then determined by the same exponent
(122) as expected from Eqs. 5 and 6 and, as a
result, a simultaneous description of T-linearity
and w–2/3 dependence is not possible, as noted
in Table 2.
This particular hurdle is overcome by the

anomalousdimensions/Einstein-Maxwell-dilaton
(AD/EMD) theories (89, 90, 126, 146–149), which,
as indicated in Table 2, have been the most
successful to date in describing the range of
physics observed in strange metals. What is
new here is the introduction of extra fields,
dilatons for example, that permit hyperscal-
ing violation (79) and anomalous dimensions
(89, 90, 126, 146–149) for all operators. Con-
sequently, under a scale change of the coordi-
nates, the metric is no longer unscathed. That
is, the manifold is not fixed and it is the mat-
ter fields that determine the geometry. Such
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systems have a covariance, rather than scale
invariance indicative of pure AdS metrics. A
consequence of this covariance is that even
the currents acquire anomalous dimensions.
But how is this possible given that a tenet of
field theory is that no amount of renormal-
ization can change the dimension of the current
(150) from d – 1? What makes this possible is
that in EMD theories, the extra radial di-
mension allows physics beyond Maxwellian
electromagnetism. For example, the standard
Maxwell action, S = ∫dVdF

2 where F = dA, re-
quires that the dimension of the gauge field be
fixed to unity, [A] = 1 (151). EMD theories use
instead an action of the form S = ∫dVddyy

a
F
2

where y is the radial coordinate of the d +
1 AdS spacetime. Comparing these two actions
leads immediately to the conclusion that the
dimension of A now acquires the value [A] =
1 – (a/2). Hence, even in the bulk of the ge-
ometry, the dimension of the gauge field is
not unity. Depending on the value of a, a < 0
at the UV conformal boundary or a > 0 at the
IR at the black hole horizon, the equations of
motion are nonstandard and obey fractional
electromagnetism (128, 152) consistent with a
nontraditional dimension for the gauge field.
In EMD theories, it is precisely the anomalous
dimension (89, 90, 126, 146–148) for conserved
quantities that gives rise to the added freedom
for extended quantum criticality to occur, en-
abling the simultaneous fitting (130) of T-
linearity and w–2/3 of the optical conductivity,
and establishing the basis for a proposal for
the strange metal based on [A] = 5/3 (127).
Within these holographic systems, a Drude-

like peak in the optical conductivity can emerge
both from the coherent (quasiparticle-like)
sector (153) aswell as from the incoherent [“un-
particle” (154)] sector (155–158). Application of
EMD theory has also provided fresh insights
into the phenomenon of “lifetime separa-
tion” seen in the DC and Hall conductivities
of hole-doped cuprates (22, 24, 28) as well as
in other candidate strange metals (52, 61).
For a system with broken translational invar-
iance, the finite density conductivity com-
prises two distinct components (159). The DC
resistivity is dominated by the particle-hole
symmetric term—whose Hall conductivity is
consequently zero—whereas the T dependence
of the Hall angle is set by the more conven-
tional (umklapp) momentum relaxation that
governs the response of the coherent charge
density.
The success of EMD theories in the context

of strange metal physics raises a philosophi-
cal question: Is all of this just a game? That
is, is the construction of bulk theories with
funky electromagnetism fundamental? The
answer lies in Nöther’s Second Theorem (NST)
(102, 128, 152), a theorem far less known than
her ubiquitous first theorem but ultimately of
more importance as it identifies a shortcom-

ing. To illustrate her first theorem, consider
Maxwellian electromagnetism, which is invar-
iant under the transformation Am → Am + @mL.
This theorem states that there must be a
conservation law with the same number of
derivatives as in the gauge principle. Hence,
the conservation law only involves a single
derivative, namely @mJm = 0. This is Nöther’s
First Theorem (160) in practice.
What Nöther (160) spent the second half

of her famous paper trying to rectify is that
the form of the gauge transformation is not
unique; hence, the conservation law is arbi-
trary. It is for this reason that in the second
half (160) of her foundational paper, she re-
tained all possible higher-order integer deriv-
atives in the gauge principle. These higher-
order derivatives both add constraints to and
change the dimension of the current. Stated
succinctly, NST (160) dictates that the full
family of generators of U(1) invariance deter-
mines the dimension of the current. It is easy
to see how this works. Suppose we can find a
quantity Ŷ that commutes with @m. That is,
@mŶ ¼ Ŷ @m . If this is so, then we can insert
this into the conservation law with impu-
nity. What this does is redefine the current:
@mŶ Jm ¼ @m~J

m
. The new current ~J

m
acquires

whatever dimensions Ŷ has, such that ~Jm
� �

¼
d � 1� dY . But because of the first theorem, Ŷ
must have come from the gauge transforma-
tion and hence must ultimately be a differen-
tial operator itself. That is, there is an equally
valid class of electromagnetisms with gauge
transformations of the form Am→Am þ @mŶ L.
For EMD theories (102, 128, 152), Ŷ is given by
the fractional Laplacian, D(g–1)/2 with [Am] = g

[with g = 1 – (a/2) to make contact with the
EMD theories introduced earlier]. For most
matter as we know it, g = 1. The success of
EMD theories raises the possibility that the
strangeness of the strange metal hinges on
the fact that g ≠ 1. This can be tested exper-
imentally using the standard Aharonov-Bohm
geometry (128, 129) in which a hole of radius r
is punched into a cuprate strange metal. Be-
cause [A] is no longer unity, the integral of
A·d‘ is no longer the dimensionless flux. For
physically realizable gauges, this ultimately
provides an obstruction to charge quantiza-
tion. As a result, deviations (128, 129) from
the standard pr2 × B dependence for the flux
would be the key experimental feature that a
nonlocal gauge principle is operative in the
strange metal. An alternative would be, as
Anderson (161) advocated, the use of fractional
or unparticle propagators with the standard
gauge principle. However, in the end, it all
comes down to gauge invariance. The stan-
dard gauge-invariant condition prevents the
power laws in unparticle stuff from influenc-
ing the algebraic fall-off of the optical conduc-
tivity (130, 162), as they offer just a prefactor to
the polarizations (163). The escape route, an

anomalous dimension for the underlying gauge
field, offers a viable solution, but the price is
abandoning locality (164) of the action.

Is it important?

Given the immense difficulty in constructing a
theory of strange metals, one might ask why
bother? To gauge the importance of strange
metals, look no further than Fig. 4. This figure
shows that the coefficient a1 of the T-linear
resistivity component in the strange metal
regime of overdoped hole-doped cuprates tracks
the doping dependence of the T = 0 superfluid
density ns(0). As mentioned earlier, a similar
correlation exists between a1 and Tc in electron-
doped cuprates (31, 32), the Bechgaard salts
(58), and the iron pnictides (58), establishing a
fundamental link between high-temperature
superconductivity and strange metals.
For a long time, the drop in ns(0) with doping

in cuprates was attributed to pair breaking, a
symptom of the demise of the dominant pair-
ing interaction within a disordered lattice.
Recent mutual inductance measurements,
however, have challenged this view, arguing
that the limiting low-T behavior of ns(T) was
incompatible with conventional pair-breaking
scenarios (165). Certainly, the correlation be-
tween a1 and ns(0) is unforeseen in such mod-
els. Moreover, if the strange metal regime is
indeedpopulatedwithnon-quasiparticle states,
then Fig. 4 indicates a pivotal role for these
states in the pairing condensate (166, 167). On
more general grounds, this result informs us
that the door to unlocking cuprate supercon-
ductivity is through the strange metal regime,
and any theory that divorces superconductiv-
ity from strangemetals is unlikely to be a prom-
ising avenue. To conclude, solving the strange
metal regime kills two birds with one stone.
Perhaps there is some justice here. After all, we
know from Pippard’s (168) work, which can be
reformulated (128, 152) in terms of fractional
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Fig. 4. Correlation between the superfluid den-

sity ns(0) and the coefficient a1 of the T-linear

resistivity. The data shown are for Tl2Ba2CuO6+d

(Tl2201) across the strange metal regime. [Adapted

from (166, 167)]
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Laplacians, that explaining superconductivity
even in elemental metals necessitates a non-
local relationship between the current and the
gauge field. What seems to be potentially new
about the cuprates is that now the normal
state, as a result of the strangemetallicity, also
requires nonlocality.
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Understanding an exotic phase

The nature of strange metals, a metallic phase with unconventional transport properties that appears in phase

diagrams of materials such as cuprate superconductors, remains one of the major puzzles in condensed matter

physics. Phillips et al. reviewed experimental and theoretical progress toward understanding this phase. The authors

examined its relationship to quantum criticality, Planckian dissipation, and quantum gravity. —JS
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