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The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous
application-specific power converters. A conventional manual design procedure of such power convert-
ers is computation- and labor-intensive, which involves selecting and connecting component devices, tuning
component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To
automate and speed up this design process, we propose an automatic framework that designs custom power
converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces
the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space
exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach
can exploit small offline data via the specially designed default policy and can run in parallel to accelerate
topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce
design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient
circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology
optimization strategies, the proposed method is much more computationally efficient — the sequential version
can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can
further achieve high speedups compared to the sequential version.

CCS Concepts: « Computing methodologies — Search methodologies; Parallel computing methodologies;
+ Hardware — Circuit optimization.

Additional Key Words and Phrases: design automation, circuit synthesis, power converter, circuit topology
design, Monte Carlo Tree Search (MCTS), upper-confidence-bound tree (UCT)

ACM Reference Format:

Shaoze Fan, Shun Zhang, Jianbo Liu, Ningyuan Cao, Xiaoxiao Guo, Jing Li, and Xin Zhang. 2022. Power
Converter Circuit Design Automation using Parallel Monte Carlo Tree Search . ACM Trans. Des. Autom.
Electron. Syst. 37, 4, Article 111 (June 2022), 33 pages. https://doi.org/XXXXXXX XXXXXXX

*Corresponding authors.

Authors’ addresses: Shaoze Fan, New Jersey Institute of Technology, University Heights, Newark, NJ, USA, 07102; Shun
Zhang, IBM T. J. Watson Research Center, 75 Binney Street, Cambridge, MA, USA, 02142; Jianbo Liu, University of Notre
Dame, 275 Fitzpatrick Hall of Engineering, Notre Dame, IN, USA, 46556; Ningyuan Cao, University of Notre Dame, 275
Fitzpatrick Hall of Engineering, Notre Dame, IN, USA, 46556; Xiaoxiao Guo, Meta Platforms Inc., 1 Hacker Way, Menlo
Park, CA, USA, 94025; Jing Li, jingli@njit.edu, New Jersey Institute of Technology, University Heights, Newark, NJ, USA,
07102; Xin Zhang, IBM T. J. Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY, USA, 10598.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-4309/2022/6-ART111 $15.00

https://doi.org/XXXXXXXXXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: June 2022.




111:2 Fan, et al.

- Component pool
- Design space

Ma1.1ua1 - Specifications
design - Objectives
iterations

- Known topologies Automatically generated

-Sp (?c1ﬂcat10ns topology with chosen
- Objectives devices & parameters
Conventional: manual design from Proposed: design automation framework
known topologies to an optimized design from specifications to circuit topologies
by domain experts with chosen devices & parameters

Fig. 1. Given a custom power converter design task, the conventional manual approach relies heavily on
known topologies and is labor-intensive, computationally expensive, and time-consuming. In contrast, our
automatic power converter design framework can explore the design space more effectively, thereby immensely
decreasing the development time and cost without compromising the performance.

1 INTRODUCTION

Power converters are ubiquitous in electronic/electrical devices. With the proliferation of customized
electrical systems [29], such as electric vehicles, self-powered [oT, wearable/implantable biosensors,
the need for custom power converters is rapidly increasing to provide diverse supply power
standards. The design specifications, such as voltage conversion ratio, power efficiency, output ripple,
form-factor, and cost constraints, differ significantly from application to application. Designing a
converter for a specific deployment scenario with certain specifications involves selecting among
a large number of components and topologies, configuring the chosen elements, evaluating the
design performance via simulations, and iteratively optimizing the system design to yield better
performance while satisfying specific resource, technology, and cost constraints. In the conventional
manual design process, each ofthe above-mentioned steps is done manually, causing the whole
process to be extremely costly and time-consuming. Moreover, the manual circuit optimization
relies heavily on existing circuit topologies, as illustrated in Figure 1. The expensive design process
has dramatically hindered the development ofnovel power converters for fast-paced and innovative
custom designs. Hence, there is a pressing need for an automatic circuit design framework that
can efficiently search and generate high-quality power converter topologies from the design
specifications.

However, how to automate the power converter topology design remains a challenging task.
Firstly, topology generation for electronic circuits or integrated circuits (1C) lacks thorough investi-
gation. The state-of-art analog/mixed-signal (AMS) 1C design automation mainly addresses device
sizing or parameter optimization for a fixed circuit structure [17, 20, 24, 35, 37, 38, 40, 49]. People
have also investigated automation methods to accelerate the physical implementation of AMS ICs
when schematic/topology design is already done [5, 7, 15, 16, 22]. More recently, researchers have
started looking into circuit synthesis [31, 43, 47]. But some ofthem require substantial domain
knowledge, which greatly hindered their generality. Others explore the enormous topology space
via exhaustive search, metaheuristic search, or gradient descent, which may not be as efficacious in
the non-continuous topology space as for other design tasks.

Fundamentally, automated topology generation is inherently difficult, as it faces challenges due
to the immense search space and severe data discontinuity. In fact, the search space increases
exponentially with circuit complexity, and the enormous number of possible topologies prohibits
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exhaustive or random search. Further, metaheuristic search strategies may get stuck in a restricted
set of topologies and thus output sub-optimal results unless the number of random samples becomes
large enough. Moreover, unlike device parameters such as transistor width and length, a small shift
in the component connections of one topology will very likely lead to significant changes in the
circuit performance. As such, search algorithms or optimization methods that rely on continuity
between “similar topologies”, such as genetic search or gradient descent, may become less effective
in reducing search efforts.

Finally, it is time-consuming to evaluate the performance of generated topologies properly. For
power converters, this is often a more severe problem because they are usually nonlinear and
dynamically controlled switching circuits, which require long simulations to reach their steady
states. The conventional Spice simulation [28] is able to provide high-fidelity evaluation results,
but this comes with the cost of a long simulation time to achieve the desired precision and control
scheme exploration. The evaluation cost per topology can be as high as minutes, making the
topology exploration process prohibitively time-consuming.

To address the above challenges, our previous paper [9] proposed a design automation framework
for power converter circuit design and optimization. The main contributions are as follows:

o We propose the first automatic power converter design framework that intelligently explores
the power converter topology space and generates high-quality candidate circuits based on
custom design specifications. As shown in Figure 1, our framework can efficiently locate
well-performing topologies with appropriate control schemes and also has the potential to
generate novel topologies under specific design constraints.

o For the first time, our framework applies Monte Carlo Tree Search, more specifically the
upper-confidence-bound-tree (UCT) variant, to circuit topology generation. Unlike other
methods discussed above, UCT, with proper search tree construction and offline knowledge
enhanced improvements, can better tackle the data discontinuity issue, making it uniquely
suitable for circuit topology generation. Thus, we construct the UCT structure to sufficiently
capture the semantics of topologies to explore the topology space more efficiently. Moreover,
this UCT structure is able to exploit offline knowledge, which is obtained from a few suitable
topologies with smaller sizes and encapsulated into our specially designed default rollout
policy, and further accelerate the topology space exploration.

o As the long-running circuit evaluation is the bottleneck of fast topology exploration, we
detect isomorphic topologies and adopt a hybrid circuit evaluation approach. Our framework
uses a State-Space Averaging method during the topology space exploration, which reduces
the time cost of circuit evaluation by orders of magnitude. The circuit candidates generated
by the exploration are validated by a high-fidelity Spice transient simulation to filter out the
over-optimistic ones.

o We conduct extensive experiments on 5-component (13-port) power converter design tasks.
Evaluation results demonstrate that our proposed automatic framework can produce energy-
efficient circuits for varying voltage conversion ratios. Furthermore, compared to baseline
strategies (i.e., genetic search and random search algorithms) adapted from other circuit
design tasks, our framework can generate constraint-satisfied and highly efficient topologies
while needing fewer queries for circuit evaluation. Hence, it is up to 70%, 56%, and 50% faster
than the baseline strategies for the experimented buck, boost, and buck-boost converter
design tasks, respectively.

This paper extends our previous work to further improve the efficiency, enhance the applicability,
and parallelize the topology space exploration of our UCT-based automatic power converter design
framework. Specifically, we make the following new contributions:
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e We conduct an analysis of the power efficiency, voltage conversion ratio, and specification-
related quality of 100K randomly generated circuits consisting of 5 devices to form a better
understanding of the design space. The analysis inspires us to incorporate mechanisms to
improve the performance of our framework and explain why random search does not work
well for circuit design tasks.

o To speed up the topology space exploration of our UCT-based framework, we design and

implement two main parallelization schemes for UCT, namely root parallelization and leaf

parallelization. We also implement additional mechanisms specially designed for circuit
exploration on top of the two schemes to further improve their speedup and efficiency.

We perform an in-depth examination and comparison between the faster State-Space Av-

eraging method and high-fidelity Spice transient simulation. This investigation explicitly

reveals the running time and accuracy trade-offs of different circuit evaluation methods and
motivates our hybrid evaluation approach.

o We conduct extensive experiments to validate the effectiveness of the hybrid circuit evaluation
approach. Results show that the hybrid use of State-Space Averaging and high-fidelity Spice
transient simulation in our UCT-based converter generation framework achieve comparable
performance but more than 20 times shorter running time than using only simulation.

o We present our design of the unique circuit encoding that reduces isomorphic topologies.
Together with the use of a hash table, it can enormously reduce the number of circuits
evaluated by the State-Space Averaging method and Spice transient simulation, which in
turn reduces the running time of all topology search algorithms.

¢ We conduct comprehensive experiments to evaluate the efficacy of different parallelization
techniques. The evaluation results show that the root parallelization scheme can achieve
9.7x speedup using 13 CPU cores with little performance loss for our framework using the
hybrid evaluation approach. Similarly, it can achieve 12.8x speedup using 16 cores with little
performance loss for our framework using only the high-fidelity simulation.

Organization. We organize the remainder of the paper as follows. In Section 2, we briefly discuss
related works on circuit design automation. Section 3 formally describes the problem statement
considered in this work. We introduce our UCT-based power converter design framework in 4. To
further enhance the practicality of our framework, we apply parallelization techniques to our UCT
design and adopt several mechanisms for reducing the circuit evaluation times, which are discussed
in Sections 5 and 6, respectively. Section 7 provides experimental evidence of the effectiveness of our
proposed framework on different power converter design tasks with practical design specifications.
Finally, we draw conclusions in Section 8.

2 RELATED WORKS

This section discusses the most relevant works on circuit design automation and Monte Carlo
Tree-Search (MCTS).

2.1 Circuits Design Automation

With the demands of custom electronics, application-specific design automation of analog/mixed-
signal (AMS) and radio-frequency (RF) power management circuits starts to play vital roles in
accelerating high-quality electronic circuit designs. However, the traditional manual design routines
are inherently time-consuming and rely heavily on domain expertise. To reduce the cost and
improve the design quality, mainstream research about circuit design automation are three folded:
(1) automating the device parameter optimization for known circuit topologies; (2) automating the
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physical implementation for known circuit topologies and parameters; (3) automating the circuit
synthesis that directly generates topologies.

Parameter Optimization. Great efforts have been devoted to automating the parameter op-
timization for predetermined topologies. For example, [1] proposed a random region covering
method that can reduce the probability of generating sub-optimal results , [17] proposed geometric-
programming-based optimization, [35, 38] used regression and convex/polynomial optimization,
and [24] applied a Bayesian optimizer, [20, 40] both adopted model-based reinforcement learning
to find the optimal device parameter combinations for analog circuits. Additionally, [37] encoded
circuits using graph convolutional neural networks to transfer the parameter optimization knowl-
edge learned between two topologies or between technology nodes of the same circuit. As the
circuit evaluation is very time-consuming, Zhang et al. proposed an efficient asynchronous batch
Bayesian optimization approach for parallelizing circuit sizing and developed a new acquisition
function to better explore the design space of analog circuit synthesis [44].

Physical Implementation. The physical implementation automation for integrated circuits (IC),
such as device placement and routing, also plays a vital role in many high-performance AMS/RF
circuits. For example, analog generators were proposed in [5, 15], which directly build analog
circuit layouts. [22] applied a data-driven approach to check layout symmetry, which is crucial
in high-quality AMS physical layout. A feed-forward equalization transmitter layout generator
was introduced in [16], which significantly reduced layout time. [7] presented a novel detailed
routing framework for AMS layout synthesis to address the sensitive net coupling issues. In
[48], the effectiveness of slicing and nonslicing representation in handling placement constraints
is investigated. Additionally, the technique of congestion-based virtual sizing is proposed. [41]
reduces routing congestion during the placement stage by applying the integer linear programming
to formulate the problem of conflicts between multiple congested regions and performing local
improvement according to the solution of the integer linear programming.

Topology Optimization. In contrast to parameter optimization and physical implementation
that target fixed topologies, recent works have started investigating circuit topology optimization.
Specifically, [43] proposed a bi-directional graph neural network (GNN) model that learns to
simulate the electromagnetic properties of distributed circuits. Via back-propagating the gradient,
this GNN model can also be used to optimize the circuit parameters and topology. However, due
to the special electromagnetic property of coupling decays in distributed circuits, an “edge” in a
circuit topology is determined by the physical distance between two nodes and its impact on the
circuit is continuous and decomposable. In comparison, the edge in a power converter topology is
determined by whether the two components are connected in the circuit, and removing one edge
may utterly change the performance of the circuit (e.g., from valid to invalid). Hence, the gradient
back-propagation approach with the GNN model in [43] cannot be directly applied to the power
converter design task. For topology synthesis for large analog integrated circuits, [47] presented a
graph-grammar-based circuit topology representation, which hierarchically decomposes a circuit
until reaching the basic predefined building block. To reduce the search space, this work focused on
designing meaningful decomposition rules and circuit formation rules that domain experts manually
add while the generation is performed using an exhaustive search within the representation space.
Graeb et al. [11] proposed the sizing rules resulting from constraints guaranteeing the dedicated
function and robustness for analog CMOS circuit synthesis using a hierarchical component library.
The hierarchical component library designed by domain experts reduces the complexity of the
problem so that the exhaustive search becomes affordable. Thus, both works require substantial
domain knowledge of sub-circuit structure to construct large-scale analog circuits, in order to
reduce the search space under exhaustive search. Similarly, [25] reduces the search space via a
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set of expert-specified hierarchically-organized analog building blocks, but it uses genetic search
instead. For searching in the circuit topology space without expert-specified building blocks, [31]
developed a genetic search algorithm, where the device types of components in the topology are
essentially fixed. We extend it to allow changing component types and compare it with our proposed
framework.

Al-assisted Power Electronic Design. The advancements of artificial intelligence (AI) and IC
design automation have introduced marvelous opportunities for power electronic circuit design au-
tomation [46]. Existing works have been looking into methods that greatly reduce circuit evaluation
time by advancing surrogate models that approximate the system dynamics (e.g., electromagnetic
properties, thermal characterization, and wire costs) with lower computational efforts [23, 39, 43, 45].
Researchers have also applied Al techniques and shown some successes in modeling and optimizing
other aspects of power electronic systems, such as component model, system parameters, and
post-layout performance [14, 33, 37, 49]. While the aforementioned efforts in power converter
design automation address parameter optimization and modeling in power electronics, there has
been little work that investigates efficient topology synthesis with minimal prior knowledge and
human intervention.

2.2  Monte Carlo Tree Search

For problems that can be formulated as Markov decision processes, Monte Carlo Tree Search
(MCTS) is a widely used search and planning framework that learns a value function and finds the
optimal decisions via sampling-based search. It has been applied to various applications [3] and
continuously improved since being proposed. For example, [8] defines a general backup operator,
provides fine-grained control of the tree growth of MCTS, and allows efficient selectivity methods.
The upper-confidence-bound-tree (UCT) was proposed in [18]. UCT applies bandit ideas to guide the
Monte-Carlo planning and significantly outperforms other alternatives. [10] further improves the
searching efficiency of UCT by designing three techniques to combine online and offline knowledge.
The MCTS method has also been used to provide training data for a deep-learning model used as a
real-time Atari game playing agent [13].

Due to the popularity of MCTS, parallelization techniques have also been applied to speed up
the execution time of MCTS despite the challenges [32, 42]. In particular, [6] proposed the basic
parallelization approaches of MCTS, including leaf parallelization, root parallelization, and tree
parallelization. These parallelization strategies have shown good performance not only in the Go
game [12, 27, 34] but also in many other applications [2, 4, 19, 21]. For example, the parallelization
mechanism proposed in [21] achieves near-linear speedup with limited performance loss across
many different Atari Games. The performance of different parallelization strategies and the most
suitable improvement techniques depend highly on the specific application, the implementation
language, and the computing platform.

3 PROBLEM STATEMENT

We investigate the automatic power converter design problem with topology generation, device type
selection, and control parameter tuning. This section first describes the custom design specifications
of power converters considered in this work, followed by their topological representation and
parameters. Next, we formulate the problem as an optimization problem with encoded custom
design specifications.

Custom Design Specifications. We consider two primary design metrics of power converters,
namely, voltage conversion ratio y and power conversion efficiency n, as shown in Figure 2. The
voltage conversion ratio is the ratio of the output voltage to the input voltage, i.e, v = Voutr/Vin,
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Fig. 2. Custom power converter design task from design specifications to candidate designs.

and is the main constraint for the generated power converter. Generating power converter designs
with higher power conversion efficiencies is the optimization goal ofthe custom design task. Other
constraints include the number of components in the converter topology and the types ofavailable
devices. The design task evaluated in this work only considers devices including capacitors C,
inductors L, phase-I switches Sfl, and phase-II switches §&, but it can be easily extended to other
device types.

Topological Representation and Parameters. A candidate power converter design consists
ofa topological representation s and a switching control parameter d. Specifically, the topological
representation contains a set of components with ports and edges connecting the ports. Each
component has a device type (from the set of available devices) with device parameters (e.g.,
inductance, capacitance, and transistor dimensions) and two ports (i.e., left and right ports). Note
that each component is nondirectional — switching all the connections of'its two ports results in
the same circuit, despite needing different indexes to distinguish the two ports in the topological
representation. Additionally, there are three external terminal ports: the input voltage port Vin, the
output voltage port Vout, and the ground port Gnd. The edges in the topological representation
specify the connections between the components’ ports and the terminal ports. The switching
control parameter specifies the duty cycle ofa candidate design, which often affects the output
voltage. In this work, the design task involves designing the device types of components, the edges
connecting ports, and the control parameter, while the device parameters for each device type are
predefined. Thus, this work focuses mainly on the challenging topology design problem and leaves
the integration with existing device parameter optimization methods as future work.

Circuit Evaluation. After a circuit is generated, it is evaluated to determine its performance
towards required specifications. Given a generated power converter circuit with topological repre-
sentation s and control parameter d, the Spice-based transient simulation is conducted to obtain
the voltage conversion ratio ys,d and power efficiency 1s/.

To better understand the design space, we performed an in-depth analysis on the power conver-
sion efficiency and voltage conversion ratio distributions of randomly generated circuits with five
components shown in Figure 3(a) and Figure 3(b), respectively. We can observe that most randomly
generated circuits reside either in the low-efficiency range (0-10%) or the high-efficiency range
(80-100%). Note that Figure 3(a) is shown in log-scale, so more than 80% randomly generated circuits
have very low or very high efficiencies. Furthermore, among the circuits with high efficiencies,
most ofthem have a voltage conversion ratio approaching 1. These are the circuits that have direct
or indirect shortcut connections between Vin and Vout, which cannot be used for power converters.
These observations reveal both the challenges of finding high-efficiency circuit candidates and the
ineffectiveness of random search in the design space.
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Fig. 3. Distributions of the part of the randomly generated circuits with five components with respect to
power conversion efficiencies and voltage conversion ratios. Invalid circuits, e.g., circuits with unconnected
components or ports, have been removed from the random generation.

Circuit Generation Objective. Given the custom design task with a target voltage conversion
ratio )0, the goal of our framework is to automatically generate the topological representation s
(with chosen component types and edges) and configure the control parameter d of the power
converter circuit. Specifically, the objective can be described as:

ST A e 0
where § and D denote the set of topological representations and the set of control parameter
configurations. Ul is a utility function that evaluates a circuit design’s conversion ratio and
efficiency for the custom design task with target conversion ratio y,,. Specifically, the utility function
is formulated as:

Ul (ysxf> ifs,d) = i]s,d 1 <5(ySj(/, yo) 2
In our formulation, S measures how close the obtained conversion ratio ys7 and the target conversion
/150)-)-Q)\2
ratio lo are. In our experiments, we use <5(y,y0) = 1.1 ' bol ' . The utility function is set to 0
when the topology is invalid or incomplete. Under this formulation, a circuit has a higher utility if
it has a higher efficiency and a conversion ratio closer to the target ratio.

Analysis of Design Space. We plot the utility distributions of'the randomly generated circuits
above given different target power conversion ratios in Figure 4. Note that Figure 4 is also shown
in log-scale. The percentage of'the high utility buck-boost, buck, and boost circuits (utility larger
than 0.6) is only 0.173%, 0.315% and 0.332%, respectively. This analysis confirms that the number
of well-performing circuits given specific design specifications is very small. Essentially, given
the component pool and the possible connections between them, there are combinatorially-many
possible circuits. Among these circuits, most have low power efficiencies or undesirable conversion
ratios. Thus, it is computationally intractable to search over all possible circuits to find the optimal
one, and it is also inefficient to find high-quality circuits via random search.

We also manually look into the randomly generated circuits to understand topology properties
that affect the performance of circuits. By carefully looking into bad topology candidates (i.e.,
efficiency close to zero or conversion ratio close to one), we find that there are similar paths
associated with such topologies. In summary, the topologies with bad performance mostly share
one ofthe following features:

* Pure inductive paths between two of the terminal ports VIN, VOUT, or GND;
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Fig. 4. Utility distributions of randomly generated circuits with five components under different target power
conversion ratios. Conversion ratios -2, 0.5, and 2 correspond to buck-boost, buck, and boost converters,
respectively.

* No path between VIN and VOUT that does not by-pass GND.

These findings are consistent with our domain knowledge of power electronics. Thus, we define
those paths as prohibited paths and do not perform circuit evaluation for circuits containing
prohibited paths. Additionally, we combine such knowledge into our UCT-based framework via
action pruning, which will be described in Section 4.3.

The topology design space in this work is comprehensive, except that we removed isomorphic
circuits and circuits violating human-designed rules. For the parameter design space, we have
selected specific values for the optimized precision-cost trade-off. We identify the control parameter,
namely duty cycles, as the first-order variable that significantly alters the voltage conversion ratio
and power efficiency. As such, we optimize the duty-cycle parameter. On the other hand, to reduce
the evaluation cost per topology, we fix the second-order parameters in this work, such as capacitor
capacitance, inductor inductance, and source resistance. In principle, our proposed framework can be
extended to also optimize other parameters. Alternatively, once a custom topology is reached, further
parametric optimization is feasible through state-of-the-art parameter optimization methodologies
discussed in Section 2. Finally, after the topologies and parameters are generated, fine-grained
analyses, such as LC-coupling and PVT variation, are needed to validate their performance in
practice, which is beyond the scope of this work.

4 UPPER-CONFIDENCE-BOUND-TREE-BASED CIRCUIT GENERATION

In this work, we propose an automatic power converter design framework that utilizes the upper-
confidence-bound-tree (UCT) variant of Monte Carlo Tree Search , together with several efficiency-
enhancing mechanisms, to intelligently explore the topological representation space and locate
candidate designs with high utility scores. This section describes our formulation and main al-
gorithm design of the topology generation using upper-bound-confidence-tree (UCT). To speed
up the topology exploration, we investigate several parallelization techniques for the UCT-based
topology design, which will be discussed in Section 5. Additional mechanisms to reduce the circuit
evaluation costs will be presented in Section 6.

We formulate the circuit generation task as a sequential decision-making problem. Instead of
synthesizing the entire topology all at once, the component device types and connections between
ports are added step by step, as illustrated in Figure 5. At each step, it decides which device to add to
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Fig. 5. UCT-based Topology Generation Overview: The generation starts with a topology having empty
components and 3 terminals. It first makes device selections (shown in green) and then connects ports of
components and terminals (shown in blue), where the actions are specially designed to reduce isomorphism
and invalid circuits. The look-ahead tree construction and action score calculation (shown in purple) follow
the UCT algorithm, which utilizes upper confidence bound in exploitation and exploration trade-offs. To
improve the sample efficiency and rollout speed, we designed a default policy and adopted a fast evaluation
technique (shown in orange).

the existing circuit or which pair of component ports to connect in the circuit. Under this multi-step
formulation, we construct the UCT-based algorithm to build look-ahead trees to estimate the design
choices, such as selecting devices and connecting device ports. In tree building, UCT utilizes upper
confidence bound for effective exploitation and exploration trade-offs. Our multi-step formulation
and UCT-based algorithm allow physics-aware connection pruning and removes many isomorphic
topologies by construction. We further improve the topology generation by incorporating offline
knowledge from the pre-collected dataset through a default policy.

4.1 Sequential Circuit Topology Generation

Formally, we formulate the power converter circuit topology generation as a sequential decision
task. More specifically, we model the topology generation as a Markov Decision Process, namely
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a 4-tuple of (S, A, T, R), representing the state set S, action set A, state transition function T, and
reward function R. As shown in Figure 5, the topology generation always starts with an empty
topology of the power converter and has two phases with multiple steps: the device type selection
phase and connection selection phase.

In the t-th step, the state s; € S is a partial or complete topology of the power converter circuit.
Inspired by the simple fact that circuit topology is a graph, each state s, maintains a component
set, a port set, and an adjacency matrix specifying the connections between each pair of ports.
The action set A; depends on the current state s;. For a state in the device type selection phase,
an action a; € A; decides whether a device type is selected for a component. For the connection
selection phase, an action either decides to skip adding more connections or decides which port
is connected to the port under consideration. Given our state and action formulation, the state
transition is a deterministic function s,4; = T(ss, a;), which maps the current partial topology and
the action choice to the next topology. After transiting to an new state s;+1, the action set also need
to be updated to A;+; according to the new state s;41.

The reward function Ry, encodes the custom design objective Uy, in Equation 2 such that

Ryo (sta at) = mL?X Uyo (YStH,da r]sHl,d) - n’ba/.x Uyo (YSt,d’a r]st,d’)

The reward function computes the difference in utility between the previous state s, and the new
state s;41, each with optimized control parameters d and d’. The difference-based reward formulation
ensures our sequential circuit topology generation formulation includes the optimal solution to the
custom design task. We directly use the utility function in equation 2 in the reward function to
represent the quality of a state. For states representing valid and complete circuits topologies, the
utility is between 0 and 1. For states representing invalid or partial circuits topologies, the utility
function returns 0.

The optimization objective is to find an action sequence that maximizes the reward of the final

topology:
T
ay.p = arg rBOaTx ; Ry, (51, ar)

Remark. Note that the above objective requires computing the maximum utility over the different
control parameters. Sweeping all control parameters to find the one with maximum utility is not
the only way for the formulation. Alternatively, the sequential decision task can be formulated to
have one additional phase with actions for choosing the control parameter (and device parameter if
needed). Then, the optimization objective becomes finding an action sequence that maximizes the
reward of the final circuit with a specific topology and chosen parameters. Our proposed framework
works for both formulations. We implement both versions and conduct experiments to compare
their performance. In terms of the quality of the generated circuits, both versions have similar
performance. Because the fast circuit evaluation method presented in Section 6.2 can compute the
maximum utility over the different control parameters faster, this formulation gives some advantage
to our framework using the fast evaluation method in terms of total running time.

4.2 Upper-Confidence-Bound-Tree-based Topology Generation

To effectively solve the above sequential decision-making problem, we adopt Monte Carlo Tree
Search, which has shown success in many domains, like playing the Go game [34] and solving the
parking problems in Tesla’s Autopilot software [36]. Monte Carlo Tree Search has been proven to
work well for large state-space sequential decision-making optimization problems, which suits the
large topological representation space in our problem formulation. Among different variants of
Monte Carlo Tree Search algorithms, the upper-confidence-bound-tree (UCT) algorithm is the most
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popular one that uses the Upper Confidence Bound to well balance the exploration and exploitation
trade-offs.

At a high level, UCT builds a look-ahead tree and greedily selects an action based on the actions’
estimated scores at each step. In our proposed framework shown in figure 5, each tree-node of UCT
corresponds to a partial or complete topology (i.e., a state) and each tree-edge corresponds to a
device type or connection selection (i.e., an action).

To accurately estimate the action scores Q, UCT performs multiple look-ahead rollouts (also called
simulations in the literature), which sample the remaining action sequence following a default
policy and evaluate the quality of the samples in terms of reward. UCT is an anytime optimization
algorithm with three parameters, the number of look-ahead rollouts, the maximum depth (uniform
for each rollout), and an exploration parameter. In general, the larger the number of rollouts and
the depth parameter are, the slower UCT is, but the better it is. In our UCT-based algorithm, a
rollout returns the reward when reaching a terminal state, instead of a fixed maximum depth like in
conventional UCT design. A state is called a terminal state if its corresponding topology is complete
or if there is no valid action that can complete the topology. In this way, the rollouts are more likely
to find valid circuits with positive rewards.

Compared to other Monte Carlo Tree Search algorithms, UCT utilizes the Upper Confidence
Bound in the tree building process to provide improved estimations of action scores. UCT computes
a score for each action a, at a state s, as the sum of the exploitation and exploration terms, as

follows:
QUCT(St, ar) = QMC(St, ag) + \/M
n(St, al’)

where QM is an exploitation term and the second one is an exploration term.
The QM€ is the Monte Carlo average of the sum of rewards obtained from the look-ahead rollouts

M T
0" (sa) =2 > 3 RSP af)
m=1t'=t
where m identifies a look-ahead rollout in the total M rollouts.
The exploration term \/log(n(st))/n(st, ay) is the Upper Confidence Bound, where n(s;) is the
number of visits for the state node s, and n(s;, a;) the number of visits of the action a, at state s;.
UCT selects the action to rollout greedily with respect to this summed score using the look-ahead
tree. Once the input-parameter number of rollouts are produced each to the maximum depth, UCT
returns the exploitation term for each action at the root node.

4.3 Combining Knowledge into UCT via Action Pruning

As discussed above, UCT estimates a state-action pair’s score QMC(s;, a;) more accurately when
more rollouts are performed and the total number of rollouts is fixed according to the affordable
computation cost. Hence, pruning the action space can improve UCT’s search efficiency. Therefore,
we design several physics-informed action pruning strategies to reduce the actions that lead to
invalid or isomorphic topologies.

Reduce Invalid Topologies. Based on the knowledge of electronic circuits, we pose a set of con-
straints when adding connections to avoid generating invalid power converter circuits. Specifically,
we do not include an action a of connecting two ports into the candidate action set A if adding this
connection leads to one of the following situations:

e a shortcut;
¢ a direct connection between terminal ports VIN, VOUT, or GND;
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e a prohibited path;
e a disconnected circuit.

Here, the prohibited paths are the paths that violate basic circuit principles. For example, if
we connect VIN and GND only with an inductor, it is equivalent to a power shortcut. A circuit is
considered disconnected if there is at least one port not connected to any of the terminal ports via
any paths of connections after the generation process.

Together with the action pruning rules described below for connection selection, we can identify
such disconnected topologies early in the generation process. Specifically, if there is no more
allowed connection that can be added to a port and there is no path connecting this port to any of
the terminal ports, then this partial topology will eventually become a disconnected circuit even if
additional connections are selected between other ports. Following this rule, if we detect a state
that represents a partial topology that will generate unconnected topologies, we no longer expand
the state at this point. To do so, we mark the corresponding state as a terminal state with a reward
of 0, so no more actions can be taken from this state.

Reduce Isomorphic Topologies. Combining the states representing isomorphic topologies can
also improve UCT’s search efficiency, since the rewards of rollouts from all these states can be
collectively used to estimate the score more accurately. Hence, we propose the following methods
to reduce the generated isomorphic topologies by construction.

First, we split the device type selection phase into multiple rounds, where each round has an
ordered set of available device types, e.g., {Sq, C, L} in the second round. The set in the first round
includes all device types. The ordering of device types is set to S,, Sp, C, and L. In each step of a
round, each available device type is considered for selection, e.g., selecting one S, for a component
or skipping adding S,. If a device type has been skipped in the current round, it will be removed
from the set of available device types for the next round. For instance, if we have added one S, and
one L but skipped C in the second round, the set for the third round becomes {S;, L}. The device type
selection phase ends when the number of selected devices is equal to the number of components.
In this way, every state in this phase is unique (i.e., representing different device selections), while
all combinations of device selections can be generated.

Next, for the connection selection phase, we number all the ports where the terminal ports have
the smallest indexes. We consider each port for adding connections with other ports one by one.
Although a connection in a converter topology is not directed, we only allow a port with a smaller
index to be connected to a port with a larger index. Thus, this connection can only be added once.
In addition, since a device is nondirectional, we always have its left port be connected before its
right port when both ports have no connection. Following the above rules, many actions that lead
to states representing isomorphic topologies are pruned.

4.4 Combining Knowledge into UCT via Default Policy

Due to the large space of topologies, the computation cost for finding a good topology can be high
even after action pruning. One reason is because with no prior knowledge available rollouts can
only follow a random action selection policy. However, as shown in Figure 4, the probability of
finding good circuits from randomly generated ones is quite low. Hence, we further improve the
effectiveness of UCT by replacing the random default policy with a data-driven one.

In particular, we randomly generate some topologies with fewer components and evaluate their
efficiencies and conversion ratios. For example, we collect a small data set with 3-component
topologies for the design task of 5-component topologies. Among them, we find the good topologies
with higher rewards and collect their device selections and all paths of connections between the
terminal ports. Exploiting the information obtained from good topologies with smaller sizes, we
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develop the following two default policies for the two topology generation phases: node selection

for selecting devices according to device combination information, and edge selection for adding

connections according to the path information.

Node Selection. We collect the number of times a device selection combination C (e.g., {S4, Sa, L))

occurring in the good topologies, denoted by ny(C). This information is encoded into the default

policy, such that its probability of a device selection combination C’ is approximately proportional

to the collected device selection distribution. Specifically, we calculate the weight of a device

selection combination C” as w(C’) = X ccor n4(C). The total weight is defined as Wy = X w(C”').

Then the probability of the device selection combination C” generated by the default policy is
W(C/)/Wd + €4

2 (w(C")[Wq + €q)

where €, is a small constant that decides by how much the default policy follows the collected

distribution. In our experiments, ¢4 is set to 0.01.

Pq(C’) =

Edge Selection. We also collect the number of occurrences of a good path of connections between
any two of the terminal ports (VIN, VOUT, and GND) in the good topology data set, denoted as ng(p).
When considering a port e for adding a connection onto the current partial topology s;, we first
construct a set of all possible good paths P(e, s;). A path in P(e, s;) must contains port e and adding
this path to s; cannot lead to invalid topologies (e.g., shortcuts). Next, for any connection (e, e’)
allowed to be added to s;, we calculate the weight of taking this action as

wiee)= > np)
pEP(e,s:)&(ee)Cp

Similar to node selection, we can calculate the total weight of all allowed actions as W, =
2(eer) Wle e”). Then the probability of the connection selection action (e, e’) generated by the
default policy is

w(ee) /W, +¢p

Z(e,e”) (W(ea 8”)/% + ep)
where €, is a small constant and is set to 0.4 in the evaluation. Note that although the weights are
calculated using the good paths in the data set with fewer components, longer paths with more
components can be generated with the help of ¢,.

With the default policies, we can bias UCT towards searching the topology space that may
contain high-reward ones.

Py (e e’)

5 PARALLELIZING UCT-BASED CIRCUIT EXPLORATION

In this section, we develop parallelization techniques to speed up the circuit exploration of our
UCT-based framework. We explored two main parallelization schemes for UCT: root parallelization
and leaf parallelization. To improve the speed up, we also implemented additional parallelization
techniques on top of these two schemes.

5.1 Leaf Parallelization Scheme

We first explored the leaf parallelization scheme for our UCT-based framework. As described in
Section 4.2, UCT estimates the action scores Q by performing multiple look-ahead rollouts. One
natural idea for parallelizing UCT is to perform the multiple rollouts in parallel, as illustrated in
Figure 6(a).

Based on this intuition for UCT leaf parallelization, we first generate multiple threads at the
start of the execution, where the total number of threads is equal to the number of available cores.
Additionally, each parallel thread is pinned to one dedicated core. Whenever we expand a tree-node
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(a) LeafParallelization (b) Root Parallelization

Fig. 6. Illustration of different UCT parallelization schemes.

during the look-ahead tree building process, multiple threads will work in parallel to perform the
rollouts. In particular, each parallel thread will follow the default policy individually to generate
one circuit and call the circuit evaluation to obtain the reward of'this circuit.

Compared with the original UCT, leafparallelization can perform more rollouts within the same
time, which results in a more precise reward estimation of the nodes in the tree. If there is no
limit on the number of queries to the circuit evaluation, leaf parallelization certainly improves the
performance. This is simply because more rollouts can be done within the same time to help the
action selection. On the other hand, when the number of queries is limited, there is a trade-off
between the running time of the UCT-based circuit exploration and its performance.

Additionally, in order to calculate the reward estimation of multiple rollouts, leatparallelization
needs to wait for all parallel threads to return with circuit rewards. However, the circuit evaluation
times for different circuits can vary, which is especially evident for the high-fidelity Spice transient
simulation. Hence, during the execution, some parallel threads may be blocked by waiting for the
slowest thread to return, which may restrict the speedup of leafparallelization.

5.2 Root Parallelization Scheme

In contrast to sequential UCT and leaf parallelization scheme where only one look-ahead tree is
built, the root parallelization scheme builds multiple trees in parallel by multiple threads. Hence,
the parallelization naturally comes for building multiple trees. However, ifthe parallel threads split
the prefixed number ofrollouts and build their individual trees without any communication, each
tree can only observe the rewards ofa small fraction of rollouts, resulting in inaccurate estimations
of action scores and hence potentially worse generated circuits.

To alleviate this issue, we implement the UCT root parallelization to communicate between
multiple trees and collectively select an action at each step. Specifically, in each step, parallel threads
start with the same current state, expand their individual trees by performing multiple rollouts, and
update the action scores on their own trees. All of'these are performed independently in parallel.
Once a prefixed number of total rollouts is reached, UCT root parallelization needs to determine
the best action to take at the current state and transition to the next state. This decision is made
by the parallel threads (trees) collectively, so that a single best action is selected and all threads
transition to the same next state, as illustrated in Figure 6(b).

There are two potential ways to select an action from multiple parallel trees: voting and merging.
Voting means that each tree votes for an action (according to its individual action score estimations
calculated for all valid actions given the current state), and the action with the highest number
of votes will be selected. In contrast, merging means that we first merge the action scores from
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different trees and then select the action with the highest score. Here, the merge is performed by
taking the sum of the Monte Carlo average of rewards of all the look-ahead rollouts performed in
different trees.

Formally, let Ry, Ry, - - - , Rm—1 denote the roots of the m trees given the current state s;, where
each root R; has k action children a}, al, al, - ,a._,. When constructing each tree, we record the
number of visits n(s;, a;'.) and the Q-value OM“(s;, ai.) of every action child. To decide the best
action to take, we merge the roots of trees into one root R* with action children 4}, where the
number of visits n(s;, a;) and the Q-value Q(s, a}) of a] are calculated as follows:

m—1
n(s, a;) = Z n(st, aj)
j=0

m-1

Y n(sr.a})Q(se aj)

j=0

St, a) =
Q( ty g ) Tl(st, af)

We implemented both action selection methods and conducted some experiments to compare
the performance of these two potential methods. Results indicate that merging outperforms voting,
which is mainly because the merged action scores can maintain the global information of different
trees. Hence, we use merging to select actions for UCT root parallelization.

5.3 Additional Parallelization Technique to Improve the Speedup

In the implementation of our parallel UCT-based framework, we also introduce the following
additional techniques to improve its speedup.

Improving Efficiency of UCT Root Parallelization by Prioritizing Trees. A straightforward
implementation of UCT root parallelization, which usually works well for other tasks, is to split
the total number of rollouts evenly between different parallel trees. However, as also discussed
for leaf parallelization, the major part of the execution time spends on circuit evaluation, where
the circuit evaluation times for different circuits can vary. Additionally, not all rollouts result in a
circuit evaluation. For example, our framework does not query the circuit evaluation for invalid
topologies or topologies that have already been evaluated. Therefore, evenly splitting the number
of rollouts may not result in the same running time of different threads. Since the parallel threads
need to synchronize and communicate to select the action to take at the end of each step, faster
running threads have to wait for long-running ones. This, again, may hurt the speedup.

Based on the above observation, we prioritize trees for UCT root parallelization. In particular,
instead of fixing each independent tree with the same number of rollouts, we allow the trees to grow
dynamically and only require that the total number of rollouts performed by the m trees remains
the same as the prefixed value. To satisfy this requirement, we keep track of a global counter c,
which counts the number of rollouts performed by all trees. We initialize the counter ¢ equal to the
prefixed value, decrease ¢ by 1 when any of the trees expands a node, and stop building the tree
when ¢ = 0. In this manner, we implicitly prioritize the trees with a shorter circuit evaluation time
and automatically achieve better load balancing between the m cores.

Reducing Redundant Circuit Evaluation. For both leaf and root parallelization schemes,
different parallel threads may end up evaluating the same circuit generated by different rollouts.
Again, since circuit evaluation time is the major part of the execution time of the UCT-based
framework, it is critical to reduce redundant circuit evaluation. We achieve this by maintaining
a hash table storing all previously evaluated circuits observed by each look-ahead tree and their
corresponding rewards. Thus, we only query the circuit evaluation if the circuit does not exist in
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the hash table. For root parallelization, each thread independently builds its own tree but all the
threads shared a circuit hash table. When a thread finishes evaluating a newly observed circuit, it
stores this circuit in the hash table, then the other threads do not need to repeat the evaluation
when observing this circuit in its own tree.

Parallelizing the Hybrid Circuit Evaluation. Note that all the above parallelization techniques
are applicable to our UCT-based framework with any circuit evaluation approach. In Section 6.2, we
will present a hybrid circuit evaluation approach that uses the faster State-Space Averaging method
to evaluate the circuits observed during tree building and conducts high-fidelity simulation only
for the top circuit topologies with highest utility. Since the high-fidelity simulation is significantly
slower than the State-Space Averaging method, the final high-fidelity simulation for top circuits
becomes the bottleneck in reducing the total running time when using the hybrid approach. Hence,
to speed up the running time, we also parallelize the final simulation by conducting the high-fidelity
simulation of the top circuits in parallel by multiple threads. Qur implementation maintains a
shared circuit queue for threads. After starting the parallel simulation, each thread repeatedly takes
a circuit out of the shared queue to conduct high-fidelity simulation until the queue is empty.

6 REDUCING CIRCUIT EVALUATION COSTS

To address the issue of costly circuit evaluation, we design a special circuit encoding that is able to
detect many isomorphic circuits in the combinatorial topology space. With the help of this circuit
encoding and a hash table, our design automation framework only needs to evaluate the unique
circuits generated during the circuit exploration by UCT. Additionally, our design automation
framework uses a hybrid circuit evaluation strategy. We use a State-Space Averaging technique to
evaluate different parameter configurations of the same circuit during the circuit exploration and
only validate the good output candidates via Spice simulations.

Note that all these mechanisms to reduce circuit evaluation costs are applicable not only to our
UCT-based framework, but also work for other circuit generation approaches. In fact, we use the de-
isomorphism method with special circuit encoding and hash table and the hybrid circuit evaluation
strategy for all the evaluated circuit generation approaches when conducting the experimental
comparison in Section 7.

6.1 Reducing Isomorphic Circuits via Unique Encoding and Hash Table

As discussed in Section 3, a converter topology is essentially a graph. Randomly generated topologies
will lead to numerous isomorphic graphs that hinder the effectiveness of finding good topologies.
Even with action pruning techniques applied to our UCT-based framework for reducing invalid and
isomorphic topologies, the circuits generated by UCT still contain many isomorphic ones. Since
circuit evaluation is very time-consuming, we design an automatic de-isomorphism method to
further remove redundant circuit evaluation for isomorphic circuits.

Unique Encoding. The first step of our de-isomorphism method is to assign a unique encoding,
also called key, to each circuit. While the topology representation describes a circuit abstractly, the
actual implementation of a circuit generation algorithm can arbitrarily number the chosen devices
and index their interconnection ports. Depending on how the devices are selected and ports are
connected, the same circuit can end up with different concrete topology representations.

One major source of isomorphism is the component indices. During topology generation, we
will assign indices to every component, which are then inherited by the chosen devices. As a result,
the same circuit may have different topology representations with different device indices. Our
action pruning techniques in Section 4.3 reduce such isomorphic topologies for the UCT-based
framework, but other circuit generation approaches still suffer from this issue severely. To address
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this problem, we use a string-type encoding where the components are identified by the name of
the chosen device type, e.g., L and C. For circuits with multiple components with the same device
type, these components are identified by the name ofthe device type followed by an index, e.g., LI

and L2.

Port | Port2 Port3  Portd4 Port | Port2  Port3  Portd

Gnd Gnd

Fig. 7. The same (partial) circuit with two different topology representations with different edges.

In addition to isomorphism caused by components, another source of isomorphism comes from
edges connecting ports. For instance, Figure 7 shows two different (partial) topology representations
with different edges connecting different ports, ffowever, they actually represent the same circuit,
since the two edges in the respective graph connect the same three ports together. To reduce the
isomorphism introduced by the indexed ports, our algorithm will first combine all ports that are
connected together as one port by assigning it with the same identifier. Specifically, it replaces
the port index with a string-type encoding, which is constructed by concatenating the string-type
identifiers of the connected components. The concatenated identifiers are also ordered based on
the device types and additional indices. For example, Ports 0, 2, and 3 in Figure 7 will be assigned
with the same identifier “L-C-Gnd” indicating they are the same combined port.

Then the key is a string-type list of the circuit topology networks in the alphabet order. Each
network is an encoded component with its string-type encoded left and right port. The order of
the two ports is also in alphabet order. In this way, the key can uniquely represent a circuit by
efficiently encoding the topology information into a string.

Hash Table. The second step of our de-isomorphism method uses a hash table to keep track of
all unique circuits that have already been evaluated. Note that both the UCT-based framework
and baseline algorithms may query the circuit evaluation about a topology more than once. To
avoid unnecessary circuit evaluation costs, we implemented a hash table to cache the efficiencies
and conversion ratios of the topologies that have been queried during each experiment. Therefore,
in our experiments for both the proposed algorithm and baselines, all the queries to the circuit
evaluation are only about unique topologies. The use of hash table is especially beneficial for the
baselines like Genetic Search, as they cannot make use of action pruning to avoid some isomorphic
topologies by construction.

There is a trade-off between time and space when using the hash table. Specifically, it takes
0.43/ts on average to search the hash table for a specific topology and duty cycle. As a comparison,
the State-Space Averaging method and high-fidelity simulation consume 1.95 seconds and 12.45
seconds on average to evaluate a circuit, respectively. On the other hand, it takes additional memory
space to store the hash table. For example, a hash table for 5-component circuits with 1.55x10s
entries may consume up to 323.1MB to store. Note that, although the hash table size increases
for longer exploration and higher circuit complexity, the circuit evaluation cost also increases
enormously. Therefore, using a hash table during the UCT search significantly reduces overall time
cost with an affordable trade-off in memory.
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Fig. 8. Evaluation time per topology for different numbers of parameter configurations per topology under
State-Space Averaging method, moderate-fidelity simulation (with 10ms transient time, 0.05SMHz switching
frequency, and 10ns minimum time-step), and high-fidelity simulation (with 100ms transient time, 1MHz
switching frequency, and Ins minimum time-step).

6.2 Efficient Evaluation via State-Space Averaging

The reward function used by UCT is a computational bottleneck as it requires evaluating different
control parameters for different topologies sampled by all the rollouts. Simulation software, such
as NGSpice [28], often takes a long time to evaluate one topology with fixed parameters. To speed
up the circuit evaluation, we instead adopt the State-Space Averaging approach [30]. This approach
shares the major computation among the circuits with the same topology but different parameters,
which makes it a faster surrogate model in estimating a large number of parameters.

Specifically, State-Space Averaging characterizes the transfer properties of switching stages ofa
power converter circuit. By dividing the circuit into phases-I and phase-II sub-circuits, deriving
state-space equations, and averaging state changes with the corresponding duty-cycles (i.e., d and
1 - d), it derives the estimated output voltage and power efficiency.

We compared the computation times of State-Space Averaging versus NGSpice. Figure 8§ shows
that the evaluation time per topology under State-Space Averaging is significantly lower compared
to moderate-fidelity and high-fidelity simulations. The advantage of State-Space Averaging is
even higher when more parameter configurations of one topology (e.g., the same topology with
different duty cycles) need to be evaluated. This is because deriving state-space equations is the
most expensive step of State-Space Averaging, but these equations remain the same as long as the
topology remains the same. Hence, increasing the number of parameter configurations per topology
does not increase the evaluation time much under State-Space Averaging, while simulations must
be performed for each parameter configuration of'the same topology.

Despite its speed advantage, State-Space Averaging has a disadvantage — it is only accurate ifthe
circuit is linear during operations. Nonlinear effects, such as discontinuity in conduction or enforced
switch dead-zone, will introduce errors. As such, the state-space method usually overestimates the
efficiencies of'topologies.

We conduct an in-depth analysis to examine the accuracy of the State-Space Averaging method
compared to the ground-truth high-fidelity simulation on various 5-component circuits. Figure 9
reveals that the State-Space Averaging method can consistently estimate the output voltages of
circuits, although most estimations are slightly higher. However, we can notice that for circuits
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Fig. 9. Performance evaluation under the State-Space Averaging method (blue diamonds) compared to the
ground truth high-fidelity simulation (orange crosses). As the evaluation results ofthe high-fidelity simulation
are the ground truth, its estimated values are the same as the ground truth. In contrast, the estimated values
given by the State-Space Averaging method can deviate from the ground truth values.

with high power efficiencies, the State-Space Averaging method often overestimates the efficiencies.
For some circuits with low efficiencies, it also cannot correctly estimate the efficiencies.
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Fig. 10. Reward estimation under the State-Space Averaging method (blue diamonds) compared to the ground
truth high-fidelity simulation (orange crosses) for buck-boost, buck, and boost converters, respectively.

We also look into how the error in power efficiency estimated by the State-Space Averaging
method affects the reward estimation for different types of converters. Using NG-spice simulation
result as ground-truth, we measured predicted reward for buck-boost, buck and boost converters
using State-Space Averaging approach. From the result and Figure 10, we notice that the State-Space
Averaging method can more accurately estimate the rewards for boost converters. Its estimations for
buck converter deviate most from the ground truth values. This suggests that using the State-Space
Averaging method to replace the high-fidelity simulation may not work well. The evaluation time
per topology is illustrated in Figures 8
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To address this issue, we take a hybrid circuit evaluation approach. During topology search,
a topology is evaluated by State-Space Averaging. With the optimistic nature of State-Space
Averaging, it covers almost all qualified topologies with high rewards. Once the top topology
candidates are generated, NGSpice simulation will be invoked to offer ground-truth evaluation for
the final topology and control scheme selection.

7 EVALUATION

We evaluate our framework across a spectrum of custom design tasks with different conversion
ratios and compare its performance with baseline algorithms. We also conduct an ablative study on
the effectiveness of the proposed data-driven default policy. Next, we evaluate the effectiveness of
our parallelization techniques and the hybrid circuit evaluation approach. Finally, we discuss the
nonconventional power converter topologies discovered by our framework.

7.1 Experiment Setup

We conduct our evaluation on 3 servers with same configurations. Fach server consists of Ubuntu
18.04, 196GB RAM, and two Intel(R) Xeon(R) Gold 5120 CPU, each CPU has 14 cores. We use
Python 3.8 to implement our topology generation program. We conduct the evaluation on the
power converter design task with five components, each with two ports. Together with the three
external ports (Vin, Vout, and Gnd), the design space contains topologies with a total of thirteen
ports. The component device types have fixed device parameters and include capacitors C (10pF),
inductors L (100pH), phase-1 switches S,, and phase-II switches S, For external ports, we consider
an input resistor of 0.1Q for Vin and an output resistor of 100Q and an output capacitor of 10uF for
Vout. The candidate control parameter (i.e., duty cycle) ranges from 0.1 to 0.9, with a step size of
0.1. We configure the frequency as 1MHz for both analytic evaluation and simulation. We set the
input voltage to 100V, and the target voltage outputs are chosen from the range of -300V to 300V.
Additionally, a topology with a conversion ratio smaller than -5 or larger than 5 will be considered
invalid. In NGSpice simulation, the transient simulation time is set as 60s.

7.2 Implementation Details and Competitive Algorithms

In this section, we describe the implementation details of our UCT-based framework and the
baseline algorithms. To the best of our knowledge, genetic search and exhaustive search are the
only existing machine learning algorithms that might not need non-trivial domain knowledge
and are applicable to the converter circuit topology design, as discussed in Section 2. Hence, we
implemented genetic search and random search (i.e., the randomized version of exhaustive search) as
the baseline algorithms for comparison.

Implementation Details of Proposed Algorithm. There are two important implementation
details of our UCT-based topology generation algorithm. First, we use the number of rollouts to
decide the number of explorations each run of the UCT-based topology generation. In each rollout,
we expand a UCT tree-node and execute a rollout to get a complete topology. However, the number
of rollouts can be larger than the number of queries, since we only query the circuit simulation
when a rollout leads to a valid topology that is not in the hash table, as described in Section 6.1.
Second, different from the common UCT design that completely reconstructs a new tree for each
step, we inherit the sub-tree corresponding to the selected action from the tree of the previous
step to make full use of the collected information. This operation makes our UCT-DP algorithm
converge faster.

Random Search (RS). Random Search is a strategy that starts with an empty topology, randomly
selects device types, and then randomly connects ports until reaching a complete topology. Note
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that, ifa port already has connections to other ports, then it is not required to connect to yet another
port. Thus, in this case, RS may skip adding more connections to this port with a probability of
0.8. RS uses the same reward function as UCT, along with the same prohibitive paths that prevent
generating invalid topologies. After searching a prefixed number of complete circuit topologies, RS
outputs the one that has the highest reward.

Genetic Search (GS). We implemented another popular heuristic-based search algorithm, namely
Genetic Search, for the power converter design task [26]. GS starts with 15 random topologies.
In each round, GS selects 3 topologies with the highest rewards from the current generation and
uses them as parents to generate offspring by mutation. We implemented the following mutation
types: (1) A crossover randomly selects a component that exists in two parents and exchanges the
connections of'this component [31]; (2) A component change randomly changes the device type
of'a random component in a parent; (3) A connection insertion randomly selects and connects
two unconnected ports in a parent; (4) A connection removal removes a random connection ofa
parent; (5) A connection switch selects a random connection of a parent and changes one of the
connection’s ports to another random port; In each round, the above mutation types are chosen
with probabilities of {20%, 10%, 30%, 20%, 20%}, respectively.

3025 2 -15 -1 05025 05075 15 2 25 3

Target Voltage Conversion Ratio

Fig. 11. Average power efficiencies of power converters generated by the proposed framework for custom
design tasks with increasing voltage conversion ratios. From left to right in different colors and shades, the
target converter types are buck-boost, buck, and boost.

7.3 Evaluating UCT-based Circuit Generation

In this Subsection, we conduct experiments to evaluate our UCT-based circuit generation and com-
pare it against the above baseline methods. To form a focused evaluation and fair comparison with
baselines, all the experiments in this Subsection use the same de-isomorphism method (Section 6.1)
and hybrid circuit evaluation approach (Section 6.2) for (sequential) UCT and baselines.

Custom Design Tasks. We first evaluated our UCT-based framework on different custom design
tasks for power converters. The design tasks can be classified into three settings, including buck-
boost, buck, and boost converters. For each target voltage conversion ratio, we run our framework
five times and compute the average efficiency of the generated topologies. In Figure 11 shows
the average power efficiencies under our framework for different voltage conversion ratios. For
the Buck-Boost, Buck, and Boost converter, we set the target conversion ratio as -2, 0.5 and 2
respectively. Both the baselines and the proposed method use the hash table to decrease the number
of queries. The UCT-based topology generation uses the State-Space Averaging approach to get
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Fig. 12. Average rewards with 95% confidence interval under UCT-DP vs. GS vs. RS with increasing numbers
of unique queries to circuit evaluations. The x-axis shows increasing numbers of queries to circuit evaluations
for unique topologies. The y-axis is the obtained reward calculated using the power efficiency and voltage
conversion ratio ofthe best candidate circuit generated by an algorithm, averaging from 200 runs.

the utility the circuits and conduct simulation on the top 5 topologies that has the highest utilities,
while the genetic and random search approach directly use the high-fidelity simulator to accurately
evaluate the quality ofthe explored circuit topologies. For each circuit topology, we sweep the
candidate duty cycles mentioned in the experiment setting and uses the maximum utility as the
utility of'this circuit topology. Note that the horizontal axis is the number of topology queries.
During conducting the experiments, we run each setting 200 times in the sequential way and collect
the average rewards and number of queries (newly explored topologies) to show the exploration
efficiency of different methods.
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Fig. 13. Ablative studies of UCT-based approaches without default policy (UCT), with node selection default
policy (UCT-DP-Node), with edge selection default policy (UCT-DP-Edge), and with both node and edge
selection default policies (UCT-DP) for boost converters.

Results show that our framework can successfully find high-performing topologies for most
settings. The average efficiencies for smaller conversion ratios tend to be lower, mainly because
these buck-boost converters are more sensitive to their duty cycles. For example, if we change the
step size of the duty cycle from 0.1 to 0.05, our framework can discover a better topology with an
efficiency of 0.89 for the design task with a conversion ratio of -2.5.

Comparison with Baseline Algorithms. We compared our UCT-based approach with RS and
GS on buck-boost, buck, and boost converters. Since all these algorithms are anytime algorithms
(i.e., the performance monotonically increases as more computation is used), we compared their
performances conditioned on their computation costs, measured by the number of queries to circuit
evaluations. Figure 12 reports the average reward of topologies generated by each algorithm. For
all types of converters, our UCT-based approach, named UCT-DP, outperforms both RS and GS,
while GS is comparable with or slightly outperforms RS. When the number of queries is around
110, UCT-DP achieves 83%, 35%, and 37% higher rewards compared with GS for buck-boost, buck,
and boost converters, respectively. In terms of computation efficiency, results show that, compared
to GS, UCT-DP needs up to 63%, 52%, and 67% fewer queries to obtain the same average rewards
for buck-boost, buck, and boost converters, respectively. We also observe that all the algorithms
(especially RS and GS) perform slightly worse for buck-boost converters, which may be caused by
the step size of duty cycles as discussed above. Overall, the results demonstrate the efficacy of our
UCT-based approach to discover high-quality topologies using only a small number of queries.

Ablative Studies on Default Policies. In Section 4, we described how we incorporate offline
knowledge using default policies. In this experiment, we examine the effectiveness of'the default
policies by performing an ablation study. Figure 13 presents the average rewards with and without
the two default policies, namely node selection and edge selection, for the boost converter design
task. The results for other power converter types are similar. Not surprisingly, UCT-DP with both
default policies performs the best. We also observe that UCT with edge selection only (UCT-DP-
Edge) performs significantly better than with node selection only (UCT-DP-Node). This is partly
because choosing good connections among the exponentially many connections is more challenging.
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Moreover, since device type selections are performed in the first phase before connection selections,
the node selection default policy is only used by the rollouts during the first phase. In contrast, the
edge selection default policy is used by all the rollouts, so it has a higher impact on the performance.

7.4 Evaluating Parallel Circuit Generation

We evaluate the performance ofthe proposed two parallelization schemes, root parallelization and
leafparallelization, on circuit generation using different numbers of CPU cores. Due to the GIL
(Global Interpreter Lock) in python 3.8, our implementation uses the multiprocessing package to
generate multiple processes (instead of multiple threads) to implement the parallel UCT-based
framework. To efficiently share the information between the processes, we use the manager in
multiprocessing to maintain the rollout counter and the shared reward hash table. According to
our measurements, the cost of information synchronization using the manager in multiprocessing
is relatively low, so it has little impact on the performance of the parallelization schemes.

In the following experiments, the circuit design task is almost the same as the settings in the
previous subsection. The only difference is that here we only use 5 candidate duty cycles: 0.1, 0.3,
0.5, 0.7, and 0.9. We still use the hybrid circuit evaluation approach described in Section 6.2 with
parallelization of the final high-fidelity simulation on the top 5 circuit topologies to make full use
ofthe computation resource. For root parallelization, the parallel look-ahead trees share the reward
hash table and the rollout counter, as described in Section 5.3. For each setting, we conduct 60
runs and collect the average reward and average running time. The speedup is then calculated
by dividing the average running time ofparallel execution by that of sequential execution. In the
experiments, we vary the number of cores used in the execution, ranging from | up to 16.
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2
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1 234567 8 91011 1213 1415 16 9 1011 12 13 14 15 16
Number of CPU Cores Number of CPU Cores

(a) Average Reward with 95% confidence interval (b) Speedup

Fig. 14. Performance of root parallelization scheme on varying numbers of cores

Performance of Root Parallelization Scheme. Figures 14(a) and 14(b) show the average reward
and speedup of UCT-based circuit generation using root parallelization, respectively. Results show
that root parallelization achieves relatively large speedup (e.g., a speedup of 9.7 on 13 cores) by
making efficient use of the multiple cores with little performance loss in terms of the average
efficiency of the generated topologies.

In fact, the speedup ofroot parallelization approaches increases, if'the final high-fidelity simula-
tion time is not included in the total running time. This is because the number of queries to the
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high-fidelity simulation is equal to the 5 top topologies, each with 5 duty cycles, which is equal to
25. Additionally, the simulation times for different circuits may also vary. Thus, it is relatively hard
to evenly distribute the computation among multiple cores, especially when the number of cores is
large. The speedups on 8, 9, 12, and 13 cores confirm this observation. On 8§ cores, it is likely to
have one core with one more query to perform than all the other cores, while this additional query
can be executed by an additional core in parallel on 9 cores. Hence, the speedup jumps slightly
from increasing the number of cores from 8 to 9. What’s more, we compare the speedups ofroot
parallelization using 16 CPU cores with a total of 90 rollouts and 1440 rollouts. The speedup ofa
large number of rollouts reaches 10.64 while the speedup of the small number ofrollouts is only
8.78. This is because when the number ofrollouts is small and the number of cores is large, the
total topology exploration time decreases dramatically and the negative impact of parallelization
overhead becomes more obvious.

While parallelization schemes significantly reduce the total execution time, they also come
with a cost of performance loss. For root parallelization, this is due to the fact that multiple trees
can only communicate a limited amount of information between steps and do not share all the
global information, in order to reduce the synchronization overheads. From the results of average
rewards, we can see that the performance ofroot parallelization drops slightly with more cores
used. Additional experiments reveal that root parallelization can achieve comparable performance
with sequential UCT ifperforming 20% more queries. Since these queries use the fast State-Space
Averaging method under our hybrid circuit evaluation approach, the total running time only
increases by about 6%, which is almost negligible considering the large speedup.
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Fig. 15. Performance of leaf parallelization scheme on varying numbers of cores

Performance of Leaf Parallelization Scheme. We can see that both the average reward and
speedup ofleafparallelization are smaller compared to root parallelization. For instance, using
the same 16 cores, leafparallelization only achieves 7.1x speedup with around 16.6% performance
loss. In terms of speedup, leaf parallelization needs to synchronize for every tree-node expan-
sion, while root parallelization only synchronizes once every step with multiple node expansions.
Hence, leafparallelization requires finer-grained load balancing, which is harder compared to root
parallelization.
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The performance drop, in terms of average reward, of leaf parallelization is due to reasons
different from root parallelization. While leafparallelization maintains a single look-ahead tree
containing all the global information, in order to run multiple rollouts in parallel on all available
cores, these rollouts are performed to estimate the score ofthe same state. However, for some states
that have very low scores and never produce good circuits, it may not be necessary to perform these
many rollouts. Instead, spending some of these rollouts on other states may be more beneficial to
Ending better circuits.

12 12
10
8
1 23 456 7 8 9 1011 1213 1415 16 9 10 11 12 13 14 15 16
Number of CPU Cores Number of CPU Cores
(a) Root Parallelization (b) LeafParallelization

Fig. 16. Speedup of root and leaf parallelization schemes for our UCT-based framework using only the
high-fidelity simulation as circuit evaluation method.

Performance of Root and Leaf Parallelization Schemes using Simulation. Figure 16 shows
the speedup ofroot and leaf’parallelization schemes for our UCT-based framework using only the
high-fidelity simulation. We still conduct this evaluation on the 5-component converter circuit
topology generation task. The only difference is that we do not sweep duty cycles but we add one
additional phase with actions for choosing the duty cycle, just as what we discussed in Section 4.1.
We can see that the speedup achieves by root parallelization with the simulator is comparable to
the hybrid evaluation, while the speedup under leafparallelization decreases significantly. This is
mainly because the larger variation of simulation times for different circuit exaggerate the blocking
time due to parallel rollouts. This significantly reduces the speedup achieved by leafparallelization
when using only simulation.

In addition, we also evaluate the speedups of the scheme that using high-fidelity simulator and
sweeping all the duty cycles for each topology. It shows that when using 8 cores, the root and leaf
parallelization only achieve around 4x and 2.4x speedup respectively, which are lower than the
scheme without duty cycle sweeping. This is mainly because sweeping the duty cycles makes the
load-balance between the cores harder to achieve, as both the total length and variation of the
evaluation time for one query become larger.

Ablative studies on Root Parallelization. To investigate the impact of different additional
parallelization techniques applied to root parallelization, we conduct an ablative study where the
number of CPU cores is fixed to 8§ with the hybrid circuit evaluation approach. We respectively
remove the following techniques from root parallelization and examine the performance: (1)
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Fig. 17. Performance of root parallelization without different additional parallelization techniques

removing the rollout counter and assigning the same fixed number ofrollouts to each look-ahead
tree in root parallelization; (2) disabling the use of reward hash table shared by multiple trees,
but letting each tree maintain its own hash table; (3) running the top-k high-fidelity simulation
sequentially without parallelism. For each setting, we conduct 30 runs and collect the average
reward and the speedup.

Figure 17 presents the result of the ablative study. We can observe that fixing the number of
rollouts and evenly splitting them for each tree reduces the speedup slightly while increasing the
average reward slightly. This is simply because the computation load balancing is worse while all
trees are more evenly expanded, as discussed in Section 5.3. This impact is more evident when
using only the high-fidelity simulation for all circuit evaluations, since the execution time variation
is higher for simulation than the State-Space Averaging method. While the speedup barely changes
without using the shared hash table between trees, the average reward drops the most. This confirms
that sharing more global information is helpful.

The most significant impact comes from running the top 5 topologies sequentially or in parallel.
Parallelizing the circuit simulating is essential for achieving good speedup for both root and leaf
parallelization. As shown in Figure 17(b), ifsimulating the top 5 topologies sequentially, the speedup
using 8 cores is only 1.6. This is because high-fidelity simulation is much more time-consuming
compared with the State-Space Averaging method. According to our measurement, in the sequential
UCT-based circuit generation, the high-fidelity simulation cost around 72.2% of'the total running
time. Thus, sufficiently paralleling the high-fidelity simulation is critical for achieving good speedup.

Table 1. Running Time (second) of different circuit evaluation approaches

FQuery 5 284 566 1072 1849
Approach
Simulation 216075 424237 857625 16034.62 28001.62
Hybrid Top | 6643 12329 23301 43051 73356
Hybrid Top § 11623 173.09 28281 48031 78336
Hybrid Top 20 30298  359.84 46956  667.06  970.11
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Fig. 18. Performance of different circuit evaluation approaches

7.5 Evaluating the Effectiveness of Hybrid Circuit Evaluation Approach.

As the State-Space Averaging method cannot very accurately evaluate circuits, we conduct the
following experiments to validate our hybrid circuit evaluation approach in Figure 18(a). For the
same experiment setting, we compare the performance between our UCT-based framework using
only the high-fidelity simulation for all circuit evaluations and the same framework using the
hybrid circuit evaluation approach. Additionally, for the hybrid approach, we also vary the number
of top topologies validated by the high-fidelity simulation. Note that Hybrid Top |1 is essentially
using only the State-Space Averaging method for circuit evaluation. Specifically, under Hybrid
Top 1, UCT generates the circuit that is considered the best-performing one based on State-Space
Averaging evaluation. The ground-truth performance of'this circuit is then evaluated by the high-
fidelity simulation and used to calculate the average reward in Figure 18(a). Not surprisingly,
the average rewards under the hybrid approach are slightly lower than those under high-fidelity
simulation. Moreover, by increasing the number of topologies deemed high-quality by the State-
Space Averaging method during the circuit exploration and validated by the high-fidelity simulation,
this performance gap decreases. Validating the top 5 topologies is relatively sufficient to achieve
almost the best performance under the hybrid approach.

Table | shows the average running times ofdifferent circuit evaluation methods when the number
of queries performed by UCT increases. We can observe that the running time of Simulation and
Hybrid Top | (i.e., UCT with State-Space Averaging evaluation only) increases nearly linearly with
the increase of the number of queries, since the time to perform the circuit evaluation dominates
the total running time. As the State-Space Averaging method is much faster than the simulation,
the running time of Hybrid Top [ (i.e., UCT with State-Space Averaging evaluation only) has a 33x
to 38x speedup compared to Simulation at the cost of performance degradation. In contrast, Hybrid
Top 5 and Top 20 achieve a better performance-cost trade-off. By performing some additional high-
fidelity simulations, Hybrid Top 5 and Top 20 significantly improve the performance of generated
circuits, while the total running times only have a constant increase and are still significantly
smaller than Simulation. For example, the total running times of Hybrid Top 5 and Top 20 are
more than 28 times faster than that of Simulation with little performance loss. In summary, the
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Fig. 19. An example of unconventional power converter circuit discovered by our framework.

hybrid evaluation methods can achieve the same level of performance compared with using the
high-fidelity simulation with significantly reduced computation cost.

Section 4.1 discusses the formulation choice regarding whether to sweep all control parameters
to find the one with maximum utility. Figure 18(b) presents the comparison between the hybrid
approach and high-fidelity simulation with and without sweeping duty cycles under the same
setting. Note that for the cases with sweeping duty cycles, a query is defined as evaluating one
topology with all 5 duty cycles. In contrast, for cases without sweeping duty cycles, the circuit
evaluation is queried for each topology with a specific duty cycle. To have a fair comparison, we
divide the number of queries for the latter case by 5, so that the number approximates that of the
topology queries. Results show that the performance under formulation with and without sweeping
the control parameter is comparable. Therefore, it confirms that finding good topologies is more
critical than tuning parameters for circuit generation tasks.

7.6 Discussion on New Topologies

Our automatic power converter design framework generates topologies that meet design targets.
Besides classical power converter topologies, it is also able to find interesting unconventional
topologies that both satisfy specifications and have high power efficiencies, such as the one in
Figure 19. These automatically generated topologies have the potential to shed light on fundamental
circuit innovations. With close collaboration with human experts, our framework can help to
discover innovative circuits that have not been studied.

7.7 Discussions on the Framework Constraints and Potentials

The proposed framework, despite the advanced performance, has its limitations and unexplored
potentials. First, the proposed framework is an early attempt at automated topology design that
targets structure exploration. Thus, after the topologies are generated, fine-grained parametric

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: June 2022.



Power Converter Circuit Design Automation using Parallel Monte Carlo Tree Search 111:31

analyses, such as comprehensive parameter sweeping, LC-coupling, and PVT variation, are needed
to validate their performance (e.g., efficiency and robustness) in real-world applications.

Second, our framework currently targets only power converter circuits, but it has the potential
to extend to other similar circuits with minimal algorithmic adjustment. For example, switch-
capacitor-based digital-to-analog/analog-to-digital data converters share similar component pools
(e.g., switches across phases, capacitors with various parameters) and input/output (e.g., linearity)
analytical approach. It is of great interest to further explore the versatility of the proposed framework
on general analog/mixed-signal circuit topology design problems.

Third, although theoretically there is no limitation on the maximally-achievable circuit complex-
ity, the time cost of generating high-quality circuits is highly correlated to the circuit complexity
for the following reasons. The circuit topology space increases combinatorially. For example, from
our empirical measurement, we observe that the number of unique circuits expands from 2x10° to
x107 when the number of components increases from 5 to 6 components. Additionally, the circuit
evaluation cost increases significantly when the circuit has a much larger number of devices. For
instance, the high fidelity simulation using NGSpice takes about 4.29 seconds on average to simulate
a 3-component converter, while it needs 12.45 seconds for a 5-component converter. Moreover,
the ratio of well-performing circuit candidates reduces from 2.29% to 0.36% when the number of
components increases from 3 to 5 components. Note that these difficulties exist for any circuit
topology generation approaches. Therefore, additional techniques and advancements, such as an
accurate neural network model for fast evaluation of arbitrary circuit topologies, are needed to
scale up to much larger circuits.

8 CONCLUSION

In this work, we proposed a parallel UCT-based power converter topology generation framework,
which explores the design space automatically. We incorporated physics-informed constraints and
data-driven default policies to reduce the design space and improve the efficiency of our framework.
We implement several parallelism techniques to speed up the execution time of circuit exploration.
Additionally, we adopted a hybrid circuit evaluation using both the fast State-Space Averaging
method and the accurate high-fidelity simulation. Finally, evaluations showed that our framework
can generate near-optimal circuit topology for buck-boost, buck, and boost converters. Compared
to the alternative approaches, our framework can discover better circuit topologies with reduced
computational costs. As future work, we plan to apply our framework to other analog/mixed-signal
circuit topology design problems and explore using deep-learning models to speed up the circuit
evaluation time further.
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