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The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous 
application-specific power converters. A conventional manual design procedure of such power convert­
ers is computation- and labor-intensive, which involves selecting and connecting component devices, tuning 
component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To 
automate and speed up this design process, we propose an automatic framework that designs custom power 
converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces 
the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space 
exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach 
can exploit small offline data via the specially designed default policy and can run in parallel to accelerate 
topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce 

design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient 
circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology 
optimization strategies, the proposed method is much more computationally efficient — the sequential version 
can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can 
further achieve high speedups compared to the sequential version.
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Fig. 1. Given a custom power converter design task, the conventional manual approach relies heavily on 
known topologies and is labor-intensive, computationally expensive, and time-consuming. In contrast, our 
automatic power converter design framework can explore the design space more effectively, thereby immensely 
decreasing the development time and cost without compromising the performance.

1 INTRODUCTION
Power converters are ubiquitous in electronic/electrical devices. With the proliferation of customized 
electrical systems [29], such as electric vehicles, self-powered IoT, wearable/implantable biosensors, 
the need for custom power converters is rapidly increasing to provide diverse supply power 
standards. The design specifications, such as voltage conversion ratio, power efficiency, output ripple, 
form-factor, and cost constraints, differ significantly from application to application. Designing a 
converter for a specific deployment scenario with certain specifications involves selecting among 
a large number of components and topologies, configuring the chosen elements, evaluating the 
design performance via simulations, and iteratively optimizing the system design to yield better 
performance while satisfying specific resource, technology, and cost constraints. In the conventional 
manual design process, each of the above-mentioned steps is done manually, causing the whole 
process to be extremely costly and time-consuming. Moreover, the manual circuit optimization 
relies heavily on existing circuit topologies, as illustrated in Figure 1. The expensive design process 
has dramatically hindered the development of novel power converters for fast-paced and innovative 
custom designs. Hence, there is a pressing need for an automatic circuit design framework that 
can efficiently search and generate high-quality power converter topologies from the design 
specifications.

However, how to automate the power converter topology design remains a challenging task. 
Firstly, topology generation for electronic circuits or integrated circuits (1C) lacks thorough investi­
gation. The state-of-art analog/mixed-signal (AMS) 1C design automation mainly addresses device 
sizing or parameter optimization for a fixed circuit structure [17, 20, 24, 35, 37, 38, 40, 49]. People 
have also investigated automation methods to accelerate the physical implementation of AMS ICs 
when schematic/topology design is already done [5, 7, 15, 16, 22]. More recently, researchers have 
started looking into circuit synthesis [31, 43, 47]. But some of them require substantial domain 
knowledge, which greatly hindered their generality. Others explore the enormous topology space 
via exhaustive search, metaheuristic search, or gradient descent, which may not be as efficacious in 
the non-continuous topology space as for other design tasks.

Fundamentally, automated topology generation is inherently difficult, as it faces challenges due 
to the immense search space and severe data discontinuity. In fact, the search space increases 
exponentially with circuit complexity, and the enormous number of possible topologies prohibits
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exhaustive or random search. Further, metaheuristic search strategies may get stuck in a restricted 
set of topologies and thus output sub-optimal results unless the number of random samples becomes 
large enough. Moreover, unlike device parameters such as transistor width and length, a small shift 
in the component connections of one topology will very likely lead to significant changes in the 
circuit performance. As such, search algorithms or optimization methods that rely on continuity 
between “similar topologies", such as genetic search or gradient descent, may become less effective 
in reducing search efforts.

Finally, it is time-consuming to evaluate the performance of generated topologies properly. For 
power converters, this is often a more severe problem because they are usually nonlinear and 
dynamically controlled switching circuits, which require long simulations to reach their steady 
states. The conventional Spice simulation [28] is able to provide high-fidelity evaluation results, 
but this comes with the cost of a long simulation time to achieve the desired precision and control 
scheme exploration. The evaluation cost per topology can be as high as minutes, making the 
topology exploration process prohibitively time-consuming.

To address the above challenges, our previous paper [9] proposed a design automation framework 
for power converter circuit design and optimization. The main contributions are as follows:

• We propose the first automatic power converter design framework that intelligently explores 
the power converter topology space and generates high-quality candidate circuits based on 
custom design specifications. As shown in Figure 1, our framework can efficiently locate 
well-performing topologies with appropriate control schemes and also has the potential to 
generate novel topologies under specific design constraints.

• For the first time, our framework applies Monte Carlo Tree Search, more specifically the 
upper-confidence-bound-tree (UCT) variant, to circuit topology generation. Unlike other 
methods discussed above, UCT, with proper search tree construction and offline knowledge 
enhanced improvements, can better tackle the data discontinuity issue, making it uniquely 
suitable for circuit topology generation. Thus, we construct the UCT structure to sufficiently 
capture the semantics of topologies to explore the topology space more efficiently. Moreover, 
this UCT structure is able to exploit offline knowledge, which is obtained from a few suitable 
topologies with smaller sizes and encapsulated into our specially designed default rollout 
policy, and further accelerate the topology space exploration.

• As the long-running circuit evaluation is the bottleneck of fast topology exploration, we 
detect isomorphic topologies and adopt a hybrid circuit evaluation approach. Our framework 
uses a State-Space Averaging method during the topology space exploration, which reduces 
the time cost of circuit evaluation by orders of magnitude. The circuit candidates generated 
by the exploration are validated by a high-fidelity Spice transient simulation to filter out the 
over-optimistic ones.

• We conduct extensive experiments on 5-component (13-port) power converter design tasks. 
Evaluation results demonstrate that our proposed automatic framework can produce energy- 
efficient circuits for varying voltage conversion ratios. Furthermore, compared to baseline 
strategies (i.e., genetic search and random search algorithms) adapted from other circuit 
design tasks, our framework can generate constraint-satisfied and highly efficient topologies 
while needing fewer queries for circuit evaluation. Hence, it is up to 70%, 56%, and 50% faster 
than the baseline strategies for the experimented buck, boost, and buck-boost converter 
design tasks, respectively.

This paper extends our previous work to further improve the efficiency, enhance the applicability, 
and parallelize the topology space exploration of our UCT-based automatic power converter design 
framework. Specifically, we make the following new contributions:
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• We conduct an analysis of the power efficiency, voltage conversion ratio, and specification- 
related quality of 100K randomly generated circuits consisting of 5 devices to form a better 
understanding of the design space. The analysis inspires us to incorporate mechanisms to 
improve the performance of our framework and explain why random search does not work 
well for circuit design tasks.

• To speed up the topology space exploration of our UCT-based framework, we design and 
implement two main parallelization schemes for UCT, namely root parallelization and leaf 
parallelization. We also implement additional mechanisms specially designed for circuit 
exploration on top of the two schemes to further improve their speedup and efficiency.

• We perform an in-depth examination and comparison between the faster State-Space Av­
eraging method and high-fidelity Spice transient simulation. This investigation explicitly 
reveals the running time and accuracy trade-offs of different circuit evaluation methods and 
motivates our hybrid evaluation approach.

• We conduct extensive experiments to validate the effectiveness of the hybrid circuit evaluation 
approach. Results show that the hybrid use of State-Space Averaging and high-fidelity Spice 
transient simulation in our UCT-based converter generation framework achieve comparable 
performance but more than 20 times shorter running time than using only simulation.

• We present our design of the unique circuit encoding that reduces isomorphic topologies. 
Together with the use of a hash table, it can enormously reduce the number of circuits 
evaluated by the State-Space Averaging method and Spice transient simulation, which in 
turn reduces the running time of all topology search algorithms.

• We conduct comprehensive experiments to evaluate the efficacy of different parallelization 
techniques. The evaluation results show that the root parallelization scheme can achieve 
9.7x speedup using 13 CPU cores with little performance loss for our framework using the
hybrid evaluation approach. Similarly, it can achieve 12.8x speedup using 16 cores with little 
performance loss for our framework using only the high-fidelity simulation.

Organization. We organize the remainder of the paper as follows. In Section 2, we briefly discuss 
related works on circuit design automation. Section 3 formally describes the problem statement 
considered in this work. We introduce our UCT-based power converter design framework in 4. To 
further enhance the practicality of our framework, we apply parallelization techniques to our UCT 
design and adopt several mechanisms for reducing the circuit evaluation times, which are discussed 
in Sections 5 and 6, respectively. Section 7 provides experimental evidence of the effectiveness of our 
proposed framework on different power converter design tasks with practical design specifications. 
Finally, we draw conclusions in Section 8.

2 RELATED WORKS
This section discusses the most relevant works on circuit design automation and Monte Carlo 
Tree-Search (MCTS).

2.1 Circuits Design Automation
With the demands of custom electronics, application-specific design automation of analog/mixed- 
signal (AMS) and radio-frequency (RF) power management circuits starts to play vital roles in 
accelerating high-quality electronic circuit designs. However, the traditional manual design routines 
are inherently time-consuming and rely heavily on domain expertise. To reduce the cost and 
improve the design quality, mainstream research about circuit design automation are three folded: 
(1) automating the device parameter optimization for known circuit topologies; (2) automating the
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physical implementation for known circuit topologies and parameters; (3) automating the circuit 
synthesis that directly generates topologies.
Parameter Optimization. Great efforts have been devoted to automating the parameter op­
timization for predetermined topologies. For example, [1] proposed a random region covering 
method that can reduce the probability of generating sub-optimal results , [17] proposed geometric­
programming-based optimization, [35, 38] used regression and convex/polynomial optimization, 
and [24] applied a Bayesian optimizer, [20, 40] both adopted model-based reinforcement learning 
to find the optimal device parameter combinations for analog circuits. Additionally, [37] encoded 
circuits using graph convolutional neural networks to transfer the parameter optimization knowl­
edge learned between two topologies or between technology nodes of the same circuit. As the 
circuit evaluation is very time-consuming, Zhang et al. proposed an efficient asynchronous batch 
Bayesian optimization approach for parallelizing circuit sizing and developed a new acquisition 
function to better explore the design space of analog circuit synthesis [44].
Physical Implementation. The physical implementation automation for integrated circuits (IC), 
such as device placement and routing, also plays a vital role in many high-performance AMS/RF 
circuits. For example, analog generators were proposed in [5, 15], which directly build analog 
circuit layouts. [22] applied a data-driven approach to check layout symmetry, which is crucial 
in high-quality AMS physical layout. A feed-forward equalization transmitter layout generator 
was introduced in [16], which significantly reduced layout time. [7] presented a novel detailed 
routing framework for AMS layout synthesis to address the sensitive net coupling issues. In 
[48], the effectiveness of slicing and nonslicing representation in handling placement constraints 
is investigated. Additionally, the technique of congestion-based virtual sizing is proposed. [41] 
reduces routing congestion during the placement stage by applying the integer linear programming 
to formulate the problem of conflicts between multiple congested regions and performing local 
improvement according to the solution of the integer linear programming.
Topology Optimization. In contrast to parameter optimization and physical implementation 
that target fixed topologies, recent works have started investigating circuit topology optimization. 
Specifically, [43] proposed a bi-directional graph neural network (GNN) model that learns to 
simulate the electromagnetic properties of distributed circuits. Via back-propagating the gradient, 
this GNN model can also be used to optimize the circuit parameters and topology. However, due 
to the special electromagnetic property of coupling decays in distributed circuits, an “edge" in a 
circuit topology is determined by the physical distance between two nodes and its impact on the 
circuit is continuous and decomposable. In comparison, the edge in a power converter topology is 
determined by whether the two components are connected in the circuit, and removing one edge 
may utterly change the performance of the circuit (e.g., from valid to invalid). Hence, the gradient 
back-propagation approach with the GNN model in [43] cannot be directly applied to the power 
converter design task. For topology synthesis for large analog integrated circuits, [47] presented a 
graph-grammar-based circuit topology representation, which hierarchically decomposes a circuit 
until reaching the basic predefined building block. To reduce the search space, this work focused on 
designing meaningful decomposition rules and circuit formation rules that domain experts manually 
add while the generation is performed using an exhaustive search within the representation space. 
Graeb et al. [11] proposed the sizing rules resulting from constraints guaranteeing the dedicated 
function and robustness for analog CMOS circuit synthesis using a hierarchical component library. 
The hierarchical component library designed by domain experts reduces the complexity of the 
problem so that the exhaustive search becomes affordable. Thus, both works require substantial 
domain knowledge of sub-circuit structure to construct large-scale analog circuits, in order to 
reduce the search space under exhaustive search. Similarly, [25] reduces the search space via a
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set of expert-specified hierarchically-organized analog building blocks, but it uses genetic search 
instead. For searching in the circuit topology space without expert-specified building blocks, [31] 
developed a genetic search algorithm, where the device types of components in the topology are 
essentially fixed. We extend it to allow changing component types and compare it with our proposed 
framework.

AI-assisted Power Electronic Design. The advancements of artificial intelligence (AI) and IC 
design automation have introduced marvelous opportunities for power electronic circuit design au­
tomation [46]. Existing works have been looking into methods that greatly reduce circuit evaluation 
time by advancing surrogate models that approximate the system dynamics (e.g., electromagnetic 
properties, thermal characterization, and wire costs) with lower computational efforts [23,39,43,45]. 
Researchers have also applied AI techniques and shown some successes in modeling and optimizing 
other aspects of power electronic systems, such as component model, system parameters, and 
post-layout performance [14, 33, 37, 49]. While the aforementioned efforts in power converter 
design automation address parameter optimization and modeling in power electronics, there has 
been little work that investigates efficient topology synthesis with minimal prior knowledge and 
human intervention.

2.2 Monte Carlo Tree Search
For problems that can be formulated as Markov decision processes, Monte Carlo Tree Search 
(MCTS) is a widely used search and planning framework that learns a value function and finds the 
optimal decisions via sampling-based search. It has been applied to various applications [3] and 
continuously improved since being proposed. For example, [8] defines a general backup operator, 
provides fine-grained control of the tree growth of MCTS, and allows efficient selectivity methods. 
The upper-confidence-bound-tree (UCT) was proposed in [18]. UCT applies bandit ideas to guide the 
Monte-Carlo planning and significantly outperforms other alternatives. [10] further improves the 
searching efficiency of UCT by designing three techniques to combine online and offline knowledge. 
The MCTS method has also been used to provide training data for a deep-learning model used as a 
real-time Atari game playing agent [13].

Due to the popularity of MCTS, parallelization techniques have also been applied to speed up 
the execution time of MCTS despite the challenges [32, 42]. In particular, [6] proposed the basic 
parallelization approaches of MCTS, including leaf parallelization, root parallelization, and tree 
parallelization. These parallelization strategies have shown good performance not only in the Go 
game [12, 27, 34] but also in many other applications [2, 4, 19, 21]. For example, the parallelization 
mechanism proposed in [21] achieves near-linear speedup with limited performance loss across 
many different Atari Games. The performance of different parallelization strategies and the most 
suitable improvement techniques depend highly on the specific application, the implementation 
language, and the computing platform.

3 PROBLEM STATEMENT
We investigate the automatic power converter design problem with topology generation, device type 
selection, and control parameter tuning. This section first describes the custom design specifications 
of power converters considered in this work, followed by their topological representation and 
parameters. Next, we formulate the problem as an optimization problem with encoded custom 
design specifications.
Custom Design Specifications. We consider two primary design metrics of power converters, 
namely, voltage conversion ratio y and power conversion efficiency q, as shown in Figure 2. The 
voltage conversion ratio is the ratio of the output voltage to the input voltage, i.e., y = Vout/Vin,
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Fig. 2. Custom power converter design task from design specifications to candidate designs.

and is the main constraint for the generated power converter. Generating power converter designs 
with higher power conversion efficiencies is the optimization goal of the custom design task. Other 
constraints include the number of components in the converter topology and the types of available 
devices. The design task evaluated in this work only considers devices including capacitors C, 
inductors L, phase-I switches Sfl, and phase-II switches S&, but it can be easily extended to other 
device types.
Topological Representation and Parameters. A candidate power converter design consists 
of a topological representation s and a switching control parameter d. Specifically, the topological 
representation contains a set of components with ports and edges connecting the ports. Each 
component has a device type (from the set of available devices) with device parameters (e.g., 
inductance, capacitance, and transistor dimensions) and two ports (i.e., left and right ports). Note 
that each component is nondirectional — switching all the connections of its two ports results in 
the same circuit, despite needing different indexes to distinguish the two ports in the topological 
representation. Additionally, there are three external terminal ports: the input voltage port Vin, the 
output voltage port Vout, and the ground port Gnd. The edges in the topological representation 
specify the connections between the components’ ports and the terminal ports. The switching 
control parameter specifies the duty cycle of a candidate design, which often affects the output 
voltage. In this work, the design task involves designing the device types of components, the edges 
connecting ports, and the control parameter, while the device parameters for each device type are 
predefined. Thus, this work focuses mainly on the challenging topology design problem and leaves 
the integration with existing device parameter optimization methods as future work.
Circuit Evaluation. After a circuit is generated, it is evaluated to determine its performance 
towards required specifications. Given a generated power converter circuit with topological repre­
sentation s and control parameter d, the Spice-based transient simulation is conducted to obtain 
the voltage conversion ratio ys,d and power efficiency r]sj.

To better understand the design space, we performed an in-depth analysis on the power conver­
sion efficiency and voltage conversion ratio distributions of randomly generated circuits with five 
components shown in Figure 3(a) and Figure 3(b), respectively. We can observe that most randomly 
generated circuits reside either in the low-efficiency range (0-10%) or the high-efficiency range 
(80-100%). Note that Figure 3(a) is shown in log-scale, so more than 80% randomly generated circuits 
have very low or very high efficiencies. Furthermore, among the circuits with high efficiencies, 
most of them have a voltage conversion ratio approaching 1. These are the circuits that have direct 
or indirect shortcut connections between Vin and Vout, which cannot be used for power converters. 
These observations reveal both the challenges of finding high-efficiency circuit candidates and the 
ineffectiveness of random search in the design space.
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Fig. 3. Distributions of the part of the randomly generated circuits with five components with respect to 
power conversion efficiencies and voltage conversion ratios. Invalid circuits, e.g., circuits with unconnected 
components or ports, have been removed from the random generation.

Circuit Generation Objective. Given the custom design task with a target voltage conversion 
ratio y0, the goal of our framework is to automatically generate the topological representation s 
(with chosen component types and edges) and configure the control parameter d of the power 
converter circuit. Specifically, the objective can be described as:

s',<T = arg max (1)
seS,deD

where S and D denote the set of topological representations and the set of control parameter 
configurations. UYo is a utility function that evaluates a circuit design’s conversion ratio and 
efficiency for the custom design task with target conversion ratio y„. Specifically, the utility function 
is formulated as:

Uy0 (ys,rf> i]s,d) = i]s,d ■ <5(ySj(/, yo) • (2)
In our formulation, S measures how close the obtained conversion ratio ysj and the target conversion

/15()-)-q)\2

ratio Yo are. In our experiments, we use <5(y, y0) = 1.1 ' bo I ' . The utility function is set to 0 
when the topology is invalid or incomplete. Under this formulation, a circuit has a higher utility if 
it has a higher efficiency and a conversion ratio closer to the target ratio.
Analysis of Design Space. We plot the utility distributions of the randomly generated circuits 
above given different target power conversion ratios in Figure 4. Note that Figure 4 is also shown 
in log-scale. The percentage of the high utility buck-boost, buck, and boost circuits (utility larger 
than 0.6) is only 0.173%, 0.315% and 0.332%, respectively. This analysis confirms that the number 
of well-performing circuits given specific design specifications is very small. Essentially, given 
the component pool and the possible connections between them, there are combinatorially-many 
possible circuits. Among these circuits, most have low power efficiencies or undesirable conversion 
ratios. Thus, it is computationally intractable to search over all possible circuits to find the optimal 
one, and it is also inefficient to find high-quality circuits via random search.

We also manually look into the randomly generated circuits to understand topology properties 
that affect the performance of circuits. By carefully looking into bad topology candidates (i.e., 
efficiency close to zero or conversion ratio close to one), we find that there are similar paths 
associated with such topologies. In summary, the topologies with bad performance mostly share 
one of the following features:

• Pure inductive paths between two of the terminal ports VIN, VOUT, or GND;
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Fig. 4. Utility distributions of randomly generated circuits with five components under different target power 
conversion ratios. Conversion ratios -2, 0.5, and 2 correspond to buck-boost, buck, and boost converters, 
respectively.

• No path between VIN and VOUT that does not by-pass GND.
These findings are consistent with our domain knowledge of power electronics. Thus, we define 
those paths as prohibited paths and do not perform circuit evaluation for circuits containing 
prohibited paths. Additionally, we combine such knowledge into our UCT-based framework via 
action pruning, which will be described in Section 4.3.

The topology design space in this work is comprehensive, except that we removed isomorphic 
circuits and circuits violating human-designed rules. For the parameter design space, we have 
selected specific values for the optimized precision-cost trade-off. We identify the control parameter, 
namely duty cycles, as the first-order variable that significantly alters the voltage conversion ratio 
and power efficiency. As such, we optimize the duty-cycle parameter. On the other hand, to reduce 
the evaluation cost per topology, we fix the second-order parameters in this work, such as capacitor 
capacitance, inductor inductance, and source resistance. In principle, our proposed framework can be 
extended to also optimize other parameters. Alternatively, once a custom topology is reached, further 
parametric optimization is feasible through state-of-the-art parameter optimization methodologies 
discussed in Section 2. Finally, after the topologies and parameters are generated, fine-grained 
analyses, such as LC-coupling and PVT variation, are needed to validate their performance in 
practice, which is beyond the scope of this work.

4 UPPER-CONFIDENCE-BOUND-TREE-BASED CIRCUIT GENERATION
In this work, we propose an automatic power converter design framework that utilizes the upper- 
confidence-bound-tree (UCT) variant of Monte Carlo Tree Search , together with several efficiency- 
enhancing mechanisms, to intelligently explore the topological representation space and locate 
candidate designs with high utility scores. This section describes our formulation and main al­
gorithm design of the topology generation using upper-bound-confidence-tree (UCT). To speed 
up the topology exploration, we investigate several parallelization techniques for the UCT-based 
topology design, which will be discussed in Section 5. Additional mechanisms to reduce the circuit 
evaluation costs will be presented in Section 6.

We formulate the circuit generation task as a sequential decision-making problem. Instead of 
synthesizing the entire topology all at once, the component device types and connections between 
ports are added step by step, as illustrated in Figure 5. At each step, it decides which device to add to
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Fig. 5. UCT-based Topology Generation Overview: The generation starts with a topology having empty 
components and 3 terminals. It first makes device selections (shown in green) and then connects ports of 
components and terminals (shown in blue), where the actions are specially designed to reduce isomorphism 
and invalid circuits. The look-ahead tree construction and action score calculation (shown in purple) follow 
the UCT algorithm, which utilizes upper confidence bound in exploitation and exploration trade-offs. To 
improve the sample efficiency and rollout speed, we designed a default policy and adopted a fast evaluation 
technique (shown in orange).

the existing circuit or which pair of component ports to connect in the circuit. Under this multi-step 
formulation, we construct the UCT-based algorithm to build look-ahead trees to estimate the design 
choices, such as selecting devices and connecting device ports. In tree building, UCT utilizes upper 
confidence bound for effective exploitation and exploration trade-offs. Our multi-step formulation 
and UCT-based algorithm allow physics-aware connection pruning and removes many isomorphic 
topologies by construction. We further improve the topology generation by incorporating offline 
knowledge from the pre-collected dataset through a default policy.

4.1 Sequential Circuit Topology Generation
Formally, we formulate the power converter circuit topology generation as a sequential decision 
task. More specifically, we model the topology generation as a Markov Decision Process, namely
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a 4-tuple of (S, A, T, R), representing the state set S, action set A, state transition function T, and 
reward function R. As shown in Figure 5, the topology generation always starts with an empty 
topology of the power converter and has two phases with multiple steps: the device type selection 
phase and connection selection phase.

In the t-th step, the state st e S is a partial or complete topology of the power converter circuit. 
Inspired by the simple fact that circuit topology is a graph, each state st maintains a component 
set, a port set, and an adjacency matrix specifying the connections between each pair of ports. 
The action set At depends on the current state st. For a state in the device type selection phase, 
an action at e At decides whether a device type is selected for a component. For the connection 
selection phase, an action either decides to skip adding more connections or decides which port 
is connected to the port under consideration. Given our state and action formulation, the state 
transition is a deterministic function st+1 = T(st, at), which maps the current partial topology and 
the action choice to the next topology. After transiting to an new state st+1, the action set also need 
to be updated to At+1 according to the new state st+1.

The reward function Rro encodes the custom design objective UY0 in Equation 2 such that

& (a,, a,) = max j) - rnitx ,j/)

The reward function computes the difference in utility between the previous state st and the new 
state st+1, each with optimized control parameters d and d'. The difference-based reward formulation 
ensures our sequential circuit topology generation formulation includes the optimal solution to the 
custom design task. We directly use the utility function in equation 2 in the reward function to 
represent the quality of a state. For states representing valid and complete circuits topologies, the 
utility is between 0 and 1. For states representing invalid or partial circuits topologies, the utility 
function returns 0.

The optimization objective is to find an action sequence that maximizes the reward of the final 
topology:

T
a,.? = arg max V (%, a,)

Remark. Note that the above objective requires computing the maximum utility over the different 
control parameters. Sweeping all control parameters to find the one with maximum utility is not 
the only way for the formulation. Alternatively, the sequential decision task can be formulated to 
have one additional phase with actions for choosing the control parameter (and device parameter if 
needed). Then, the optimization objective becomes finding an action sequence that maximizes the 
reward of the final circuit with a specific topology and chosen parameters. Our proposed framework 
works for both formulations. We implement both versions and conduct experiments to compare 
their performance. In terms of the quality of the generated circuits, both versions have similar 
performance. Because the fast circuit evaluation method presented in Section 6.2 can compute the 
maximum utility over the different control parameters faster, this formulation gives some advantage 
to our framework using the fast evaluation method in terms of total running time.

4.2 Upper-Confidence-Bound-Tree-based Topology Generation
To effectively solve the above sequential decision-making problem, we adopt Monte Carlo Tree 
Search, which has shown success in many domains, like playing the Go game [34] and solving the 
parking problems in Tesla’s Autopilot software [36]. Monte Carlo Tree Search has been proven to 
work well for large state-space sequential decision-making optimization problems, which suits the 
large topological representation space in our problem formulation. Among different variants of 
Monte Carlo Tree Search algorithms, the upper-confidence-bound-tree (UCT) algorithm is the most
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popular one that uses the Upper Confidence Bound to well balance the exploration and exploitation 
trade-offs.

At a high level, UCT builds a look-ahead tree and greedily selects an action based on the actions’ 
estimated scores at each step. In our proposed framework shown in figure 5, each tree-node of UCT 
corresponds to a partial or complete topology (i.e., a state) and each tree-edge corresponds to a 
device type or connection selection (i.e., an action).

To accurately estimate the action scores Q, UCT performs multiple look-ahead rollouts (also called 
simulations in the literature), which sample the remaining action sequence following a default 
policy and evaluate the quality of the samples in terms of reward. UCT is an anytime optimization 
algorithm with three parameters, the number of look-ahead rollouts, the maximum depth (uniform 
for each rollout), and an exploration parameter. In general, the larger the number of rollouts and 
the depth parameter are, the slower UCT is, but the better it is. In our UCT-based algorithm, a 
rollout returns the reward when reaching a terminal state, instead of a fixed maximum depth like in 
conventional UCT design. A state is called a terminal state if its corresponding topology is complete 
or if there is no valid action that can complete the topology. In this way, the rollouts are more likely 
to find valid circuits with positive rewards.

Compared to other Monte Carlo Tree Search algorithms, UCT utilizes the Upper Confidence 
Bound in the tree building process to provide improved estimations of action scores. UCT computes 
a score for each action at at a state st as the sum of the exploitation and exploration terms, as 
follows:

QUCT (<■„«,) = QMC (S„a,) + , [iffM

y n(st,at)

where QMC is an exploitation term and the second one is an exploration term.
The QMC is the Monte Carlo average of the sum of rewards obtained from the look-ahead rollouts

. M T

(%M *(^'O
M m= 1 t’=t

where m identifies a look-ahead rollout in the total M rollouts.
The exploration term -\/log(n(st))/n(st, at) is the Upper Confidence Bound, where n(st) is the 

number of visits for the state node st and n(st, at) the number of visits of the action at at state st.
UCT selects the action to rollout greedily with respect to this summed score using the look-ahead 

tree. Once the input-parameter number of rollouts are produced each to the maximum depth, UCT 
returns the exploitation term for each action at the root node.

4.3 Combining Knowledge into UCT via Action Pruning
As discussed above, UCT estimates a state-action pair’s score QMC(st, at) more accurately when 
more rollouts are performed and the total number of rollouts is fixed according to the affordable 
computation cost. Hence, pruning the action space can improve UCT’s search efficiency. Therefore, 
we design several physics-informed action pruning strategies to reduce the actions that lead to 
invalid or isomorphic topologies.
Reduce Invalid Topologies. Based on the knowledge of electronic circuits, we pose a set of con­
straints when adding connections to avoid generating invalid power converter circuits. Specifically, 
we do not include an action a of connecting two ports into the candidate action set A if adding this 
connection leads to one of the following situations:

• a shortcut;
• a direct connection between terminal ports VIN, VOUT, or GND;
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• a prohibited path;
• a disconnected circuit.

Here, the prohibited paths are the paths that violate basic circuit principles. For example, if 
we connect VIN and GND only with an inductor, it is equivalent to a power shortcut. A circuit is 
considered disconnected if there is at least one port not connected to any of the terminal ports via 
any paths of connections after the generation process.

Together with the action pruning rules described below for connection selection, we can identify 
such disconnected topologies early in the generation process. Specifically, if there is no more 
allowed connection that can be added to a port and there is no path connecting this port to any of 
the terminal ports, then this partial topology will eventually become a disconnected circuit even if 
additional connections are selected between other ports. Following this rule, if we detect a state 
that represents a partial topology that will generate unconnected topologies, we no longer expand 
the state at this point. To do so, we mark the corresponding state as a terminal state with a reward 
of 0, so no more actions can be taken from this state.

Reduce Isomorphic Topologies. Combining the states representing isomorphic topologies can 
also improve UCT’s search efficiency, since the rewards of rollouts from all these states can be 
collectively used to estimate the score more accurately. Hence, we propose the following methods 
to reduce the generated isomorphic topologies by construction.

First, we split the device type selection phase into multiple rounds, where each round has an 
ordered set of available device types, e.g., |Sa, C, L} in the second round. The set in the first round 
includes all device types. The ordering of device types is set to Sa, Sb, C, and L. In each step of a 
round, each available device type is considered for selection, e.g., selecting one Sa for a component 
or skipping adding Sa. If a device type has been skipped in the current round, it will be removed 
from the set of available device types for the next round. For instance, if we have added one Sa and 
one L but skipped C in the second round, the set for the third round becomes |Sa, L}. The device type 
selection phase ends when the number of selected devices is equal to the number of components. 
In this way, every state in this phase is unique (i.e., representing different device selections), while 
all combinations of device selections can be generated.

Next, for the connection selection phase, we number all the ports where the terminal ports have 
the smallest indexes. We consider each port for adding connections with other ports one by one. 
Although a connection in a converter topology is not directed, we only allow a port with a smaller
index to be connected to a port with a larger index. Thus, this connection can only be added once. 
In addition, since a device is nondirectional, we always have its left port be connected before its 
right port when both ports have no connection. Following the above rules, many actions that lead 
to states representing isomorphic topologies are pruned.

4.4 Combining Knowledge into UCT via Default Policy
Due to the large space of topologies, the computation cost for finding a good topology can be high 
even after action pruning. One reason is because with no prior knowledge available rollouts can 
only follow a random action selection policy. However, as shown in Figure 4, the probability of 
finding good circuits from randomly generated ones is quite low. Hence, we further improve the 
effectiveness of UCT by replacing the random default policy with a data-driven one.

In particular, we randomly generate some topologies with fewer components and evaluate their 
efficiencies and conversion ratios. For example, we collect a small data set with 3-component 
topologies for the design task of 5-component topologies. Among them, we find the good topologies 
with higher rewards and collect their device selections and all paths of connections between the 
terminal ports. Exploiting the information obtained from good topologies with smaller sizes, we
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develop the following two default policies for the two topology generation phases: node selection 
for selecting devices according to device combination information, and edge selection for adding 
connections according to the path information.
Node Selection. We collect the number of times a device selection combination C (e.g., |Sa, Sa, L}) 
occurring in the good topologies, denoted by ry (C). This information is encoded into the default 
policy, such that its probability of a device selection combination C’ is approximately proportional 
to the collected device selection distribution. Specifically, we calculate the weight of a device 
selection combination C„ as w(C„) = 2cqc’ nd(C). The total weight is defined as Wd = 2c„ w(C„„). 
Then the probability of the device selection combination C’ generated by the default policy is

Pj (C ’)
w (C „)/Wd + ed 

T*c"(w (C ")/Wd + ed)
where ed is a small constant that decides by how much the default policy follows the collected 
distribution. In our experiments, ed is set to 0.01.
Edge Selection. We also collect the number of occurrences of a good path of connections between 
any two of the terminal ports (VIN, VOUT, and GND) in the good topology data set, denoted as nd (p). 
When considering a port e for adding a connection onto the current partial topology st, we first 
construct a set of all possible good paths P(e, st). A path in P(e, st) must contains port e and adding 
this path to st cannot lead to invalid topologies (e.g., shortcuts). Next, for any connection (e, e’) 
allowed to be added to st, we calculate the weight of taking this action as

w (e,e ’) = ^] (p)
f Ef (e,Sf)&(e,e„)Cf

Similar to node selection, we can calculate the total weight of all allowed actions as Wp = 
Yj(e,e") w (e, e ’’). Then the probability of the connection selection action (e, e ’) generated by the 
default policy is

Pp (e,e ’) =
w (e,e ’)/% + Cp

Z(e,e")(w (e,e ’’VM^ + )
where ep is a small constant and is set to 0.4 in the evaluation. Note that although the weights are 
calculated using the good paths in the data set with fewer components, longer paths with more 
components can be generated with the help of ep.

With the default policies, we can bias UCT towards searching the topology space that may 
contain high-reward ones.

5 PARALLELIZING UCT-BASED CIRCUIT EXPLORATION
In this section, we develop parallelization techniques to speed up the circuit exploration of our 
UCT-based framework. We explored two main parallelization schemes for UCT: root parallelization 
and leaf parallelization. To improve the speed up, we also implemented additional parallelization 
techniques on top of these two schemes.

5.1 Leaf Parallelization Scheme
We first explored the leaf parallelization scheme for our UCT-based framework. As described in 
Section 4.2, UCT estimates the action scores Q by performing multiple look-ahead rollouts. One 
natural idea for parallelizing UCT is to perform the multiple rollouts in parallel, as illustrated in 
Figure 6(a).

Based on this intuition for UCT leaf parallelization, we first generate multiple threads at the 
start of the execution, where the total number of threads is equal to the number of available cores. 
Additionally, each parallel thread is pinned to one dedicated core. Whenever we expand a tree-node
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(a) Leaf Parallelization (b) Root Parallelization

Fig. 6. Illustration of different UCT parallelization schemes.

during the look-ahead tree building process, multiple threads will work in parallel to perform the 
rollouts. In particular, each parallel thread will follow the default policy individually to generate 
one circuit and call the circuit evaluation to obtain the reward of this circuit.

Compared with the original UCT, leaf parallelization can perform more rollouts within the same 
time, which results in a more precise reward estimation of the nodes in the tree. If there is no 
limit on the number of queries to the circuit evaluation, leaf parallelization certainly improves the 
performance. This is simply because more rollouts can be done within the same time to help the 
action selection. On the other hand, when the number of queries is limited, there is a trade-off 
between the running time of the UCT-based circuit exploration and its performance.

Additionally, in order to calculate the reward estimation of multiple rollouts, leaf parallelization 
needs to wait for all parallel threads to return with circuit rewards. However, the circuit evaluation 
times for different circuits can vary, which is especially evident for the high-fidelity Spice transient 
simulation. Hence, during the execution, some parallel threads may be blocked by waiting for the 
slowest thread to return, which may restrict the speedup of leaf parallelization.

5.2 Root Parallelization Scheme
In contrast to sequential UCT and leaf parallelization scheme where only one look-ahead tree is 
built, the root parallelization scheme builds multiple trees in parallel by multiple threads. Hence, 
the parallelization naturally comes for building multiple trees. However, if the parallel threads split 
the prefixed number of rollouts and build their individual trees without any communication, each 
tree can only observe the rewards of a small fraction of rollouts, resulting in inaccurate estimations 
of action scores and hence potentially worse generated circuits.

To alleviate this issue, we implement the UCT root parallelization to communicate between 
multiple trees and collectively select an action at each step. Specifically, in each step, parallel threads 
start with the same current state, expand their individual trees by performing multiple rollouts, and 
update the action scores on their own trees. All of these are performed independently in parallel. 
Once a prefixed number of total rollouts is reached, UCT root parallelization needs to determine 
the best action to take at the current state and transition to the next state. This decision is made 
by the parallel threads (trees) collectively, so that a single best action is selected and all threads 
transition to the same next state, as illustrated in Figure 6(b).

There are two potential ways to select an action from multiple parallel trees: voting and merging. 
Voting means that each tree votes for an action (according to its individual action score estimations 
calculated for all valid actions given the current state), and the action with the highest number 
of votes will be selected. In contrast, merging means that we first merge the action scores from
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different trees and then select the action with the highest score. Here, the merge is performed by 
taking the sum of the Monte Carlo average of rewards of all the look-ahead rollouts performed in 
different trees.

Formally, let R0, Ri, ••• , Rm-1 denote the roots of the m trees given the current state st, where 
each root Ri has k action children a\, a\, al2, ••• , alk_ 1. When constructing each tree, we record the 
number of visits n(st,a1j) and the Q-value QMC (st,a1j) of every action child. To decide the best 
action to take, we merge the roots of trees into one root R* with action children a*, where the 
number of visits n(st, a*) and the Q-value Q(st, a*) of a* are calculated as follows:

m-1
",^*) )

}=0

6 (% ,«*)

m-1
2 M(s,,a'.)Q(%,0;)
j=0 J J

M(s,,a*)

We implemented both action selection methods and conducted some experiments to compare 
the performance of these two potential methods. Results indicate that merging outperforms voting, 
which is mainly because the merged action scores can maintain the global information of different 
trees. Hence, we use merging to select actions for UCT root parallelization.

5.3 Additional Parallelization Technique to Improve the Speedup
In the implementation of our parallel UCT-based framework, we also introduce the following 
additional techniques to improve its speedup.

Improving Efficiency of UCT Root Parallelization by Prioritizing Trees. A straightforward 
implementation of UCT root parallelization, which usually works well for other tasks, is to split 
the total number of rollouts evenly between different parallel trees. However, as also discussed 
for leaf parallelization, the major part of the execution time spends on circuit evaluation, where 
the circuit evaluation times for different circuits can vary. Additionally, not all rollouts result in a 
circuit evaluation. For example, our framework does not query the circuit evaluation for invalid 
topologies or topologies that have already been evaluated. Therefore, evenly splitting the number 
of rollouts may not result in the same running time of different threads. Since the parallel threads 
need to synchronize and communicate to select the action to take at the end of each step, faster 
running threads have to wait for long-running ones. This, again, may hurt the speedup.

Based on the above observation, we prioritize trees for UCT root parallelization. In particular, 
instead of fixing each independent tree with the same number of rollouts, we allow the trees to grow 
dynamically and only require that the total number of rollouts performed by the m trees remains 
the same as the prefixed value. To satisfy this requirement, we keep track of a global counter c, 
which counts the number of rollouts performed by all trees. We initialize the counter c equal to the 
prefixed value, decrease c by 1 when any of the trees expands a node, and stop building the tree 
when c = 0. In this manner, we implicitly prioritize the trees with a shorter circuit evaluation time 
and automatically achieve better load balancing between the m cores.
Reducing Redundant Circuit Evaluation. For both leaf and root parallelization schemes, 
different parallel threads may end up evaluating the same circuit generated by different rollouts. 
Again, since circuit evaluation time is the major part of the execution time of the UCT-based 
framework, it is critical to reduce redundant circuit evaluation. We achieve this by maintaining 
a hash table storing all previously evaluated circuits observed by each look-ahead tree and their 
corresponding rewards. Thus, we only query the circuit evaluation if the circuit does not exist in
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the hash table. For root parallelization, each thread independently builds its own tree but all the 
threads shared a circuit hash table. When a thread finishes evaluating a newly observed circuit, it 
stores this circuit in the hash table, then the other threads do not need to repeat the evaluation 
when observing this circuit in its own tree.
Parallelizing the Hybrid Circuit Evaluation. Note that all the above parallelization techniques 
are applicable to our UCT-based framework with any circuit evaluation approach. In Section 6.2, we 
will present a hybrid circuit evaluation approach that uses the faster State-Space Averaging method 
to evaluate the circuits observed during tree building and conducts high-fidelity simulation only 
for the top circuit topologies with highest utility. Since the high-fidelity simulation is significantly 
slower than the State-Space Averaging method, the final high-fidelity simulation for top circuits 
becomes the bottleneck in reducing the total running time when using the hybrid approach. Hence, 
to speed up the running time, we also parallelize the final simulation by conducting the high-fidelity 
simulation of the top circuits in parallel by multiple threads. Our implementation maintains a 
shared circuit queue for threads. After starting the parallel simulation, each thread repeatedly takes 
a circuit out of the shared queue to conduct high-fidelity simulation until the queue is empty.

6 REDUCING CIRCUIT EVALUATION COSTS
To address the issue of costly circuit evaluation, we design a special circuit encoding that is able to 
detect many isomorphic circuits in the combinatorial topology space. With the help of this circuit 
encoding and a hash table, our design automation framework only needs to evaluate the unique 
circuits generated during the circuit exploration by UCT. Additionally, our design automation 
framework uses a hybrid circuit evaluation strategy. We use a State-Space Averaging technique to 
evaluate different parameter configurations of the same circuit during the circuit exploration and 
only validate the good output candidates via Spice simulations.

Note that all these mechanisms to reduce circuit evaluation costs are applicable not only to our 
UCT-based framework, but also work for other circuit generation approaches. In fact, we use the de­
isomorphism method with special circuit encoding and hash table and the hybrid circuit evaluation 
strategy for all the evaluated circuit generation approaches when conducting the experimental 
comparison in Section 7.

6.1 Reducing Isomorphic Circuits via Unique Encoding and Hash Table
As discussed in Section 3, a converter topology is essentially a graph. Randomly generated topologies 
will lead to numerous isomorphic graphs that hinder the effectiveness of finding good topologies. 
Even with action pruning techniques applied to our UCT-based framework for reducing invalid and 
isomorphic topologies, the circuits generated by UCT still contain many isomorphic ones. Since 
circuit evaluation is very time-consuming, we design an automatic de-isomorphism method to 
further remove redundant circuit evaluation for isomorphic circuits.
Unique Encoding. The first step of our de-isomorphism method is to assign a unique encoding, 
also called key, to each circuit. While the topology representation describes a circuit abstractly, the 
actual implementation of a circuit generation algorithm can arbitrarily number the chosen devices 
and index their interconnection ports. Depending on how the devices are selected and ports are 
connected, the same circuit can end up with different concrete topology representations.

One major source of isomorphism is the component indices. During topology generation, we 
will assign indices to every component, which are then inherited by the chosen devices. As a result, 
the same circuit may have different topology representations with different device indices. Our 
action pruning techniques in Section 4.3 reduce such isomorphic topologies for the UCT-based 
framework, but other circuit generation approaches still suffer from this issue severely. To address
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this problem, we use a string-type encoding where the components are identified by the name of 
the chosen device type, e.g., L and C. For circuits with multiple components with the same device 
type, these components are identified by the name of the device type followed by an index, e.g., L1 
and L2.

Port 1 Port 2 Port 3 Port 4 Port 1 Port 2 Port 3 Port 4

Gnd Gnd

Fig. 7. The same (partial) circuit with two different topology representations with different edges.

In addition to isomorphism caused by components, another source of isomorphism comes from 
edges connecting ports. For instance, Figure 7 shows two different (partial) topology representations 
with different edges connecting different ports, ffowever, they actually represent the same circuit, 
since the two edges in the respective graph connect the same three ports together. To reduce the 
isomorphism introduced by the indexed ports, our algorithm will first combine all ports that are 
connected together as one port by assigning it with the same identifier. Specifically, it replaces 
the port index with a string-type encoding, which is constructed by concatenating the string-type 
identifiers of the connected components. The concatenated identifiers are also ordered based on 
the device types and additional indices. For example, Ports 0, 2, and 3 in Figure 7 will be assigned 
with the same identifier “L-C-Gnd” indicating they are the same combined port.

Then the key is a string-type list of the circuit topology networks in the alphabet order. Each 
network is an encoded component with its string-type encoded left and right port. The order of 
the two ports is also in alphabet order. In this way, the key can uniquely represent a circuit by 
efficiently encoding the topology information into a string.

Hash Table. The second step of our de-isomorphism method uses a hash table to keep track of 
all unique circuits that have already been evaluated. Note that both the UCT-based framework 
and baseline algorithms may query the circuit evaluation about a topology more than once. To 
avoid unnecessary circuit evaluation costs, we implemented a hash table to cache the efficiencies 
and conversion ratios of the topologies that have been queried during each experiment. Therefore, 
in our experiments for both the proposed algorithm and baselines, all the queries to the circuit 
evaluation are only about unique topologies. The use of hash table is especially beneficial for the 
baselines like Genetic Search, as they cannot make use of action pruning to avoid some isomorphic 
topologies by construction.

There is a trade-off between time and space when using the hash table. Specifically, it takes 
0.43/ts on average to search the hash table for a specific topology and duty cycle. As a comparison, 
the State-Space Averaging method and high-fidelity simulation consume 1.95 seconds and 12.45 
seconds on average to evaluate a circuit, respectively. On the other hand, it takes additional memory 
space to store the hash table. For example, a hash table for 5-component circuits with 1.55x10s 
entries may consume up to 323.1MB to store. Note that, although the hash table size increases 
for longer exploration and higher circuit complexity, the circuit evaluation cost also increases 
enormously. Therefore, using a hash table during the UCT search significantly reduces overall time 
cost with an affordable trade-off in memory.
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Fig. 8. Evaluation time per topology for different numbers of parameter configurations per topology under 
State-Space Averaging method, moderate-fidelity simulation (with 10ms transient time, 0.05MHz switching 
frequency, and 10ns minimum time-step), and high-fidelity simulation (with 100ms transient time, 1MHz 
switching frequency, and Ins minimum time-step).

6.2 Efficient Evaluation via State-Space Averaging
The reward function used by UCT is a computational bottleneck as it requires evaluating different 
control parameters for different topologies sampled by all the rollouts. Simulation software, such 
as NGSpice [28], often takes a long time to evaluate one topology with fixed parameters. To speed 
up the circuit evaluation, we instead adopt the State-Space Averaging approach [30]. This approach 
shares the major computation among the circuits with the same topology but different parameters, 
which makes it a faster surrogate model in estimating a large number of parameters.

Specifically, State-Space Averaging characterizes the transfer properties of switching stages of a 
power converter circuit. By dividing the circuit into phases-I and phase-II sub-circuits, deriving 
state-space equations, and averaging state changes with the corresponding duty-cycles (i.e., d and 
1 - d), it derives the estimated output voltage and power efficiency.

We compared the computation times of State-Space Averaging versus NGSpice. Figure 8 shows 
that the evaluation time per topology under State-Space Averaging is significantly lower compared 
to moderate-fidelity and high-fidelity simulations. The advantage of State-Space Averaging is 
even higher when more parameter configurations of one topology (e.g., the same topology with 
different duty cycles) need to be evaluated. This is because deriving state-space equations is the 
most expensive step of State-Space Averaging, but these equations remain the same as long as the 
topology remains the same. Hence, increasing the number of parameter configurations per topology 
does not increase the evaluation time much under State-Space Averaging, while simulations must 
be performed for each parameter configuration of the same topology.

Despite its speed advantage, State-Space Averaging has a disadvantage — it is only accurate if the 
circuit is linear during operations. Nonlinear effects, such as discontinuity in conduction or enforced 
switch dead-zone, will introduce errors. As such, the state-space method usually overestimates the 
efficiencies of topologies.

We conduct an in-depth analysis to examine the accuracy of the State-Space Averaging method 
compared to the ground-truth high-fidelity simulation on various 5-component circuits. Figure 9 
reveals that the State-Space Averaging method can consistently estimate the output voltages of 
circuits, although most estimations are slightly higher. However, we can notice that for circuits
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Fig. 9. Performance evaluation under the State-Space Averaging method (blue diamonds) compared to the 
ground truth high-fidelity simulation (orange crosses). As the evaluation results of the high-fidelity simulation 
are the ground truth, its estimated values are the same as the ground truth. In contrast, the estimated values 
given by the State-Space Averaging method can deviate from the ground truth values.

with high power efficiencies, the State-Space Averaging method often overestimates the efficiencies. 
For some circuits with low efficiencies, it also cannot correctly estimate the efficiencies.
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Fig. 10. Reward estimation under the State-Space Averaging method (blue diamonds) compared to the ground 
truth high-fidelity simulation (orange crosses) for buck-boost, buck, and boost converters, respectively.

We also look into how the error in power efficiency estimated by the State-Space Averaging 
method affects the reward estimation for different types of converters. Using NG-spice simulation 
result as ground-truth, we measured predicted reward for buck-boost, buck and boost converters 
using State-Space Averaging approach. From the result and Figure 10, we notice that the State-Space 
Averaging method can more accurately estimate the rewards for boost converters. Its estimations for 
buck converter deviate most from the ground truth values. This suggests that using the State-Space 
Averaging method to replace the high-fidelity simulation may not work well. The evaluation time 
per topology is illustrated in Figures 8
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To address this issue, we take a hybrid circuit evaluation approach. During topology search, 
a topology is evaluated by State-Space Averaging. With the optimistic nature of State-Space 
Averaging, it covers almost all qualified topologies with high rewards. Once the top topology 
candidates are generated, NGSpice simulation will be invoked to offer ground-truth evaluation for 
the final topology and control scheme selection.

7 EVALUATION
We evaluate our framework across a spectrum of custom design tasks with different conversion 
ratios and compare its performance with baseline algorithms. We also conduct an ablative study on 
the effectiveness of the proposed data-driven default policy. Next, we evaluate the effectiveness of 
our parallelization techniques and the hybrid circuit evaluation approach. Finally, we discuss the
nonconventional power converter topologies discovered by our framework.

7.1 Experiment Setup
We conduct our evaluation on 3 servers with same configurations. Each server consists of Ubuntu 
18.04, 196GB RAM, and two Intel(R) Xeon(R) Gold 5120 CPU, each CPU has 14 cores. We use 
Python 3.8 to implement our topology generation program. We conduct the evaluation on the 
power converter design task with five components, each with two ports. Together with the three 
external ports (Vin, Vout, and Gnd), the design space contains topologies with a total of thirteen 
ports. The component device types have fixed device parameters and include capacitors C (10), 
inductors L (100^H), phase-I switches Sa, and phase-II switches Sb For external ports, we consider 
an input resistor of 0.10 for Vin and an output resistor of 1000 and an output capacitor of 10^F for 
Vout. The candidate control parameter (i.e., duty cycle) ranges from 0.1 to 0.9, with a step size of 
0.1. We configure the frequency as 1MHz for both analytic evaluation and simulation. We set the 
input voltage to 100 V, and the target voltage outputs are chosen from the range of-300V to 300V. 
Additionally, a topology with a conversion ratio smaller than -5 or larger than 5 will be considered 
invalid. In NGSpice simulation, the transient simulation time is set as 60s.

7.2 Implementation Details and Competitive Algorithms
In this section, we describe the implementation details of our UCT-based framework and the 
baseline algorithms. To the best of our knowledge, genetic search and exhaustive search are the 
only existing machine learning algorithms that might not need non-trivial domain knowledge 
and are applicable to the converter circuit topology design, as discussed in Section 2. Hence, we 
implemented genetic search and random search (i.e., the randomized version of exhaustive search) as 
the baseline algorithms for comparison.

Implementation Details of Proposed Algorithm. There are two important implementation 
details of our UCT-based topology generation algorithm. First, we use the number of rollouts to 
decide the number of explorations each run of the UCT-based topology generation. In each rollout, 
we expand a UCT tree-node and execute a rollout to get a complete topology. However, the number 
of rollouts can be larger than the number of queries, since we only query the circuit simulation 
when a rollout leads to a valid topology that is not in the hash table, as described in Section 6.1. 
Second, different from the common UCT design that completely reconstructs a new tree for each 
step, we inherit the sub-tree corresponding to the selected action from the tree of the previous 
step to make full use of the collected information. This operation makes our UCT-DP algorithm 
converge faster.

Random Search (RS). Random Search is a strategy that starts with an empty topology, randomly 
selects device types, and then randomly connects ports until reaching a complete topology. Note
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that, if a port already has connections to other ports, then it is not required to connect to yet another 
port. Thus, in this case, RS may skip adding more connections to this port with a probability of 
0.8. RS uses the same reward function as UCT, along with the same prohibitive paths that prevent 
generating invalid topologies. After searching a prefixed number of complete circuit topologies, RS 
outputs the one that has the highest reward.
Genetic Search (GS). We implemented another popular heuristic-based search algorithm, namely 
Genetic Search, for the power converter design task [26]. GS starts with 15 random topologies. 
In each round, GS selects 3 topologies with the highest rewards from the current generation and 
uses them as parents to generate offspring by mutation. We implemented the following mutation 
types: (1) A crossover randomly selects a component that exists in two parents and exchanges the 
connections of this component [31]; (2) A component change randomly changes the device type 
of a random component in a parent; (3) A connection insertion randomly selects and connects 
two unconnected ports in a parent; (4) A connection removal removes a random connection of a 
parent; (5) A connection switch selects a random connection of a parent and changes one of the 
connection’s ports to another random port; In each round, the above mutation types are chosen 
with probabilities of {20%, 10%, 30%, 20%, 20%}, respectively.

-3 -2.5 -2 -1.5 -1 -0.5 0.25 0.5 0.75 1.5 2 2.5 3
Target Voltage Conversion Ratio

Fig. 11. Average power efficiencies of power converters generated by the proposed framework for custom 
design tasks with increasing voltage conversion ratios. From left to right in different colors and shades, the 
target converter types are buck-boost, buck, and boost.

7.3 Evaluating UCT-based Circuit Generation
In this Subsection, we conduct experiments to evaluate our UCT-based circuit generation and com­
pare it against the above baseline methods. To form a focused evaluation and fair comparison with 
baselines, all the experiments in this Subsection use the same de-isomorphism method (Section 6.1) 
and hybrid circuit evaluation approach (Section 6.2) for (sequential) UCT and baselines.
Custom Design Tasks. We first evaluated our UCT-based framework on different custom design 
tasks for power converters. The design tasks can be classified into three settings, including buck- 
boost, buck, and boost converters. For each target voltage conversion ratio, we run our framework 
five times and compute the average efficiency of the generated topologies. In Figure 11 shows 
the average power efficiencies under our framework for different voltage conversion ratios. For 
the Buck-Boost, Buck, and Boost converter, we set the target conversion ratio as -2, 0.5 and 2 
respectively. Both the baselines and the proposed method use the hash table to decrease the number 
of queries. The UCT-based topology generation uses the State-Space Averaging approach to get
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Fig. 12. Average rewards with 95% confidence interval under UCT-DP vs. GS vs. RS with increasing numbers 
of unique queries to circuit evaluations. The x-axis shows increasing numbers of queries to circuit evaluations 
for unique topologies. The y-axis is the obtained reward calculated using the power efficiency and voltage 
conversion ratio of the best candidate circuit generated by an algorithm, averaging from 200 runs.

the utility the circuits and conduct simulation on the top 5 topologies that has the highest utilities, 
while the genetic and random search approach directly use the high-fidelity simulator to accurately 
evaluate the quality of the explored circuit topologies. For each circuit topology, we sweep the 
candidate duty cycles mentioned in the experiment setting and uses the maximum utility as the 
utility of this circuit topology. Note that the horizontal axis is the number of topology queries. 
During conducting the experiments, we run each setting 200 times in the sequential way and collect 
the average rewards and number of queries (newly explored topologies) to show the exploration 
efficiency of different methods.
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Fig. 13. Ablative studies of UCT-based approaches without default policy (UCT), with node selection default 
policy (UCT-DP-Node), with edge selection default policy (UCT-DP-Edge), and with both node and edge 
selection default policies (UCT-DP) for boost converters.

Results show that our framework can successfully find high-performing topologies for most 
settings. The average efficiencies for smaller conversion ratios tend to be lower, mainly because 
these buck-boost converters are more sensitive to their duty cycles. For example, if we change the 
step size of the duty cycle from 0.1 to 0.05, our framework can discover a better topology with an 
efficiency of 0.89 for the design task with a conversion ratio of -2.5.
Comparison with Baseline Algorithms. We compared our UCT-based approach with RS and 
GS on buck-boost, buck, and boost converters. Since all these algorithms are anytime algorithms 
(i.e., the performance monotonically increases as more computation is used), we compared their 
performances conditioned on their computation costs, measured by the number of queries to circuit 
evaluations. Figure 12 reports the average reward of topologies generated by each algorithm. For 
all types of converters, our UCT-based approach, named UCT-DP, outperforms both RS and GS, 
while GS is comparable with or slightly outperforms RS. When the number of queries is around 
110, UCT-DP achieves 83%, 35%, and 37% higher rewards compared with GS for buck-boost, buck, 
and boost converters, respectively. In terms of computation efficiency, results show that, compared 
to GS, UCT-DP needs up to 63%, 52%, and 67% fewer queries to obtain the same average rewards 
for buck-boost, buck, and boost converters, respectively. We also observe that all the algorithms 
(especially RS and GS) perform slightly worse for buck-boost converters, which may be caused by 
the step size of duty cycles as discussed above. Overall, the results demonstrate the efficacy of our 
UCT-based approach to discover high-quality topologies using only a small number of queries. 
Ablative Studies on Default Policies. In Section 4, we described how we incorporate offline 
knowledge using default policies. In this experiment, we examine the effectiveness of the default 
policies by performing an ablation study. Figure 13 presents the average rewards with and without 
the two default policies, namely node selection and edge selection, for the boost converter design 
task. The results for other power converter types are similar. Not surprisingly, UCT-DP with both 
default policies performs the best. We also observe that UCT with edge selection only (UCT-DP- 
Edge) performs significantly better than with node selection only (UCT-DP-Node). This is partly 
because choosing good connections among the exponentially many connections is more challenging.
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Moreover, since device type selections are performed in the first phase before connection selections, 
the node selection default policy is only used by the rollouts during the first phase. In contrast, the 
edge selection default policy is used by all the rollouts, so it has a higher impact on the performance.

7.4 Evaluating Parallel Circuit Generation
We evaluate the performance of the proposed two parallelization schemes, root parallelization and 
leaf parallelization, on circuit generation using different numbers of CPU cores. Due to the GIL 
(Global Interpreter Lock) in python 3.8, our implementation uses the multiprocessing package to 
generate multiple processes (instead of multiple threads) to implement the parallel UCT-based 
framework. To efficiently share the information between the processes, we use the manager in 
multiprocessing to maintain the rollout counter and the shared reward hash table. According to 
our measurements, the cost of information synchronization using the manager in multiprocessing 
is relatively low, so it has little impact on the performance of the parallelization schemes.

In the following experiments, the circuit design task is almost the same as the settings in the 
previous subsection. The only difference is that here we only use 5 candidate duty cycles: 0.1, 0.3, 
0.5, 0.7, and 0.9. We still use the hybrid circuit evaluation approach described in Section 6.2 with 
parallelization of the final high-fidelity simulation on the top 5 circuit topologies to make full use 
of the computation resource. For root parallelization, the parallel look-ahead trees share the reward 
hash table and the rollout counter, as described in Section 5.3. For each setting, we conduct 60 
runs and collect the average reward and average running time. The speedup is then calculated 
by dividing the average running time of parallel execution by that of sequential execution. In the 
experiments, we vary the number of cores used in the execution, ranging from 1 up to 16.
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Fig. 14. Performance of root parallelization scheme on varying numbers of cores

Performance of Root Parallelization Scheme. Figures 14(a) and 14(b) show the average reward 
and speedup of UCT-based circuit generation using root parallelization, respectively. Results show 
that root parallelization achieves relatively large speedup (e.g., a speedup of 9.7 on 13 cores) by 
making efficient use of the multiple cores with little performance loss in terms of the average 
efficiency of the generated topologies.

In fact, the speedup of root parallelization approaches increases, if the final high-fidelity simula­
tion time is not included in the total running time. This is because the number of queries to the
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high-fidelity simulation is equal to the 5 top topologies, each with 5 duty cycles, which is equal to 
25. Additionally, the simulation times for different circuits may also vary. Thus, it is relatively hard 
to evenly distribute the computation among multiple cores, especially when the number of cores is 
large. The speedups on 8, 9, 12, and 13 cores confirm this observation. On 8 cores, it is likely to 
have one core with one more query to perform than all the other cores, while this additional query 
can be executed by an additional core in parallel on 9 cores. Hence, the speedup jumps slightly 
from increasing the number of cores from 8 to 9. What’s more, we compare the speedups of root 
parallelization using 16 CPU cores with a total of 90 rollouts and 1440 rollouts. The speedup of a 
large number of rollouts reaches 10.64 while the speedup of the small number of rollouts is only 
8.78. This is because when the number of rollouts is small and the number of cores is large, the 
total topology exploration time decreases dramatically and the negative impact of parallelization 
overhead becomes more obvious.

While parallelization schemes significantly reduce the total execution time, they also come 
with a cost of performance loss. For root parallelization, this is due to the fact that multiple trees 
can only communicate a limited amount of information between steps and do not share all the 
global information, in order to reduce the synchronization overheads. From the results of average 
rewards, we can see that the performance of root parallelization drops slightly with more cores 
used. Additional experiments reveal that root parallelization can achieve comparable performance 
with sequential UCT if performing 20% more queries. Since these queries use the fast State-Space 
Averaging method under our hybrid circuit evaluation approach, the total running time only 
increases by about 6%, which is almost negligible considering the large speedup.
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Fig. 15. Performance of leaf parallelization scheme on varying numbers of cores

Performance of Leaf Parallelization Scheme. We can see that both the average reward and 
speedup of leaf parallelization are smaller compared to root parallelization. For instance, using 
the same 16 cores, leaf parallelization only achieves 7. lx speedup with around 16.6% performance 
loss. In terms of speedup, leaf parallelization needs to synchronize for every tree-node expan­
sion, while root parallelization only synchronizes once every step with multiple node expansions. 
Hence, leaf parallelization requires finer-grained load balancing, which is harder compared to root 
parallelization.
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The performance drop, in terms of average reward, of leaf parallelization is due to reasons 
different from root parallelization. While leaf parallelization maintains a single look-ahead tree 
containing all the global information, in order to run multiple rollouts in parallel on all available 
cores, these rollouts are performed to estimate the score of the same state. However, for some states 
that have very low scores and never produce good circuits, it may not be necessary to perform these 
many rollouts. Instead, spending some of these rollouts on other states may be more beneficial to 
Ending better circuits.

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of CPU Cores

(a) Root Parallelization

12

10

8

9 10 11 12 13 14 15 16

Number of CPU Cores

(b) Leaf Parallelization

Fig. 16. Speedup of root and leaf parallelization schemes for our UCT-based framework using only the 
high-fidelity simulation as circuit evaluation method.

Performance of Root and Leaf Parallelization Schemes using Simulation. Figure 16 shows 
the speedup of root and leaf parallelization schemes for our UCT-based framework using only the 
high-fidelity simulation. We still conduct this evaluation on the 5-component converter circuit 
topology generation task. The only difference is that we do not sweep duty cycles but we add one 
additional phase with actions for choosing the duty cycle, just as what we discussed in Section 4.1. 
We can see that the speedup achieves by root parallelization with the simulator is comparable to 
the hybrid evaluation, while the speedup under leaf parallelization decreases significantly. This is 
mainly because the larger variation of simulation times for different circuit exaggerate the blocking 
time due to parallel rollouts. This significantly reduces the speedup achieved by leaf parallelization 
when using only simulation.

In addition, we also evaluate the speedups of the scheme that using high-fidelity simulator and 
sweeping all the duty cycles for each topology. It shows that when using 8 cores, the root and leaf 
parallelization only achieve around 4x and 2.4x speedup respectively, which are lower than the 
scheme without duty cycle sweeping. This is mainly because sweeping the duty cycles makes the 
load-balance between the cores harder to achieve, as both the total length and variation of the 
evaluation time for one query become larger.
Ablative studies on Root Parallelization. To investigate the impact of different additional 
parallelization techniques applied to root parallelization, we conduct an ablative study where the 
number of CPU cores is fixed to 8 with the hybrid circuit evaluation approach. We respectively 
remove the following techniques from root parallelization and examine the performance: (1)
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Fig. 17. Performance of root parallelization without different additional parallelization techniques

removing the rollout counter and assigning the same fixed number of rollouts to each look-ahead 
tree in root parallelization; (2) disabling the use of reward hash table shared by multiple trees, 
but letting each tree maintain its own hash table; (3) running the top-k high-fidelity simulation 
sequentially without parallelism. For each setting, we conduct 30 runs and collect the average 
reward and the speedup.

Figure 17 presents the result of the ablative study. We can observe that fixing the number of 
rollouts and evenly splitting them for each tree reduces the speedup slightly while increasing the 
average reward slightly. This is simply because the computation load balancing is worse while all 
trees are more evenly expanded, as discussed in Section 5.3. This impact is more evident when 
using only the high-fidelity simulation for all circuit evaluations, since the execution time variation 
is higher for simulation than the State-Space Averaging method. While the speedup barely changes 
without using the shared hash table between trees, the average reward drops the most. This confirms 
that sharing more global information is helpful.

The most significant impact comes from running the top 5 topologies sequentially or in parallel. 
Parallelizing the circuit simulating is essential for achieving good speedup for both root and leaf 
parallelization. As shown in Figure 17(b), if simulating the top 5 topologies sequentially, the speedup 
using 8 cores is only 1.6. This is because high-fidelity simulation is much more time-consuming 
compared with the State-Space Averaging method. According to our measurement, in the sequential 
UCT-based circuit generation, the high-fidelity simulation cost around 72.2% of the total running 
time. Thus, sufficiently paralleling the high-fidelity simulation is critical for achieving good speedup.

Table 1. Running Time (second) of different circuit evaluation approaches

#Query
Approach 138 284 566 1072 1849

Simulation 2160.75 4242.37 8576.25 16034.62 28001.62
Hybrid Top 1 66.43 123.29 233.01 430.51 733.56
Hybrid Top 5 116.23 173.09 282.81 480.31 783.36
Hybrid Top 20 302.98 359.84 469.56 667.06 970.11
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Fig. 18. Performance of different circuit evaluation approaches

7.5 Evaluating the Effectiveness of Hybrid Circuit Evaluation Approach.
As the State-Space Averaging method cannot very accurately evaluate circuits, we conduct the 
following experiments to validate our hybrid circuit evaluation approach in Figure 18(a). For the 
same experiment setting, we compare the performance between our UCT-based framework using 
only the high-fidelity simulation for all circuit evaluations and the same framework using the 
hybrid circuit evaluation approach. Additionally, for the hybrid approach, we also vary the number 
of top topologies validated by the high-fidelity simulation. Note that Hybrid Top 1 is essentially 
using only the State-Space Averaging method for circuit evaluation. Specifically, under Hybrid 
Top 1, UCT generates the circuit that is considered the best-performing one based on State-Space 
Averaging evaluation. The ground-truth performance of this circuit is then evaluated by the high- 
fidelity simulation and used to calculate the average reward in Figure 18(a). Not surprisingly, 
the average rewards under the hybrid approach are slightly lower than those under high-fidelity 
simulation. Moreover, by increasing the number of topologies deemed high-quality by the State- 
Space Averaging method during the circuit exploration and validated by the high-fidelity simulation, 
this performance gap decreases. Validating the top 5 topologies is relatively sufficient to achieve 
almost the best performance under the hybrid approach.

Table 1 shows the average running times of different circuit evaluation methods when the number 
of queries performed by UCT increases. We can observe that the running time of Simulation and 
Hybrid Top 1 (i.e., UCT with State-Space Averaging evaluation only) increases nearly linearly with 
the increase of the number of queries, since the time to perform the circuit evaluation dominates 
the total running time. As the State-Space Averaging method is much faster than the simulation, 
the running time of Hybrid Top 1 (i.e., UCT with State-Space Averaging evaluation only) has a 33x 
to 38x speedup compared to Simulation at the cost of performance degradation. In contrast, Hybrid 
Top 5 and Top 20 achieve a better performance-cost trade-off. By performing some additional high- 
fidelity simulations, Hybrid Top 5 and Top 20 significantly improve the performance of generated 
circuits, while the total running times only have a constant increase and are still significantly 
smaller than Simulation. For example, the total running times of Hybrid Top 5 and Top 20 are 
more than 28 times faster than that of Simulation with little performance loss. In summary, the
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Fig. 19. An example of unconventional power converter circuit discovered by our framework.

hybrid evaluation methods can achieve the same level of performance compared with using the 
high-fidelity simulation with significantly reduced computation cost.

Section 4.1 discusses the formulation choice regarding whether to sweep all control parameters 
to find the one with maximum utility. Figure 18(b) presents the comparison between the hybrid 
approach and high-fidelity simulation with and without sweeping duty cycles under the same 
setting. Note that for the cases with sweeping duty cycles, a query is defined as evaluating one 
topology with all 5 duty cycles. In contrast, for cases without sweeping duty cycles, the circuit 
evaluation is queried for each topology with a specific duty cycle. To have a fair comparison, we 
divide the number of queries for the latter case by 5, so that the number approximates that of the 
topology queries. Results show that the performance under formulation with and without sweeping 
the control parameter is comparable. Therefore, it confirms that finding good topologies is more 
critical than tuning parameters for circuit generation tasks.

7.6 Discussion on New Topologies
Our automatic power converter design framework generates topologies that meet design targets. 
Besides classical power converter topologies, it is also able to find interesting unconventional 
topologies that both satisfy specifications and have high power efficiencies, such as the one in 
Figure 19. These automatically generated topologies have the potential to shed light on fundamental 
circuit innovations. With close collaboration with human experts, our framework can help to 
discover innovative circuits that have not been studied.

7.7 Discussions on the Framework Constraints and Potentials
The proposed framework, despite the advanced performance, has its limitations and unexplored 
potentials. First, the proposed framework is an early attempt at automated topology design that 
targets structure exploration. Thus, after the topologies are generated, fine-grained parametric
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analyses, such as comprehensive parameter sweeping, LC-coupling, and PVT variation, are needed 
to validate their performance (e.g., efficiency and robustness) in real-world applications.

Second, our framework currently targets only power converter circuits, but it has the potential 
to extend to other similar circuits with minimal algorithmic adjustment. For example, switch- 
capacitor-based digital-to-analog/analog-to-digital data converters share similar component pools 
(e.g., switches across phases, capacitors with various parameters) and input/output (e.g., linearity) 
analytical approach. It is of great interest to further explore the versatility of the proposed framework 
on general analog/mixed-signal circuit topology design problems.

Third, although theoretically there is no limitation on the maximally-achievable circuit complex­
ity, the time cost of generating high-quality circuits is highly correlated to the circuit complexity 
for the following reasons. The circuit topology space increases combinatorially. For example, from 
our empirical measurement, we observe that the number of unique circuits expands from 2x105 to 
X107 when the number of components increases from 5 to 6 components. Additionally, the circuit 
evaluation cost increases significantly when the circuit has a much larger number of devices. For 
instance, the high fidelity simulation using NGSpice takes about 4.29 seconds on average to simulate 
a 3-component converter, while it needs 12.45 seconds for a 5-component converter. Moreover, 
the ratio of well-performing circuit candidates reduces from 2.29% to 0.36% when the number of 
components increases from 3 to 5 components. Note that these difficulties exist for any circuit 
topology generation approaches. Therefore, additional techniques and advancements, such as an 
accurate neural network model for fast evaluation of arbitrary circuit topologies, are needed to 
scale up to much larger circuits.

8 CONCLUSION
In this work, we proposed a parallel UCT-based power converter topology generation framework, 
which explores the design space automatically. We incorporated physics-informed constraints and 
data-driven default policies to reduce the design space and improve the efficiency of our framework. 
We implement several parallelism techniques to speed up the execution time of circuit exploration. 
Additionally, we adopted a hybrid circuit evaluation using both the fast State-Space Averaging 
method and the accurate high-fidelity simulation. Finally, evaluations showed that our framework 
can generate near-optimal circuit topology for buck-boost, buck, and boost converters. Compared 
to the alternative approaches, our framework can discover better circuit topologies with reduced 
computational costs. As future work, we plan to apply our framework to other analog/mixed-signal 
circuit topology design problems and explore using deep-learning models to speed up the circuit 
evaluation time further.
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