
PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 1

RTGPU: Real-Time GPU Scheduling of Hard
Deadline Parallel Tasks with Fine-Grain

Utilization
An Zou, Member, IEEE, Jing Li, Member, IEEE,

Christopher D. Gill, Senior Member, IEEE, Xuan Zhang, Member, IEEE,

Abstract—Many emerging cyber-physical systems, such as autonomous vehicles and robots, rely heavily on artificial intelligence and
machine learning algorithms to perform important system operations. Since these highly parallel applications are computationally
intensive, they need to be accelerated by graphics processing units (GPUs) to meet stringent timing constraints. However, despite the
wide adoption of GPUs, efficiently scheduling multiple GPU applications while providing rigorous real-time guarantees remains a
challenge. Each GPU application has multiple CPU execution and memory copy segments, with GPU kernels running on different
hardware resources. Because of the complicated interactions between heterogeneous segments of parallel tasks, high schedulability is
hard to achieve with conventional approaches. This paper proposes RTGPU, which combines fine-grain GPU partitioning on the
system side with a novel scheduling algorithm on the theory side. Through system and theory co-design, RTGPU achieves superior
system throughput and real-time schedulability. In this paper, we start by building a model for the CPU and memory copy segments.
Leveraging persistent threads, we then implement fine-grained GPU partitioning with improved performance through interleaved
execution. To reap the benefits of fine-grained GPU partitioning and schedule multiple parallel GPU applications, we propose a novel
real-time scheduling algorithm based on federated scheduling and grid search with uniprocessor fixed-priority scheduling. Our
approach provides real-time guarantees to meet hard deadlines, and achieves over 11% improvement in system throughput and up to
57% schedulability improvement compared with previous work. We validate and evaluate RTGPU on NVIDIA GTX1080Ti GPU
systems. Our system side techniques can be applied on mainstream NVIDIA GPUs, and the proposed scheduling theory can be used
in general heterogeneous computing platforms which have a similar task execution pattern.

Index Terms—GPGPU, Parallel Real-time Scheduling, Persistent Thread, Interleaved Execution, Federated Scheduling, Fixed Priority,
Self-suspension Model, Schedulability Analysis.

F

1 INTRODUCTION

NOWADAYS, artificial intelligence (AI) and machine
learning (ML) applications accelerated by graphics

processing units (GPUs) are widely adopted in emerging
autonomous systems, such as self-driving vehicles and col-
laborative robotics [1], [2]. For example, Volvo deployed
NVIDIA DRIVE PX 2 technology for semi-autonomous
driving in 100 XC90 luxury SUVs [3]. These autonomous
systems need to execute different AI/ML applications si-
multaneously in the GPU to perform tasks such as object
detection, 3D annotation, movement prediction, and route
planning [4], [5]. Moreover, they often need to process
images and signals from various sensors and decide the next
action in real time. It is thus essential to manage concurrent
execution in the GPUs diligently with respect to various
timing constraints, since they can have direct and critical
impacts on the stability and safety of the whole system.

For general-purpose computing in a non-real-time set-
ting, GPU scheduling aims to minimize the makespan of
a single application or to maximize the total throughput
of the system [6], [7], [8], [9]. Many state-of-the-art learn-
ing frameworks that support GPU acceleration of AI and
ML algorithms, such as Caffe [10] and TensorFlow [11],
also handle workloads in a sequential manner. This type
of sequential execution model is sufficient for large-scale

This work is supported by NSF CNS-1739643, NSF CNS-1948457, and
NSFC 62202287.

resource-abundant systems (e.g., in data center applications)
that aim to maximize the average throughput of a single
task. The same model, however, does not translate well
in parallel GPU applications with strict timing deadlines.
When computing resources are constrained, such as in on-
board GPU systems, parallel tasks have to make good use of
the limited resource to meet strict deadlines. However, even
state-of-art GPU execution patterns pose unique challenges
to the real-time scheduling of parallel tasks. First, inside
each task, there are multiple serially dependent segments,
namely, CPU execution and memory copy segments and
GPU kernels. Inside each task, these segments need to access
different hardware resources serially. Second, a large GPU
kernel in one task may occupy the entire GPU, blocking
the GPU kernels in other parallel tasks. This aggravated de-
pendency inside and among tasks may reduce the system’s
performance or cause extra scheduling pessimism under
hard timing constraints.

This paper proposes RTGPU, a general real-time GPU
scheduling framework. To overcome such aggravated de-
pendency and pessimism in GPU real-time scheduling, RT-
GPU provides GPU partitioning and modeling as well as
a scheduling algorithm and tight schedulability analysis.
First, based on an in-depth understanding of GPU kernel
execution and profiling of synthetic workloads, we leverage
the persistent threads technique [12] to support Streaming
Multiprocessor (SM)-granularity partitioning for concurrent



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 2

GPU applications. To fully utilize the GPU resources, we
further propose interleaved execution which can achieve
10% to 37% improvement in system utilization compared
with SM-granularity resource partitioning without inter-
leaved execution [13]. We then develop a measurement-
based task model that introduces the concept of virtual
streaming multiprocessors (virtual SMs), which allows finer-
grained (SM-level) GPU scheduling without any low-level
modifications to GPU systems.

Following the flexible task execution pattern, we propose
a novel real-time scheduling algorithm leveraging feder-
ated and fixed-priority scheduling. The key idea behind
federated scheduling is to calculate and statically assign
the specific computing resources that each parallel real-
time task needs to meet its deadline. Note that preemp-
tion between tasks is not required if the correct number
of fixed-granularity computing resources can be accurately
derived in analysis and enforced during runtime. For the
CPU segments and memory copies between CPU and GPU
scheduled by the uniprocessor fixed-priority scheduling
algorithm, a novel analysis is proposed to calculate the
response time upper bounds and lower bounds of the two
types of segments alternately. Leveraging the flexibility from
GPU partitioning and the scheduling algorithm with tight
response time analysis, the proposed RTGPU achieves up to
57% improvement in system schedulability. More generally,
our proposed scheduling algorithm and analysis can be ap-
plied to other heterogeneous computing systems that have
a similar application execution pattern (each task has CPU,
memory copy, and heterogeneous core segments), such as
AMD GPUs and Google TPUs.

2 BACKGROUND

2.1 Background on GPU Systems
GPUs are designed to accelerate compute-intensive

workloads with high levels of data parallelism. As shown in
Fig. 1., a typical GPU program contains three parts — a code
segment that runs on the host CPU (the CPU segment), the
host/device memory copy segment, and the device code seg-
ment which is also known as the GPU kernel. GPU kernels
are single instruction multiple threads (SIMT) programs.
The programmer writes code for one thread, many threads
are grouped into one thread block, and many thread blocks
form a GPU kernel. The threads in one block execute the
same instruction on different data simultaneously. A GPU
consists of multiple streaming multiprocessors (SMs). The
SM is the main computing unit, and each thread block is
assigned to an SM to execute. Inside each SM are many
smaller execution units that handle the physical execution
of the threads in a thread block assigned to the SM, such
as CUDA cores for normal arithmetic operations, special
function units (SFUs) for transcendental arithmetic opera-
tions, and load and store units (LD/ST) for transferring data
from/to cache or memory.

When GPU-accelerated tasks are executed concurrently,
kernels from different tasks are issued to a GPU simulta-
neously. When kernels are launched, the thread blocks are
dispatched to all the SMs on a first-come, first-served basis.
An occupancy factor, defined as the ratio of active warps
(a group of adjacent threads) on an SM to the maximum
number of active warps supported by the SM, is used to

Figure 1: Typical GPU task execution pattern.

describe the capacity of SMs. If the first-launched kernel is
large and occupies all the GPU resources (the occupancy
factor is 1), the next kernel begins its execution only when
the first kernel is about to finish and resources within SMs
are freed (occupancy factor below 1). To better manage
GPU resources and support multiple kernels concurrently,
Multi Process Service (MPS) and Multi-Instance GPU (MIG)
have been introduced by NVIDIA. For example, the CUDA
contexts belonging to MPS clients funnel their work through
the MPS server. It allows client CUDA contexts to bypass
hardware limitations associated with time sliced scheduling,
and permit CUDA kernels to execute simultaneously [14].

2.2 Persistent Threads

An off-the-shelf GPU supports only kernel-granularity
scheduling, as shown in Fig. 2(a). When kernels are
launched in the GPU, if the kernel is large enough to fully
occupy all the compute resources (SMs and CUDA cores)
on the GPU, a GPU is only able to execute one kernel at a
time by default even with Multi-Process Service (MPS). The
kernel execution orders from different tasks can be changed
in kernel-granularity scheduling, as shown in Fig. 2(b).

The persistent threads approach is a new software work-
load assignment solution proposed to implement finer and
more flexible SM-granularity GPU partitioning [12], [15],
[16]. Specifically, each persistent threads block links multiple
thread blocks of one kernel and is assigned to one SM to
execute for the entire hardware execution lifetime of the
kernel. For example, in Fig. 2(c), the first thread block in
kernel 1 (K1) links the other thread blocks in K1 to form
a big linked thread block. When this first thread block is
executed by one SM, the other thread blocks in K1, which
are linked by the first block, will also be executed in the first
SM. Thus, K1 takes one SM to execute. Similarly, in kernel
3 (K3), the first two thread blocks link the other thread
blocks and form two big linked thread locks. Thus, the
kernel 3 (K3) takes two SMs to execute. When the numbers
of linked thread blocks are changed, the resulting number
of persistent threads blocks controls how many SMs (i.e.,
GPU resources) are used by a kernel. In addition, when
there are remaining available SMs, CUDA introduces CUDA
Streams that support concurrent execution of multiple ker-
nels. By exploiting persistent threads and CUDA Streams,
we can explicitly control the number of SMs used by each
kernel and execute kernels of different tasks concurrently to
achieve SM-granularity scheduling. Persistent threads en-
abled SM-granularity scheduling fundamentally improves



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 3

(a) Default sequential execution (b) Kernel-granularity scheduling (c) SM-granularity scheduling

Figure 2: Comparison of three different GPU application scheduling approaches.

schedulability of parallel GPU applications by exploiting
finer-grained parallelism.

2.3 Multi-Segment Self-Suspension Model

In the multi-segment self-suspension model, a task τi has
mi execution segments and mi ´ 1 suspension segments
between the execution segments. So task τi with deadline
Di and period Ti is expressed as a 3-tuple:

τi “
`

pL0
i , S

0
i , L

1
i , ..., S

mi´2
i , Lmi´1

i q, Di, Ti
˘

where Lji and Sji are the lengths of the j-th execution and
suspension segments, respectively. rqS ji , pS

j
i s gives the lower

and upper bounds of the suspension length Sji . pLji is the
upper bound on the length of the execution segment Lji .
The analysis in [17] bounds the worst-case response time
of a task under the multi-segment self-suspension model,
which is summarized below.
Lemma 2.1. The following workload function Wh

i ptq bounds on
the maximum amount of execution that task τi can perform during
an interval with a duration t and a starting segment Lhi :

Wh
i ptq “

l
ÿ

j“h

pLj mod mi

i `

min
´

pL
pl`1q mod mi

i , t´
l
ÿ

j“h

`

pLj mod mi

i ` Sipjq
˘

¯

where l is the maximum integer satisfying the following condition:
l
ÿ

j“h

`

pLj mod mi

i ` Sipjq
˘

ď t

and Sipjq is the minimum interval-arrival time between execution
segments Lji and Lj`1

i , which is defined by:

Sipjq “

$

’

’

’

&

’

’

’

%

qS j mod mi

i if j mod mi ‰ pmi ´ 1q
Ti ´Di else if j “ mi ´ 1

Ti ´
mi´1
ÿ

j“0

pLji ´
mi´2
ÿ

j“0

qS ji otherwise

Then the response time of execution segment Lji in task
τk can be bounded by calculating the interference caused by
the workload of the set of higher-priority tasks hppkq.
Lemma 2.2. The worst-case response time pRjk is the smallest
value that satisfies the following recurrence:

pRjk “
pLjk `

ÿ

τiPhppkq

max
hPr0,mi´1s

Wh
i p

pRjkq

Hence, the response time of task τk can be bounded by
either taking the summation of the response times of every
execution segments and the total worst-case suspension
time, or calculating the total interference caused by the
workload of the set of higher-priority tasks hppkq plus the
total worst-case execution and suspension time.
Lemma 2.3. Hence, the worst-case response time pRk of task τk
is upper bounded by the minimum of xR1 k and xR2 k, where:

xR1 k “
mk´2
ÿ

j“0

pS jk `
mk´1
ÿ

j“0

pRjk (1)

and R2k is the smallest value that satisfies the recurrence:

xR2 k “
mk´2
ÿ

j“0

pS jk `
mk´1
ÿ

j“0

pLjk `
ÿ

τiPhppkq

max
hPr0,mi´1s

Wh
i p

xR2 kq

(2)

3 CPU AND MEMORY MODEL

In this work, we target CPU-GPU heterogeneous com-
puting systems. The heterogeneous systems may have dif-
ferent typologies such as different numbers of CPU cores,
memory copy engines, and GPUs (and also SMs in one
GPU). To propose a general system model, we start from
the most fundamental case which only has one CPU core,
one memory copy engine, and multiple SMs in one GPU.
All applications are written as threads of a single process.
This fundamental case is the minimal heterogeneous system
with a full heterogeneous computing function. Any hetero-
geneous system can be regarded as a combination of this
fundamental case. This work aims to study the fundamen-
tal CPU-GPU heterogeneous computing system real-time
scheduling problem as the first step and then extend the
study to multiple GPUs in the future.

3.1 CPU Modeling
As represented in Fig. 1, a complete GPU application

has multiple segments of CPU code, memory copies be-
tween the CPU and GPU, and GPU code (also called
GPU kernels). The CPU executes serial instructions, e.g.,
for communication with IO devices (sensors and actuators)
and launches memory copies and GPU kernels. When a
CPU executes serial instructions, it naturally behaves as a
single-threaded application without parallelism. When the
CPU code launches memory copies or GPU kernels, these
instructions will be added into multiple FIFO buffers called



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 4

a ”CUDA stream”. The memory copies and GPU kernels,
which are in different CUDA streams, can execute in parallel
if there are remaining available resources. The execution
order of memory copies and GPU kernels in a single CUDA
stream can be controlled by the order in which they are
added to it by the CPU code. After the CPU has launched
memory copies and GPU kernels into a CUDA stream, it will
immediately execute the next instruction, unless extra syn-
chronization is used in the CPU code to wait for the memory
copies or GPU kernels to finish. Thus, the CPU segments can
be modeled as serial instructions in one thread.

3.2 Memory Modeling
Memory copying between the CPU and GPU execution

units includes two stages. In the first stage which is also
called global memory copy, data is copied between the CPU
memory and the GPU memory through a single periph-
eral component interconnect express (PCIe) or through a
network on chip (NoC). The PCIe and NoC offer packet-
based and full-duplex communication between any two
endpoints. The number of global memory copies that can
happen simutanously are determined by the number of
copy engines provided by GPUs. For example, GeForce GTX
TITAN Black and Jetson TX2 have 1 copy engine; 1080TI, TI-
TAN X and NVIDIA Xavier [18] have 2 copy engines. In this
work, we assume that there is only one copy engine in the
minimal heterogeneous system model, which has one CPU
core and multiple heterogeneous cores. Also, the memory
copy through PCIe/NoC is non-preemptive once it starts.
The GPU and other accelerators mainly provide two types of
first stage memory movement [19], [20]: direct memory copy
(also called traditional memory) and unified memory (intro-
duced in CUDA 6.0). Direct memory copy uses traditional
memory, where data must be explicitly copied from CPU
to GPU portions of DRAM. Unified memory is developed
from zero-copy memory where the CPU and the GPU can
access the same memory area by using the same memory
addresses between the CPU and GPU. In the following
discussion, we focus mainly on direct memory copy, but our
approach can also be directly applied to unified memory
by setting explicit copy length to zero. The second stage
is the memory access from the GPU’s execution units to
the GPU cache or memory. The GPU adopts a hierarchical
memory architecture. Each GPU SM has a local L1 cache,
and all SMs share a global L2 cache and DRAM banks. These
memory accesses happen simultaneously with the kernel’s
execution. Therefore, the second stage memory operation
is measured and modeled as part of the kernel execution
model. Although run-time memory factors, such as the state
of the row buffers in the first stage and contention on GPU
memory or cache in the second stage, would impact mem-
ory copy time, we have to simplify the memory model with
static factors given the consideration of real-time scheduling
complexity. Therefore, we assume that the memory copy
time between CPU memory and GPU memory is a linear
function of the copied memory size.

4 MODELING AND MANAGEMENT OF GPU FINE-
GRAIN PARTITIONING

Following the persistent thread technique, this section
introduces the modeling and management for GPU fine-

1SM 4SM 8SM 12SM16SM
0

10

20

30

(averge/worst-case)

(a) computation

1SM 4SM 8SM 12SM16SM
0

10

20

30

(averge/worst-case)

(b) memory

1SM 4SM 8SM 12SM16SM
0

10

20

30

40

(averge/worst-case)

(c) branch
1SM 4SM 8SM 12SM16SM

0

100

200

300

(averge/worst-case)

(d) special

Figure 3: Kernel execution time trends.

grain partitioning. The proposed technique in this section
takes both throughput and flexibility into account. It de-
velops the system foundation for GPU real-time scheduling
with high schedulability.

4.1 Kernel Execution Model
To understand the relationship between the execution

time of a kernel and the number of SMs assigned via persis-
tent threads, we conducted the following experiments. We
use five synthetic kernel benchmarks that utilize different
GPU resources: a computation kernel, consisting mainly
of arithmetic operations; a branch kernel containing large
number of conditional branch operations; a memory kernel
full of memory and register visits; a special-function kernel
with special mathematical functions, such as sine and cosine
operations; and a comprehensive kernel including all these
arithmetic, branch, memory, and special mathematical oper-
ations. Each kernel performs 1000 floating-point operations
on a 215-long vector.

We first run each kernel separately with a fixed workload
for 1000 times and record its corresponding execution time
with increasing numbers of assigned SMs, as shown in
Fig. 3(a). Next, we examine the kernel execution time with
increasing kernel sizes and different numbers of assigned
SMs. Fig. 3(d) shows that the comprehensive kernel and
the other types of kernels have similar trends. From the
boxplot, we can see that the kernel execution time follows
the formula of Gustafson’s law [21] and can be expected of
a system whose resources are more flexible:

S “ N ` p1´Nqs (3)

Where N is the number of assigned SMs, s is the serial
fraction of the workload (which does not benefit from par-
allelism), and S is the estimated speedup. The S speedup in
latency is normalized to the kernel only with computation
instruction. From the architecture perspective, the GPU ker-
nels are fully parallel workloads, which can utilize all allo-
cated SMs. The only sequential execution is when the GPU is
copying data and launching the kernel. We can also observe
that the execution time of a GPU kernel has low variation be-
cause it benefits from a single-instruction multiple-threads
(SIMT) architecture, in which single-instruction, multiple-
data (SIMD) processing is combined with multithreading
for better parallelism.
4.2 Interleaved Execution and Virtual SM

Through a close comparison of the GPU kernel execution
and the design of GPU architectures, we find that the
system throughput can be further improved by exploiting
interleaved execution of GPU kernels. On a GPU with M
SMs, naive SM-granularity scheduling can first concurrently
execute the K1 and K2 kernels, each with M{2 persistent
threads blocks, and then execute the K3 kernel with M



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 5

Figure 4: Virtual SM model for interleaved execution

persistent threads blocks, as shown in Fig. 4(a). Each block
requires one SM to execute one persistent thread at a time.

On the other hand, an SM actually allows the parallel
execution of two or more persistent threads blocks to over-
lap if the current SM occupancy factor is below 1 which
means the number of active warps is less than the maximum
[22], [23]. This interleaved execution is similar to the hyper-
threading in conventional multithreaded CPU systems that
aims to improve computation performance. For example, in
an NVIDIA GTX 1080 TI, one SM can hold 2048 software
threads, whereas one thread block can have at most 1024
software threads. Thus, two or more thread blocks can be
interleaved and executed on one SM. One important conse-
quence of interleaved execution is that the execution time
of a kernel increases. Therefore, to improve GPU utilization
and efficiency, we can launch all three kernels, as illustrated
in Fig. 4(b), where kernel 1 and kernel 2 will simultaneously
execute with kernel 3. The execution latency of each kernel
is increased by a factor called the interleaved factor, which
ranges from 1.0 to 1.8 in the following experiments.

We propose a virtual SM model to capture this inter-
leaved execution of multiple GPU kernels, as shown in
Fig. 4(c). In particular, we double the number of physical
SMs to get the number of virtual SMs. Compared with a
physical SM, a virtual SM has a reduced computational
ability and hence a prolonged execution time, the length of
which is related to the type of instructions in the interleaved
kernel. To understand the interleaved ratio, we empirically
measured the execution time of a synthetic benchmark when
it was interleaved with another benchmark. Fig. 5 illustrates
the minimum, median, and maximum interleaved execution
time, colored from light to dark, normalized over the worst-
case execution time of the kernel without interleaving,
where the left bar is without interleaving and right bar is
with interleaving. We can see that the interleaved execution
ratio is at most 1.45ˆ, 1.7ˆ, 1.7ˆ, and 1.8ˆ for special,
branch, memory and computation kernels, respectively.
The proposed virtual SM model improves throughput by
11% „ 38% compared to the naive non-interleaved physical
SM model. The number of virtual SMs is determined by how
many threads can be physically simultaneously executed
on one SM. In this work, we use the NVIDIA GTX 1080
TI GPU as an example. In this GPU one physical SM can
hold and execute 2048 threads and one thread block has
1024 threads at most. If one thread block is at its highest
capacity with 1024 threads, two thread blocks are executed
on one physical SM. Therefore, one physical SM will be
mapped to two virtual SMs. If one thread block only has 512
threads, four thread blocks are executed on one physical SM.
and one physical SM will be mapped to four virtual SMs.

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 
ti

m
e Min

Med
Max

Min
Med
Max

(a) On computation kernel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 
ti

m
e Min

Med
Max

Min
Med
Max

(b) On memory kernel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 
ti

m
e Min

Med
Max

Min
Med
Max

(c) On branch kernel

1

1.5

2

0.5

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 
ti

m
e Min

Med
Max

Min
Med
Max

(d) On special kernel

Figure 5: Characterization of the latency extension ratios of
interleaved execution

Therefore, by limiting the maximum number of threads in
one thread block (in writing the GPU kernels) to 2048{VSM ,
we can generate VSM virtual SMs. In this work, we follow
the default setting of the NVIDIA GTX 1080 TI GPU where
the maximum number of threads in one thread block is 1024.

4.3 Workload Pinning and Self-Interleaving
Using the persistent threads and interleaved execution

techniques, multiple tasks can be executed in parallel, and
the interleaved execution further improves GPU perfor-
mance. In real GPU systems, such as NVIDIA GPUs, a
hardware scheduler is implemented that allocates the thread
blocks to SMs in a greedy-then-oldest manner [24]. Thus, at
run time, the thread blocks from a kernel are interleaved and
executed with thread blocks from other possible kernels,
and the interleaved execution ratio is different when differ-
ent kernels are interleaved and executed, as shown in Fig. 5.
To guarantee a hard deadline, each kernel has to adopt the
largest interleaved execution ratio when this kernel is inter-
leaved and executed with other possible kernels. However,
using the highest interleaved execution ratio cannot avoid
underestimation of the GPU computation ability. Therefore,
we introduce workload pinning which pins the persistent
threads blocks to specific SMs, and self-interleaving where
the kernel interleaves with itself on its pinned SMs.

Workload pinning is implemented by launching Vm (m
is the number of physically assigned SMs) persistent threads
blocks in each kernel, which is also the number of virtual
SMs, so that all virtual SMs will finally have one persistent
threads block to execute. If the SM is the targeted pinning
SM, the thread block will begin to execute. Persistent threads
blocks assigned to undesired SMs (untargeted pinning SMs),
will simply return, which takes about 10s µs. When a
persistent threads block is assigned to the correct SM, it will
not only execute its own workload, but will also execute
the workloads from blocks assigned to the undesired SMs.
Thus, the kernel is actually executed on the desired SMs,
and the undesired SMs execute an empty block within a
negligible time. Therefore, the overhead from the GPU fine-
grain partitioning is around 10s us.



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 6

Algorithm 1: Pseudo Code of Pinned Self-
Interleaving Persistent Threads Pseudo Code

// Get the ID of current SM with assemble language
static device inline uint32 t mysmid()
{
uint32 t smid;
asm volatile (”mov.u32 %0, %%smid;” : ”=r”(smid));
return smid; }

// Kernel pinned to desired SMs with self-interleaved
persistent threads

global void kernel (int *desired SMs, ...){
int SMs num = length(desired SMs);
int Real SM id;
Real SM id = mysmid(); // Get the ID of current SM
//Excute on desired SMs, otherwise return
if(Real SM id == @k, desired SMs[k]) {

//Get the global thread index: tid
int tid = threadIdx.x + k * blockDim.x;
//off set links to the next thread block by persistent threads
int off set = blockDim.x * SMs num;

//Divide N threads inside a kernel to V pieces [0 N/V) and
[N/V 2N/V) ... and [(V-1)N/V N) from same kernel
interleaved execute with each other. From the kernel
perspective, the kernel interleaved execute with itself.

if(blockIdx.x ă virtual SM/V) {
for(int i = tid; i ă N/V; i += off set) {

Execute on thread i;}}
elseif(virtual SM/Vď blockIdx.xă2virtual SM/V){

for(int i = tid + N/V; i ă 2N/V; i += off set) {
Execute on thread i;}}

else if(2virtual SM/VďblockIdx.xă3virtual SM/V){
... }

}
return; }

// Kernel launch
int main () {
int desired SMs[] = {1, 2, 4}; //The desired SM id in
this example is 1, 2, 4
dim3 gridsize (number of virtual SM);
dim3 blocksize (Max number of threads per block);
kernel ăăă gridsize, blocksize, ..., stream ąąą

(desired SMs, ...);
return 0; }

A persistent threads with pinned self-interleaving design
and implementation is implemented in the CUDA code,
which is detailed described in Algorithm 1. For the usage
of the proposed GPU fine-grain partitioning, the researchers
will follow the persistent threads style and add the compar-
ison of SM id number at the beginning of the GPU kernel to
realize workload pinning and self-interleaving.

5 PRACTICAL FULL SYSTEM SCHEDULING

In this section, we first introduce the RT-GPU scheduling
algorithm, and then develop the corresponding timing anal-
ysis. One of the key challenges of deriving the end-to-end
response times is to simultaneously bound the interference

Figure 6: GPU tasks real-time scheduling model.

on CPU, GPU, and memory bus. As the start of memory
copy and dispatch of GPU kernel are initialized by the
CPU, the scheduling of the full system is managed by the
scheduler on the CPU side, i.e. the real-time scheduler in
Linux. Therefore, the start of memory copy and GPU kernel
will immediately follow its previous CPU segment and
memory copy.
5.1 Task Model

Leveraging the platform implementation and the CPU,
memory and GPU models discussed in previous sections,
the model for the parallel real-time tasks executing on a
CPU-GPU platform is shown in Fig. 6. We consider a task set
τ comprised of n parallel tasks, where τ “ tτ1, τ2, ¨ ¨ ¨ , τnu.
Each task τi, where 1 ď i ď n, has a relative deadlineDi and
a period (minimum inter-arrival time) Ti. In this work, we
restrict our attention to constrained-deadline tasks, where
Di ď Ti, and tasks with fixed task-level priorities, where
each task is associated with a unique priority. More pre-
cisely, when making scheduling decisions on any resource,
such as CPU and bus, the system always selects the segment
with the highest priority among all available segments for
that resource to execute. Of course, a segment of a task only
becomes available if all the previous segments of that task
have been completed.

On a CPU-GPU platform, task τi consists of mi CPU
segments, 2mi ´ 2 memory copy segments, and mi ´ 1
GPU segments. As discussed in Section 4.1, a GPU segment
Gji models the execution of a GPU kernel on interleaved
SMs using total work GW j

i , critical-path overhead GLji , and
interleaved execution ratio αji , i.e., Gji “ pGW j

i ,GLji , α
j
i q.

Thus, task τi can be characterized by the following tuple:

τi “
´

`

CL0
i ,ML0

i , G
0
i ,ML1

i ,CL
1
i ,ML2

i , G
1
i ,ML3

i ,

¨ ¨ ¨ ,CLji ,ML2j
i , G

j
i ,ML2j`1

i , ¨ ¨ ¨ ,CLmi´2
i ,

ML2mi´4
i , Gmi´2

i ,ML2mi´3
i ,CLmi´1

i

˘

, Di, Ti

¯

(4)

where CLji and MLji are the execution times of the pj ` 1q-th
CPU and memory copy segments, respectively. In addition,
we use q and p to denote the lower and upper bound on a

random variable. For example, xCL
j

i and |CL
j

i are the upper
and lower bounds on execution times of the pj ` 1q-th CPU
segment of τi, respectively.

To derive the end-to-end response time Ri of task τi,
we will analyze the response times GRji , MRji , and CRji
of each individual GPU, memory copy, and CPU segments,



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 7

respectively, and calculate their lower and upper bounds in
the following subsections.

5.2 Federated Scheduling for GPU Segments

For executing the GPU segments of the n tasks on the
shared GPU with VGN virtual SMs (i.e., GN physical SMs),
we propose to generalize federated scheduling, a scheduling
paradigm for parallel real-time tasks on general-purpose
multi-core CPUs, to scheduling parallel GPU segments. The
key insight of federated scheduling is to calculate and assign
the minimum number of dedicated resources needed for
each parallel task to meet its deadline.

Specifically, we allocate VGN i dedicated virtual SMs
to each task τi, such that its GPU segment Gji can start
executing immediately after the completion of the corre-
sponding memory copy ML2j

i . In this way, the mapping and
execution of GPU kernels to SMs are explicitly controlled
via the persistent thread and workload pinning interfaces,
so the effects caused by the black-box internal scheduler
of a GPU are minimized. Additionally, tasks do not need
to compete for SMs, so there is no blocking time on the
non-preemptive SMs. Furthermore, via the self-interleaving
technique, we enforce that different GPU kernels do not
share any physical SMs. Therefore, the interference between
different GPU segments is minimized, and the execution
times of GPU segments are more predictable.

In summary, each task τi is assigned with VGN i ded-
icated virtual SMs where each of its GPU segments self-
interleaves and has an interleaved execution ratio αji . In
Section 5.5, we will present the algorithm that determines
the SM allocation to tasks. Here, for a given allocation, we
can easily extend the formula in Section 4.1 to obtain the
following lemma for calculating the response time GRji of a
GPU segment Gji .

Lemma 5.1. If the GPU segment Gji has a total work in

range r~GW
j

i ,
zGW

j

i s, a critical-path overhead in range r0, xGL
j

i s

and an interleaved execution ratio in range r1, αji s, then when
running on VGN i dedicated virtual SMs, its response time is in
r}GR

j

i ,
yGR

j

i s where

}GR
j

i “
~GW

j

i

VGN i
, and yGR

j

i “
zGW

j

iα
j
i ´

xGL
j

i

VGN i
` xGL

j

i .

Proof. The lower bound }GR
j

i is the minimum execution time
of this GPU segment on V GNi virtual SMs. In the best case,
there is no critical-path overhead and no execution time
inflation due to interleaved execution. The minimum total
virtual work ~GW

j

i is executed in full parallelism on V GNi
virtual SMs, which gives the formula for }GR

j

i .
In the worst case, the maximum total virtual work is

zGW
j

iα
j
i , as it demands the most computation and thus

longest execution time. Additionally, the maximum critical-

path overhead xGL
j

i captures the maximum overhead of
launching the kernel, which run serially and cannot benefit

from parallelism. Since xGL
j

i is a constant overhead and is
not affected by self-interleaving and multiple virtual SMs,
we do not need to apply the interleaved execution ratio αji
to xGL

j

i . After deducting the critical-path overhead using to

Gustafson’s law in Equation 3, the remaining GPU computa-
tion is embarrassingly parallel on V GNi virtual SMs, which

results the formula of yGR
j

i .
Note that Lemma 5.1 calculates both the lower and upper

bounds on the response time of GPU segment Gji , because
both bounds are needed when analyzing the total response
time of task τi. Both the lower and upper bounds can be
obtained by profiling the execution time of GPU segments.

During runtime execution of schedulable task sets, the
work in Section 4 will generate VGN i persistent threads
blocks for each GPU segment of task τi to execute on its
own assigned VGN i virtual SMs. For the less powerful
GPU with small numbers of SMs, we need to generate
enough virtual SMs to make each task have its virtual SMs.
This can be realized by limiting the maximum number of
threads in a thread block as described by Section 4.2. For
example, in the GTX1080TI GPU, each SM can execute 2048
threads simultaneously. Therefore, if each block has 1024
threads, two blocks are executed on one SM, which means
one physical SM generates two virtual SMs. By limiting
the maximum number of threads in one thread block to
2048/VSM , we can generate VSM virtual SMs. Therefore,
in most cases, enough virtual SMs could be generated.

5.3 Fixed-Priority Scheduling for memory copy Seg-
ments with Self-Suspension and Blocking

From the perspective of executing memory copies over
the bus, memory copy segments are “execution segments”;
the time intervals where task τi spends on waiting for
CPU and GPU to complete the corresponding computation
are “suspension segments”. However, compared with the
standard self-suspension model, memory copy over a bus
has the following differences. (1) Because memory copy is
non-preemptive, a memory copy segment of a high-priority
task can be blocked by at most one memory copy segment
of any lower-priority task if this lower-priority segment
has already occupied the bus. (2) The length of suspension
between two consecutive memory copies depends on the
response time of the corresponding CPU or GPU segment.
(3) The response times of CPU segments are related to the
response times of memory copy segments, which will be
analyzed in Section 5.4. (4) Moreover, the lower bounds on
the end-to-end response times of a task are related to the
response times of all types of segments, which requires a
holistic fixed-point calculation to be presented in Section 5.5.
Please note that above differences are not unique in the
CPU-GPU system, they widely present in state-of-the-art
heterogeneous systems.

We define the following memory copy workload func-
tion MW h

i ptq, which is similar to the workload function
defined for standard self-suspension tasks in Section 2.3.

Lemma 5.2. MW h
i ptq bounds the maximum amount of memory

copy that task τi can perform during an interval with a duration
t and a starting memory copy segment MLhi , where:

MW h
i ptq “

l
ÿ

j“h

yML
j mod 2mi´2

i `min
´

yML
pl`1q mod 2mi´2

i ,

t´
l
ÿ

j“h

`

yML
j mod 2mi´2

i `MS ipjq
˘

¯



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 8

where l is the maximum integer satisfying the following condition:

l
ÿ

j“h

`

yML
j mod 2mi´2

i `MS ipjq
˘

ď t

and MS ipjq is defined as follow:

‚ If j mod p2mi ´ 2q ‰ p2mi ´ 3q and j mod 2 “ 0, then

MS ipjq “ }GR

`

j mod p2mi´2q
˘

{2

i ;
‚ Else if j mod p2mi ´ 2q ‰ p2mi ´ 3q and j mod 2 “ 1,

then MS ipjq “ |CL

`

pj mod p2mi´2qq`1
˘

{2

i ;

‚ Else if j “ 2mi´3, then MS ipjq “ Ti´Di`|CL
mi´1

i `

CL0
i ;

‚ Else MS ipjq “ Ti ´
ř2mi´3
j“0

yML
j

i ´
řmi´2
j“1

|CL
j

i ´
řmi´2
j“0

}GR
j

i ;

Proof. From the perspective of executing memory copies
over the bus, the 2mi ´ 2 memory copy segments are the
execution segments by the definition of self-suspension task
in Section 2.3. So the definition of MW h

i ptq and l directly
follows those in Lemma 2.1 by applying yML to pL and
changing from mi to 2mi ´ 2.

The key difference is in the definition of MS ipjq, which
is the minimum “interval-arrival time” between execution
segments MLji and MLj`1

i . By the RT-GPU task model,
when j mod p2mi´2q ‰ p2mi´3q, there is either a GPU or
CPU segment after MLji , depending on whether the index
is even or odd. So the lower bound on the response time of
the corresponding GPU or CPU segment is the minimum
interval-arrival time on the bus. For the latter case, the
response time of a CPU segment is lower bounded by its
minimum execution time. When j “ 2mi ´ 3, MLji is the
last memory copy segment of the first job of τi occurring
in the time interval t. In the worst case, all the segments of
this job are delayed toward its deadline, so the minimum
interval-arrival time between MLji and MLj`1

i is the sum
of Ti ´ Di, the minimum execution time of the last CPU
segment |CL

mi´1

i , and the minimum execution time of the
first CPU segment CL0

i of the next job. The last case cal-
culates the minimum interval-arrival time between the last
memory copy segment of a job that is not the first job and the
first memory copy segment of the next job. Since these two
jobs have an inter-arrival time Ti between their first CPU
segments, intuitively, MS ipjq is Ti minus all the segments

of the previous job plus the last CPU segment |CL
mi´1

i of
the previous job plus the first CPU segment CL0

i of the next
job, which is the above formula.

Hence, the response time of memory copy segment MLjk
can be bounded by calculating the interference caused by
the workload of tasks hppkq with higher-priorities than task
τk and the blocking term from a low-priority task in lppkq.

Lemma 5.3. The worst-case response time yMR
j

k is the smallest
value that satisfies the following recurrence:

yMR
j

k “
yML

j

k `
ÿ

τiPhppkq

max
hPr0,2mi´3s

MW h
i p
yMR

j

kq

` max
τiPlppkq

max
hPr0,2mi´3s

yML
h

i

(5)

Proof. Because the execution of memory copy segments is

non-preemptive, the calculation of yMR
j

k extends Lemma 2.2
by incorporating the blocking due to a low-priority memory
copy segment that is already under execution on the bus.
Under non-preemptive fixed-priority scheduling, a segment
can only be blocked by at most one lower-priority segment,
so this blocking term is upper bounded by the longest
lower-priority segment.

5.4 Fixed-Priority Scheduling for CPU Segments

Now, we will switch the view and focus on analyzing
the fixed-priority scheduling of the CPU segments. Looking
from the perspective of the uniprocessor, CPU segments
become the “execution segments”; the time intervals where
task τi spends on waiting for memory copy and GPU to
complete now become the “suspension segments”, since the
processor can be used by other tasks during these intervals.

For now, let’s assume that the upper bounds yMR
j

i and

lower bounds }MR
j

i on response times of memory copy
segments are already given in Section 5.3. As for GPU

segments, the upper bounds yGR
j

i and lower bounds }GR
j

i

have been obtained in Section 5.2. Similarly, we define the
following CPU workload function CW h

i ptq.

Lemma 5.4. CW h
i ptq bounds the maximum amount of CPU

computation that task τi can perform during an interval with a
duration t and a starting CPU segment CLhi , where:

CW h
i ptq “

l
ÿ

j“h

xCL
j mod mi

i `min
´

xCL
pl`1q mod mi

i ,

t´
l
ÿ

j“h

`

xCL
j mod mi

i ` CS ipjq
˘

¯

where l is the maximum integer satisfying the following condition:

l
ÿ

j“h

`

xCL
j mod mi

i ` CS ipjq
˘

ď t

and CS ipjq is defined as follow:

‚ If j mod mi ‰ pmi´1q, then CS ipjq “}ML
2pj mod miq

i `

}GR
j mod mi

i `}ML
2pj mod miq`1

i ;
‚ Else if j “ mi ´ 1, then CS ipjq “ Ti ´Di;

‚ Else CS ipjq “ Ti ´
řmi´1
j“0

xCL
j

i ´
ř2mi´3
j“0

}ML
j

i ´
řmi´2
j“0

}GR
j

i ;

Proof. From the perspective of the uniprocessor, the mi CPU
segments are the execution segments by the definition of
self-suspension task. So the definition of CW h

i ptq and l

directly follows those in Lemma 2.1 by applying xCL to
pL. For the minimum “interval-arrival time” CS ipjq, there
are two memory copy and one GPU segments between
segments CLji and CLj`1

i by the RT-GPU task model, when
j mod mi ‰ pmi´1q. So CS ipjq is the sum of the minimum
response times of these segments, where the response time
of a memory copy segment is lower bounded by its mini-
mum length. The case of j “ mi´1 is the same. The last case
considers for a job that is not the first job in interval t. The
calculation is similar to the one in Lemma 2.1, except that



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 9

both the 2mi ´ 2 memory copy and mi ´ 1 GPU segments
constitute the suspension time.

Hence, the response time of CPU segment CLjk can be
bounded by calculating the interference caused by the CPU
workload of tasks hppkq with higher-priorities than task τk.

Lemma 5.5. The worst-case response time yCR
j

k is the smallest
value that satisfies the following recurrence:

yCR
j

k “
xCL

j

k `
ÿ

τiPhppkq

max
hPr0,mi´1s

CW h
i p
yCR

j

kq (6)

Proof. The formula is directly extended from Lemma 2.2.

5.5 RT-GPU Scheduling Algorithm and Analysis
For a particular virtual SM allocation VGN i for all tasks

τi, we can calculate the response times of all GPU, memory
copy, and CPU segments using formulas in Section 5.2 to 5.4.
Note that a task starts with the CPU segment CL0

i and ends
with the CPU segment CLmi´1

i . Therefore, we can upper
bound the end-to-end response times for all tasks using the
following theorem, by looking at the perspective from CPU.

Theorem 5.6. The worst-case end-to-end response time pRk of
task τk is upper bounded by the minimum of xR1 k and xR2 k, i.e.,
pRk “ minpxR1 k, xR2 kq, where:

xR1 k “
mk´2
ÿ

j“0

yGR
j

k `

2mk´3
ÿ

j“0

yMR
j

k `

mk´1
ÿ

j“0

yCR
j

k (7)

and R2k is the smallest value that satisfies the recurrence:

xR2 k “
mk´2
ÿ

j“0

yGR
j

k `

2mk´3
ÿ

j“0

yMR
j

k `

mk´1
ÿ

j“0

xCL
j

k

`
ÿ

τiPhppkq

max
hPr0,mi´1s

CW h
i p

xR2 kq
(8)

Proof. The calculations for xR1 k and xR2 k are extended from
Lemma 2.3 by noticing that the time spent on waiting for
GPU and memory copy segments to complete are suspen-
sion segments from the perspective of CPU execution.

With the upper bound on the response time of a task, the
following corollary follows immediately.
Corollary 5.6.1. A CPU-GPU task τk is schedulable under
federated scheduling on virtual SMs and fixed-priority scheduling
on CPU and bus, if its worst-case end-to-end response time pRk is
no more than its deadline Dk.
Computational complexity. Note that the calculations for
the worst-case response times of individual CPU and mem-
ory copy segments, as well as one upper bound on the end-
to-end response time, involves fixed-point calculation. Thus,
the above schedulability analysis has pseudopolynomial
time complexity. Given the system model notation in Section
5.1, the grid search on spatial partitioning of GN SMs has
a complexity of minpOpGNn

q, OpnGN qq. The analysis of
fixed-priority tasks on the memory copy and on the CPU
have a complexity ofOpm2

i q respectively. Therefore, the time
complexity of the entire scheduling strategy with response
time analysis is

minpOpGNnm4
i q, Opn

GNm4
i qq. (9)

Algorithm 2: Fixed Priority Self-Suspension with
Grid Searched Federated Scheduling
Input: Task set τ , number of physical SMs GN
Output: Scheduability
//Generating enough virtual SMs:
for Thread block limit = 1024, 512, ... do

1 VGN “ SM thread limit
Thread block limit

if VGN ě n then
Break;

//Grid search for federated scheduling of GPU segments:
2 for VGN 1 = 1, ..., VGN do
3 for VGN i = 1, ..., VGN ´

ři´1
j“1 VGN j do

4 for VGN n = 1, ..., VGN ´
řn´1
j“1 VGN j do

//Calculate response times of GPU segments:

5 }GR
j

i “
~GW

j

i

2VGN i
, 1 ď i ď n;

6 yGR
j

i “
zGW

j

iα
j
i´

yGL
j

i

2VGN i
` xGL

j

i , 1 ď i ď n;

7 Calculate worst-case response time yMR
j

k for
all memory copy segments using Eq.(5);

8 Calculate worst-case response time yCR
j

k for
all CPU segments using Eq.(6);

9 Calculate worst-case end-to-end response
time pRk for all tasks using Theorem 5.6;

10 if pRk ď Dk for all τk then
11 Scheduability “ 1; break out of all for

loops;

Note that the above schedulability analysis assumes a
given virtual SM allocation under federated scheduling.
Hence, we also need to decide the best virtual SM allocation
for task sets, in order to get better schedulability. The fol-
lowing RT-GPU Scheduling Algorithm adopts a brute force
approach to deciding virtual SM allocation. Specifically, it
enumerates all possible allocations for a given task set on
a CPU-GPU platform and uses the schedulability analysis
to check whether the task set is schedulable or not. Alter-
natively, a greedy approach can be applied, if one needs to
reduce the running time of the algorithm while a slight loss
in schedulability is affordable. Given the number of SMs
assigned to the tasks and the CPU and GPU execution time,
the schedulability under current resource utilization rate can
be calculated following the procedure from subsection 5.2
to subsection 5.5. The full procedure of scheduling GPU
tasks can be described as follows: (1) Grid search [25] a
federated scheduling for the GPU codes and calculate the

GPU segment response time r}GR
j

i
yGR

j

i s, details in Section
5.4. (2) The CPU segments and memory copy segments are
scheduled by fixed priority scheduling. (3) If all the tasks can
meet the deadline, then they are schedulable and otherwise
go back to step (1) to grid search for the next federated
scheduling. This schedulability test can be summarized with
pseudo code in Algorithm 2.

5.6 Roadmap of Extending the Scheduling
Moreover, this end-to-end response time analysis is not

limited to CPU-memory-GPU systems. It can also be di-
rectly applied to other heterogeneous systems with one
type of heterogeneous core, like CPU-memory-FPGA and



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 10

CPU-memory-TPU systems. To schedule the systems with
multiple GPUs (with the same type of GPU SMs), a new
constraint must be added to the GPU SM allocation part
(after line 3 in Algorithm 2). In this constraint, the GPU
SM allocation can only be valid when all the tasks are
not executed on the SMs that belong to different GPUs.
Further to schedule the systems with multiple GPUs (with
different types of GPU SMs), the above constraint must be
added. Also, the lower and upper bounds of GPU segment
response time (line 4 and line 5 in Algorithm 2) must
be calculated with the corresponding computing power of
the different types of GPU SMs. After this updated GPU
federated scheduling, the fixed-priority scheduling of CPU
and memory copy can be directly applied.

6 FULL-SYSTEM EVALUATION

We now present an evaluation of our approach. Sec-
tion 6.1 describes experiments we conducted to validate
our approach. Section 6.2 explains how we implemented
persistent threading and workload pinning in those ex-
periments. Section 6.3 discusses our analytical evaluations
of schedulability under our approach. Finally, Section 6.4
presents schedulability results on real GPU systems.

6.1 Experiments
We conducted extensive experiments to evaluate the

performance of the proposed RTGPU real-time schedul-
ing approach. We choose self-suspension [26], STGM [27]:
Spatio-Temporal GPU Management for Real-Time Tasks,
and Enhanced MPCP [28]: Analytical enhancements and
practical insights for mpcp with self-suspensions as base-
lines to compare with, as they represent the state-of-the-art
in both entire GPU and fine-grained (SM-granularity) GPU
real-time scheduling algorithms and schedulability tests. 1.
Proposed RTGPU: the proposed real-time GPU scheduling
of hard deadline parallel tasks with fine-grain utilization
of persistent threads, interleaved execution, virtual SM,
and fixed-priority federated scheduling. 2. Self-Suspension:
real-time GPU scheduling of hard deadline parallel tasks
with the persistent threads with self-suspension scheduling,
as in [26]. 3. STGM: real-time GPU scheduling of hard
deadline parallel tasks with the persistent threads and busy-
waiting scheduling, as in [27]. This work also tested and
analyzed the self-suspension scheduling under different
scenarios. 4. Enhanced MPCP: real-time GPU scheduling
of hard deadline parallel tasks with hybrid approach of the
enhancements and practical insights for MPCP with self-
suspension, as in [28]. Please note that there is no previous
scheduling algorithm that exactly matches the proposed
system model. All the above scheduling algorithms are
modified to match the proposed model. Some unique good
features may be slightly scarified in the modification. For
example, STGM can support multiple CPU cores but in our
system model, we only use one CPU core.

To compare the schedulability results for these ap-
proaches, we measured the acceptance ratio in each of
four simulations with respect to a given goal for taskset
utilization. We generated 100 tasksets for each utilization
level, with the following task configurations. The acceptance
ratio of a level was the number of schedulable tasksets,
divided by the number of tasksets for this level, i.e., 100.

Table 1: Parameters for the taskset generation

Parameters Value
Number of tasks N in taskset 5
Task type periodic tasks
Number of subtasks M in each task 5
Number of tasksets in each experiment 100
CPU segment length (ms) [1 to 20]
Memory segment length (ms) [1 to 5]
GPU segment length (ms) [1 to 20]
Task period and deadline pTi{Diq

Number of physical GPU SMs NSM 10
Priority assignment D monotonic

According to the GPU workload profiling and character-
ization [29], the memory length upper bound was set
to 1/4 of the GPU length upper bound. We first gener-
ated a set of utilization rates, Ui, with a uniform distri-
bution for the tasks in the taskset, and then normalized
the tasks to the taskset utilization values for the given
goal. Next. we generated the CPU, memory, and GPU
segment lengths, uniformly distributed within their ranges
in Table 1. The deadline Di of task i was set according
to the generated segment lengths and its utilization rate:

Di “ p
řmi´1
j“0

xCL
j

i `
ř2mi´3
j“0

yML
j

i `
řmi´2
j“0

xGL
j

i q{Ui. In the
configuration setting, the CPU, memory, and GPU lengths
were normalized with one CPU, one memory interface, and
one GPU SM. When the total utilization rate, U , is 1, the
one CPU, one memory interface, and one GPU SM are fully
utilized. As there are multiple SMs available (and used), the
total utilization rate will be larger than 1. The period Ti is
equal to the deadline Di. The task priorities are determined
with deadline-monotonic priority assignment. Meanwhile,
in each experiment we evaluate two models. The first model
has two memory copies: one memory copy from CPU to
GPU and one memory copy back from GPU to CPU between
a CPU segment and a GPU segment, which is exactly the
execution model we introduced in section 4. The second
model has one memory copy between a CPU segment and a
GPU segment, which combines the memory copy from CPU
to GPU and the memory copy from GPU to CPU. These two
models can capture not only the CPU-GPU systems but also
general heterogeneous computing architectures.

6.2 System Side Implementation
First on the system side, we implement the persis-

tent thread with workload pinning and self-interleaving.
As studied in Section 4, the workload pinning and self-
interleaving can improve the system throughput under GPU
fine-grain partitioning. We further test the workload pin-
ning and self-interleaving with five real benchmarks from
the Rodinia and CUDA SDK tasksets representing different
but common types of GPU applications. Table 2 shows the
interleaved execution ratios measured from these applica-
tion with different SMs assigned to each kernel. As the
kernel is interleaved with itself, each kernel has a relatively
stable interleaved execution ratio when different numbers
of SM are assigned to the kernel. Since the benchmark is
divided into two pieces and these two pieces are executed
simultaneously on the given number of SMs, the through-
put improvements can be calculated with 2{α. Therefore,



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

MPCP(1/2mems)

(a) computation:suspension=2:1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(b) computation:suspension=1:2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) computation:suspension=1:8

Figure 7: Schedulability under different computation (CPU) and suspension (memory+GPU) lengths

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

MPCP(1/2mems)

(a) 3 subtasks

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e
ts

 (
%

)

(b) 5 subtasks

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

(c) 7 subtasks

Figure 8: Schedulability under different numbers of subtasks

Table 2: Interleaved execution ratios measured from real
benchmarks with different SMs assigned to each kernel

Benchmark/Number of SMs 1 2 4 8
Dxtc 1.68 1.66 1.69 1.64
BFS 1.56 1.61 1.59 1.57

Particle Filter 1.42 1.45 1.41 1.46
Vectoradd 1.80 1.77 1.80 1.78
Quasirand 1.22 1.23 1.24 1.23

the benchmarks achieve 11% to 81% throughput improve-
ments on benchmark Vectoradd and Quasirand. Quasirand
achieves significant throughput improvement because the
original Quasirand uses less than half of the SM resources.
Self-interleaving can leverage the remaining resources to
achieve throughput improvement. Next, we will evaluate
the schedulability of the proposed approach. To have a fair
comparison, the following experiments are all based on the
workload pinning and self-interleaving.

6.3 Schedulability Analysis

Our analytical evaluation focused on the schedulabil-
ity of tasksets as the overall utilization increased, with
respect to different parameters pertinent to schedulability.
The following sub-subsections present the results of four
simulations that each varied the different parameters we
examined: the ratios of CPU, memory, and GPU segment
lengths; the number of subtasks; the number of tasks; and
the number of total SMs.

6.3.1 CPU, Memory, and GPU Lengths
We investigated the impact of CPU, memory, and GPU

segment lengths on the acceptance ratio. To study this quan-
titatively, We tested the acceptance ratio under different
length range ratios. The CPU length is shown as Table 1 and
we changed the memory, and GPU lengths according to the
length ratio. Fig. 7 shows taskset acceptance ratio when the
CPU, memory, and GPU length range ratios were set to 2:1,
1:2, and 1:8, which give an exponential scale.

Not surprisingly, the STGM approach is effective only
when the memory and GPU segment (suspension segment)
lengths are sufficiently short: the STGM approach was de-
veloped based on ”busy waiting”. When tasks are being pro-
cessed in memory copy and GPU segments, the CPU core
is not released and remains busy waiting for the memory
copy and GPU segments to finish. Although this is the most
straightforward approach, its pessimistic aspect lies in the
CPU waiting for the memory copy and GPU segments to
finish. Thus, it will be ineffective and hugely pessimistic
when the memory copy and GPU segments are large.

Self-suspension scheduling in [17] increases the schedu-
lability performance compared with the straight forward
STGM approach. Self-suspension models the memory and
GPU segments as being suspended, and the CPU is released
during this suspension. The theoretical drawback of this ap-
proach is that the suspension does not distinguish between
the memory segments and GPU segments. Instead, they are
modelled as non-preemptive and will block higher priority
tasks. However, in real systems, each task is allocated its
own exclusive GPU SMs, and the GPU segments in one task
will not interfere the GPU segments in other tasks.

Enhanced MPCP in [28] has the best performance when
the CPU segments are large. The schedulability is sensitive
to the CPU, memory, and GPU segment lengths ratios. It
will decrease obviously when the GPU segments become
longer because Enhanced MPCP is designed for the hetero-
geneous systems with multiple CPU cores which targets the
applications with long CPU segments.

The RTGPU schedulability analysis proposed in this
paper is effective even when the memory and GPU segment
(suspension segment) lengths are long. For example, in the
1:8 length test, RTGPU reaches 1.1 utilization rate with 100%
schedulability, which is 57% improvement with previous
work. In this approach, we distinguish the CPU, memory,
and GPU segments based on their individual properties. For
example, if the CPU cores are preemptive, then no blocking
will happen. Blocking happens only in non-preemptive



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h
e
d
u
la

b
le

 t
a
s
k
s
e
ts

 (
%

)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

MPCP(1/2mems)

(a) 3 tasks

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e
ts

 (
%

)

(b) 5 tasks

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e
ts

 (
%

)

(c) 7 tasks

Figure 9: Schedulability under different numbers of tasks

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e

ts
 (

%
)

RTGPU(1mem)

Self-suspension(1mem)

STGM(1mem)

RTGPU(2mems)

Self-suspension(2mems)

STGM(2mems)

MPCP(1/2mems)

(a) 5 SMs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e

ts
 (

%
)

(b) 8 SMs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d
u

la
b
le

 t
a
s
k
s
e

ts
 (

%
)

(c) 10 SMs

Figure 10: Schedulability under different numbers of SMs

memory segments. Meanwhile, because federated schedul-
ing is applied for the GPU segments and each task is
allocated its own exclusive GPU SMs, the GPU segments
can be executed immediately when they are ready, without
waiting for higher priority GPU segments to finish or being
blocked by lower GPU segments.

Also, by comparing the models with one memory copy
and two memory copies, we notice that the memory copy is
the bottleneck in the CPU-GPU systems because of limited
resource (bandwidth) and non preemption. Reducing the
numbers of memory copies or combining memory copies
can increase the system schedulability, especially when the
memory copy length is large shown in Fig. 7 (b) and (c).

6.3.2 Number of Subtasks
We then evaluated the impact of the number of subtasks

in each task on the acceptance ratio. From the possible
values in Table 1, the number of subtasks, M , in each task
was set to 3, 5, or 7. The corresponding acceptance ratios are
shown in Fig.8. The results show that with more subtasks
in a task, schedulability decreases under all approaches but
the proposed RTGPU approach still outperforms all other
approaches. The Enhanced MPCP approach is the most
robust scheduling algorithm as the subtasks increase.

6.3.3 Number of Tasks
In a third simulation, we evaluated the impact of the

number of tasks in each taskset on the acceptance ratio.
Again, from the possible values in Table 1, the number
of tasks, N , in each task was set to 3, 5, or 7. The cor-
responding acceptance ratios are shown in Fig.9. As with
subtasks, schedulability decreases under all the approaches
as the number of tasks increases, but the proposed RTGPU
approach outperformed the other two.

6.3.4 Number of SMs
Finally, we examined the impact of the number of total

SMs on the acceptance ratio. Based on the possible values in
Table 1, the number of subtasks M and tasks N in each set-
ting are again set to 5. The corresponding acceptance ratios

are shown in Fig.10. All approaches have better schedula-
bility as the number of available SMs increases. From this
set of experiments we can see that adding two more SMs
will cause the utilization rate to increase for all approaches.
Meanwhile, among all the approaches, the proposed RTGPU
approach again achieves the best schedulability across dif-
ferent numbers of SMs. The schedulability of the Enhanced
MPCP approach also increases significantly with the in-
creased number of SMs. When the number of SMs is large
enough, the Enhanced MPCP approach also performs well.
As shown in Fig.10 (a), when the computation resources
(GPU SMs) are limited, the bottleneck from memory copy
is more obvious and serious. The two memories model has
a poor scheduability in all approaches and the one memory
model has a significant improved performance.

6.4 Schedulability on Real GPU Systems
To test and compare schedulability between the theoret-

ical boundary and the performance on real GPU systems,
we empirically evaluated the proposed RTGPU scheduling
framework on an NVIDIA 1080TI GPU, under enough and a
limited number of SMs. The CPU was an Intel(R) Core(TM)
i7-3930K CPU operating at 3.20GHz. We implemented the
synthetic benchmarks described in Section 4 in a common
real-time scheduling context, since multiple GPU kernel
concurrency is supported only within the same CUDA
context. To avoid interference from adaptive power setting
and guarantee hard deadlines, we manually fixed the SM
core and memory frequencies respectively using the nvidia-
smi command. We also set the GPUs to persistence mode to
keep the NVIDIA driver loaded even when no applications
are accessing the cards.

As in the previous schedulability analysis experiments,
each task in a taskset was randomly assigned one of the val-
ues in Table 1. The deadline was set to the same value as the
period. In this work, we use a measurement-based analysis
to get the values of the kernel model (including the critical-
path overhead). The execution time distributions of different
sizes of memory copies through PCIe from CPU to GPU and



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

Real GPU(1mem 10SMs)

Real GPU(2mem 10SMs)

Real GPU(1mem 8SMs)

Real GPU(2mem 8SMs)

Real GPU(1mem 5SMs)

Real GPU(2mem 5SMs)

Sche analysis(1mem 10SMs)

Sche analysis(2mem 10SMs)

Sche analysis(1mem 8SMs)

Sche analysis(2mem 8SMs)

Sche analysis(1mem 5SMs)

Sche analysis(2mem 5SMs)

Figure 11: Full system schedulability of 5 parallel tasks
under 5, 8, 10 physical SMs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Utilization rate

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
c
h

e
d

u
la

b
le

 t
a

s
k
s
e

ts
 (

%
)

Real GPU(1mem 8SMs)

Real GPU(2mem 8SMs)

Real GPU(1mem 5SMs)

Real GPU(2mem 5SMs)

Real GPU(1mem 3SMs)

Real GPU(2mem 3SMs)

Sche analysis(1mem 8SMs)

Sche analysis(2mem 8SMs)

Sche analysis(1mem 5SMs)

Sche analysis(2mem 5SMs)

Sche analysis(1mem 3SMs)

Sche analysis(2mem 3SMs)

Figure 12: Full system schedulability of 12 parallel tasks
under 3, 5, 8 physical SMs

from GPU to CPU and different GPU kernel thread lengths
are measured from 10,000 samples. Based on the measured
worst case execution time, we calculate the values of the
kernel model and build the worst execution time model.
Then using the real GPU system, we examined schedulabil-
ity using different numbers of SMs and compared the results
from the schedulability analysis and from the real GPU
experiments. Fig. 11 presents the acceptance ratio results of
the RTGPU schedulability analysis and experiments on the
real GPU system. Both of them have better schedulability as
the number of available SMs increases. The gaps between
the schedulability analysis and real GPU system arise from
the pessimistic aspect of the schedulability analysis and
the model mismatches between worst execution time and
actual execution time. In the limited computation resource
scenarios (5 SMs and 8 SMs), the bottlenecks from memory
copy exist in both schedulability test and experiments with
real GPU systems. Reducing the numbers of memory copies
or combining memory copies are proper methods to deal
with the bottlenecks.

Finally, we evaluate the system schedulability when it
has a limited number of physical SMs (i.e., the number
of physical SMs is smaller than the number of tasks). Fig.
12 presents the system schedulability and corresponding
response time analysis under 12 parallel tasks with 3, 5,
and 8 physical SMs. To let each task have at least one
allocated virtual SM, we generate four virtual SMs from
every physical SM. Not surprisingly, the system suffers a
lower schedulability when there are more parallel tasks and
fewer GPU SMs. If we compare the schedulability from
different numbers of parallel tasks or different numbers
of physical SMs, the number of physical SMs has a more
impact on the schedulability because the number of physical
SMs directly determines the full system utilization rate.

7 RELATED WORK
For real-time systems with GPUs, previous work mainly

leveraged GPU kernel-granularity scheduling. For example,
Kato [30] introduced a priority-based scheduler. Elliott pro-
posed shared resources and containers for integrating GPU
and CPU scheduling [31] and GPUSync [32] for managing
multi-GPU multicore soft real-time systems with flexibility,
predictability, and parallelism. Golyanik [33] described a
scheduling approach based on time-division multiplexing;
S3DNN [34] optimized the execution of DNN GPU work-
loads in a real-time multi-tasking environment through
scheduling the GPU kernels. Thermal and energy efficieny
in GPU real-time scheduling systems were studied in [35],
[35], [36]. However, these approaches focus on predictable
GPU control, and hard to support multiple tasks to use the
GPU at the same time. Thus, the GPU may be underutilized
and a task may wait a long time to access the GPU.

In the past few years, GPU vendors and researchers
started to provide a more flexible GPU kernel execution
manner such as temporal preemption and spatial partition-
ing. For example, NVIDIA started the initial preemption
since Pascal architecture and in the recent Tegra architecture
for embedded systems, the preemption types can be selected
by users according to the application priorities. Besides,
researchers also developed many frameworks to further
support GPU preemption at kernel or even finer granularity.
For example, Park [37], Basaran [38], Tanasic [39], and Zhou
[40] proposed architecture extensions with hardware and
software codesigns to improve the preemption and tested
on the GPU simulators. Capodieci [41] further presented
a deadline-based real-time scheduling with the support of
preemption on a NVIDIA Drive-PX GPU. The scheduler
runs as a software partition on top of the NVIDIA hy-
pervisor and leverages pixel-level preemption and thread-
level preemption. This preemptive execution pattern im-
plements and tests a preemptive Earliest Deadline First
(EDF) scheduler. Extensive experiments demonstrate that
preemptive EDF scheduling achieves significant schedula-
bility improvement. The Effisha framework [42] introduced
software techniques without any hardware modification to
support kernel preemption at the end of any arbitrary thread
block. Meanwhile, targeting embedded systems without
hardware nor driver stack extensions, Hartmann [43] also
developed a fixed point preemption on GPUs called GPUart
and evaluated the Gang-Earliest Deadline First and Gang-
Fixed Task Priority scheduling strategies on it. According to
the experimental results, up to 221x response time improve-
ments are achieved in GPUart.

On spatial partitioning, NVIDIA launched the MPS and
MiG process management software to manage kernel paral-
lel execution. AMD released open-source software support
for hardware partitioning which has the potential to acceler-
ate and aid the long-term viability of real-time GPU research
[44], [45]. Researchers [12], [15], [16] proposed the persis-
tent thread techniques as discussed in Section 2. Following
the persistent thread technique, [46] presents an energy-
efficient scheduler sBEET by partitioning the computing
resources and isolating kernel execution. Experiments on
NVIDIA Jetson Xavier AGX demonstrate the sBEET could
reduce deadline misses and energy consumption by up to
13% and 21%. Liang [13] introduced a software-hardware



PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 14

solution for efficient spatial-temporal multitasking for GPU.
However, the computation throughput [8], [9] is usually
the focus of GPU spatial partitioning. [27], [47] considers
the fine-grained real-time GPU scheduling only with the
state-of-the-art system side work (persistent threads) and
scheduling analysis. However, SM-granularity resource par-
titioning without an efficient real-time scheduling algorithm
is not sufficient to achieve effective SM-Level scheduling
with fine granularity and high utilization rates. According
to the related works on temporal access and spatial por-
tioning, temporal access based on preemption has a more
flexible GPU access but spatial partitioning could achieve
a higher schedulability with the additional requirement that
the number of virtual SMs should be larger than the number
of parallel tasks.

Although flexible task execution can improve system
schedulability, rare work provides a complete solution,
which can seamlessly link the system improvement with
efficient real-time scheduling algorithms. To obtain more
universal and effective real-time GPU scheduling, and to
piggyback on previous work, we propose real-time GPGPU
scheduling: RTGPU. Compared with previous work, RT-
GPU leverages architecture information to support finer-
grain SM-level scheduling and improves the schedulability
and increases the throughput of real-time GPU systems.

8 CONCLUSION

To execute multiple parallel real-time applications on
GPU systems, we propose RTGPU—a real-time scheduling
method including both system work and and a real-time
scheduling algorithm with schedulability analysis. RTGPU
leverages a precise timing model of the GPU applications
with the persistent threads technique and achieves im-
proved fine-grained utilization through interleaved execu-
tion. The RTGPU real-time scheduling algorithm is able
to provide real-time guarantees of meeting deadlines for
GPU tasks with better schedulability compared with pre-
vious work. We empirically evaluate our approach using
synthetic benchmarks both via schedulability analysis and
on real NVIDIA GTX1080Ti GPU systems, the results of
which demonstrate significant performance gains compared
to existing methods.

REFERENCES

[1] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bern-
hard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel,
Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[2] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach,
Md E Haque, Lingjia Tang, and Jason Mars. The architectural
implications of autonomous driving: Constraints and acceleration.
In International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 751–766, 2018.

[3] Nvidia accelerates race to autonomous driving at ces.
https://blogs.nvidia.com/blog/2016/01/04/drive-px-ces-recap/
note = Accessed: 2019-11-23.

[4] Omid Hosseini Jafari, Dennis Mitzel, and Bastian Leibe. Real-time
rgb-d based people detection and tracking for mobile robots and
head-worn cameras. In 2014 IEEE international conference on robotics
and automation (ICRA), pages 5636–5643. IEEE, 2014.

[5] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. arXiv, 2018.

[6] Christopher J Rossbach, Jon Currey, Mark Silberstein, Baishakhi
Ray, and Emmett Witchel. Ptask: operating system abstractions
to manage gpus as compute devices. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, 2011.

[7] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott
Brandt. Gdev: First-class tGPUu resource management in the
operating system. In Presented as part of the 2012 tUSENIXu Annual
Technical Conference (tUSENIXutATCu 12), pages 401–412, 2012.

[8] Onur Kayiran, Nachiappan Chidambaram Nachiappan, Adwait
Jog, Rachata Ausavarungnirun, Mahmut T Kandemir, Gabriel H
Loh, Onur Mutlu, and Chita R Das. Managing gpu concurrency
in heterogeneous architectures. In Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International Symposium on. IEEE, 2014.

[9] Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang Lin. Hybrid
cuda, openmp, and mpi parallel programming on multicore gpu
clusters. Computer Physics Communications, 182(1):266–269, 2011.

[10] Deep learning framework by bair.
http://caffe.berkeleyvision.org/ note = Accessed: 2019-11-23.

[11] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: a system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.

[12] Kshitij Gupta, Jeff A Stuart, and John D Owens. A study of
persistent threads style gpu programming for gpgpu workloads.
In Innovative Parallel Computing-Foundations & Applications of GPU,
Manycore, and Heterogeneous Systems (INPAR 2012). IEEE, 2012.

[13] Yun Liang, Huynh Phung Huynh, Kyle Rupnow, Rick Siow Mong
Goh, and Deming Chen. Efficient gpu spatial-temporal multitask-
ing. IEEE Transactions on Parallel and Distributed Systems, 2014.

[14] Multi-process service. https://docs.nvidia.com/deploy/pdf/
CUDA Multi Process Service Overview.pdf.

[15] Chao Yu, Yuebin Bai, Hailong Yang, Kun Cheng, Yuhao Gu,
Zhongzhi Luan, and Depei Qian. Smguard: A flexible and fine-
grained resource management framework for gpus. IEEE Transac-
tions on Parallel and Distributed Systems, 2018.

[16] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter.
Enabling and exploiting flexible task assignment on gpu through
sm-centric program transformations. In Proceedings of the 29th
ACM on International Conference on Supercomputing. ACM, 2015.

[17] Lea Schönberger, Wen-Hung Huang, Georg Von Der Brüggen,
Kuan-Hsun Chen, and Jian-Jia Chen. Schedulability analysis and
priority assignment for segmented self-suspending tasks. In IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 157–167. IEEE, 2018.

[18] Ming Yang, Nathan Otterness, Tanya Amert, Joshua Bakita,
James H Anderson, and F Donelson Smith. Avoiding pitfalls when
using nvidia gpus for real-time tasks in autonomous systems.
In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[19] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson,
and F Donelson Smith. Gpu scheduling on the nvidia tx2: Hidden
details revealed. In Real-Time Systems Symposium. IEEE, 2017.

[20] Nathan Otterness, Ming Yang, Sarah Rust, Eunbyung Park,
James H Anderson, F Donelson Smith, Alex Berg, and Shige Wang.
An evaluation of the nvidia tx1 for supporting real-time computer-
vision workloads. In 2017 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 353–364. IEEE, 2017.

[21] John L Gustafson. Reevaluating amdahl’s law. Communications of
the ACM, 31(5):532–533, 1988.

[22] Achieved occupancy. https://docs.nvidia.com/
gameworks/content/developertools/desktop/analysis/report/
cudaexperiments/kernellevel/achievedoccupancy.htm.

[23] Gwangsun Kim, Jiyun Jeong, John Kim, and Mark Stephenson.
Automatically exploiting implicit pipeline parallelism from mul-
tiple dependent kernels for gpus. In Parallel Architecture and
Compilation Techniques, 2016 International Conference on. IEEE.

[24] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and
Tor M Aamodt. Analyzing cuda workloads using a detailed gpu
simulator. In International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2009.

[25] Jian-Jia Chen and Cong Liu. Fixed-relative-deadline scheduling of
hard real-time tasks with self-suspensions. In 2014 IEEE Real-Time
Systems Symposium, pages 149–160. IEEE, 2014.

[26] Konstantinos Bletsas, Neil Audsley, Wen-Hung Huang, Jian-Jia
Chen, and Geoffrey Nelissen. Errata for three papers (2004-05) on
fixed-priority scheduling with self-suspensions. Technical report,
CISTER-Research Centre in Realtime and Embedded Computing
Systems, 2015.

[27] Sujan Kumar Saha, Yecheng Xiang, and Hyoseung Kim. Stgm:
Spatio-temporal gpu management for real-time tasks. In 2019 IEEE

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm


PUBLISHED IN IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2023. DOI: 10.1109/TPDS.2023.3235439 15

25th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1–6. IEEE, 2019.

[28] Pratyush Patel, Iljoo Baek, Hyoseung Kim, and Ragunathan Ra-
jkumar. Analytical enhancements and practical insights for mpcp
with self-suspensions. In IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 177–189. IEEE, 2018.

[29] Huixiang Chen, Meng Wang, Yang Hu, Mingcong Song, and Tao
Li. Gaas workload characterization under numa architecture for
virtualized gpu. In International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 2017.

[30] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka
Ishikawa. Timegraph: Gpu scheduling for real-time multi-tasking
environments. In Proc. USENIX ATC, pages 17–30, 2011.

[31] Glenn A Elliott and James H Anderson. Globally scheduled real-
time multiprocessor systems with gpus. Real-Time Systems, 2012.

[32] Glenn A Elliott, Bryan C Ward, and James H Anderson. Gpusync:
A framework for real-time gpu management. In 2013 IEEE 34th
Real-Time Systems Symposium, pages 33–44. IEEE, 2013.

[33] Vladislav Golyanik, Mitra Nasri, and Didier Stricker. Towards
scheduling hard real-time image processing tasks on a single gpu.
In International Conference on Image Processing (ICIP). IEEE, 2017.

[34] Husheng Zhou, Soroush Bateni, and Cong Liu. Sˆ 3dnn: Su-
pervised streaming and scheduling for gpu-accelerated real-time
dnn workloads. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 190–201. IEEE, 2018.

[35] Muhammad Husni Santriaji and Henry Hoffmann. Merlot: Archi-
tectural support for energy-efficient real-time processing in gpus.
In 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 214–226. IEEE, 2018.

[36] Seyedmehdi Hosseinimotlagh and Hyoseung Kim. Thermal-
aware servers for real-time tasks on multi-core gpu-integrated em-
bedded systems. In 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 254–266. IEEE, 2019.

[37] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera:
Collaborative preemption for multitasking on a shared gpu. ACM
SIGARCH Computer Architecture News, 43(1):593–606, 2015.

[38] Can Basaran and Kyoung-Don Kang. Supporting preemptive
task executions and memory copies in gpgpus. In 24th Euromicro
Conference on Real-Time Systems (ECRTS 2012). IEEE, 2012.

[39] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho
Navarro, and Mateo Valero. Enabling preemptive multiprogram-
ming on gpus. In Computer Architecture (ISCA), 2014 ACM/IEEE
41st International Symposium on, pages 193–204. IEEE, 2014.

[40] Husheng Zhou, Guangmo Tong, and Cong Liu. Gpes: A pre-
emptive execution system for gpgpu computing. In Real-Time and
Embedded Technology and Applications Symposium. IEEE, 2015.

[41] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Ain-
gara Paramakuru. Deadline-based scheduling for gpu with pre-
emption support. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 119–130. IEEE, 2018.

[42] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou.
Effisha: A software framework for enabling effficient preemptive
scheduling of gpu. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2017.

[43] Christoph Hartmann and Ulrich Margull. Gpuart-an application-
based limited preemptive gpu real-time scheduler for embedded
systems. Journal of Systems Architecture, 97:304–319, 2019.

[44] Nathan Otterness and James H Anderson. Exploring amd gpu
scheduling details by experimenting with “worst practices”,”. In
Proceedings of the 29th International Conference on Real-Time Networks
and Systems, 2021.

[45] Nathan Otterness and James H Anderson. Amd gpus as an
alternative to nvidia for supporting real-time workloads. In 32nd
Euromicro Conference on Real-Time Systems (ECRTS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[46] Yidi Wang, Mohsen Karimi, Yecheng Xiang, and Hyoseung Kim.
Balancing energy efficiency and real-time performance in gpu
scheduling. In 2021 IEEE Real-Time Systems Symposium (RTSS),
pages 110–122. IEEE, 2021.

[47] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong
Seo, Yeongon Cho, and Soojung Ryu. Improving gpgpu resource
utilization through alternative thread block scheduling. In High
Performance Computer Architecture (HPCA), 2014 IEEE 20th Interna-
tional Symposium on, pages 260–271. IEEE, 2014.

An Zou is an Assistant Professor at the Univer-
sity of Michigan-Shanghai Jiao Tong University
Joint Institute in the Shanghai Jiao Tong Uni-
versity. His research focuses on computer ar-
chitecture and embedded systems. He broadly
investigated a set of techniques and solutions via
a bottom-up layered approach to improve com-
puting power and performance efficiency. Dr. An
Zou received his Ph.D. degree in Electrical Engi-
neering from Washington University in St. Louis
in 2021 and his M.S. and B.S. degrees from

Harbin Institute of Technology (HIT) in 2015 and 2013. His work has
been extensively published and recognized at top-tier conferences and
journals including MICRO, DAC, ICCAD, AAAI, TCAD, TACO, and RTAS.
He was a recipient of A. Richard Newton Young Student Fellow Award
and the Best Paper Nominations at DAC 2017 and MLCAD 2020.

Jing Li is an Assistant Professor in Department
of Computer Science at New Jersey Institute of
Technology. She received her Ph.D. at Wash-
ington University in St. Louis in 2017, where
she was advised by Professor Chenyang Lu and
Kunal Agrawal. She received B.S. in computer
science from Harbin Institute of Technology in
2011. Her research interests include real-time
systems, parallel computing, cyber-physical sys-
tems, and reinforcement learning for system de-
sign and optimization. She has high impact pub-

lications in top journals and conferences with 3 outstanding papers.

Christopher D. Gill is a Professor in the De-
partment of Computer Science and Engineering
at Washington University in St. Louis. He has
published more than 100 technical articles in se-
lective peer-reviewed conferences and journals,
and has led or contributed to the development,
evaluation, and open-source release of numer-
ous real-time systems research platforms and
artifacts, including: the Kokyu real-time schedul-
ing and dispatching framework that was used
in several AFRL and DARPA projects and flight

demonstrations; the nORB small-footprint real-time object request bro-
ker; a number of real-time and fault-tolerant services for The ACE ORB
(TAO) and the Component Integrated ACE ORB (CIAO); the Cyber-
physical Instrument for Real-time hybrid Structural Testing (CIRST) that
established key foundations for real-time hybrid simulation (RTHS), and
the CyberMech platform that built on the CIRST project to enable parallel
RTHS at millisecond time scales; and the RT-Xen real-time virtualization
research platform and the RTDS scheduler that is now part of the
Xen open-source software distribution. Professor Gill has served as
an Associate Editor for TCPS and Subject Area Editor for the Elsevier
Journal of Systems Architecture. He has served in numerous other
organizing and technical reviewing roles within the real-time systems
research community, including: IEEE TCRTS Chair; IEEE TCRTS Vice-
Chair; IEEE RTSS General Chair; ACM SIGBED Vice-Chair; IEEE
RTSS Technical Program Committee Chair; IEEE TCRTS Treasurer and
IEEE RTSS Finance Chair.

Xuan Zhang is an Associate Professor in the
Preston M. Green Department of Electrical and
Systems Engineering at Washington University
in St. Louis. She works across the fields of
VLSI design, computer architecture, and cyber-
physical systems and her research interests
include hardware/software co-design for effi-
cient machine learning and artificial intelligence,
adaptive power and resource management for
autonomous systems in analog/mixed-signal
and physical domain. Before joining Washington

University, Dr. Zhang was a Postdoctoral Fellow in Computer Science at
Harvard University. She received her BE degree in Electrical Engineer-
ing from Tsinghua University in China, and her MS and Ph.D. degrees in
Electrical and Computer Engineering from Cornell University. Dr. Zhang
is the recipient of NSF CAREER Award in 2020, AsianHOST Best Paper
Award in 2020, DATE Best Paper Award in 2019, and ISLPED Design
Contest Award in 2013, and her work has also been nominated for Best
Paper Awards at ASP-DAC 2021, DATE 2019 and DAC 2017.


	Introduction
	Background
	Background on GPU Systems
	Persistent Threads
	Multi-Segment Self-Suspension Model

	CPU and Memory Model
	CPU Modeling
	Memory Modeling

	Modeling and Management of GPU Fine-Grain Partitioning
	Kernel Execution Model
	Interleaved Execution and Virtual SM
	Workload Pinning and Self-Interleaving

	Practical Full System Scheduling
	Task Model
	Federated Scheduling for GPU Segments
	Fixed-Priority Scheduling for memory copy Segments with Self-Suspension and Blocking
	Fixed-Priority Scheduling for CPU Segments
	RT-GPU Scheduling Algorithm and Analysis
	Roadmap of Extending the Scheduling

	Full-System Evaluation
	Experiments
	System Side Implementation
	Schedulability Analysis
	CPU, Memory, and GPU Lengths
	Number of Subtasks
	Number of Tasks
	Number of SMs

	Schedulability on Real GPU Systems

	Related Work
	Conclusion
	References
	Biographies
	An Zou
	Jing Li
	Christopher D. Gill
	Xuan Zhang


