Provably Good Randomized Strategies for Data
Placement in Distributed Key-Value Stores

Zhe Wang
Washington University in St. Louis
zhe.wang@wustl.edu

He Liu
FoundationDB
heliu@apple.com

Abstract

Distributed storage systems are used widely in clouds, data-
bases, and file systems. These systems store a large amount
of data across multiple servers. When a request to access
data comes in, it is routed to the appropriate server, queued,
and eventually processed. If the server’s queue is full, then
requests may be rejected. Thus, one important challenge
when designing the algorithm for allocating data to servers
is the fact that the request pattern may be unbalanced, un-
predictable, and may change over time. If some servers get
a large fraction of the requests, they are overloaded, lead-
ing to many rejects. In this paper, we analyze this problem
theoretically under adversarial assumptions. In particular,
we assume that the request sequence is generated by an
adversarial process to maximize the number of rejects and
analyze the performance of various algorithmic strategies in
terms of the fraction of the requests rejected. We show that
no deterministic strategy can perform well. On the other
hand, a simple randomized strategy guarantees that at most
a constant fraction of requests are rejected in expectation.
We also show that moving data to load balance is essential if
we want to reject a very small fraction (1/m where m is the
number of servers) of requests. We design a strategy with
randomization and data transfer to achieve this performance
with speed augmentation. Finally, we conduct experiments
and show that our algorithms perform well in practice.

Keywords: Load balance, Distributed key-value store

1 Introduction

Distributed key-value stores are used extensively on modern
platforms, particularly in cloud applications [1, 8, 11, 17, 18],
but also in large-scale databases [12, 20, 24, 36, 41] and dis-
tributed file systems [15, 22, 39]. In these applications, there
is a large corpus of data items (e.g., key-value pairs, objects,
files) stored across many servers. Clients of the system send
requests, which access some particular data. Each request
is routed to the server that has the items, and the server is

“Corresponding author

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada
2023.

Jinhao Zhao*
Washington University in St. Louis
jinhaoz@wustl.edu

Meng Xu
FoundationDB
meng_xu@apple.com

Kunal Agrawal
Washington University in St. Louis
kunal@wustl.edu

Jing Li
New Jersey Institute of Technology
jingli@njit.edu

responsible for processing this request and responding to
the client. If the server is busy, the request may be queued.

For such systems, an important optimization criterion is
throughput — the number of requests that the system can
process on average per time period. If most requests end up
accessing a small number of servers, most system capacity
might be idle while a few servers’ queues grow unboundedly.
The client may care about latency — the amount of time
they wait between sending a request and receiving a reply.
Since long queues impact latency, distributed storage systems
implement bounded queues for servers such that a server
with a full queue rejects future requests.

The goal of the system is to accept or consume as many
requests as possible, or inversely to reject as few requests as
possible while keeping the queue size small — this is equiva-
lent to maximizing throughput while keeping latency small.
To avoid rejecting many requests (thereby reducing the sys-
tem throughput), distributed storage systems try to balance
load across servers. However, they have no direct control
over the load, since requests are generated by clients and the
request access pattern may change over time. Therefore, if
all the “hot items” — data items that are being accessed fre-
quently — are on the same server, that server will experience
a high load. Avoiding overload may require load balancing
via moving these items to other servers dynamically.

Load balancing algorithms for distributed storage systems
generally have the following steps: (1) initially distribute
data across servers in some manner; (2) each server has a
queue with bounded size (decided by the algorithm) and
rejects incoming requests if its queue is full; (3) do dynamic
data distribution by choosing some data to move from an
“overloaded” servers to other servers. The question consid-
ered in this work is how one should do these steps. This
problem has been studied empirically using various heuris-
tics based on past system behaviors or theoretically using
queuing theoretic assumptions on request arrivals [9, 30].

In this paper, we consider this problem from a theoretical
perspective. More formally, assume that the data is divided
into n chunks that must be housed on m servers. At every
time step, each server can process one request. We assume
that the requests are generated by an adversarial process

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

that generates m requests per time step and maximizes the
number of rejected requests. Our goal is to understand what
strategies with small queues may work against various ad-
versarial assumptions. We have the following results:
Simple deterministic strategies work against random
clients, but no deterministic strategy is good against
an adversarial client: If the client is not adversarial and
picks a random chunk to request in every time step, then any
simple strategy that divides the chunks evenly across servers
works well; however, if the client is adversarial, then, for any
deterministic algorithm, there exists a request sequence such
that the algorithm rejects most requests.

Simple randomized strategy works reasonably well
against oblivious adversary: A simple randomized strat-
egy that places chunks on servers uniformly at random and
then never moves them performs does ok — that is, it accepts
at least a constant fraction of the requests in expectation. In
addition, this strategy provides a strong bound of rejecting
only O(1/m) fraction of the requests if either of the follow-
ing is true: (1) if the adversary is weakened so that there is a
bound on how frequently it can access the same chunk; or (2)
servers have speed augmentation and each server consumes
O(log m) requests per time step instead of 1.

Data transfer is useful: We show that no strategy without
data transfer and constant speed can consume 1 — 1/m frac-
tion of requests with an adversarial client. We also design an
algorithm that starts with a randomized allocation and then
moves chunks out of heavily loaded servers to balance the
load. Given constant speedups of processing and data trans-
fer, we show that this strategy consumes 1 — 1/m fraction of
the requests even against a fully adversarial client.
Empirical evaluations are promising: To demonstrate
the practicality of the system model considered in this work,
we construct a case study using FoundationDB [41] to run
realistic benchmarks on a real cluster. We conduct simula-
tion experiments using adversarial and realistic workloads
to evaluate the empirical performance of our proposed algo-
rithms. Results show that randomized algorithms with and
without data transfers only need a small speedup to achieve
the same performance as an offline optimal algorithm.

2 System Model and Performance Metrics

In distributed data stores, we have m servers that store a large
collection of items, such as key-value pairs, objects, or files.
We can partition the data into n (n > m?) data chunks, where
a chunk is a collection of keys or a contiguous range of keys.
The system distributes chunks to servers according to its
load balancing policies. In this paper, we are going to abstract
away the details of exactly how the data partition is done
and assume that n and m are given and do not change over
time. We also leave other problems such as data replication
(and other database mechanisms, such as write-ahead log
and multi-version control) as future work.

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

Clients send requests to the cluster online and we assume
that each request accesses a single data chunk. When a re-
quest arrives, it is delivered to the server that hosts the ap-
propriate data chunk. For analysis purposes, we divide the
timeline into identical time slots, which have a length equal
to the time to process a request. For simplicity, we do not
distinguish the read, write, and read-range operations. Each
server has a FIFO queue (first-in-first-out) with the maxi-
mum length of g to store the unserved client requests. When
requests arrive, they are stored in the respective server’s
queue unless there is no space in which case the request is
rejected. Since a server can consume one request in a slot,
the cluster can consume at most m requests in the ideal case
where the m requests access chunks at m different servers.
Therefore, to make the workload feasible, we assume that at
most m requests arrive at the cluster in a time slot and each
of these requests accesses a different chunk.

During system initialization, the system allocates chunks
to servers according to some load balancing algorithms, after
which client requests are served. For the first few results
in this paper, we assume that the allocation is fixed after
initialization. However, some servers may be overloaded,
and a load-balancing algorithm may want to move data from
one server to another; therefore, later sections of the paper
analyze algorithms that move data. We formally model the
process of the data movement, named data transfer, as
follows. At any time, a server can be involved in one data
transfer. In each transfer, at most s chunks to one other server,
and this takes s time slots. In other words, transferring s
or fewer chunks from one server to another takes s time;
therefore, the transfer time is a stepped function, not linear.
This models the fact that the latency of moving data from
one server to another is often large, but the bandwidth is also
large — therefore, sending or receiving 1 chunk vs. several
chunks up to the bandwidth takes the same amount of time.
On the other hand, moving two sets of chunks from or to two
different servers takes 2s time slots, since the server must
prepare the transfer and initiate the transfer. We use the
single parameter s for modeling both the maximum number
of chunks in a data transfer (with a total size below the
bandwidth) and the latency of a data transfer. Our case study
in Section 6 indicates that this model is reasonable on a real
platform.

As noted in Section 1, the goal is to minimize the number
of rejected requests, which is a measure of throughput.

Definition 1 (Throughput). Given a sequence o of requests
arriving over time, A(o) denotes the number of requests that
are accepted by algorithm A on sequence o.

We assume the input sequence of client requests is gener-
ated by an oblivious adversary defined as follows.

Definition 2 (Oblivious adversary). The oblivious adversary
knows how the online algorithm works, but it does not know
the random choices made by the algorithm.

Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores

For deterministic data allocation, the oblivious adversary
always knows the exact locations of chunks at any point in
time; therefore, unsurprisingly, we were able to show that
no deterministic algorithm performs well. Most of this paper
analyzes the performance of various randomized algorithms.

The theoretical performance of an algorithm can be ana-
lyzed by comparing its throughput with optimal throughput.

Definition 3 (Constant competitive). An online algorithm
A is (constant) c-competitive, if A(c) > ¢ - OPT (o) for any
finite input sequence o, where OPT is the offline optimal.

An algorithm’s performance is better when c gets closer to
1. While constant competitiveness is nice, we would prefer
not to reject a constant fraction of the requests. Thus, we
define the following, stronger performance criterion.

Definition 4 (Almost optimal). An online algorithm A is
almost optimal, if A(c) > (1-0(1/m))OPT(o) for any finite
input sequence o, where OPT is the optimal offline scheduler.

For randomized algorithms, similar definitions apply ex-
cept that we compare the expected throughput of the algo-
rithm with the throughput of OPT. Note that in the best case
for an offline optimal where all requests arriving in a time
slot access different servers and are processed in this slot, all
the |o| requests in a finite input sequence o can be accepted
by the optimal. Hence, an online algorithm is near optimal if
it can accept (1 — 1/m)|o| requests for all input sequences.

Finally, some of our algorithms will require resource aug-
mentation or speedup. Resource augmentation implies that
we allow the algorithm to perform certain operations faster
than the optimal algorithm can. We consider two types of
resource augmentation: (1) speed of processing requests on
servers and (2) speed of data transfer. Often resource augmen-
tation is necessary to achieve nontrivial results. However,
the smaller the resource augmentation required, the better
the algorithm. We generally want the resource augmentation
factor to be no more than a constant.

3 Deterministic Policies

This section analyzes deterministic policies for allocating
data chunks to servers. For warmup, we will first show that
if the client requests access to random chunks, then any
policy that evenly balances the number of chunks on each
server performs well. On the other hand, no deterministic
policy performs well against an oblivious adversary — for
any deterministic policy, there exists an access pattern that
causes the system to accept only a small number of requests.

Simple policies work well against random clients. We
now do a simple analysis showing that all reasonable allo-
cations work for random clients where each request picks
a chunk to access uniformly at random and independently.
Without loss of generality, we relax the assumption and allow
multiple requests to access the same chunk even in the same

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

time slot. For this random client, we consider a simple even
allocation, where n/m chunks are allocated to each server.
The allocation is generated once and need not change. The
following lemma is easy to prove using Chernoff bounds.

Lemma 1. For a random client and an even allocation, in any
log m consecutive time slots, the probability that more than
3log m requests arrive at a particular server is less than 1/m?.

Lemma 1 leads to the following theorem.

Theorem 1. Given a random client, an even allocation with
speed 3 and queue size ¢ = 6 log m accepts at least (1—1/m)|o]|
requests in expectation for any sequence of |o| requests.

Proof. Divide the execution into rounds, where each round
has mlog m requests — therefore, each round has at least
log m time steps, so a server can process 3 log m requests
with speed 3 from its queue. From Lemma 1, the probability
that a server receives more than 3 log m requests in a round
is at most 1/m?. By union bound, in a particular round r,
the probability that at least one server receives more than
3log m requests is at most 1/m.

For a particular round r, we will prove via induction that
the number of leftover requests from the previous round in
any server’s queue is at most 3 log m for all servers at the
start of every round. We have two cases. First, In round r, no
server gets more than 3 log m requests. In this case, the queue
size of server a at the end of the round does not increase,
since server a can process 3 log m requests during a round if
available. During this round, there can be at most 6 log m re-
quests in any queue and no requests are rejected. Second, in
round r, some server get more than 3 log m requests. We can
pessimistically assume that all the 3 log m requests that ar-
rived in r are rejected maintaining the inductive hypothesis.
Since requests are rejected only in the second type of rounds,
which occur with a probability at most 1/m, we reject at
most 1/m fraction of requests in expectation. O

No deterministic policy works against an adversarial
client. We now consider an oblivious adversary. Intuitively,
since the algorithm is deterministic and the adversary knows
the allocation, it can always overload some server. Here we
argue that no deterministic policy, even if it moves data to
load balance, can work well with small queues.

Theorem 2. Consider a deterministic algorithm D running
on a system with m servers, n chunks, max queue length q,
data transfer time s, and constant speedup for both request
processing and data transfer, where n > m?. There exists a
request sequence o such that OPT (¢)/D(o) = Q(ms/(g+cs))
where OPT is the offline optimal.

Proof. Since n > m?, at any time instant, there exists a server
with more than m chunks. Since the algorithm is determin-
istic, the adversary always knows which server has more
than m chunks and can send all m requests to these chunks.

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

Since the server can process only ¢ chunks per time step, the
queue will soon fill up causing most requests to be rejected.

Now, say that the D moves chunks. We divide the timeline
into rounds. Each round has ms time slots, where s is the
number of slots to perform a data transfer. Here is the adver-
sary’s strategy. At the start of round i, pick m chunks that
are all in a particular server for D, say a, and send requests
to these chunks only for the next s time steps. By the end of
s steps, D can move s of these chunks away from a with g
requests. With speed c for request processing, D can process
at most cs requests in the s time steps and store at most g
requests in the queue. Therefore, it accepts at most ¢s + 2g
of these ms requests. After this, for the rest of the round (the
remaining ms — s time steps), the adversary does not send
any requests.

Since OPT knows the sequence, in the previous round
i — 1, it will set up to ensure that all these m chunks were on
different servers so it can accept all requests. In the remaining
(m—1)s time steps of round i, OPT (in collaboration with the
adversary) sets up for the next round. It knows which server
will have at least m chunks at the start of the next round for
D, so it distributes these m chunks across m servers for OPT
so that OPT can answer all ms requests in the next round.
The adversary can then repeat for the next round. O

4 Randomized Policies with No Transfers

In this section, we consider a simple randomized strategy
that randomly allocates chunks to servers, which is similar
to the game of throwing randomized balls into bins. We will
show that it is constant competitive. We will also prove that
no strategy that doesn’t move data can be almost optimal
against an oblivious adversary. In the next section, we will
see a strategy that is almost optimal.

Definition 5 (Mypaj;_pin). For n chunks and m servers, the
algorithm picks a server for each chunk uniformly at random
and independently. A Mpq11-pin, mapping denotes the mapping
between chunks and servers.

Upper Bounds for Balls into Bins. We will now prove a
theorem against an adversarial client.

Theorem 3. Given a system withm servers and n requests. For
any sequence o, say E[B,] is the expected number of requests
accepted by balls into bins allocation B. Then, E[B;]/|o| > 1—
1/e even with queue size ¢ = 1 and no resource augmentation.

Proof. Consider the balls into bins allocation and consider a
particular time step t when the client sends requeststok < m
distinct chunks. These k chunks were randomly thrown on m
servers. Now consider a particular server a. The probability
that exactly i of these k requests hit a is:

(G

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

Therefore, the expected number of servers that get at least 1
request is at least x = m —m (mT_l)k >(1- %)k. Any server
that gets at least one request processes at least one request
— therefore, at least x requests out of k total requests were
consumed at this time step. Therefore, by adding over all
time steps, we get the result. O

We see that the balls into bins allocation is constant com-
petitive with no speed augmentation and with very small
queues. What if we give it speed augmentation? We now
show that with sufficient (©(log m)) speed augmentation, it
is almost optimal.

Theorem 4. Given a system withm servers and n requests. For
any sequence o, say E[B,] is the expected number of requests
accepted by the balls into bins allocation B. Then, E[Bs]/|o| =
1—0(1/m) with ©(log m) speedup on request processing and
queue size ¢ = ©(log m).

Proof. Consider a particular time step t when the client sends
requests to k < m distinct chunks. These k chunks were
randomly thrown on m servers when the allocation was
done. Now consider a particular server a. The probability
that at least x requests access this server at this time step is at
most (i) (%)x < ’jc—),((#)x = L < 1/m? for x = clogm with
large enough c. At any time step, with ©(log m) speed, x =
O(log m) requests can be processed by a server. Therefore,
the balls into bins allocation can process all the k requests
that arrive on that time step with a probability at least 1-1/m.
Even assuming pessimistically that all requests at other times
are rejected, summing over time still gives us the result. O

Lower bound on algorithms with no data transfer. We
saw that the balls into bins algorithm is almost optimal with
O(log m) speed; however, what about constant speed? We
now show a lower bound, saying that any algorithm without
moving data cannot be almost optimal with constant speed.

Theorem 5. Given any policy D for allocating chunks, for
any queue with length q, a constant speedup of processing,
if n > m?, then there exists an input sequence, such that
E[D]/E[Opt] < p wherep < 1 is a constant.

Here is the adversary’s strategy: It simply selects m differ-
ent chunks at random and repeatedly requests these chunks
in every time slot. The challenge is to show that there is
no randomized strategy that can provide an almost optimal
acceptance ratio in expectation for this sequence. To do this,
we will define a concept of a group, which will allow us to
extract a common property of all distributions.

Definition 6 (group). Let a T-group consists of exactly T
chunks that are in the same server, and different groups do not
have any chunks in common.

We want all groups to have the same number of chunks
in order to compute probabilities. If a server has at least T
chunks, we create groups with T chunks each and leave the

Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores

leftover chunks ungrouped. Repeatedly put T ungrouped
chunks into groups until we have fewer than T ungrouped
chunks. The following observation just says that there are a
large number of groups.

Observation 1. For any position of n chunks in m servers,
the number of (n/2m)-groups is at least m.

We now only consider grouped chunks and we will show
that a large number of requests sent to grouped chunks
will be rejected. In particular, we will first show that the
probability that a group gets a large number of requests is
not too small.

Lemma 2. Given a specific distribution of the chunks, and
suppose the adversary randomly selects m chunks. Then for
k = o(m) and n > m?, the probability that an (n/2m)-group
has at least k requests is greater than p = 2
say that these groups are overloaded.

ﬁ -e” 2. We can

Proof. Since the adversary randomly chooses m distinct chunks,
the number of chunks in each group follows a Hypergeometric
Distribution. In particular, consider k = o(m) and group size

T = n/2m. We can assume thatm—k > m/2and T—k > T/2
and m — k < n/m. We can then bound the probability that a
particular group has k chunks among the m chunks by the
following:

T\ (n-T ! . (n=T)!
(k) (mt) _ FCT1 * Grlin T !

(") n!
m m!(n—-m)!
T! (n=T)! m!
1 T-01 " -T-(m=0)! ~ (m-k)!
= !
“ =)
1 (T-kf - (n=-T-(m-k)™Fk.(m-k)*
>E . nm
k. (I\k 1 1 -k
LD (g - "
k! n™m
1 3.1 1 3
:_.1__._m_k>_._§’
8kk! =5 W skkt ¢
This proves the lemma. O

Now we are able to give a proof for Theorem 5. Since
the adversary repeatedly requests the same m chunks, over-
loaded groups remain overloaded. Therefore, regardless of
the queue size, servers with overloaded groups will eventu-
ally reject many of their requests.

Proof. According to lemma 2, each (n/2m)-group is over-
loaded with probability p — they get at least k requests on
every time step. Therefore, with any speedup smaller than
k, these groups remain overloaded forever since their total
capacity is smaller than their average load. Therefore, these
chunks will reject at least one request per time step. Since
the expected number of overloaded groups is mp = 17 €72,
with speed < k, at least mp requests are rejected on every

time step within expectation while the optimal algorithm can

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

handle all m requests. Therefore, the fraction of the requests
that any algorithm accepts is p, and p is a constant for any
constant k. O

Constraining the request sequence. The argument in
the previous section indicates that the worst-case workload
for any randomized strategy that does not move data is an
adversary which requests the same m chucks repeatedly.
However, this is often not what happens in the real world. In
this section, we show that we can do better if the adversary
can not request the same chunks repeatedly — we assume
that the client issues at most one request to a particular chunk
in any consecutive log m time steps and show that balls into
bins strategy is almost optimal against this adversary.

We divide time into phases of size log m. The following
Lemma is similar to Lemma 1, except that the randomness
comes from the randomized allocation rather than the client.

Lemma 3. Against a constraint adversary which can not
send more than one request to the same server in one phase,
the probability that any server gets more than 3 log m requests
in a phase is at most 1/m?.

With Lemma 3, we can prove Theorem 6 in a manner very
similar to the proof of Theorem 1.

Theorem 6. Given a queue with sizeq = O(log m) and a con-
strained adversarial input o, the expected number of requests
consumed by balls into bins policy is E[B] > (1 —1/m)o.

The result indicates that a workload is great if requests are
not successively and repeatedly access to the same chunk.

5 Randomized Policies with Transfers

In this section, our goal is to design a policy that is almost
optimal (consumes 1 — O(1/m) fraction of the requests) with
constant speedup and without placing any restrictions on
the input sequence. In particular, we propose an algorithm,
say Y which satisfies the following strong guarantee.

Theorem 7. Say we have a constant speedup of data move-
ment and a constant speedup of processing on the system Y
with the queue length q = ©(slog? m), where s is the number
of time slots to complete a data transfer. For any input sequence
o, the expected number of requests consumed by Y is at least

(1-0(1/m%)e.

An overview of the system Y: In prior sections, we have
seen that while deterministic policies can not be shown to be
constant competitive (even allowing data movement) (Theo-
rem 2), simple randomized policies such as allocating chunks
uniformly at random can achieve constant competitiveness
(Theorem 3). In particular, with balls into bins randomiza-
tion, a constant fraction of the requests can be consumed on
each time step. However, since some servers get more than
a constant number of requests (some servers get Q(logm)
requests) on each time step, these servers are overloaded and

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

the adversary can keep them overloaded — therefore, with
at most constant speed and with no restrictions on the input
sequence, no randomized policy without data movement can
be almost optimal (Theorem 5).

To address this issue, we will design a system, we call it, Y
which moves data to get a good load balance. In particular, we
start with a randomized balls into bins allocation just like the
previous sections. Therefore, all chunks have a home server
where they were allocated through balls into bins. However,
when the queue of the server contains a request that has
been in the system for ©(slogm) time, this indicates that
this server is overloaded and can not handle all the requests
being sent to it. At this point, a batch movement process
is triggered on this server and the chunks in the server that
have pending requests are distributed to other servers so
that these old pending requests can be handled efficiently
by other servers. Once these pending requests are handled,
these chunks are moved back to their home server so that
the original randomized allocation is restored.

Modeling assumptions: For simplicity in analysis, we
will make some modeling assumptions that do not impact the
overall result. In particular, we will assume that each server
has two processors: a primary processor which consumes
the requests that arrive at this server from the client and a
secondary processor which consumes the requests that are
sent to it from other servers for load balancing purposes from
other processors. Each server has its own queues, where the
primary and secondary queues are both of size ©(s log® m).
Note that this does not impact the theorem statement since
we allow for constant speedup — if we allow for processor
speed of pP, then each of the processors can run at half
the speed. Similarly, the queue length can be split among
the two queues while only impacting constant factors. In
this analysis, we will not try to optimize constant factors;
therefore, the constant factors computed will be large. In the
evaluation section, we will see that the algorithm requires a
quite small constant in practice to perform very well.

To restate the algorithm using these terms: when a request
arrives at a server from a client, it is put in the primary queue.
If the primary queue is full, then the request is rejected. If the
age of the oldest request in the primary queue is 6s log m, the
server triggers a batch movement process, and any chunk
that has a request in the primary queue is moved to other
servers and their corresponding requests are moved to those
servers’ secondary queues (move out phase). These moved
requests are processed by the target processor’s secondary
server. Once a server’s secondary queue is empty, the chunks
that have been moved there are sent back to their home
servers (move back phase). We will define the precise policy
of movement momentarily, but let us first consider what the
challenges are in designing this policy.

Challenges: Intuitively, the system Y should work since
(1) it moves the requests out of the primary queue in a timely

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

manner to avoid filling the primary queue; (2) it spreads
the requests among the secondary queues, which efficiently
consumes the requests and avoids filling secondary queue.
However, there are a few challenges. First, a batch movement
process might take a long time if the batches are large. When
a server triggers a batch movement, many chunks in that
server may have pending requests in the primary queue
and all these chunks must be moved. Recall, from Section 2,
that it takes s time to move at most s chunks between two
particular servers — we call this one operation a transfer.
Therefore, depending on how many transfers are required,
a full batch movement may take time. This can cause the
queue of the server to get longer while the batch process
is executing as well as blocking other batch processes from
starting. Second, we may get unlucky and a server may get
a very large number of requests from the client at the same
time step. When this happens, the primary queue can become
overloaded very quickly, potentially causing downstream
effects. Third, the batch process is deterministic — therefore,
in principle, the adversary can guess the location of chunks
when they are being processed away from their home server
and can overload the servers where these chunks are located
by sending too many requests there.

Algorithm Description. We can now describe Y and how
it handles these challenges. The queue size of each server
is ©(s log? m) for a sufficiently large constant hidden in the
©-notation.

(I) Batch trigger: A batch process at a particular server a
is triggered when the oldest request at this server that is not
already a part of an older batch process is 6slog m old.

(IT) Batch start: In Y, batch processes may not start as
soon as they are triggered; they are executed in order. Say,
the batch process i is triggered before the batch process j is
triggered. If the processes are triggered on the same server,
then j executes after i completes since the same chunks may
be involved in both. If they are on different servers, they can
execute in parallel. Our distribution algorithm ensures that
a server is involved in at most transfer at a time.

(IIT) Data distribution during moveout: Once a batch
is triggered, we know which chunks are part of the batch —
that is which chunks have pending requests which are part
of this batch. These chunks are divided into log m packages
for transfer so that each bucket has O(s) chunks and at most
O(slog m) requests. We later show that this is possible with
high probability. Therefore, each of these packages can be
moved to destination servers using one transfer each. When
the batch starts, these buckets are moved to log m different
servers and the corresponding requests are moved to those
server’s secondary queues.

(IV) Process the chunks and move back: The secondary
processor of the target server processes the requests from the
secondary queue in order. Once all requests of a particular

Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores

transfer have been processed, the chunks are moved back to
their home server.

(V) Request handling during batch: Even when a chunk
has been moved to a different server for processing its pend-
ing requests, any new requests to this chunk are still sent
to its home server’s primary queue and these are processed
once the chunk has moved back to its home server.

(VI) Flow control and batch cut-off: In order to avoid
some boundary conditions, we perform some controls: (1) If
a single server receives more than 2 log m requests in a single
time step, then some of the requests are immediately rejected
to ensure that only 2 log m requests are added to any primary
queue on any single time step. (2) If the server has more than
24slog m chunks with requests in the primary queue, the
server only moves 24s log m chunks with the most requests,
and the server rejects the requests of unmoved chunks.

Causes of rejection. We want to show that this process
rejects at most O(1/m?) fraction of the requests in expecta-
tion. Note that requests can be rejected due to the following
reasons: (1) flow control and batch cut; (2) rejection from the
primary queue if it becomes full; and (3) rejection from the
secondary queue if it becomes full. We will show that the
first two reasons cause few rejects in expectation and the
last reason causes no rejections for a good load balancing
policy. However, in order to show this, we must first bound
the time it needs to complete a batch process.

Bounding the execution time of a batch process. We
first bound the execution time of a batch process — the time
between the triggering and completion of a batch process.
We will divide time into phases of size 3slog m. We say that
X; is the set of batch processes that were triggered during
phase i. We will prove the following key Lemma.

Lemma 4. Any batch process that was triggered during phase
i will be completed by the end of phase i + 1 with constant
speedup on both processing speed and transfer speed.

In order to prove this lemma, we first prove some support-
ing lemmas. First, we recall that a batch process is triggered
when the oldest request in the queue which is not already
part of the batch process has been in the queue for 6slogm
time. Therefore, a batch process can contain requests from
at most 6slog m time steps. We can bound the number of
requests that are part of a batch process as follows:

Lemma 5. Given the balls into bins allocation, constantc > 1
ands < m/(clogm). In 6slog m consecutive time slots, the
probability that a particular server receives 12s log” m or more
requests is less than 1/m?.

Proof. Note that the client can send requests to the same
chunk in different time steps, but in one time slot it must
send m different requests. In each time step, for a particular
server a, say X! is the random variable representing the
number of requests that hit this server at time step i. For

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

x = 2log m, we have

X X X
prxis o < (ML) <™ (L) =L
x)\m x! \m x!' m3

The last equation works when m > 4. Therefore, we can
sum up X! through all cslogm steps and use Bernoulli’s
inequality to get the bound we need. O

We can also bound the number of chunks involved in a
batch process by a method very similar to Lemma 1.

Lemma 6. Given a balls into bins allocation, the total number
of chunks from a particular server that can be requested within
6slog m time is 24s log m with probability of at least 1 —1/m?.
Therefore, the total number of chunks involved in a batch
process is 24s log m with probability of 1 — 1/m?. Hence, each
batch process causes log m transfers to different targets.

Given these lemmas, we can define a transfer packaging
policy. Recall that each data transfer can transfer up to s
chunks to a particular server. Once we have defined a batch
with at most O(s log® m) requests and O (s log m) chunks, we
package these into log m transfers greedily. We keep adding
chunks to a transfer until either the number of requests in
the transfer is greater than c;slog m for some constant c;
or the number of chunks in the transfer is greater than c;s.
At this point, this transfer is complete and we start a new
transfer. Due to the previous two lemmas, the total number
of transfers for a particular batch process is at most logm
for suitable choices of ¢; and cy. Therefore, we have the
following corollary:

Corollary 7.1. The amount of time it takes to move all the
chunks that are part of the same batch process to log m target
servers is s log m assuming that we have data movement speed-
up of 24 — that, we can move 24s chunks in s time.

We can also bound the number of requests in the sec-
ondary queue under certain conditions. Consider batch pro-
cesses in X; U X;4; — the batch processes triggered during
two consecutive phases. We want to bound the number of
requests that end up in the same server’s secondary queue
due to these batch processes.

Lemma 7. Considering only requests which are part of batches
from X; U Xj,1, the number of these requests that end up in
a particular secondary server’s queue is at most css log m for
some constant cs.

Proof. All the requests that are part of batch processes in
X;i U X4 arrive within a time interval of 12slogm since
any request which is in batch from X; must have arrived
at most 6s log m time before the beginning of X;. Therefore,
these batches can contain a maximum of 12sm log m requests.
Since requests are evenly balanced across servers during the
batch movements and we have m servers, no server has more
than c3s log m requests for a suitably large cs. O

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

We now observe the following invariant about consecutive
phases since a batch is triggered when the oldest request
which is not part of a batch arrived 6slog m time ago.

Observation 2. Consider any two consecutive phases i and
i+1, and consider the set X; U X;1 — the set of batch processes
triggered during these phases. No two batch processes in this
set can be triggered by the same server.

Now we can prove Lemma 4 via induction.

Proof. The base case is trivial since the first phase doesn’t
trigger any batch processes. For Inductive Hypothesis, as-
sume that all batch processes triggered during phase i com-
pleted by the end of phase i+1. Therefore, all batch processes
triggered during phase i + 1 are ready to start at the begin-
ning of phase i + 2 since all prior batch processes at their
respective servers have completed.

None of the batch processes triggered during phase i +
1 have the same source (Observation 2). In addition, they
trigger log m transfers each (Corollary 6). Therefore, there
are a total of at most m sources and at most m log m targets
of the transfers — these can be scheduled in slogm time
without source or destination conflicts with sufficient large
constant speedup in data transfer speed.

Now consider the processing of these requests by the
secondary server. The secondary server can only contain
requests due to batch processes triggered during phase i + 1
and phase i+2 (since phase i+2 has started, some of the batch
processes in this phase may have also started). By Lemma 7,
the total number of requests in any secondary queue due
to requests from these two phases is at most cs3slog m for
some constant cs. Therefore, again, with sufficient constant
speedup on processing, all these requests can be processed
by the secondary server in the next s log m steps. Finally, all
the chunks from batch processes in phase i + 1 must move
back and again, which can be done in s log m time by using a
reverse schedule from the move-out schedule. Therefore, in
at most 3s log m time after the start of phase i +1 — that is, at
the end of phase i+2 — all these batches have completed. O

Bounding the number of rejected requests. We can now
show that the number of rejected requests is small. Below is
the proof of Theorem 7.

Proof. Recall that requests can be rejected due to the two
control strategies. First, Lemma 6 implies that the probability
that a batch has more than 24s log m chunks involved is less
than 1/m?. Since rejecting a request due to the second policy
happens only on these batches, this probability is also less
than 1/m?. Second, consider the case where 2log m requests
arrive at the same server. For a particular server a, say X,
is the random variable representing the number of requests
that hit this server at this time step. Denote x = 2log m, we

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

have

x x x
R RETEa
x| \m x!'\m x!
For m > 4 we have % < 1/m3. According to the union bound
through all the servers, the probability that it is rejected due
to the first policy is less than 1/m?.

In addition to the control strategies, a request may be
rejected if the primary queue is full. However, recall that
each batch process completes in time at most O(s log m) and
due to Lemma 5 the total number of requests that arrive
in this time period is at most O(slog® m) with probability
1 — 1/m?. Since the primary queue has this capacity, the
probability of a request being rejected due to this is small.
Finally, Lemma 7 indicates that requests can never be rejected
from the secondary queue since the number of items in it
are at most O(slog m). O

6 Empirical Evaluations

In this section, we evaluate the practicality of our theoretical
study on load balancing in distributed key-value stores via a
case study real-world database cluster and extensive simula-
tions based on statistics measured from realistic workloads.

6.1 A Case Study

Our case study platform is an Amazon Kubernetes Service
cluster running FoundationDB [41], which is an open-source
distributed database supporting transactional key-value stores.
We develop experimental components in FoundationDB to
measure the runtime statistics and customize workloads to
mimic real-world applications. The case study aims to verify
the applicability of the theoretical model for the load bal-
ancing problem in distributed key-value stores and collect
statistics to be used in simulation experiments.

Experimental design. We set up a FoundationDB cluster
on the Amazon Kubernetes Service with 70 storage servers
and one data distributor, managed by the FoundationDB
Operator. Each storage server runs in a dedicated Kubernetes
pod with Amazon EBS storage and contains more than 100
data chunks. The RocksDB [5] is used as the storage engine.

The storage layer of the FoundationDB implementation
that supports snapshots, including RocksDB, works as fol-
lows. The keys (values) are persistent in RocksDB check-
points. Each checkpoint, denoted as a data chunk in previous
sections, is stored as a physical file on the disk. Each key is
persistent in one checkpoint file. A data transfer from server
i to server j is implemented as fetching and transmitting at
most s checkpoint files from server i to j.

In FoundationDB, a client uses transactions to interact
with the storage. A transaction contains a series of requests
(operations) on keys, such as read, write, and scan (read
range) requests. Since this work focuses on the storage layer,
we regard transactions as the proxy of clients.

Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores

Our case study runs the realistic workload using the Ya-
hoo! Cloud Serving Benchmark (YCSB) [10], with an exten-
sion that client requests have a 90/10 Read/Write ratio, which
mimics the pattern in real-world applications. We run the
workload for one hour containing more than one million re-
quests, from which we randomly sample and measure 100K
requests with specific properties under consideration.

Since the data distributor issues a data transfer and moni-
tors it until the data chunks complete moving, we measure
the data transfer latency inside the data distributor. Hence,
the latency measurement is accurate without needing clock
synchronization between storage servers. When recording a
data transfer, we collect the number of bytes in the moved
data chunks, its end-to-end latency, the source storage server,
and the destination storage server.

Data transfer latency. Recall that our theoretical model
assumes that the latency of a data transfer does not increase
with the number of moved chunks, as long as the total size is
below the network bandwidth. To validate this assumption,
we use our FoundationDB cluster to measure the data trans-
fer latencies under different settings: (1) moving chunks with
different total data sizes from one server to another server,
(2) receiving chunks in multiple data transfers from different
servers at the same destination server, and (3) sending chunks
in multiple data transfers from the same source server to
different servers.

Figure 1(a) presents the latency of standalone data trans-
fers with different total sizes. We can see that the latency
does not increase with larger data sizes. This is mainly be-
cause the network bandwidth between storage servers is
approximately above 1GB per second, which is larger than
the total size. Thus, the latency is dominated by the CPU
overhead of the storage server to prepare for the data transfer,
which is independent of the chunk size.

For multiple data transfers to the same destination server
or from the same source server in Figures 1(b) and 1(c), we
can see that the latency increases roughly linearly with an
increasing number of data transfers. This is because the stor-
age server can only process the data transfers sequentially,
which is consistent with our theoretical model.

Data transfer latency vs. request processing latency.
For analyzing theoretical bounds, the time to process a client
request is considered as 1 time slot, while the time to per-
form data transfer is denoted as s time slots. Our empirical
measurements show that the request processing latency and
data transfer latency are at the magnitude of 0.001 and 0.1
seconds, respectively. Besides, the read and scan requests
have smaller latencies than that of write. Hence, the ratio
s is around 100 to 1000 in practice. Thus, our simulation
experiments below use s = 100.

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

6.2 Simulation Experiments

We conduct simulation experiments with different workloads
to evaluate our proposed data distribution policies.

Experimental design. We implement a simulator for a
FoundationDB cluster with m storage servers, where n data
chunks are distributed among the servers according to the
chosen policy. During a simulation, the simulator generates
requests that access some servers following some workload
pattern. When adding a generated request to the server’s
queue, the simulator rejects (drops) the request if the number
of requests waiting in the queue is already equal to the queue
length q. Note that the policy in Section 5 utilizes two queues.
In this case, a request is rejected if both queues with a total
size q are full.

We experimented with two request workloads: Adver-
sary and Zipfian. The adversarial workload always generates
requests that access the same set of m chunks during the
simulation, which is especially difficult for policies with-
out knowing this access pattern. In comparison, the Zipfian
workload generates requests that access chunks following
the Zipfian distribution [30] with the parameter a = 2, which
represents more realistic workloads. For each setting, we run
10 simulations, each with 4.5 million generated requests,
measure the request rejection ratios and report the median.

Policies and baselines. We implemented our proposed
randomized policy without data transfers (labeled Random)
and with data transfers (labeled DataMove). To examine how
speedup of request processing and data transfers improves
the performance of our policies given the same workload,
we also enable the simulator to have different speeds. In
particular, at speed 1, a server processes one request in a
time slot. At speed 2, for instance, a server processes two
requests in a time slot. In the simulation, there is no speedup
of data transfer.

As a baseline comparison, we implemented and evaluated
a policy that deterministically distributes data chunks to
servers. Additionally, if requests evenly access all servers,
the requests generated at the beginning of a time slot can all
be fully processed in this time slot at speed 1. Therefore, the
lower bound of an optimal policy can achieve zero rejection.

Evaluation results. Figure 2 shows the rejection ratios
under the adversarial and ZipFian workloads, where the
queue lengths are set to ¢ = 200s log m and g = 20s log m, re-
spectively. The queue length is chosen so that we can clearly
observe the performance differences under different policies.
Simulation results show that randomized policy significantly
outperforms deterministic policy. Adding data transfers to
the randomized policy further reduces the rejection ratios
for both workloads. Moreover, we can see that our proposed
Random and DataMove policies can already achieve zero
rejection with a speedup of 2 and 3, respectively. This result
reveals that the required speedup of our policies in practice

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

=¥=p50 =B p75 =A=p90 Max

8 8
~ —~
] 3
i=l
5 ° g ©
2 E
2 2
o Q
5 5
5 2 A E 2

- —a——a

(=}
(=}

100 200 300 400 500 1 2 3

Total size of data chunks (MB)

=¥=p50 =B p75 -A-P90

4
Number of concurrent data moves

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

Max =¥=p50 =B P75 -A-P90 Max

Latency (seconds)
N

5 6 7 8 1

2 3 45 6 7 8 9 1011 1213
Number of concurrent data moves

(a) One standalone data transfer with increas-(b) Increasing numbers of data transfers from (c) Increasing numbers of data transfers from

ing total data sizes

multiple servers to the same destination

the same source to multiple servers

Figure 1. 50%, 75%, 90%, and maximum latencies of data transfer under different settings.

Optimal (speed 1)
DataMove (speed 2)
DataMove (speed 1)

Random (speed 3)

Random (speed 2)
Random (speed 1.5)

Random (speed 1)

Deteministic (speed 2)
Deteministic (speed 1)

e

DLLLLLLLL LV LLL LV LLL LV LLL LV LL LSV LL LSV LL LSV LL LSV LL LSS

0 0.2

0.4
Rejection ratio

0.6 0.8

(a) Adversarial workload (with queue size g = 49069)

Optimal (speed 1)
DataMove (speed 2)
DataMove (speed 1)

Random (speed 3)

Random (speed 2)
Random (speed 1.5)

Random (speed 1)

Deteministic (speed 2)
Deteministic (speed 1)

LA AL ASS LS SAT LS SIS,

0 02 0.6 0.8 1

0.4
Rejection ratio

(b) ZipFian workload (with g = 4907 & ZipFian parameter a = 2)

Figure 2. Rejection ratio of deterministic policy (Deterministic), randomized policy (Random), and randomized policy with
data transfers (DataMove) given different speeds for different workloads. System setting: m = 30, n = 1000, s = 100.

can be significantly smaller than that in the theoretical re-
sults. We have also run experiments with larger s, m, and n
and observed similar performance trends.

7 Related work

Both the problem and the solution are related to many topics
studied by researchers. Here we provide a brief overview of
some of the related work.

Distrbuted key-value stores have been designed both for
academia and commercial use [12, 15, 23, 24, 36, 41]. Most
of these systems are evaluated empirically and most of this
work finds that handling online requests that might be skewed
towards certain keys is often an important challenge [2, 10].
Most of the theoretical analysis of these systems is done
by making stochastic assumptions on the arrival pattern of
requests [28, 29, 32]. In this paper, we take a different tack
and analyze these systems under adversarial inputs.

Another related area of research is distributed hash ta-
bles, which have received extensive theoretical and empiri-
cal investigation. For instance, consistent hashing [21, 27] is
widely used to partition the data in distributed hash maps [12,
24, 34]. Randomization is widely used to build and maintain
the distributed hash tables [13, 25, 38]. In addition, some
distributed hash tables consider network topology in the
design of the hash table itself [3, 33]. The problem we con-
sider in this paper is also related to general load balancing
problems where tasks can be dispatched to various servers.

10

The techniques used in this paper such as balls-into-bins
analysis were originally developed in the load balancing
context. These games have been extensively analyzed for
various metrics [4, 16, 31]. In addition, variations of these
games such as power of two choices [14, 26, 29] have also
been analyzed extensively and sometimes used in the design
of distributed hash tables. The problem we considered in
this paper is different but related, to the distributed hash
table problem as well as the load balancing problem. In par-
ticular, the model for queuing and the model for moving
data from one location to another is generally different in
distributed hash tables which leads to different algorithmic
and analytical challenges.

Since most online systems are dynamic where the system
load changes and the keys which are accessed frequently
change over time, data migration is an important tool in
this system design. There has been extensive empirical work
for designing data migration schemes and evaluating them
in a diverse range of systems [6, 7, 19, 23, 35-37, 40, 41]
for various distributed workloads in key-value stores and
distributed databases. Most of this work is empirical or uses
stochastic assumptions on data arrivals for analysis.

8 Conclusion

We have explored the problem of load balancing in dis-
tributed storage systems, assuming an oblivious adversary

Provably Good Randomized Strategies for Data Placement in Distributed Key-Value Stores

sends requests. With reasonable queue sizes and good algo-
rithm designs, it is possible to consume almost all requests in
expectation. Several open problems remain. First, we assume
that each chunk is stored in at most one server. Real systems
often store each chunk on multiple servers via replication
to aid the load balancing and recovery from faults. We will
design algorithms to support replication. Second, we assume
an oblivious adversary that gets no information from the
system once it runs. One can imagine an adaptive adversary
that can glean the requests’ distribution from the rejection
pattern or reply latencies. Finally, we would like to explore if
there are algorithms that can provide results similar to ours
but using smaller queue sizes and thus smaller latencies.

Acknowledgments

This research was supported, in part, by the National Sci-
ence Foundation (USA) under Grant Numbers CNS-1948457,
CCF-1733873 and CCF-1725647. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author and do not necessarily reflect the
views of the National Science Foundation.

References

[1] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shix-
iong Zhu, Mukul Murthy, Joseph Torres, Herman van Hovell, Adrian
Ionescu, Alicja Luszczak, et al. 2020. Delta lake: high-performance

ACID table storage over cloud object stores. Proceedings of the VLDB

Endowment 13, 12 (2020), 3411-3424.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload analysis of a large-scale key-value store.

In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint

international conference on Measurement and Modeling of Computer

Systems. 53—-64.

[3] John Augustine, Soumyottam Chatterjee, and Gopal Pandurangan.
2022. A Fully-Distributed Scalable Peer-to-Peer Protocol for Byzantine-
Resilient Distributed Hash Tables. In Proceedings of the 34th ACM
Symposium on Parallelism in Algorithms and Architectures. 87-98.

[4] Petra Berenbrink, Tom Friedetzky, Zengjian Hu, and Russell Martin.
2008. On weighted balls-into-bins games. Theoretical Computer Science
409, 3 (2008), 511-520.

[5] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). 209-223.

[6] Rajat Chaudhary, Gagangeet Singh Aujla, Neeraj Kumar, and Joel JPC
Rodrigues. 2018. Optimized big data management across multi-cloud
data centers: Software-defined-network-based analysis. IEEE Commu-
nications Magazine 56, 2 (2018), 118-126.

[7] Yue Cheng, Aayush Gupta, and Ali R Butt. 2015. An in-memory object
caching framework with adaptive load balancing. In Proceedings of the
Tenth European Conference on Computer Systems. 1-16.

[8] Christos Chrysafis, Ben Collins, Scott Dugas, Jay Dunkelberger,
Moussa Ehsan, Scott Gray, Alec Grieser, Ori Herrnstadt, Kfir Lev-
Ari, Tao Lin, et al. 2019. Foundationdb record layer: A multi-tenant
structured datastore. In Proceedings of the 2019 International Conference
on Management of Data. 1787-1802.

[9] Prem C Consul and Gaurav C Jain. 1973. A generalization of the
Poisson distribution. Technometrics 15, 4 (1973), 791-799.

—
Do
—

11

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143-154.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov,
Artin Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Mar-
tin Hentschel, Jiansheng Huang, et al. 2016. The snowflake elastic
data warehouse. In Proceedings of the 2016 International Conference on
Management of Data. 215-226.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of Twenty-First ACM
SIGOPS Symposium on Operating Systems Principles (Stevenson, Wash-
ington, USA) (SOSP ’07). Association for Computing Machinery, New
York, NY, USA, 205-220. https://doi.org/10.1145/1294261.1294281
Osman Durmaz and Hasan Sakir Bilge. 2019. Fast image similarity
search by distributed locality sensitive hashing. Pattern Recognition
Letters 128 (2019), 361-369.

Felix Garcia-Carballeira, Alejandro Calderon, and Jesus Carretero. 2021.
Enhancing the power of two choices load balancing algorithm using
round robin policy. Cluster Computing 24, 2 (2021), 611-624.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google file system. In Proceedings of the nineteenth ACM symposium
on Operating systems principles. 29-43.

P Brighten Godfrey. 2008. Balls and bins with structure: balanced
allocations on hypergraphs. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms. Citeseer, 511-517.
Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul
Pathak, Stefano Stefani, and Vidhya Srinivasan. 2015. Amazon redshift
and the case for simpler data warehouses. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1917—
1923.

Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An
intelligent data lake system. In Proceedings of the 2016 international
conference on management of data. 2097-2100.

DJ Hemanth et al. 2020. Efficient Data Migration Method in Distributed
Systems Environment. (2020).

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li
Shen, Liu Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a
Raft-based HTAP database. Proceedings of the VLDB Endowment 13,
12 (2020), 3072-3084.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. 1997. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing. 654-663.

A Kala Karun and K Chitharanjan. 2013. A review on hadoop—HDFS
infrastructure extensions. In 2013 IEEE conference on information &
communication technologies. IEEE, 132-137.

Markus Klems, Adam Silberstein, Jianjun Chen, Masood Mortazavi,
Sahaya Andrews Albert, PPS Narayan, Adwait Tumbde, and Brian
Cooper. 2012. The yahoo! cloud datastore load balancer. In Proceedings
of the fourth international workshop on Cloud data management. 33-40.
Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decen-
tralized Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr
2010), 35-40. https://doi.org/10.1145/1773912.1773922

Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang, and Hanging Lu. 2015.
Hashing for distributed data. In International Conference on Machine
Learning. PMLR, 1642-1650.

Malwina J Luczak and Colin McDiarmid. 2005. On the power of two
choices: balls and bins in continuous time. The Annals of Applied
Probability 15, 3 (2005), 1733-1764.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1773912.1773922

PPoPP’23, Feb 25-Mar 01, 2023, Montreal, Canada

[27]

(31]

(32]

(33

—

(34]

Vahab Mirrokni, Mikkel Thorup, and Morteza Zadimoghaddam. 2018.
Consistent hashing with bounded loads. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
587-604.

Michael Mitzenmacher. 1999. On the analysis of randomized load
balancing schemes. Theory of Computing Systems 32, 3 (1999), 361-
386.

Michael Mitzenmacher. 2001. The power of two choices in randomized
load balancing. IEEE Transactions on Parallel and Distributed Systems
12, 10 (2001), 1094-1104.

David MW Powers. 1998. Applications and explanations of Zipf’s
law. In New methods in language processing and computational natural
language learning.

Martin Raab and Angelika Steger. 1998. “Balls into bins”—A simple
and tight analysis. In International Workshop on Randomization and
Approximation Techniques in Computer Science. Springer, 159-170.
Andrea W Richa, M Mitzenmacher, and R Sitaraman. 2001. The power
of two random choices: A survey of techniques and results. Combina-
torial Optimization 9 (2001), 255-304.

Renisha P Salim and R Rajesh. 2022. A Framework for Integrating
the Distributed Hash Table (DHT) with an Enhanced Bloom’s Filter
in MANET. International Journal of Advanced Computer Science and
Applications 13, 2 (2022).

I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F.
Dabek, and H. Balakrishnan. 2003. Chord: a scalable peer-to-peer
lookup protocol for Internet applications. IEEE/ACM Transactions on
Networking 11, 1 (2003), 17-32. https://doi.org/10.1109/TNET.2002.
808407

12

Zhe Wang, Jinhao Zhao, Kunal Agrawal, He Liu, Meng Xu, and Jing Li

[35] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J

Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker.
2014. E-store: Fine-grained elastic partitioning for distributed trans-
action processing systems. Proceedings of the VLDB Endowment 8, 3
(2014), 245-256.

[36] Mehul Nalin Vora. 2011. Hadoop-HBase for large-scale data. In Proceed-

ings of 2011 International Conference on Computer Science and Network
Technology, Vol. 1. IEEE, 601-605.

[37] Li Wang, Yiming Zhang, Jiawei Xu, and Guangtao Xue. 2020. {MAPX }:

Controlled Data Migration in the Expansion of Decentralized {Object-
Based} Storage Systems. In 18th USENIX Conference on File and Storage
Technologies (FAST 20). 1-11.

[38] Shengnan Wang, Chunguang Li, and Hui-Liang Shen. 2018. Distributed

graph hashing. IEEE transactions on cybernetics 49, 5 (2018), 1896-1908.

[39] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and

Carlos Maltzahn. 2006. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th symposium on Operating systems
design and implementation. 307-320.

[40] Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn.

2006. CRUSH: Controlled, scalable, decentralized placement of repli-
cated data. In SC’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. IEEE, 31-31.

[41] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex

Miller, Evan Tschannen, Steve Atherton, Andrew J Beamon, Rusty
Sears, John Leach, et al. 2021. Foundationdb: A distributed unbundled
transactional key value store. In Proceedings of the 2021 International
Conference on Management of Data. 2653-2666.

https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407

	Abstract
	1 Introduction
	2 System Model and Performance Metrics
	3 Deterministic Policies
	4 Randomized Policies with No Transfers
	5 Randomized Policies with Transfers
	6 Empirical Evaluations
	6.1 A Case Study
	6.2 Simulation Experiments

	7 Related work
	8 Conclusion
	Acknowledgments
	References

