2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Approximate Bisimulation Relations for Neural Networks and
Application to Assured Neural Network Compression

Weiming Xiang and Zhongzhu Shao

Abstract— In this paper, we propose a concept of approximate
bisimulation relation for feedforward neural networks. In the
framework of approximate bisimulation relation, a novel neural
network merging method is developed to compute the approxi-
mate bisimulation error between two neural networks based on
reachability analysis of neural networks. The developed method
is able to quantitatively measure the distance between the
outputs of two neural networks with the same inputs. Then, we
apply the approximate bisimulation relation results to perform
neural networks model reduction and compute the compression
precision, i.e., assured neural networks compression. At last,
using the assured neural network compression, we accelerate
the verification processes of ACAS Xu neural networks to
illustrate the effectiveness and advantages of our proposed
approximate bisimulation approach.

I. INTRODUCTION

Deep neural networks (DNN) are now widely used in a
variety of contemporary applications, such as image pro-
cessing [1], pattern recognition [2], [3], adaptive control,
[4], [5] autonomous vehicles [6], and other fields, showing
the powerful capabilities solving complex and challenging
problems that traditional approaches fail to deal with. To
cope with complex tasks and different environments, neural
network models have been developed with increasing scale
and complexity, which aim to provide better performance
and higher accuracy. However, the increasing scale and
complexity of the neural network models also mean that
neural networks require a large number of resources for
real-world implementation such as higher memory, more
computational power, and higher energy consumption [7].
Therefore, neural network model compression methods were
developed to reduce the complexity of neural networks at
the least possible price of performance deterioration. For
instance, in [8], four compression methods for deep convolu-
tional neural networks are summarized, but some problems
were pointed out such as a sharp drop in the accuracy
of the network when compressing. More neural network
compression results can be found in the recent survey [9]
and references therein. Moreover, it has been observed that
well-trained neural networks on abundant data are sometimes
sensitive to updates, and react in unexpected and incorrect
ways to even slight changes of the parameters [10]. The
neural network compression inevitably introduces changes
to the neural network. Therefore, an approach is needed to

This research was supported by the National Science Foundation, under
NSF CAREER Award 2143351.

W. Xiang is with the School of Computer and Cyber Sciences, Augusta
University, Augusta GA 30912 USA. Email: wxiangQ@augusta.edu

Z. Shao is with Department of Electrical Engineering, Southwest Jiaotong
University, Chengdu, China.

978-1-6654-5196-3/$31.00 ©2022 AACC

formally characterize the changes between the original neural
network model and its compressed version.

In this paper, we propose an approximate bisimulation
relation between two neural networks, which formally char-
acterize the maximal difference between the outputs of two
neural networks generated from the same inputs. Based on
the framework of the approximate bisimulation relation, we
propose a neural network merging algorithm to calculate
the approximate bisimulation error, measuring the distance
between two neural networks. Applying this approximate
bisimulation method to neural network model compression,
we can obtain the precision of neural network model com-
pression, which is able to provide assurance to perform tasks
using compressed neural networks on behalf of original ones.
To illustrate the feasibility of the approximate bisimulation
method, we apply it to accelerate verification processes of
the ACAS Xu neural networks using the compressed neural
networks.

The remainder of the paper is organized as follows:
Preliminaries are given in Section II. The approximate
bisimulation relation and approximate bisimulation error
computation are presented in Section III. Assured neural
network compression and examples are given in Section IV.
The conclusion is presented in Section V.

Notations: For the rest of the paper, 0,x.,, denotes a
matrix of n rows and m columns with all elements zero,
I, denotes the n-dimensional identity matrix. purelin(-) is
linear transfer function, i.e., x = purelin(x).

II. PRELIMINARIES

In this paper, we consider a class of feedforward neural
networks that generally consist of one input layer, multiple
hidden layers and one output layer. Each layer consists of
one or multiple neurons. The action of a neuron depends on
its activation function, which is in the description of

Yi = ¢(Z::

where y; is the output of the ¢th neuron, z; is the jth input of
the ith neuron, w;; is the weight from the jth input to the ith
neuron, b; is the bias of the ith input, ¢(-) is the activation
function. Each layer ¢ (1 < ¢ < L) of a feedforward neural
network has n!‘} neurons. Layer £ = 0 denotes the input
layer, n{%} denotes the number of the input for the input
layer. For the layer /, the input vector is denoted by x{¢},
respectively, the weight matrix and the bias vector are

| WigTy + bi) ey

Wi — [wf“, . 7w7{1‘£}]T)
b = {7, bl T (3)

3248

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

where wi{l} is the weight vector, b;-{z} is the bias value. The

output vector of layer £ is y¢} defined by
ylth = ottt (W{Z}X{f} + b{f}) 4)

where $1¢}(-) is the activation function of layer .

For the whole neural network, the input and output layer
are x% and y!% respectively, the input of the layer / is the
output of the layer £ — 1, the mapping relation from the input
to the output is denoted by

y = o) (5)

where ®(-) £ o o plE=1 ... ¢{1}(.). The mapping
relation @ includes not only the activation function of the
neural network but also the weight matrix and the bias
vectors, which represent the structural information of the
neural network.

Given an input set X, the output reachable set of a neural
network is stated by the definition below.

Definition 1: Given a neural network in the form of (5)
and input set X € R”{O}, the following set

y={y#er”

[y = o x e x} (6
is called the output reachable set of neural network (5).

The safety specification of a neural network is expressed
by the set defined in the output space, describing the safety
requirement.

Definition 2: Safety specification S formalizes the safety
requirement for output y{%} of neural network (5), and is a
predicate over output y 1~} of neural network (5). The neural
network (5) is safe if and only if the following condition is
satisfied:

yn-8=90 @)

where) is the output set defined by (6), and — is the symbol
for logical negation.

The above safety verification concept is reachability-based
and will be used in Section IV for safety verification of neural
networks of Airborne Collision Avoidance Systems in [11].

III. APPROXIMATION SIMULATION RELATIONS OF
NEURAL NETWORKS

A. Approximation Bisimulation Relations

In order to characterize the difference of two feedforward
neural networks in terms of outputs, we defined the following
metric which measures the distance between the outputs of
two neural networks in the framework of the reachable set
defined in Definition 1.

Definition 3: Consider two neural networks yif} =
®,;(x{0}), j € {1,2}, input set X € R"”, and output
sets); € R e {1, 2}, we define N; = (X,);,®,),
j€{1,2}, and
{0} _ xéO}

pytH yih i x

A(@1 (1), @2(x3")) = {+

otherwise

®)

where

(1} i)

p(y1 5y sup

yi”e)ﬁ,yé”eyz

It is noted that d(®(x\), y(xi™)) defined in (8)
characterizes the maximal difference between the outputs of
two neural networks generated from the same input, which
quantifies the discrepancy between two neural networks &
and ®, in terms of outputs. Based on Definition 3, we will
be able to establish the approximate bisimulation relation of
two neural networks.

Definition 4: Consider N; = (X,Y;,®;), j € {1,2},
and let ¢ > 0, a relation Z. € R R s called
an approximate simulation relation between N and N>, of
precision ¢, if for all (ny},yéL}) €R.

1) d(®;(x19), @y (x101)) < e, vx{% € Xx;

2) vx{% € X, v@,(x{%) € Y1, 38,(x1%) € Y, such

that (&, (x1%), @, (x{°h)) € Z.;
3) vxi0% € &, V@, (x1%h) €), 38, (x1%) € Yy such
that (B, (x10}), &y (x1})) € Z.
and we say neural networks N; and N> are approximately
bisimilar with precision ¢, denoted by N7 ~. N> .

Remark 1: The meaning of approximate bisimulation be-
tween two neural networks A; and N3 with precision e,
which denoted by N7 ~. N, is as follows: Considering
two neural networks N7 and A5 and any output of neural
network A/, we can find one output generated by the same
corresponding input out of neural network A5, and vice
versa. The two outputs of two neural networks always satisfy
that the distance between them is bounded by €. In the case
of ¢ = 0, we can define that the two neural networks have
an exact simulation relation.

Then, we define metrics measuring the distance between
the observed behaviors of neural networks A7 and N5. Based
on the defined notion of approximate bisimulation, we can
define the approximate bisimulation error to represent the
distance between two neural networks.

Definition 5: Given two neural networks N and A, the
approximate bisimulation error of them is defined by

d(N1,N2) = sup{e | N7 ~c Na}

where ¢ > 0.

The key to establish the approximation bisimulation re-
lation between two neural networks is how to efficiently
compute the approximation bisimulation error defined by
(10). In the next subsection, a reachability-based method is
proposed to compute the approximate bisimulation error.

[yt =¥ ©

(10)

B. Approximate Bisimulation Error Computation

In order to compute the approximate bisimulation er-
ror € between two neural network outputs, the set-valued
reachability methods can be used. First, consider two neural
networks with the same input set X, a feedforward neural
network N7 with L hidden layers and n{}, I = 1,... L
neurons in each layer, and its bisimilar feedforward neural
network Ng with S hidden layers and ntsh s =1,...,8
neurons in each hidden layer.

3249

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

Without loss of generality, the following assumption is
given for neural networks N7, and Ns.

Assumption 1: The following assumptions hold for two
neural networks N7, and Nj:

1) The number of inputs of two neural networks is same,

ie., nio} = ngo};
2) The number of outputs of two neural networks is same,
ie., nEL} = ngs};

3) The number of hidden layers of neural network N7, is
greater than or equal the number of hidden layers of
neural network Ng, i.e., L > S.

According to (9), (10), the approximate bisimulation error

between N, and N can be expressed by

dNg,Ns) = {501}116))(H@L(X{O}) — @S(X{O})H .

(1)

To obtain the approximate bisimulation error of the two
neural networks, i.e., d(Np,Ns), we propose to merge
the two neural networks in a non-fully connected structure
Ny, which is able to generate the output y}vjy} exactly

characterizing the difference of the outputs of Nj, and Ng,
ie. y{M} iy y{S}.

> Y M L s
Merged Neural Network N, : To begin with, we consider
two neural networks A7, and Ns with same input x10} We
use W}{\;L} and b}{\ZL} to denote the weight matrix and bias
vector of the mth layer of the merged neural network Ny,
x}{&n} and yg]n} are input and output vectors of mth layer of
Nys. The structure of the merged neural network A3, with
L + 1 layers is recursively defined as below:

) =i

where m = 1,2,...,L + 1. The input is x}{\g} = x10},
output is yg/fﬂ}, weight matrices W}{V}"} and bias vectors
b;[VT}, and activation functions Qﬁgﬁf}(-) are categorized as
the following five cases:

1) When m =1, Wi, bl and ¢t} () are

{1}

Au%

Wi = Wh} (13)
A
[1.{1}
b

il — b{Ll}] (14)
| Ps
[{1}

M 657 ()

2) When1<m<S—1, Wi bl™ and ¢! () are

3) When S—1<m < L—1, Wi bi™ and {7 ()

are
[owind 0 (my_ {s-1}
W{m} _ L ny Xng 19
M On{s—1}><n{m} In{S—l} ()
L S L S
b{m}
pimt — L (20)
M _OnéSI}X1]
[{m}
(my oy _ [o () 21
() Lpurelin(-)] @D
4) When m = L, Wi bl and ¢l () are
{L}
WgJL} _ WL Onil‘}x{,,?s{sfl} (22)
_Onés}xn{LL_l} WS
-b{L}
bik = b%S} (23)
| Ps
[{L}
Loy~ fS}()]- 24)
195 ()

5) When = £+ 1, W b ana {57

are
wib+th {IH{LL} *IH{LL}} (25)
biF ™ = [0y 1] 26)
34 () = purelin(-). 27)

Remark 2: In the merging process of neural networks N7,
and Ng, (13)—(15) ensures that merged neural network N3,
takes the one input x1% for the subsequent calls involving
both processes of Nz and Ns. Then, for 1 < m < S—1, Ny,
conducts the computation of N, and N parallelly for the
hidden layersof 1 <m < S—1. When S—1<m < L—1,
the hidden layers of neural network A5 which have less
hidden layers are expanded to match the number of layers
of neural network A7, with a larger number of hidden layers,
but the expanded layers are forced to pass the information
to subsequent layers without any changes, i.e., the weight
matrices of the expanded hidden layers are identity matrices,
and the bias vector is the zero vectors. This expansion is
formalized as (19)—(21). Moreover, as m = L, this layer is a
combination of output layers of both A’z and Ng to generate
the same outputs of N7, and Ng. At last, a comparison layer
L +1 is added to compute the exact difference between two
bisimular neural networks.

With the merged neural network Ay in the description of
(12)—(27), we are ready to propose the main contribution of

wim 0 (m)_ {m-1} this work in Proposition 1.
{m} L ny" xng
Wi = 0) W{m} (16) Proposition 1: Given two neural networks N7 with L
L n{™ xnfm 8 layers and Ny with S layers under Assumption 1, the output
Lo} _ b{Lm} an y ML+1} of their merged neural network N i defined by (12)-
M bgm} (27) equals the difference of the output yé Y of AV 1 and the
m {m}() output yés} of Ng, ie.,
{myoy_ |9 U
¢M () ¢ény}()] . (18) yg;-‘rl} _ yiL} _ ygS} (28)
3250

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

Neural Network L

e @ o @ o
{L}
o @ @ w @ W Y
— L
® 9 9 @ W9
o 9 o 9 e
i (L} _
x10 Dbyl
Extended Layers - §
Neural Network § R,
TNy
¥ ' 1 Ys
> @@ — 0 O O —
4] Iy
I Yy
Extend = 7 U@ @)
) dme1)
Fig. 1.
. L
holds for any input x{%} € X', where yi - @y (x1°}) and
{S}

= @y (x1).

Proof Considering an input x1% € X and according to
(13)—(15), the following results for output of layer m = 1 of
merged neural network N}; can be obtained

S _ [ofovinxoncpiny]]
M= 0 w0 4)| T [l

Further considering layers 1 < m < S — 1 of Ny, and
using (16) and (17), it leads to

) Wimdm=1} | pim)
Whmhdm=1} | pimy _ |WE" " P b

where 1 < m < S — 1. Then based on (18), recursively we
can obtain

gl _ [op o ool (WilxOh by
M gs Do gl Wxl0) 4 p1)

{S 1}
{51} (32)
Moreover, considering S —1 < m < L —1 and using (19)
and (20), one can obtain
Wim}xém—l} +b}{:m}

m m—1 m
Wi bl = [e
Xgs

1 (33)
where S — 1 <m < L — 1. From (21), it yields
{ -1}
L-1
Y}{w = [{s— 1}]
Xs
is defined as

o WL 4 ()
ot WK £ pith. 34

in which x {“~!

e A

_ 4,

Then, as m = L with (22) and (23) as well as x%_l} =
{(L-1} .
Y , it leads to

{L} {L 1} {L}
Wil (L-13 py _ Wy +by
M Xy Thbyl = LN,{S} {s— 1}+b{5} (35)

Merged Neural Network M

Layers 1 to L-1

|
AT PN gy Gy (7 '. ILayerL+1
| A 1
{s} > o ° ® o v : rDI
'
PV 1 ;
-x“’" T e e AR ': py” R il
Y YT |
Merge ! ! :. ™ 0 vl
t ' e ..: o t!
| [| 1 W
b e e

Layers 1 to S-1 Layers Sto L-1

Neural network merging process for approximate bisimulation error computation

Also due to (24), we can have

S ¢{z}(w{z} {g 1}+b{:}) y%} e
R QI C IR CIoY Il O

At last, when m = L 4+ 1 with (25)—(27), the following
result can be obtained

S W bl
{L}
) —Inm] iy
L L yS
=yi —yE (37)
where y ¥ = &, (x{%}) and y'*} = ®4(x{%}). The proof
is complete. n

Proposition 1 implies that, for any individual input x10},
we can compute the difference of the outputs between two
bisimilar neural networks via generating the output of their
merged neural network of x{}. This lays the foundation
of computing the approximate bisimulation error in the
description of (11), i.e., the computation of the maximum
discrepancy between two bisimilar neural networks subject
to an input set X can be converted to the output reachable
set Vs computation of merged neural network Nyy.

Proposition 2: Given an input set X', two neural networks
Np with L layers and Ng with S layers under Assumption
1, their merged neural network Ay, can be defined by (12)—
(27). Then, the approximate bisimulation error between Ap,
and N can be computed by

ANz, Ns) =

sup
yj{\;“} [ShZY

b o

where y{L+1} @7 (x191) is the output of Ny and Yy is

the output reachable set of Ayy.

Proof: The result can be obtained straightforwardly from
the result in Proposition 1, i.e., y{LH} }[:L} — yés}. The
proof is complete. |

As shown in Proposition 2, the key of computing
d(N7,Ns) is to compute the output reachable set V. For
instance, as in NNV neural network reachability analysis
tool, the reachable sets are in the form of a family of poly-
hedral sets [12], and in IGNNV tool, the output reachable

3251

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

set is a family of interval sets [13], [14]. With the reachable
set Yy, the approximate bisimulation error d(Np,, Ng) can
be easily obtained by searching for the maximal value of
H {L+1} H in Yy, e.g., testing throughout a finite number of
vertices in polyhedral sets.

IV. APPLICATION TO ASSURED NEURAL NETWORK
COMPRESSION

A. Assured Neural Network Compression

In practical applications, neural networks are usually large
in size, and it could be computationally expensive and time-
consuming to perform those tasks requiring a large amount
of computation resources. A promising method to mitigate
the computation burden is to compress large-scale neural
networks into small-scale ones and provide the approximate
bisimulation error between two neural networks. With the
approximate bisimulation error, we can infer the outputs of
the original large-scale neural network via running its corre-
sponding small-scale compressed one plus the approximate
bisimulation error. The assured neural network compression
is stated as below.

Definition 6: Given a large-scale neural network N7, with
input set X', a small-scale neural network N is called its as-
sured compressed version with precision ¢ if the approximate
bisimulation error of two neural networks are not greater than
g, e,

d(Np,Ng) <e (39)

where € > 0.

Remark 3: There exist a number of neural network com-
pression methods [9] to obtain small-scale neural network
Ngs. In this paper, our focus is on how to compute the
assured neural network compression precision € using the
framework of approximate bisimulation relations proposed
in the previous sections.

Example 1: We verify the effectiveness of the approxi-
mate bisimulation approach in neural network compression
by a numerical case. In the numerical case, we aim to
soundly simulate a neural network N7, (large-scale) with 5
hidden layers and 50 neurons in each hidden layer using a
neural network Ag (small-scale) with 2 hidden layers and 10
neurons in each hidden layer. To facilitate the visualization
of the simulation results, the output of both neural networks
is selected one-dimensional.

First, a neural network N7 is randomly generated, and
then a neural network A is trained out of the input-output
data of AN7. All activation functions are ReLU functions.
Using the merged neural network method and computing
reachable set with NNV tool, the approximate bisimulation
error € = 26.1227 of the two neural networks can be
obtained. With the help of € = 26.1227, the upper and
lower bounds of output yé of N L can be obtained via the
outputs y Y of Ns with a smaller size, i.e., upper bound

} = yf } + ¢ and lower bound y{ - y{S} €.

Output data of the original neural network and the com-

pressed neural network, as well as the upper and lower

Original NN :1*50*50*50*50*50*1
Compressed NN :1*10*10*1
Approximate bisimulation error = 26.1227

-600 -

-700

Original NN

Compressed NN
-800 Estimated upper bound | |
— — — - Estimated lower bound

-900 I I I I
0 0.2 0.4 0.6 0.8 1

Fig. 2. Assured compression for a random neural network (from 50 x
50 x 50 x 50 x 50 to 10 x 10) by approximate bisimulation approach.

bounds, are represented in Fig. 2. It can be observed that
all the outputs y f are within the upper bound ?}{;L} and
lower bound yL ie., y{L} < y{L} < *EL}.

B. Application of ACAS Xu Network Verification

In this subsection, we apply the neural network model
compression method to ACAS Xu network in [11] to ac-
celerate the verification processes. ACAS Xu system has
been developed using a large lookup table that maps sensor
measurements to warning signals, see Fig. 3. It has been
shown that DNNs can significantly reduce memory (replac-
ing a 2GB lookup table with an efficient DNNs of less than
3MB). The DNN method of ACAS Xu system consists of
45 DNNs, and each neural network contains 5 inputs and
5 outputs, with 6 hidden layers and 50 neurons with ReLU
activation functions in each layer.

In practical applications, calculating the exact output
reachable set of a neural network with 6 hidden layers
and 50 neurons per layer requires huge computational effort
and computational time [15]. Therefore, we compress the
original neural networks into smaller neural networks and
compute the assured precision by the approximate bisimula-
tion method. Then, we can perform verification of properties
based on those reduced-scale neural networks and approxi-
mate bisimulation error ¢, i.e., expand the unsafe region =&
in Definition 3 by the approximate bisimulation error €.

’ |
Vown viN

' Ownship .’
D ----

Fig. 3. ACAS Xu horizontal logic table illustration [15]

3252

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

TABLE I
PROPERTY ¢3 VERIFICATION FOR ACAS XU SYSTEM

[ID € Tr(s) Ts(s) VL Vs |
N1 0.0927 463.24804 = 0.19383 Safe Uncertain
Ni2 0.089 504.08039 = 0.26257 Safe Uncertain
Ni3 0.0369 185.89549 0.66355 Safe Uncertain
N4 0.0041 29.31453 0.34665 Safe Safe
Nis 0.0026 45.7813 0.41446 Safe Safe
Nig 0.0013 12.17051 0.2766 Safe Safe
Ni7 0.0018 3.22305 0.74309 Unsafe Uncertain
Nig 0.0067 2.53016 0.50254 Unsafe Uncertain
Nig9 0.0056 3.33068 0.50024 Unsafe Uncertain
No2p 0.1838 151.38468 1.2967 Safe Uncertain
Nao 0.1143 56.81178 0.87974 Safe Uncertain
Nas 0.018 92.08281 0.66704 Safe Safe
Nas4 0.0035 3.14713 0.30876 Safe Safe
Nas 0.0031 19.24327 0.42653 Safe Safe
Nys 0.0161 2.77801 0.2835 Safe Safe
No7 0.0047 9.83793 0.35039 Safe Safe
Nag 0.0063 2.87251 0.39635 Safe Safe
Nag 0.0022 1.51099 0.23274 Safe Safe
N3; 0.0244 63.11602 1.19615 Safe Safe
N3o 0.0907 421.81782 = 0.86584 Safe Uncertain
N33 0.0254 94.0685 0.19859 Safe Safe
N34 0.0055 24.4508 0.38036 Safe Safe
N3s5 0.002 8.88554 0.20696 Safe Safe
N3 0.0135 18.18405 = 0.26895 Safe Safe
N37 0.0136 1.25423 0.39768 Safe Safe
N3g 0.0061 5.36596 0.15807 Safe Safe
N3g = 0.0055 11.92655 = 0.68403 Safe Safe

In this example, we use neural networks with two hidden
layers and 10 neurons in each layer as the compressed
version for the compression of the DNNs of the ACAS Xu
system. Then, we verify Property ¢3 on 27 neural networks
in the ACAS Xu system using their assured compressed
versions. The verification results and computational time are
listed in Table I. In Table I, ¢ is the approximate bisimulation
error. 17, is the verification time (seconds) using original
neural networks and Tg is the verification time (seconds)
using compressed neural networks. V7, is the verification
results on original neural networks, and Vg is the verification
results on compressed neural networks.

As explicitly shown in Table I, the verification time can
be significantly reduced using compressed neural networks.
It is worth mentioning that since the approximate bisimula-
tion error is an over-approximation of the exact difference
between the outputs of two neural networks, the safety
conclusions based on compressed networks are only able to
derive safe conclusions for original networks in safe cases.
As to uncertain cases, we have to perform verification on
original neural networks to ascertain the safety property. It
can be found that the safety of 18 of the compressed neural
networks can be used to conclude the safety of original
neural networks. The remaining 9 unsafe verification results
based on compressed neural networks are insufficient to
derive safe or unsafe conclusions of original neural networks.
This is mainly because the approximate bisimulation error
is too large to meet the accuracy of the safety verification.
Despite the 9 uncertain cases that need to be verified through
original neural networks, the total verification time has been
significantly reduced for these 27 neural networks.

V. CONCLUSION

This work proposed approximate bisimulation relations for
feedforward neural networks. The approximate bisimulation
relation formally defines the maximal difference between
the outputs of two bisimular neural networks from the
same inputs. A reachability-based computation procedure is
developed to compute the approximation error via a novel
neural network merging approach. Then, the approximation
bismulation approach is applied to assured neural network
compression. With the approximate bisimulation error, the
perform tasks using the compressed network on behalf of the
original one such as verification of neural networks, which
has been demonstrated by an ACAS Xu example.

REFERENCES

[1] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. 1.
Sanchez, “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60-88, 2017.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85-117, 2015.

[3] S. Lawrence, C. Giles, A. C. Tsoi, and A. Back, “Face recognition: a
convolutional neural-network approach,” IEEE Transactions on Neural
Networks, vol. 8, no. 1, pp. 98-113, 1997.

[4] K. Hunt, D. Sbarbaro, R. Zbikowski, and P. Gawthrop, “Neural
networks for control systems—a survey,” Automatica, vol. 28, no. 6,
pp. 1083-1112, 1992.

[51 T. Wang, H. Gao, and J. Qiu, “A combined adaptive neural network and
nonlinear model predictive control for multirate networked industrial
process control,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 2, pp. 416425, 2017.

[6] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[71 S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban,
T. Marin¢, D. Neumann, T. Nguyen, H. Schwarz, T. Wiegand,
D. Marpe, and W. Samek, “DeepCABAC: A universal compression
algorithm for deep neural networks,” IEEE Journal of Selected Topics
in Signal Processing, vol. 14, no. 4, pp. 700-714, 2020.

[8] Y. Zhang, W. Ding, and C. Liu, “Summary of convolutional neural
network compression technology,” in 2019 IEEE International Con-
ference on Unmanned Systems (ICUS), pp. 480—483, 2019.

[9] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485-532, 2020.

[10] C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[11] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper, “ACAS
Xu: Integrated collision avoidance and detect and avoid capability for
UAS,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference
(DASC), pp. 1-10, IEEE, 2019.

[12] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNYV: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical
systems,” in International Conference on Computer Aided Verification,
pp. 3-17, Springer, 2020.

[13] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set
estimation and verification for multilayer neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29,
no. 11, pp. 5777-5783, 2018.

[14] W. Xiang, H.-D. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-guided
approach,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 5, pp. 1821-1830, 2021.

[15] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification, pp. 97—
117, Springer, 2017.

3253

Authorized licensed use limited to: Augusta University. Downloaded on March 02,2023 at 16:50:11 UTC from |IEEE Xplore. Restrictions apply.

