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ABSTRACT

The varied atomic arrangements in face-centered cubic (FCC) solid solutions introduce atomic-
scale fluctuations to their energy landscapes that influence the operation of dislocation-mediated
deformation mechanisms. These effects are particularly pronounced in concentrated systems,
which are of considerable interest to the community. Here, we examine the effect of local
fluctuations in planar fault energies on the evolution of deformation twinning microstructures in
randomly arranged FCC solid solutions. Our approach leverages the kinetic Monte Carlo (kMC)
method to provide kinetically weighted predictions for competition between two processes:
deformation twin nucleation and deformation twin thickening. The kinetic barriers underpinning
each process are drawn from the statistics of planar fault energies, which are locally sampled using
molecular statics methods. kMC results show an increase in the fault number densities of solid
solutions relative to a homogenized reference, which is found to be driven by the fluctuations in
planar fault energies. Based on kMC relations, an effective barrier model is derived to predict the
competition between deformation twinning nucleation and thickening processes under a
fluctuating planar fault energy landscape. A key result from this model is a measurement of the
length-scale over which the influence of local fluctuations in planar fault energies diminish and
nucleation/thickening-dominated behaviors converge to bulk predictions. More broadly, the tools

developed in this study enable examination of the influence of chemistry and length-scale on the
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evolution of deformation twinning mechanisms in FCC solid solutions.
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1. INTRODUCTION

The activation of deformation mechanisms in metallic materials is determined by a complex
interplay between applied stresses, microstructure effects, and energetic process barriers that resist
mechanism operation. The latter element can be conceptualized using the generalized planar fault
energy (GPFE) landscape, ' which relates the critical planar fault energies (i.e., stacking fault and
twinning fault energies) to the sequenced shearing of crystallographic planes. Subsequent
investigations have leveraged this planar fault energy concept to provide analytical descriptors for
the activation of dislocation-mediated mechanisms, which are relevant in face-centered cubic
(FCC) materials. Notable examples include investigations from Rice® and Ogata et al.*, where the
critical fault energies of the GPFE landscape are used to predict the stresses for dislocation
nucleation from a crack tip and a twin boundary, respectively. Building on the crack tip model of
Rice,’ Tadmor and Hai® showed that the competition between trailing partial and twinning partial
dislocation emission is controlled by the ratio of unstable stacking and twinning fault energies.
This effort produced a first principles-based metric to evaluate the incipient competition between
deformation twinning and dislocation slip. This ‘twinnability’ criterion has been homogenized over
a distribution of crack-tip orientations and crystal textures.® Later works have applied similar
GPFE-based criteria to consider the competition between grain boundary-mediated mechanisms
in nanocrystalline materials’ and the evolution of mechanism competition beyond incipient
plasticity events.® Building on this concept, Daly et al.” demonstrated how the competition between

nucleation and thickening of deformation twins in FCC metals may also be determined by the



magnitudes of the critical planar fault energies of the GPFE landscape.

While these contributions have provided important fundamental insights into mechanism
competition, one limitation in these works is the restriction in applicability to the study of unary
metals, where deformation twinning has limited engineering applications. Yet, with the ubiquity
of complex alloys, an expansion of deformation twinning theory to predict deformation tendencies
in these systems is of significant technological relevance. For instance, profuse twinning is known

to underpin the exceptional work hardening of the twinning-induced plasticity (TWIP) steels.!®!!
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Important studies on the TWIP effect include works from Bouaziz and co-workers,
Steinmetz et al.,'” with the status of these materials summarized in reviews from De Cooman and
co-workers.?%2?! Twinning is also cited as a contributing mechanism in the plasticity of several
medium and high entropy alloy (MEA and HEA) systems (e.g., CoCrFeMnNi,?* 2’ CoCrNi,?’3°
and FeMnCoCr’'"*%). While previous works provide some guidance for the deformation twinning
tendencies of these materials — that is, these materials profusely twin due to low stacking fault

energies (e.g., as in Refs,!0:11:22:34.35)

this interpretation is not entirely consistent with a careful
examination of the literature. For instance, the stacking fault energies of TWIP steels and
deformation-twinned HEAs generally fall in the range of ~ 20-60 mJ/m? 22! and 18-45 mJ/m?3%37
respectively. This range overlaps with the reported values for pure Cu (~36 mJ/m?).%® Yet, except
under dynamic loadings or when nanostructured, Cu is not observed to exhibit significant
deformation twinning.*

The recent literature offers a partial explanation for this discrepancy between twinning
behaviors in pure and multicomponent low stacking fault energy materials. For instance,

dramatically different values for the stacking fault energy of equimolar CoCrNi have been

observed, with large negative values of -62 mJ/m? up to 22 mJ/m? being reported.’****? These



large variations have been linked to the varied arrangement of atoms in solid solutions, which gives
rise to a distribution of planar fault energies that vary locally within fault planes.***#’ Zhao et al.*®
have used density functional theory (DFT) to analyze the effect of random atomic arrangements
on the ‘local’ intrinsic stacking fault (ISF) energy and reported fluctuations up to 200 mJ/m? for
NiFe, NiCo, and CoCrNi systems. This finding is supported by our recent work, which has
examined the statistical relationships between solute arrangement and fluctuations in fault
energies.*® Collectively, these reports highlight the large scatter that can arise in planar fault
energies due to solute arrangement, which is a behavior unique to multicomponent systems. Within
the context of dislocation-mediated deformation mechanisms, local deviations in planar fault
energies are significant as they provide new kinetic pathways for mechanism evolution.*” The
implications of local fluctuations on the fault energies of solid solutions raise an interesting
question: how do these local fluctuations drive the behavior of deformation mechanisms mediated
by the GPFE landscape?

Here, we examine this question through a study of the evolution of deformation twinning
microstructures in randomly-arranged concentrated solid solutions. To capture this evolution, we
implement kinetic Monte Carlo (kMC) simulations to measure the competition between nucleation
and thickening of deformation twins. A key feature of this approach is that it enables a local
definition and evaluation of the process barriers of deformation twinning, which we align to match
the statistical distribution of critical planar fault energies that are obtained directly from GPFE
landscape. Furthermore, we define a set of effective planar fault energies using analytical methods,
which account for the variations in deformation twinning microstructures that arise from local
fluctuations. This methodology is independently validated by tensile testing of nanowires using

molecular dynamic (MD) simulations. The results of this work provide insights into the evolution



of deformation twinning microstructures within a spatially heterogeneous process barrier
landscape.
2. METHODOLOGY

We have selected the NiCo system to investigate the influence of a heterogeneous process
barrier landscape on the evolution of deformation twinning microstructures. This choice was made
because the NiCo system possesses solid solubility over wide ranges of concentrations and is well
documented to exhibit deformation twinning.>*>! Furthermore, interatomic potentials are readily
available to model planar faults for this system, which facilitates the atomistic simulations
described in the subsequent sections. Our study is performed using an equimolar composition of
NiCo binary alloy to maximize solute dispersion. Yet, the approach outlined herein can be
expanded to different single-phase solid solutions with arbitrary compositions and numbers of
components (e.g., MEAs and HEAs), for which accurate potentials exist to model bonding
interactions.

2.1 Molecular static simulations
The fluctuations in the GPFE landscape are quantified using molecular statics (MS)

simulations, which are implemented using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS).*2 The Open Visualization Tool (OVITO)>* was used to visualize the atomic
topologies and common neighbor analysis was performed in OVITO to identify the faulted
structures. Atomic interactions in the NiCo system are modeled using the embedded-atom method
(EAM) with an interatomic potential developed by Béland et al.>* This potential has been validated
by comparing the system-level GPFE landscape to first-principles density functional theory
calculations (see Section S1, Figure S1 in the Supplementary Materials). Equimolar NiCo systems

measuring 12 by 12 by 5 nm in the x, y, and z directions, respectively, were constructed to measure



the GPFE landscape. Figure 1 provides a schematic of the system used in MS simulations. We
have validated the overall system sizes through sensitivity analysis (see Section S2, Figure S2 in
the Supplementary Material). The equimolar systems are modeled such that the
(110),(112),and (111) crystallographic directions are aligned to the global x, y, and z axes,
respectively. The GPFE landscape is obtained through a three-stage rigid shearing process, where

the total rigid shear per stage is equal to the Burger’s vector of a (112)-type Shockley partial

[42)

dislocation (i.e., e

where a, =0.351 nm is the lattice parameter). Each stage is executed over 100

shearing increments to capture the intermediate configurations of the GPFE landscape. In between
each shearing step, the system is relaxed in the z-direction and the per atom potential energies are
recorded. Initially, an ISF is formed by displacing two halves of the NiCo crystal along the
(112) direction within the {111} shear plane. Adjacent layers of the crystal are sequentially
sheared to form an extrinsic stacking fault (ESF) and a twin fault (TF). Periodic boundary
conditions are enforced on the x and y boundaries and the z surfaces are free surfaces. The GPFE

landscape is calculated from the excess energy, using the following relation:

A (1)

where U is the energy of faulted state, U, is the energy of the initial, defect-free system, 4 is the
area of the fault plane, and y is the area normalized fault energy at a given shearing step. All MS
simulations are performed at 0 K. This procedure for GPFE landscape determination is well-
established in the literature.>>->°

The local planar fault energy arises from the variations in atomic arrangements in the vicinity

of the planar fault. To capture this effect, we define the local planar fault energy (y*) using a

relation analogous to Eq. (1) and measure y* by sampling the GPFE landscape over a local area of



A* in the {111} plane (see Figure 1). For the results presented in the main text, A* is taken as

(W bllz)z, where b, is the magnitude of the (112) Burger’s vector for a Shockley partial
dislocation. This selection is derived from an estimate for the activation area of a partial
dislocation, which we obtain from the cubic activation volume of ~10b3,,. Activation volumes in
the range of 1-15b3;, have been reported in the literature for similar dislocation processes.’’® As
shown in this study and our previous work,’ an activation volume of 10b3, ,delivers self-consistent
predictions for dislocation-mediated deformation twin nucleation and thickening processes. Local
sampling of faulted systems resulted in = 15500 samples per shear increment. As anticipated,
GPFE measurements converge and fluctuations vanish, as A* approaches A (see Section S3, Figure
S3 in the Supplementary Material). It should be noted that the z-axis dimension is selected
conservatively and does not influence local measurements, when above a minimum threshold. That
is, the GPFE landscape emerges from differences in atomic site energies that arise due to a change
in local topology during shearing. These shearing-induced excess energy contributions decay
significantly within five nearest neighbors of the planar fault (about 2-3 {111} planes),*® which is
similar to the linear dimension of the activation volume (3/10 b;q,, about 2 {111} planes).
Consequently, selection of a sampling dimension larger than this threshold along (111) introduces

negligible changes in excess energy to Eq. (1).



 System

Sample

Figure 1: Schematic showing the system and sampling strategy used in MS simulations to measure the local GPFE
landscape in the NiCo samples. The relevant crystal directions and fault structures are shown. The system area (4)
and sample area (A™) are shaded in grey and green, respectively and bounded by dashed stroke.

2.2 Kinetic Monte Carlo Model

To predict the effect of local variations in atomic arrangement on the evolution of deformation
twinning microstructures, we have expanded a kMC model developed previously by our group for
unary systems. Using the algorithm proposed by Bortz et al.,>* this model predicts the evolution
of deformation twinning microstructures by kinetically weighted selection of deformation twin
nucleation or thickening processes. This kinetic weighting is determined from the process barriers
for each activation event, which is defined by their dislocation mechanics, as described below.
Each of these dislocation-mediated processes is considered in a discretized two-dimensional
simulation cell that is defined along the relevant crystallographic directions for deformation

twinning-based plasticity in FCC materials. An important aspect of our approach is that it focuses



on the intrinsic competition between deformation twin nucleation and thickening along a single
twin system, while removing convoluting extrinsic factors such as microstructure heterogeneities
(e.g., stress concentrations at crack tips and grain boundaries) and Schmid effects. Furthermore,
competing mechanisms such as trailing partial dislocation emission, dislocation cross-slip and
dislocation constrictions/reactions are not considered, as they would complicate a direct
comparison of nucleation and thickening phenomena. Given this framework, this approach is most
accurate for FCC single crystals where deformation twinning is prevalent along a single twin
system. A complete description of the basic method, assumptions, and its limitations are provided
in Refs.® A summary of the model updates and specific assumptions to accommodate fluctuating
process barriers are outlined below.

kMC simulations were performed on a NiCo single crystal with axes aligned to the (112) and
(111) crystal directions, respectively. This arrangement allows the study of mechanistic
competition along the (110) zone axis and mirrors the configuration of MS simulations. In the
kMC model, the crystal is discretized such that the nucleation and movement of defects require a
local process barrier to be overcome. These characteristics are well-suited to the objectives of this
work as they enable a variable process barrier to be mapped to the kMC mesh. The kMC simulation
cell dimensions measure Mb;, and Nd,,, where d;,; is the interplanar spacing of {111} planes,
and M and N are integers. The simulation cell is designed with free surfaces along the y-axis and

periodic boundaries along the z-axis. A schematic of the kMC simulation cell is provided in Figure
2

2a. The kMC mesh is discretized into regions measuring ~(3\/ 10 b112) nm?, which follows from

the sampling area selected in MS simulations.

In kMC simulations, deformation twinning is realized through the activation of two dislocation

processes: partial dislocation nucleation and glide. All the dislocations considered in this study are



90° leading <112>-type Shockley partials. Deformation proceeds through the nucleation and glide
of leading dislocations from the free surface at the y = 0 boundary. The incipient nucleation and
glide of a leading partial dislocation forms an ISF. Subsequent nucleation and glide events along
adjacent {111} planes lead to the formation of a two-layered ESF and a multi-layered TF. The
process barriers required to nucleate these faults are discussed in the subsequent paragraphs.
Surface-based deformation twinning applies to a diverse set of systems including nanowires,* %4

TWIP steels,® nanostructured FCC® % and body-centered cubic,® and hexagonal close-packed

metals.”? This twin nucleation route bears some resemblance to the defect nucleation models

71,72 25,26

proposed by Weinberger and co-workers and Sehitoglu and co-workers with some
differences in the treatment of the process barrier. Dislocation nucleation and glide processes are
considered along a single twin system to study the intrinsic competition between deformation twin
nucleation and thickening mechanisms while suppressing extrinsic microstructure and loading
(i.e., Schmid) factors, as previously discussed. These simplifications are intentional as they enable
the effect of variable process barriers on deformation twinning processes to be isolated and directly
studied. However, it should be noted that our method is sufficiently general to include extrinsic
factors (e.g., far-field loading effects or Schmid factors) with some effort.

Following the method of Ogata et al.%, the process barriers used in the kKMC model are taken
from the differences of critical planar fault energies in the GPFE landscape (see Figure 2b). As

shown in the figure, the first process barrier in deformation twinning (E; = y.L £, where Yas s 1s the
unstable stacking fault energy) is overcome to nucleate a single layer ISF. Thickening of the ISF
proceeds by overcoming additional process barriers (E,, E3, ..., Ey) that are defined by the
difference between the relevant stable fault energy and the peak unstable energies of the subsequent

defect along the GPFE landscape. The unstable fault energies that must be overcome to form one-

10



and two-layer faults are denoted as y,. s and Vi £ respectively. yitf and y,; refer to the unstable
twinning fault energies required for the formation and thickening of a deformation twin. Y5z, Vesf,
and v, are defined as the stable fault energies of the related faults (i.e., ISF, ESF, and TF). y,;;f
and y.s represent the energies related to a single boundary in a thickened deformation twin
comprised of two non-interacting twin boundaries, with the former energy approximated as y,,;r ~
o £ — Vs In FCC materials, the GPFE landscape is known to stabilize after the formation of an
ESF.* Therefore, the process barrier for E,, is taken to define the thickening of deformation twins
beyond three layers such that E, ~ 2, £ — 2y¢p. Thus, the relative competition between
nucleation and thickening of deformation twins is defined here by the process barriers E;

(nucleation) and E,, E5, and E, (thickening), respectively.

11
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Figure 2: (a) The kMC simulation cell with the relevant crystal directions and geometric parameters noted. The
color patches depict the discretized local value of the process barrier, with E; shown here as an example. A
schematic of the fault structures of deformation twinning (i.e., ISF, ESF, and TF) are shown, along with the
associated process barriers for nucleation and thickening of deformation twins, and dislocation glide stresses. The
determination of process barriers is defined by the deformation history and local critical energy values at position
i,j in the discretized kMC simulation cell. (b) A schematic of a variable GPFE landscape for an FCC solid solution.
The blue lines represent the system average, and the green lines indicate statistical scatter (1 standard deviation).
The average critical energies and process barriers are indicated with an overline. The definitions of the process
barriers from the differences of critical planar fault energies are also shown.

To simulate the mechanistic competition using kMC simulations, the kinetics of nucleation and
glide events are required. The rates of nucleation and glide (R(i, j)) operating at the i activation

site in the j” slip plane of the simulation cell are determined using an Arrhenius relationship:

12



2)

_[f(l']) - T(l,])]V

R(i,j) = Ryexp {

where R, is the Debye frequency,’ k,, is the Boltzmann constant, T is the temperature (set at 300
K), 7(i,j) and 7(i,j) are the process barrier and elastic shear stresses, respectively, and V is the
activation volume (taken as 10b3,,). Under this framework, if a Shockley partial dislocation is not
present in the j* slip plane, then (i, j) = £(0,j), which represents the process barrier stress for
the nucleation or thickening of a deformation twin. This shear stress can be calculated from the
process barriers of the GPFE landscape using the athermal nucleation relations of classic
dislocation theory.” Conversely, if a Shockley partial dislocation is present in the j slip plane then
(i, j) represents the barrier to glide for a dislocation centered at the i activation site, as given by
the Peierls-Nabarro stress (Tpy, see Figure 2a).” Thus, the conditional definition of process barrier
7(i,j) is as follows:

nEy (L))

b112

T(i,)) = bi1z _anp(i'j) . 3)
KpTexp —— ¢, glide

,nucleation/thickening

where, Ey (i, ) is the process barriers required to nucleate or thicken a fault at i*" activation site
in the jt" slip plane as described in the previous paragraph, and k is the index of the relevant
process barrier as defined by the deformation history of the kMC system. The additional terms in

the glide relation are defined as follows: p represents the distance between adjacent atomic rows

o . 3 . . . G
along the shear direction (i.e., p = > bi12), K, is an elastic constant given by K, = oy where,
. . . . Kob?
G and v are the shear modulus and Poisson’s ratio respectively, and ¢, (i, j) = #1(1:],) represents
kL

the half-width of the dislocation core. All constants related to dislocations are defined using an

edge character. The elastic constants are determined from the relevant components of the cubic

13



stiffness tensor available in Li and Wang’¢, which are then homogenized to provide the effective
isotropic shear modulus and Poisson’s ratio using the method of Bacon and co-workers.”””®
Following the Volterra approach,’® the internal shear stress 7(i, j) is calculated from the additive
elastic field stress contributions of active dislocations in the kMC simulation cell. Free surface
effects are considered by modifying the Volterra solutions to include image dislocations that
enforce vanishing shear stress along the (112) boundaries in the simulation cell, as in previous

work.” The relevant material parameters for the kMC models are given in Table I.

Table I: NiCo material parameters used in kMC simulations.
a, (nm) by;, (nm) dy;; (nm) G (GPa)? ya R, (10"3/s)®
0.351 0.143 0.203 924 0.344 9.88

Calculated based on stiffness constants from Ref.”® using the method of Bacon and co-workers.
"Taken from pure nickel from Ref.*

77,78

To evaluate the influence of process barrier fluctuations on the evolution of deformation
twinning microstructures, two different types of kMC simulations are performed, which are
referred to here as the homogeneous and heterogeneous models. In the homogeneous model, the
deformation kinetics are calculated using the average values for the process barriers. For instance,
the barrier to nucleate an ISF becomes E, = E; = V&Sf, where V&sf is the average unstable
stacking fault energy obtained using the methods described in Section 2.1. The other process
barriers required for fault thickening are similarly taken from their average values, E, = E},. Under
the heterogeneous definition, a distribution of local process barriers is created using the statistics
measured during MS sampling of the GPFE landscape. For example, the process barrier for the
incipient nucleation event becomes E; = y,ir = Vuss + Ayss, Where Ay, is drawn from a
Gaussian distribution using the mean and standard deviation obtained from sampling statistics. As

shown in Figure 2a, this distribution of process barriers is then mapped as local values in the kMC

mesh using the same dimensions from MS sampling (i.e., ¥10 by, by Y10 by4,). As previously
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discussed, this discretization also encompasses the region that contributes most significantly to
excess energies during shearing (about 2-3 {111} planes, see Section 2.1). For mapping purposes,
we assume that the critical planar fault energies have perfect statistical correlation at the same
location in the kMC mesh but are otherwise spatially uncorrelated. That is, the same standard
scores (i.e., the z-scores of the statistical distribution) are used when assigning critical planar fault
energies to each location in the kMC mesh, but the spatial arrangement of standard scores within
a specific critical planar fault energy is selected at random. This assumption finds some support
with the statistical correlations measured in MS sampling, which were generally higher than 0.6
between all critical planar fault energy distributions. To capture the deformation twinning
microstructure evolution, the deformation twinning fraction () and number of faults (Ng) are
measured at each simulation along the y = 0 boundary of the simulation cell. In these calculations,
ISFs, ESFs, and TFs are all counted towards F and Ny and the terms fault and twin will be used
interchangeably. The simulation termination condition is set at a deformation twinning fraction of
0.15, which is in the range of experimental reports (i.e., 0.15 — 0.20, as per De Cooman et al.).?!
2.3 Analytical Model

To reveal the relationship between the statistical parameters of critical planar fault energy
distributions and the emergent deformation twinning microstructures, we develop an analytical
model to predict the competition between deformation twin nucleation and thickening. As

demonstrated in our previous work,” in kMC simulations the ratio between the rate of change of
. o . dNp., . o .
fault number and deformation twinning fraction (d—FF) is related to the probability of nucleation

(Py) through the evolution law:

4
where N is the total number of {111} planes in the system. Py is determined by the ratio between

15



rate of new twin nucleation (Ry ) to the total rates of all kinetic events (R). Assuming glide events
are exhausted, the total rate of all kinetic events is simply R = Ry + Ry, where Ry is the rate of

twin thickening. By summing these rates at all nucleation sites, Py is given by the following

relationship:
_ Yuk
Py = —— _
YjtE1+ Yo Ew %)
where E; = exp{—aFE;(0,j1)}, E., = exp{—aE(0,jo)}, and a = %, which holds the
b 112

thermodynamic parameters. Here the indices j1 and joo enumerate the {111} slip planes in the
kMC system where deformation twin nucleation and thickening can be activated, respectively. In

the homogeneous model, where E;(0,j) = Ej , Egs. (4) and (5) reduce to the following relation:’

dNy (N — FN — 2N)E, _o
dF (N —FN —2Np)E; + 2NgEo )

(6)
which can be solved numerically using the 4™ order Runge-Kutta method. As in our previous
study,” the number of nucleation sites available at a given deformation twinning fraction is taken
as N — FN — 2N and the number of thickening sites is 2N. This treatment represents an upper
bound for thickening sites and is most accurate at lower deformation twinning fractions.

For treatment of the heterogeneous model (i.e., Ex(0,j) = Ey), we extend this analytical
derivation to incorporate the local statistical fluctuations in the GPFE landscape of solid solutions
by considering the expected values of process rates (i.e., (exp{—aE})). For simplicity of
presentation, we have omitted the trailing (i,j) indices in the subsequent discussion. This
derivation is based upon two assumptions: the distribution of process barriers follows Gaussian
statistics (see Section 3.1) and that negative values of process barriers are not permitted. Although

negative process barriers were not observed in the kMC mesh, in this model the tail of the

associated Gaussian distribution can contain small, but non-zero probabilities of E} < 0, which
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leads to instability in the analysis. Consequently, distribution tails with negative values are set to
zero in analytical modeling. This simplification limits the maximum rate of kMC processes to the

173

Debye frequency, which aligns with Cai et al.”” Under these assumptions, the expected value of

the raised process barrier distribution (exp{—aE}}) is determined as:

(exp{—akE,}) = - %([ exp{—aEy}exp {_%(Eka—kEk> } dE, (7a)
k 0
_ 2
[Lonl 55 )
_ 2 1 E
- ool ) G () G ()] ™

where oy, is the standard deviation of the k” process barrier and erf is the error function. In Eq.

(7b), the first exponential term represents the expected value of exp{—aE,} over the full
integration range (i.e., —o0 to ) and the bracketed terms with the error functions are correction
factors to account for treatment of the distribution tail that falls below zero. An effective process
barrier £}, can now be defined by setting Eq. (7b) equal to an effective exponential term

(exp{—aE' k}), which simplifies to the following relation:

S R T L 0
(i)

Examination of the extremes Eq. (8) shows that E}, converges to E}, as g, — 0, as expected, and

E, > — i In G) ~ ( as g, — o0. The residual term in the latter limit arises due to the elimination

of the negative portion of the distribution tail in this derivation. Given Eq. (8), Eq. (6) may now

be solved for the heterogeneous model using the same numerical methods by inserting the

17



appropriate effective process barriers (i.e., E;(0,j) = E; and E,,(0,)) = Ey).

The final consideration in this analytical model is the determination of the statistical parameters
of the process barriers. The deformation twin nucleation barrier (i.e., E;) is defined explicitly by
the unstable stacking fault energy, which delivers E; = y,5r and 07 = 0,5p. However, as the
deformation twin thickening barrier is defined by the difference of two correlated critical planar

fault energies (i.e., E, = ]/Stf — 2y¢y), the statistical parameters become E, = )73tf — 2y;s and

(05)? = (oqftf)z + (O'th)z — Zajtfamcorr(ygtf, 2y¢r), where corr(ygtf, 2yr) = 0.75 is the
statistical correlation coefficient between the unstable twinning fault and twinning fault energies
measured in MS simulations.

2.4 Molecular dynamics simulations of nanowires in tension

The simplifications and assumptions undertaken to develop the kMC and analytical models
motivate the search for an independent validation method. In this regard, MD nanowire tensile
simulations offer several attractive features to verify the predictions of deformation twinning
microstructures. Namely, the deformation of a nanowire proceeds from the nucleation of Shockley
partial dislocations at free surfaces, and a sufficiently long nanowire therefore possesses a
statistically representative collection of nucleation sites. Furthermore, the structural topology of
free surface nucleation sites in MD are nearly identical. This aligns well with the conditions of
kMC simulations, where the selective activation of deformation mechanisms relies only on the
heterogeneities introduced by the chemical topology.

MD nanowire tensile testing is performed using LAMMPS. OVITO is used to visualize the
atomic topologies in MD simulations and deformation twinning structures are identified using the

1.79

Crystal Analysis Tool.”” The same EAM potential used in Section 2.1 is implemented in MD

simulations to model interatomic interactions. Although stacking faults and deformation twins are
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commonly observed in nanowires,’”®’ the competition between deformation twinning and other
mechanisms (e.g., dislocation slip) is highly orientation dependent. To ensure activation of
deformation twinning mechanisms only, nanowires are modeled with the (118), (110), and (441)
crystallographic directions aligned to the global x, y, and z axes, respectively. This orientation
maximizes Schmid factors along the (112)/{111} twinning system. Nanowires are constructed
with square cross-sections using a deletion scheme outlined in previous work.” The dimensions of
the nanowire are selected to align with the sizes of kMC simulations (66b;4, by 300d4), which
results in nanowires measuring ~6 by 87 nm along the x and z axes, respectively. The nanowires
are modeled at an equimolar NiCo composition and possess approximately 400,000 atoms, with
solute randomly assigned to each atomic site. A size sensitivity analysis for the MD nanowire
testing 1s provided in Section S4, Figure S4 of the Supplementary Materials. Periodic boundary
conditions are enforced along all the axes, with a 6 nm vacuum layer in the x and y directions
between periodic replications. A typical nanowire and the relationships between the twinning
system, crystallographic and simulation axes are provided in Figure 3.

MD nanowire tensile simulations begin with static relaxation under the conjugate gradient
energy minimization method. Subsequently, initial velocities are assigned to atoms by drawing
values from a Gaussian distribution centered at a temperature of 300K. After velocity application,
the nanowires are equilibrated using a Nosé-Hoover style thermostat and barostat, which maintains
a stress-free loading on the system boundaries and a temperature of 300 K. Following
equilibration, uniaxial tensile testing is achieved by strain-controlled deformation along the
longitudinal axis of the nanowire at a strain rate of 10°/s. A time step of 1 fs is used for all

simulations and testing is replicated 7 times.
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Loading Axis

7, <441>

-x, <118>
Figure 3: (a) A snapshot of a nanowire created for MD tensile testing simulations. (b) A planar section of the
nanowire from (a) with the trace of a {111} slip plane shown in dashed blue stroke. This slip-plane is oriented to
maximize the Schmid factor along the (112) crystallographic direction. (c) A closeup of the nanowire with a slip-
plane exposed. The angular relations between crystallographic and simulation axes are indicated. Scale bars in (b)
and (c) measure 3 nm each. Atoms shown in green are FCC coordinated and white atoms do not have a fixed
symmetry.

3. RESULTS AND DISCUSSION

The report of results begins with an analysis of the statistics collected from MS simulations.
These statistics are then used to generate the process barriers for the homogeneous and
heterogeneous kMC models using the methods described in Section 2.2. kMC simulation cells are
constructed for equimolar NiCo samples and measure 66b;,, by 300d,;;. The deformation

twinning fraction and fault number density are measured at each kMC simulation timestep to track
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the competition between nucleation and thickening processes. Each kMC simulation is replicated
200 times for statistical sampling, with results converging well below the replication limit. A

sensitivity analysis of the kMC system size and replication number is provided in Sections S4 and

S5 of the Supplementary Materials, respectively. We use the symbols NiCo and NiCo" to denote

results for the homogeneous and heterogeneous models, respectively. The results of kMC
simulations are then examined using the analytical model of Section 2.3 and validated by MD
nanowire tensile simulations. All error is reported as +1 standard deviation.

3.1 Statistics of the GPFE landscape

Figure 4 provides the results of MS sampling of equimolar NiCo samples. As shown in Figure
4a, significant deviations from the nominal equimolar chemistry are observed during local
sampling. The sampling data is reported here as a binned histogram, which has been overlaid with
a fitted probability density function (PDF). The local samples are found to exhibit a Gaussian
distribution (= 0.50 + 0.08) about the mean molar value, as anticipated. A slight asymmetry in the
distribution creates small deviations from the nominal equimolar value (i.e., 0.50), but these
deviations are less than 0.01 by mole. Although these variations in chemistry are sensitive to
sampling dimensions, they are reported here to underscore the link between fluctuations in the

GPFE landscape and local composition.
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Figure 4: (a) A histogram showing the composition statistics measured during local sampling of the GPFE
landscape. The probability density function (PDF) is fit to the collected samples. The values for composition are
shown in atomic percent (i.e., by mole). (b) The fluctuations in the GPFE landscape are shown for the local sampling
of equimolar NiCo samples. The green region provides the bounds of £1 standard deviation for the measured planar
fault energies (average shown in blue stroke).

The results of local sampling of the GPFE landscape are provided in Figure 4b. Here, the blue
lines provide the average data and the green region represents the +1 standard deviation from the
mean. It should be noted that the average of the locally-sampled GPFE landscape data aligns well
with the GPFE landscape calculated over the entire system area, as expected. Furthermore, the
statistical fluctuations in the GPFE landscape are independent of sampling dimension along (111),
as per the excess energy arguments presented in Section 2.1. Examination of the statistical scatter

in the GPFE landscape highlights the dramatic variations in fault energies that are encountered
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locally along the planar defect. As shown in Section S3, Figure S3 of the Supplementary Materials,
the statistical scatter in the GPFE landscape vanishes as the sample area (i.e., in the {111} plane)
approaches the system size. One interesting observation is that the stable fault energies (i.e., y;sr,
Yess» and y.s) exhibit negative values in some samples, which aligns with recent reports in the
literature. For instance, NiCo is known to undergo an FCC to hexagonal close-packed (HCP)
transformation at chemistries of > 70 at.% Co,* which implies a negative intrinsic stacking fault
energy for these Co-rich compositions. Indeed, negative stacking fault energies have been reported
in NiCo*' and NiCo-based MEA3*4%42 gystems in DFT studies, which is related, in part, to
limitations in the simulation cell size available to first principles methods.** Within this context,
we interpret negative stacking fault energies in this study as arising from Co-rich regions localized
within the fault plane.

Figure 5 provides the distributions of critical planar fault energies obtained from local sampling
of the GPFE landscape. As shown in the figure, the binned data is overlaid with a fitted Gaussian
distribution. The statistical parameters of the critical planar fault energy distributions have been
provided in the plot and are summarized in Table II. Each critical planar fault energy distribution
is found to be reasonably approximated by a Gaussian with minor skewing noted in the unstable

1.46

stacking fault energy (i.e., .. £)- These results align with a study from Zhao et al.™ who report a

normal distribution of intrinsic stacking fault energies for several concentrated FCC solid
solutions. The data provided in Figure 5 also emphasizes the proportion of negative stable fault
energies, which appears to be almost half of the distribution for each fault type. It should be noted

that the twinning fault energy (i.e., y;s) is doubled as two twin faults are created by MS shearing
operations. Furthermore, the standard deviation (i.e., g5:f) is provided in reference to the 2y, s

distribution. Collectively, the statistical distributions reported here underscore the large variations
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in processes barriers encountered by dislocations during the operation of deformation twinning. In

the subsequent section, the statistical parameters obtained from Gaussian fitting of the critical

planar fault energy distributions are leveraged to inform kMC process barriers, through which the

effects on the evolution of deformation twinning microstructures are examined.
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Figure 5: The distribution of critical planar fault energies sampled from the GPFE landscape of equimolar NiCo,
shown as histograms. The unstable planar fault energies sampled are the (a,c) unstable stacking and (e) unstable
twinning fault energies (i.e., ylllsf, yﬁsf, and ygtf). The stable fault energies sampled are the (b) intrinsic and (d)
extrinsic stacking fault and (f) twinning fault energies (i.€., ¥isf, Vess> and ¥¢f). A Gaussian fit to the histogram data
is overlaid and the statistical parameters are provided (i.e., the average and standard deviation). The stable twinning
fault energy is provided at double its value as there are two twin faults created during MS shearing operations.
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Table I1: Average and standard deviations of critical planar fault energies (mJ/m?) as measured from MS simulations.

Model  Visy + Ousy  Visy £ 0sy  Vaer T Oty Visy £ Oisp Vesp £ Oesp 27Ver £ Oty
NiCo"  265.1+78.9  287.6+98.7 288.3+106.8  40.0+61.3 42.2+77.9 43.9+91.1
NiCo 265.1 287.6 288.3 40.0 42.2 43.9

3.2 Evolution of deformation twinning microstructures

Representative snapshots of the microstructure of the kMC simulation cell are provided in
Figure 6a and Figure 6b for the homogeneous and heterogeneous models, respectively. The colored
regions represent areas that are faulted and/or twinned in the microstructure. The evolution of
deformation twinning microstructures shows distinct behaviors between the two models. In the
homogeneous system, the fault number density is comparatively lower and is accompanied by
thicker deformation twins at each twinning fraction. By contrast, the heterogeneous system is
profusely twinned, with most defects appearing as one- and two-layer stacking faults (i.e., ISFs
and ESFs). One observation from this result is that the presence of a variable process barrier
landscape disproportionately biases deformation twinning towards nucleation mechanisms. This
interpretation aligns with the correlations between process barrier statistics, as discussed in Section
2.3. Specifically, the larger standard deviations in the nucleation barrier compensate for its higher
relative average value (i.e., E; = 265.1 £ 78.9 mJ/m?), which drives nucleation-dominated
deformation behavior. Conversely the process barriers to thickening, exhibit lower standard
deviations due to correlations between critical planar fault energies that reduce the statistical

scatter (e.g., Eq, = 244.4 £ 71.2 mJ/m?).
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Figure 6: Representative snapshots from (a,b) kMC and (c) MD nanowire tensile simulations at deformation
twinning fractions of 0.05, 0.1, and 0.15. For the heterogeneous NiCo model (green), the simulation is segmented
by several planar defects that traverse across the cell. For the homogeneous NiCo model (blue), the snapshots reveal
a lower density of planar defects with larger average thicknesses. MD snapshots are taken from the center cross-
section of a representative nanowire and show fault-free FCC atoms (blue), ISFs (red), ESFs/TFs (yellow) and
atoms without a fixed symmetry (dark blue). The scalebar in (c) measures 3 nm.

Snapshots of representative defect structures during MD nanowire tensile testing are provided
in Figure 6¢c. Here, planar defects are shown in red and yellow stroke for ISFs and ESFs/TFs,
respectively. The deformation twinning fractions are calculated using an image processing
algorithm described in our previous work.” As shown in the image, nanowire samples exhibit a
monotonic increase in planar faults with increasing deformation twinning fraction. Activation of

dislocation slip is not observed in the deformation of MD nanowires, as expected from Schmid
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theory. The deformation twinning microstructures of the MD nanowires are qualitatively similar
to those of the heterogeneous model in number density and thickness. A quantitative comparison
of kKMC and MD results follows in the subsequent discussion.

Figure 7 provides the evolution of the fault number density for each of the methods examined
in this effort. The fault number density is defined here as ny = Nr / Ndyq, and has been computed

by considering contributions from planar faults (i.e., ISFs and ESFs) and thickened TFs, as
previously discussed. The results of kMC simulations for both the heterogeneous and
homogeneous models are provided as averages with error bars indicating 1 standard deviation over
200 replications. As shown in the figure, the differences between the heterogeneous and
homogeneous kMC models are quantitatively consistent with the qualitative observations from the
snapshots of deformation provided in Figure 6. That is, deformation twinning processes in the
heterogeneous model favor nucleation relative to the homogeneous simulations. The evolution of
the fault number density in MD nanowire tensile simulations is overlaid with the kMC data in red
stroke. Here, the average data is represented by the red midline and + 1 standard deviation is given
by the bounds of the shaded area. Examination of the MD data shows excellent agreement with
the heterogeneous model. This outcome is significant and offers two key observations. First, as an
independent predictor of deformation twinning physics, the agreement of MD results with kMC
methods provides encouraging validation of our approach. Second, the alignment of MD results
specifically with the heterogeneous kMC model underscores the influence of variable process

barriers on the activation of deformation twinning processes in FCC solid solutions.
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Figure 7: The evolution of the fault number density as predicted by heterogenous (green) and homogeneous (blue)
kMC models and MD simulations (red, NiCoMP). The average kMC results over 200 replications are provided, and
error bars represent +1 standard deviation. The average of MD results is provided by the solid midline and the
shaded region represents the bounds of 1 standard deviation. These results are overlaid with numerical solutions to
analytical model for the homogeneous (blue dashed line) and the heterogeneous (green dashed lines) calculations,
as determined using the relevant process barriers.

Numerical solutions to the analytical model developed in Section 2.3 are provided for the
homogeneous and heterogeneous systems in Figure 7. In the homogeneous solution, the fault
number density is calculated from the solution of Eq. (6) using the average values of the process
barriers (i.e., E; = 265.1 mJ/m? and E,, = 244.4 mJ/m?). However, for the heterogeneous solution,
computation of Eq. (6) proceeds using the effective process barriers (i.e., E; and E,,) that are
determined from Eq. (8) with E; =265.1 mJ/m?, o, = 78.9 mJ/m?, E,, = 244.4 mJ/m?, and o, =
71.2 mJ/m?. In both analytical calculations, the other model parameters match those used in kMC
simulations. As shown in the figure, the analytical model is in good agreement with the results of
kMC and MD simulations. Some over-prediction at high deformation twinning fractions is noted

in the heterogeneous analytical calculations, which may be due to merging of planar defect
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structures in highly twinned microstructures, as described in previous work.’ Nonetheless, a key
observation from analytical modeling is that the essential physics of deformation twin nucleation
and thickening in solid solutions can be captured through consideration of statistical fluctuations
in the relevant process barriers. This outcome supports scalability of the analysis to larger system
sizes without the significant computational overhead incurred by kMC and MD simulations.

Although the fault number density predictions find excellent agreement with MD nanowire
tensile simulations in this work and in our previous study,’ this alignment must be interpreted with
caution. Namely, dislocation nucleation and glide kinetics are known to have significant
nonlinearities under the high strain rate loadings imposed by MD simulations. These include
nonlinear contributions of applied stresses to activation barrier kinetics and variable activation
volumes.**#! Therefore, MD nanowire tensile simulations at different temperatures or strain rates
may require different activation parameters (e.g., activation volumes) to be used to find agreement
with kMC and analytical predictions. Nonetheless, we emphasize that this combination of
thermomechanical testing parameters (i.e., 300 K temperature and 10%/s strain rate) is consistent
with the kMC and analytical model across several FCC systems, as shown here and in previous
work.” As an additional note, MD testing under different temperatures and strain rates may activate
different dislocation-mediated mechanisms (e.g., as in Refs.#>%%) that are not directly captured by
kMC or analytical models, but we expect this is largely precluded by the nanowire and loading
configurations used in this study.

3.3 Competition between nucleation and thickening processes in FCC solid solutions

The presentation of the analytical model for the fault number density evolution motivates a
broader examination of the competition between the nucleation and thickening processes of

deformation twinning in solid solutions. In our previous work,” we developed a twin nucleation
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tendency criterion (T},) for a similar purpose in unary FCC systems. Using the definition of the
effective barrier from Eq. (8), T;) may be updated to incorporate the statistics of variable GPFE

landscapes in FCC solid solutions as:

1 - F - andlll ~ ~
T, =1 ( ) —alE; — E4
7 " 2npdqqq a( ! )

(€]

where the nucleation of deformation twins is favored when T;, > 0 and the thickening of existing
deformation twins is preferred when T, <0. The first term in T}, captures the changes in nucleation
and thickening tendencies based on the evolution of deformation twinning microstructures. That
is, as the fault number density rises, fewer sites become available for nucleation of new defects

and thickening becomes increasingly favored. The second term in T;, accounts for contributions of

the process barriers to the inherent competition between nucleation and thickening processes.
Figure 8 plots the evolution of T,, with increasing deformation twinning fraction for both the
homogeneous and heterogeneous models. As shown in the figure, both models exhibit a monotonic
decline in nucleation-favored behavior at increasing deformation twin fractions, as expected with
the microstructure becoming increasingly faulted. Furthermore, the heterogeneous model is
observed to favor nucleation of deformation twins relative to the homogeneous model, which is
consistent with the results presented in the kMC analysis. This finding further underscores the
sensitivity of deformation twinning mechanisms to the statistical fluctuations in process barriers.
In order to study the effects of length-scale on the twin nucleation tendency, we have also plotted

T, for varied GPFE landscape sampling areas, which presents the opportunity to examine the twin

nucleation tendency under process barriers with varied statistical scatter. As shown in the figure,
the twin nucleation tendency criterion converges to the homogeneous limit at a sampling area of

25A*. This result is significant as it reveals the length-scale over which the influence of statistical
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fluctuations in process barriers diminish and the local behavior transitions towards the bulk.
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Nucleation
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Figure 8: The evolution of the twin nucleation tendency criterion. The nucleation of deformation twins is preferred
when T, > 0 and thickening-favored behavior is expected when T;, < 0. The data is plotted for the homogeneous

and heterogenous models in blue and green stroke, respectively. The sampling area used to define the statistics of
process barriers is varied between 2.25A4* and 25A4*, with criterion predictions converging to the homogeneous
values at larger sampling areas.

4. CONCLUSIONS

The effects of local fluctuations in planar fault energies on the deformation twinning
microstructures of FCC solid solutions have been examined by kMC simulations, with equimolar
NiCo serving as the benchmark system. To examine the evolution of deformation twinning
microstructures, the processes of nucleation and thickening of deformation twins were of specific
interest in kMC simulations. The fluctuating process barriers for activation of nucleation and
thickening behaviors were assigned using statistical parameters obtained from local sampling of
the GPFE landscape. kMC results showed an increase in the fault number densities in NiCo solid
solution samples when compared against a homogenized reference calculation where statistical
scatter was not considered. Furthermore, the results of kMC simulations were compared with MD

nanowire tensile simulations, which showed excellent agreement with the NiCo solid solution
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samples. This alignment served to independently validate our kMC approach and underscored the
importance of local fluctuations in driving deformation twinning behaviors.

In addition to kMC studies, an analytical model was developed to predict the evolution of the
fault number density in FCC solid solutions using the process barriers of deformation twinning as
key inputs. To capture the effects of fluctuations, a relation for an effective barrier was derived,
which was based on the expected values of deformation twinning kinetics under a statistical
distribution of process barriers. The formulation of this analytical model enabled a direct analysis
of the competition between nucleation- and thickening-favored deformation twinning processes.
In addition, this model revealed the length-scale by which the effects of local fluctuations on the
deformation twinning processes diminish and the nucleation/thickening-dominated behaviors
converge to bulk predictions. More broadly, the tools developed in this work provide a pathway to
study the influence of chemistry and length-scale on the evolution of deformation twinning
mechanisms in FCC solid solutions.
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