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ABSTRACT

Recent studies of concentrated solid solutions have highlighted the role of varied solute
interactions in the determination of a wide variety of mesoscale properties. These solute
interactions emerge as spatial fluctuations in potential energy, which arise from local variations
in the chemical environment. Although observations of potential energy fluctuations are well
documented in the literature, there remains a paucity of methods to determine their statistics.
Here, we present a set of analytical equations to quantify the statistics of potential energy
landscapes in randomly arranged solid solutions. Our approach is based on a reparameterization
of the relations of the embedded-atom method in terms of the solute coordination environment.
The final equations are general and can be applied to different crystal lattices and energy
landscapes, provided the systems of interest can be described by sets of coordination relations.
We leverage these statistical relations to study the cohesive energy and generalized planar fault
energy landscapes of several different solid solutions. Analytical predictions are validated
using molecular statics simulations, which find excellent agreement in most cases. The
outcomes of this analysis provide new insights into phase stability and the interpretation of

‘local’ planar fault energies in solid solutions, which are topics of ongoing discussion within
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the community.

Keywords: Solid solutions; High Entropy Alloys; Embedded-Atom Method; Cohesive Energy;
Planar Fault Energy

1. INTRODUCTION

Recent interest in concentrated systems has spurred research activity in the metallurgy of
multicomponent solid solutions. These efforts have produced new physical insights into the
role of solute interactions, with a focus on behaviors that emerge in concentrated mixtures.
Studies in high entropy alloys (HEA)s, which are considered here as a subset of concentrated
solid solutions, are perhaps the most visible. Notable examples include investigations of solute-
induced lattice distortion [1-5], variations in dislocation glide barriers [6—13], and solute
effects on planar and twinning fault energies [14—18]. While the effects of solute can be
revealed by computational studies and inferred by experiments (e.g., as in Refs. [19-21]), new
theoretical challenges have arisen concerning the prediction of material properties. For instance,
traditional solute theories such as those for solid solution strengthening [22-25], find limited
applicability in concentrated systems [8,13]. In many cases, the shortcomings of traditional
theories can be traced to the irregular nanoscale fluctuations in the potential energy (PE)
landscape, as demonstrated in recent theoretical advancements from Curtin and coworkers
[6,8,13]. These topology-induced PE fluctuations emerge from local variations in composition
and solute interactions, whose effect becomes significant in concentrated solid solutions.
Perhaps the most basic example of such a PE landscape is that of cohesive energy, but more
complicated landscapes such as that of the Peierls barrier and the generalized planar fault

energy (GPFE) are familiar to the community.



New literature continues to emerge that highlights the challenges and opportunities these
fluctuating PE landscapes offer to the physical metallurgy of concentrated solid solutions
[9,26,27]. Some notable progress has been made in recent works in treating variable PE
landscape problems. For instance, Varvenne et al. [28] have developed an effective medium
model, based on the embedded-atom method (EAM) [29-31], which homogenizes the effects
of solute in randomly arranged solid solutions. Several studies have leveraged this model to
calculate material properties in concentrated systems including lattice parameters [16,32-35],
elastic constants [16,32-35], cohesive energies [16,32], and stacking fault energies [16,34,35].
While this method is suitable for the calculation of homogenized bulk properties, a limitation
arises when predicting material phenomena at length scales that approach those of the
nanoscale fluctuations in the PE landscape. Certainly, there is a building body of literature
focused on the study of material properties that are controlled by the fluctuations in the PE
landscape of concentrated solid solutions. For example, Curtin and coworkers [6,8,13] have
developed a method to measure the fluctuations in dislocation glide barriers that emerge from
varied dislocation-solute and solute-solute interactions in solid solutions. Additionally, Zhang
et al. [9] have incorporated a stochastic coefficient function into the classic Peierls-Nabarro
model to predict a distribution of Peierls stresses in HEAs. Ghazisaeidi and coworkers [36,37]
report the statistics of a ‘local’ stacking fault energy that arises due to the varied solute
interactions in the vicinity of planar defects. The qualitative link between these local stacking
fault energies and the varied local chemical environment in concentrated solid solutions has

been studied by Zhao et al. [17] and Ma and coworkers [38,39]. Undoubtedly, this new body



of literature highlights the emergence of a variable ‘local’ property that arises from the
statistical distribution of solute interactions that are inherent to concentrated solid solutions.

Although the observational connection between fluctuations in the PE landscape and the
emergence of local material properties is now well established, there is a paucity of methods
to directly calculate these fluctuations from system topology inputs. Specifically, analytical
techniques that link the statistical variations in composition and neighbor pairings in solid
solutions with fluctuations in PE landscapes remain sparse. To the authors’ knowledge, the only
example of a direct analytical relation is found in a recent study by Curtin and coworkers [6],
where the specific use-case of fluctuations in solute-solute interactions during dislocation slip
is studied. This dearth of analytical approaches limits the broad exploration of new theoretical
models, where inputs for compositional and structural PE landscape fluctuations must be
measured from atomistics [8] or take on assumed forms [9].

Here, we present an analytical approach to quantify the statistics of fluctuations in PE
landscapes of randomly arranged solid solutions. This framework is developed here for EAM-
type relations, which are commonly used to model the metallic bonding of alloys. These
relations are applicable to randomly arranged solid solutions in any crystal system with
arbitrary numbers of components and concentrations. To demonstrate this approach, we
consider two PE landscapes: those of the cohesive energy and the GPFE. These landscapes are
selected due to their roles in phase stability and in defining the intrinsic competition between
deformation mechanisms. For the purposes of analyzing phase stability, examination of

cohesive energy landscapes is performed on both face-centered cubic (FCC) and hexagonal



close-packed (HCP) solid solutions. Application of this method to other PE landscapes is
possible, with some limitations discussed later. The outcomes of this work provide analytical
tools to study the statistics of PE fluctuations, which are important to the advancement of

several classes of theories in the physical metallurgy of solid solutions.

2. ANALYTICAL DERIVATION OF STATISTICAL QUANTITIES

The primary challenge in quantifying the fluctuations in the PE landscape lies in the
variations in composition and arrangement of neighbors that are encountered when sampling
small volumes in solid solution ensembles. Indeed, sampling of n. solute atoms in a randomly
arranged solid solution produces a Gaussian distribution of mean compositions of the form

X ~X cX(1-CX) ~X ..
G*~|C7, — ,where C* isthe system-level composition of element X presented as
c
a molar fraction. In this notation, the first parameter is the distribution average, and the second
parameter is the standard deviation. Furthermore, capitalized statistical parameters refer to

population properties and lowercase symbols refer to samples drawn from these populations.

By a similar calculation, the solute pairings from n; samples of two randomly selected solutes

CXCY(1-CXCY)

form a distribution with parameters GX¥~ (f XcY, -
S

). Here, the term solute
pairing refers to the combinations of chemical pairs XY that exist in a multicomponent system.
For instance, in a binary system with two atom types, these combinations would be 11, 12, 21,
and 22. Figure 1 presents the solute pairing statistics for a numerical simulation of a theoretical
ternary system with randomly drawn samples, which mimics the organization of solute in a

randomly arranged solid solution. As shown in the figure, the fluctuations in composition and

solute pairings around the system averages are significant, which underscores the varied



chemical environment encountered in solid solutions. A derivation of the statistical parameters

(i.e., the standard deviation) of these distributions is provided in Appendix A.

Prob. Density (at.%™")
o =2 N W B2 O OO N @

02 04 06 08 1.0
Composition, ¢* (at. %)

o

127
(b) . s
10' | §12
o s

GXY

Prob. Density
ELN (o)}

N

01 02 03 04 05
Solute Pair Fraction, §¥¥

Figure 1: (a) A numerical simulation of sampled compositions for a randomly arranged solid solution. The
sample means (¢X) are plotted as a histogram and the statistical distribution (G¥) is plotted in solid stroke.
Samples (n. = 50) were randomly collected from a ternary system of 10® atoms with an overall composition
of C =(0.5,0.15, 0.35). (b) The distribution of sampled solute pair fractions (ny= 50) in the same system. The
sample means (5%¥) are presented as a fraction and are plotted with the statistical distribution (G*¥) for 3 of 9
possible solute pairings, where §%¥ and 5Y* are separately expressed. The distributions in (a) and (b) have

been sampled more than 2 x 10* times with replacement.

Within the context of energy landscapes, the composite effect of the statistical variations in

local composition and solute pairings give rise to the fluctuations observed in the PE. An



example of this effect on the per atom site energy (E,) of a solute is provided in Figure 2. Here,
the term ‘site energy’ refers to the energy of a solute atom that arises from its relative position
in the local chemical environment. In the figure, the local composition and solute pairings
within the first two nearest neighbor shells (¢) in a FCC lattice have been systematically varied
for a binary FeNi system using the EAM potential of Bonny et al. [40]. In consideration of the
statistical distributions shown in Figure 1, each of these local arrangements is possible in a
randomly arranged solid solution, albeit with differing probabilities. As shown in Figure 2, the
change in E, for a Ni atom varies with the sample composition (¢V¢, Figure 2a), and with the
partitioning of solute between the first (¢1'¢, Figure 2b) and second nearest neighbor shells. The
changes in E, can be significant - reaching as high as ~165 meV/atom in some configurations.
It is this observation of the connection between solute arrangement and the site energy that

informs our approach to predicting the statistics of fluctuations.
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Figure 2: The change in per atom site energy of a Ni atom (dEN?) within the FCC phase of a FeNi solution.
The overall sample composition (¢V?) is varied in (a) with an equi-proportional partitioning of solute between
each neighbour shell (¢). The composition of the first neighbour shell (¢]'%) is varied in (b) at an overall sample
Ni_

composition of ¢"'= 0.33. The central Ni atom is not included in composition measurements. The right axis

plots the nominal energy of the Ni atom (EN?). Here, the PE zero-point is selected at the infinite separation of
atoms. For presentation simplicity, energies are calculated from interactions up to 2 nearest neighbor shells
only and are referenced relative to a pure Ni sample. The distribution of solute for each sample is illustrated in
the schematics above each plot. The schematics are drawn from a <111> zone axis and atoms coplanar with the
central Ni atom are marked by a black hexagon for clarity. Circular and hexagonal atom markers indicate solute

in the first and second neighbor shells, respectively.

2.1. Statistical analysis in the embedded-atom method

The key to our approach to analyze PE fluctuations lies in recasting the equations of the
interatomic potential in terms of the coordination environment around an atom such that varied

compositions and neighbor pairings may be considered. To quantify these PE landscape



fluctuations in the statistical average and standard deviation are of interest. The inspiration for
our approach follows from Varvenne et al. [28], where solute effects are treated through the
creation of an EAM-based average-atom interatomic potential, which enables estimates of the
homogenized properties of the bulk. Under the EAM, the PE of a system (E) is defined by the
addition of two terms. The first term is the embedding energy (F), which is a function of the
charge density (p) contributed by neighboring atoms at distance r. The second term is the
interaction energy (V) that captures the pairwise potential energy interactions between atoms.
In their usual presentation, the EAM terms are summed over all atom sites and element types.
This summation can be directed by binary occupancy vectors C{* (as in Appendix A), which
return C;*= 1 when an atom of type X occupies site i and are otherwise 0. The total PE of the

system can then be calculated as [28-31]:

1
E= Z CEFY(p) + 5 vireiey (1)
i,X

Lj#LXY
with the indices i/ and XY specifying the atomic and chemical pairs, respectively. Using the

occupancy vector, the charge density under the EAM is given as:

_ X X
pi—zcjpij )

JELX
For the purposes of this study, we are interested in determining the per atom PE using
similar relations. To achieve a per atom description, we reparametrize these relations through
the introduction of the coordination number (N;), which provides the number of atoms in
concentric shells at fixed distances from a central atom. For instance, N; takes on a value of

12 for the nearest neighbors in FCC materials. These concentric shells of coordination are a

9



superset of the nearest neighbor shells described above and are incremented with increasing
radial distance. As demonstrated in the upcoming discussion, this relatively simple
modification allows for the statistics of varied local solute environments to be analyzed.
Moreover, this reparameterization can be leveraged to study a variety of PE landscapes,
provided the coordination relations are known. This information is readily available for perfect
crystals, which directly delivers the statistics of the cohesive energy landscape and can be
obtained for some crystal defects such as FCC planar faults. This process is demonstrated in
Section 2.2, where relations for the statistics of a varied GPFE landscape in a FCC system are
provided. While this approach implicitly neglects lattice distortion effects on statistical
parameters, results show that this assumption is reasonable for the systems studied herein.
The statistical analysis begins with an examination of the average per atom energy in a
multicomponent system through summation of the reparametrized EAM relations over all
element types and coordination shells. Under the assumption of a random arrangement of solute,

the average per atom site energy (E,) can be calculated as:

_ _ 1 .
E, = Z CXFX(p) + > Z VXY N CXCY
X XY,

3)

where CX is the average concentration of a solute as defined previously. Here, V(XY
represents the pair interaction energies of solutes at distances corresponding to the various
coordination shells, which are available directly from the interatomic potential. In this work,
the summation of coordination shells is restricted by a cutoff distance. This cutoff distance was

chosen to be the same as those specified in the EAM potential used in validation activities (see
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Section 3). In all materials studied the cutoff distances is no less than \/?2 a,, where a, is
the lattice parameter (here, a, = 0.35 nm). This results in a summation of at least the first five
coordination shells in all crystals considered, which was found to surpass any cutoff sensitivity.
Following the assumption of Varvenne et al. [28], the per atom charge density term, p, is
replaced with an average per atom charge density (p). This replacement simplifies the statistical
analysis and is found to retain excellent accuracy for the systems studied in this work. For
instance, using the systems studied in Section 3.2 as a benchmark, this approximation resulted
in deviations of less than 0.3% to average per atom embedding energies (F, see Eq. (5)), when

compared against exact calculations. The average per atom charge density follows as:

-~ X ~
p= D, PEC"N; @)
X.q

where pé( represents the charge density contributed by solute X in coordination shell ¢, and
is provided by the interatomic potential. In Egs. (3) and (4), the average concentrations offer
the weighted probabilities of finding solute X in coordination shell { for each term in the EAM
relations.

Within the context of previous work, the relations provided in Egs. (3) and (4) can be
viewed as per atom analogs to the system-level homogenized relations developed in Varvenne
et al. [28]. Analysis of the statistical scatter in per atom energies proceeds from separate
calculations of the standard deviations of the embedding energies (AF) and pair interaction
energy terms (AV). Under the constant charge density assumption, the standard deviation of

the embedding energy is given as:
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AF = (FX — F)2C¥
Z: )

where F¥ is the embedding energy of element X evaluated at p, and F = Y4 FXC¥ is the
average per atom embedding energy. This expression for AF may be interpreted as a weighted
combination of the variances of individual solute embedding energies.

Due to the varied pair interactions between different solutes in coordination shells, analysis
of the standard deviation of the pair interaction energy term requires a systematic approach that
considers each pairing that contributes to statistical scatter. As demonstrated in Figure 1, the
local concentration in the vicinity of a solute atom may vary significantly from the global
chemistry, and the partitioning of solute into differing coordination shells (see Figure 2)
presents additional pathways for statistical scatter. These added considerations underscore the
complexities that arise in determining the PE statistics of solid solutions. The final relation for

the standard deviation of the pair interaction energy is given as:

AV = ; CX(AVX)2 + )" CXCY (VX = Y2 ©

X<Y

where VX and AV¥ are the average and standard deviations of the per atom interaction
energies, respectively, when solute X is the central atom. These terms can be separately

calculated from the parameters of EAM potentials as:

7X — XY FY
Ve = Z V& O Ng (7)
Y
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AVX = jZ(VZXY - VzX)ZEYNg g
% (®)

where VX = ¥, V¥ CY is the average interaction energy for a solute X in coordination shell
¢. A detailed derivation of AV and the related terms is provided in Appendix B. Using the
standard rules for the combinations of statistical variables, Egs. (5) and (6) may be combined

to provide the standard deviation of the per atom energy (AE,):

AE, = \/AFZ + (A—V)Z + 2cov (F,1V> )
2 2
where cov (F , % V) is the covariance between the embedding and the pair interaction energies.
The 1/2 coefficient appears in the AV and covariance terms to avoid double counting of
interaction energies, as in Eq. (1). The covariance term can be calculated directly from the
overall composition and the interatomic potential coefficients as:

1 IO -y o _ 1 -
cov (F,EV> = Ez CXFXVX — <Z CXFX> 3 Z VXY N CXCY (10)
X X

%0 14

A full derivation of this expression is provided in Appendix C.

Collectively, Egs. (3) - (10) provide a method to evaluate the statistical variations of per
atom potential energies in randomly arranged solid solutions. These relations are derived
directly from the EAM formulation and require only coefficients from the interatomic potential,
solute concentrations, and coordination relations as inputs. Furthermore, there are no adjustable
parameters or new assumptions introduced to produce these statistical relations. These
equations are general and can be applied to any crystalline structure, provided the coordination

relations are given. Indeed, the application of these relations to planar faults is a necessary step
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in the analysis of the GPFE landscape that follows in the next section.

2.2. Extension of per atom EAM relations to the GPFE landscape

The PE landscapes considered in this study are those of the cohesive energy and the GPFE.
The cohesive energy landscape is a composite of per atom site energy values that describe the
potential energy change due to deposition from the gas phase into a crystalline phase, which
serves as a reference for comparison of phase stability. The statistical parameters of the
cohesive energy landscape can be therefore retrieved directly from Eqgs. (3) - (10). The GPFE
landscape is formed from the area normalized interplanar excess energy (i.e., the planar fault
energy, y [41,42]) arising from the coordinated shearing of the pristine FCC lattice by
Shockley partial dislocations along <112>/{111}, as required to form and thicken deformation
twins. Within the context of deformation mechanisms, the GPFE landscape can be used to
examine the intrinsic competition between dislocation slip and deformation twinning in a FCC
material, which has important implications on the evolution of mesoscale plasticity in low
stacking fault energy systems. The tendency for a material to exhibit deformation twinning is
described through a variety of twinnability parameters [43—49], which are dependent on the
critical energies (i.e., peaks and valleys) of the GPFE landscape. Figure 3 provides a schematic
of a typical GPFE landscape for an FCC material, with the critical energies labeled. These
energies are the unstable stacking fault energies ()/S:sz and y&‘ssf), the intrinsic and extrinsic
stacking fault energies (y7, ¢ and v 7), and the unstable twinning and twinning fault energies
(yfl'gc and yff). Here, the superscript refers to the crystallographic slip that is required to create

each fault, referenced as a multiple of the <112> Shockley partial Burger’s vector (bii2).

Fluctuations in these critical energies are of interest to the community, as they have
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implications on deformation mechanism competition [43—46,48,49], the waviness of stacking
faults ribbons [8,36], variations in twinning stresses [50], and the local stability of FCC and

HCP phases [51,52], amongst other elements of mechanical metallurgy.

<111>

<112> Fcc L 2
112

Figure 3: A schematic of the GPFE landscape that is formed from the interplanar excess energy of a FCC
crystal. To form this curve, the crystal is sequentially sheared along <112> in consecutive {111} planes, as
specified by the deformation twinning formation pathway. Shearing is measured here in increments of the
<112> Shockley partial Burger’s vector (b112). The critical energies of the GPFE landscape are indicated. yff
is normally calculated from an isolated planar fault and is approximately equal to half the twin fault
configuration shown here [47]. Snapshots of the idealized atom configurations in the vicinity of each fault are
provided. Green and white atoms are classified as FCC and non-FCC coordinated, respectively. A discussion
of this classification procedure is provided in the main text. Dashed lines separate the {111} crystallographic

planes involved in the progressive shearing of the FCC crystal.

Analysis of the fluctuations in the critical energies of the GPFE begins with the recognition
that the configuration of solute around each of the associated planar faults can be fully
described by sets of coordination relations. Therefore, the statistical relations of the previous
section can be leveraged to analyze fluctuations in the local minima and maxima of the GPFE
landscape. However, in contrast to the pristine FCC lattice, where relations are spatially
invariant, the coordination environment changes for atoms lying in each of the {111}

15



crystallographic planes near a planar fault due to changes in the local stacking sequence. Figure
4 illustrates the changes in the coordination relations in the {111} layers near an unstable
stacking fault for a cutoff of \/% a,. Coordination relations for larger cutoffs appear similar,
but with more non-FCC layers and peaks. Here, we use a two-index notation (n, m) to refer to
faulted planes, where n refers to the number of Shockley partial dislocations required to create
the defect, and m is a {111} layer enumerated sequentially from the shearing interface (m = 0).
As shown in Figure 4, the disruption of the normal stacking sequence gives rise to new peaks
in the coordination relations. Intuitively, the appearance of non-FCC peaks occurs at larger
radial distances in layers further from the shearing interface, until they are pushed outside of
the cutoff radius (i.e., \/% a, ). In classifying FCC and non-FCC coordinated
crystallographic layers, a comparison of coordination relations within the cutoff radius is used
as the guiding criterion. Other schemes (e.g., based on stacking sequence) may lead to different
classifications. Coordination relations for the other interplanar defects associated with the
critical energies of the GPFE landscape (i.e., the unstable stacking and twinning faults, extrinsic
stacking fault, and twin fault) are provided in the Supplementary Materials, Figures S1-S5. The
non-FCC coordinated planes used in the statistical analysis of each critical energy of the GPFE
landscape are provided in Table 1. It should be noted that the location of m = 0 is not the same

for each planar fault due to the sequencing of plane shearing required to create each defect.
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Figure 4: (a) The idealized configuration of atoms in the vicinity of an unstable stacking fault (USF) viewed
from a <110> axis. The traces of {111} crystallographic planes (red dashed lines) are enumerated sequentially
from the shearing interface (m = 0, black dashed line). Green and white atoms are classified as FCC and non-
FCC coordinated, respectively. A discussion of this classification procedure is provided in the main text. (b)
The idealized coordination relations are shown for atoms in {111} layers near the unstable stacking fault
(Ngl M= Né) .5,m). Additional coordination peaks are seen in layers adjacent to the shearing interface. The
coordination relations return to the FCC sequencing at m = 3, as the additional coordination peaks are pushed
beyond the cutoff radius. Peaks that differ in position or magnitude to the FCC coordination (blue) are colored
in red. { is the index used to enumerate these peaks in statistical relations. An example of this process is
provided for the FCC coordination (m = 3). Coordination relations are plotted against distance () in multiples

of the lattice parameter as the radial position of { varies by defect type and {111} crystallographic plane.

Calculation of the average planar fault energy (y) follows directly from a comparison of

average per atom energies in the faulted and fault-free conditions as:

-n _ Fnm _ FFCC
Y P111 ;( a 2’ ") (11)

where EFCC and EJ'™ are the average per atom energies for an FCC coordination and the
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coordination in the m™ {111} layer near a n-type fault, respectively. p;1; is the number density

of atoms in the FCC {111} plane, which is given as % . EFCC can be calculated directl
V3aZ Y

from Eq. (3). Determination of E"™ follows from a separate application of Eq. (3) to each of
the coordination environments in the m layers around a planar defect (see Figure 4), with FX =
pxnm VgXY = V(XY'n'm ,and N; = N? ™ The latter terms (szy,n,m and Ngl ™) are given
directly by the interatomic potential and topology, respectively, and FX™™ is calculated from

the relevant terms of Egs. (4) and (5) evaluated under the faulted coordination relations.

Table 1: Non-FCC coordinated planes in the vicinity of the critical planar faults of the GPFE landscape.

Planar Fault Energy (n) Total layers (M) Non-FCC planes (m)

Vasr 4 +1, 42
Viss 4 +1, 42
Vusr 5 3,41, 42
Yosr 3 -3,-1,2
Vi 5 4, +1, 42
Yir 4 4,-1,+2

Calculation of the standard deviation of the planar fault energy (Ay) begins with a
determination of the standard deviations of per atom energies in each of the m {111}
crystallographic layers influenced by a n-type fault (i.e., AE,"™). For standard deviation
calculations, we consider only those {111} layers whose coordination relations differ from the
pristine FCC case within the specified cutoff radius to avoid the convolution of cohesive energy
and excess energy distributions. The AE;"™ terms can be retrieved through the application of
Egs. (3)-(10) in Section 2.1 using the same modifications to the embedding and pair interaction
energies and coordination relations as in the calculation of E;"™. Using the same rationale for
calculating the aggregated statistics of non-overlapping sub-populations in per atom interaction

energies (see Eq. (6) and Appendix B), the standard deviation of faulted per atom energies
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(AEZ) over all non-FCC layers in the vicinity of a planar fault is calculated as:

1 1 -
AE} = jﬁ [Z(AEZ‘"‘)Z b Y (ER - Eg’mz)zl (12)

m mil<m?2

where M is the total number of non-FCC coordinated layers created by the planar fault.
Following the rules for the addition and subtraction of statistical variables, we arrive at a
relation for the standard deviation of the planar fault energy (Ay), which can be calculated from

the sum of variances in the faulted and fault-free conditions:

ay™ = J (AER)? + (AEG%)? — 2c0v(EG, Eg™) p1ny (13)

where cov(ER, EEFCC) is the covariance between faulted and non-faulted per atom energy
distributions, and p;;1 is the planar number density as defined in Eq. (11). The covariance
between these distributions can be determined from the difference between the expectation
value of products and the product of expectation values. We find a good approximation to this

exact definition from the following relation:
1 S _ _ _
cov(EZ, Eg) ~ + <z CXE;™MESNTCC — EfCC Z E};'m) (14)
Xxm m

where EX™™ and EXFCC are the solute-level average per atom energies in the faulted and

FCC-coordinated conditions. These terms may be calculated as:

Eé(,n,m = pXnm 4 %VX,n,m (15)
=X,FCC X FCC 1 17X, FCC
E;’ =F* +§V ’ (16)
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with the VX term given by Eq. (7) evaluated in the corresponding coordination environment.
A detailed derivation of cov(EZ, EF€C) and the associated parameters is provided in
Appendix C.

The analysis presented in Sections 2.1 and 2.2 provides a method to calculate the statistics
of fluctuations in the cohesive energy and GPFE landscapes. These relations are derived for
EAM-type interatomic potentials, which are relevant for metals and alloys, and can be applied
to systems of arbitrary components and compositions. While this method is general across a
variety of material systems, one limitation is that the coordination relations must be fixed by
symmetry either in a crystal lattice (i.e., as in the cohesive energy landscape) or within a faulted
plane (i.e., as in the GPFE landscape). PE landscapes that are not captured by these conditions
require additional derivations. Caution must also be exercised in the interpretation of results,
as the physical relevance of the statistical analysis is limited by the accuracy of the underlying
EAM potential, which have known limitations in systems with strong angular-dependent
interactions [53]. Nonetheless, the relatively simple form of these relations enables scripting in
algorithms for rapid computation. Python-based codes to calculate the statistical parameters of
cohesive energy and GPFE landscapes for randomly arranged solid solutions are available at
an online repository managed by the authors [54]. In subsequent sections, results and validation
datasets are presented for the cohesive energy and GPFE landscapes in the NiCo and FeNiCr

systems.

3. COMPARISON TO DIRECT MS SIMULATIONS

The statistical relations developed in previous sections are validated using molecular statics
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(MS) simulations with the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) software package [55]. Visualization of simulation topologies is realized using
The Open Visualization Tool (OVITO) [56]. Two simulations are performed: simple MS
relaxation calculations and interplanar shearing simulations, which are used to validate
predictions of fluctuations in the cohesive energy and GPFE landscapes, respectively. The
procedures for these simulations are well established within the community (e.g., Refs. [2,14—
16,28,34]). Data presented in the main text corresponds to systems measuring at least 10 by 10
by 5 nm (> 50,000 atoms) and 35 by 35 by 7 nm (> 800,000 atoms) in size for MS relaxation
and interplanar shearing simulations, respectively. System sizes are chosen based on
convergence studies, with the average values of cohesive and planar fault energies used as
convergence criteria. For instance, GPFE convergence studies in the Fe73NigCrig system
showed deviations in average fault energies of less than 7 mJ/m? (with most deviations less
than 2 mJ/m?) in simulation cells larger than 10 x 10 nm in the lateral dimension and 3 nm in
height (see Supplementary Materials, Figure S6). MS relaxation calculations are performed
using the conjugate gradient minimization tool built within LAMMPS. Simulation boundaries
are periodic in all directions and are allowed to expand/contract to minimize stresses. For
interplanar shearing simulations, we have followed the same methodology from our previous
work [47]. Briefly, single-crystal FCC systems are constructed such that the <110>, <112>,
and <111> crystallographic directions are aligned to the global x, y, and z axes, respectively.
Periodic boundary conditions are enforced on the x and y boundaries and the z surfaces are free

surfaces. The GPFE curve is obtained through a three-stage rigid shearing process, where the
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shear per stage is equal to the magnitude of a <112>-type Shockley partial dislocation (i.e., %).
This shearing process begins its first stage by displacing two halves of the crystal along the
<112> direction within a {111} shear plane. The second and third stages are completed by
shearing the crystal at the plane immediately adjacent to the fault formed in the prior stage, as
required to realize a twin fault. Each shearing stage is executed over 100 shearing increments
to capture the intermediate configurations and excess energies of the GPFE landscape. In
between each shearing step, the system is relaxed in the z-direction and the per atom potential
energies are recorded. The GPFE is then obtained from the per atom energies of the relaxed
configurations (i.e., the distribution E,). The average planar fault energy (i.e., ) can be

directly calculated over the faulted layers using the relation in Eq. (11). In MS simulations, the

standard deviation of planar fault energies (i.e., Ay) is determined from its definition as the

expectation value of deviations from the mean: Ay = /(([E} — E?] — [EECC—EFCC])2)p, 44,
where () refers to the expectation value operator. The standard deviation is calculated here from

non-FCC {111} layers using the same cutoff criteria as described in Section 2.2.

3.1. Concentrated solid solution system selection

For the purposes of this study, we have selected the binary NiCo and ternary FeNiCr
systems as our benchmark materials. One key selection criteria for these systems is their
relevance in deformation twin [57-59] and stress-induced HCP martensite forming materials
[59-62], for which the fluctuations in the fault energies of the GPFE landscape are of inherent
interest. In addition to these characteristics, the FeNiCr system is selected due to its
technological importance in stainless steels and the availability of computational datasets from

which results may be validated [28,32,33,63,64]. The NiCo system also offers the opportunity
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to study the accuracy of our method in polymorphic solid solutions, with a FCC to HCP
transition known in this system at ~ 70 at.% Co [65]. The following sections present the
application of the equations of Sections 2.1 and 2.2 to the FeNiCr and NiCo systems over a
wide compositional range. Although the FeNiCr system exhibits complicated multiphase
microstructures at some compositions, our analysis focuses on the FCC structure as a
theoretical exercise. Validation datasets have been generated from MS relaxation studies using
the procedures described above. For these simulations, the EAM-based potentials of Bonny et
al. [40] (FeNiCr) and Béland et al. [66] (NiCo) are used to model interatomic interactions. The
cutoff radii used in the MS simulations and statistical analysis of FeNiCr and NiCo are 0.56
and 0.65 nm. Using the compositions of Section 3.2 as benchmark systems, the zero Kelvin
FCC lattice parameters were measured in the ranges of 0.352 — 0.356 nm (Ni1xCox) and 0.349

—0.358 nm (Fe(1-x)2Ni1x)2Crx).
3.2. Statistical analysis of the cohesive energy landscape

The statistical parameters of the cohesive energy landscape are given directly by the
average and standard deviations of per atom site energies (i.e., E, and AE,). Figure 5
provides these quantities for the FCC phase of the FeNiCr, and the FCC and HCP phases of
NiCo. The FeNiCr compositional space is charted along a search path of Fe(1.x2Ni1-x2Cry,
with literature data provided from Ref. [28] for validation purposes. Results are obtained for
NiCo across its entire compositional space. Using the statistical relations of Section 2.1,
analytical calculations are displayed alongside the results of MS relaxation simulations. As
shown in the figure, E, is shown to vary monotonically from ~ -4.5 to -3.7 eV/atom for the

FeNiCr data. The NiCo system exhibits ranges of ~ -4.45 to -4.38 and ~ -4.43 to -4.39 eV/atom
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for the FCC and HCP phases, respectively. MS relaxation data show excellent agreement with

the predictions of the statistical relations for both systems. Indeed, the analytical estimates of

per atom average energies deviate by less than 0.5% for both FeNiCr and NiCo. Furthermore,

the statistical relations accurately capture the transition in FCC to HCP phase stability at Co-

rich compositions of > 70 at.%.
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Figure 5: The average (E,) and standard deviations (AE,) of per atom site energies in the (a) Fe(1.x2Ni(1.x2Crx

and (b) NiCo systems. Predictions from the statistical relations (Analytical) are overlaid with data from MS

relaxation simulations, showing excellent agreement. Cohesive energy data from Varvenne et al. [28] are also

provided for the FeNiCr system. The average energies and standard deviations are plotted against the primary

(blue) and secondary axes (green), respectively.
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Standard deviations in the per atom energies were found to vary between 0 to ~0.46
eV/atom and 0 to ~ 0.043 eV/atom across the sampled FeNiCr and NiCo systems, respectively.
The large standard deviations in FeNiCr datasets are driven by the dramatic change in per atom
energies with increasing Cr content. Conversely, NiCo per atom energies vary only slightly
across its compositional space, which leads to lower standard deviations. As with the average
per atom energies, the standard deviations in the MS data show excellent agreement with
analytical calculations. Indeed, deviations in analytical estimates of standard deviations are <
5% for both FeNiCr and NiCo, except at singularities near the terminal compositions where
the standard deviations approach zero. Comparison between datasets shows that these
analytical relations accurately capture the order of magnitude changes in statistical fluctuations
across different systems and chemistries. Some features of this agreement bear noting. Namely,
the statistical relations accurately predict a vanishing standard deviation at pure chemistries
(i.e., right of FeNiCr plot and terminuses of the NiCo plot). Furthermore, our statistical
relations also capture the asymmetry in the standard deviation of the NiCo system. More
broadly, the strong agreement between our idealized analytical approach and relaxed MS
datasets demonstrates the importance of the distribution of solute arrangements in driving PE
fluctuations. Moreover, these results also indicate that lattice distortion effects hold a minor
role in the determination of per atom energy statistics. To contextualize this interpretation, we
have quantified the lattice distortion of the equimolar FeNiCr and NiCo systems using the

atomic size difference parameter (8) [67,68]. This parameter is calculated as: & =

VY CX(1 —rX/7), where r¥ is the atomic radius of the solute and 7 = Y C¥r¥ is the
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average radius. Using data extracted from the radial distribution functions of FCC MS
relaxation calculations on pure element systems, we obtain atomic size differences of 1.14%
and 1.20% for FeNiCr and NiCo, respectively. For comparison, a similar calculation on the
Cantor alloy (equimolar CrMnFeCoNi) produces an atomic size difference of 1.26%. One
interpretation from these findings is that although lattice distortion certainly exists in these
solid solutions, the energetic fluctuations induced by disruptions to the lattice on an atom-by-
atom basis are self-reconciling. However, caution must be taken when generalizing this finding
to other PE landscapes or systems with more pronounced mismatches in atoms size, where
lattice distortion effects may exhibit a stronger effect on the emergence of relaxed energies.

In addition to insights into lattice distortion effects, these results provide new tools to
quantify local phase stability, which contributes to the ongoing dialogue of metastable
microstructures in concentrated solid solutions. For instance, recent studies of FCC equimolar
CrCoNi have provided some conflicting results. Here, the intrinsic stacking fault energy, whose
polarity can be taken as an indicator of FCC/HCP stability, finds a wide range of positive and
negative values in the literature. Namely, density functional theory (DFT) studies of this system
report energies between -24 to -62 ml/m? [51,69-71], which contradicts experimental
measurements of positive values for the stacking fault energy (~ 22 mJ/m?) [72,73]. Although
there are several explanations for these discrepancies such as overlooked ordering effects [74]
and drag on fault ribbons from strong solute/dislocation interactions [37], an alternative
interpretation is that the varied chemical environment in low stacking fault energy FCC

concentrated solid solutions possess regions where the HCP phase is favored due to fluctuations
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in the FCC/HCP cohesive energies. This interpretation aligns with the work of Zhao et al. [17],
which demonstrated strong size effects in DFT calculations of the stacking fault energies of
NiCo and CrCoNi. In both materials, a distribution of stacking fault energies is reported, with
some positive and negative values being captured in the statistics. The results of this section
add new quantitative tools to analyze this metastability argument. As demonstrated in the NiCo
system, local variations in chemistry and solute pairings create sufficiently large statistical
fluctuations in PE such that the FCC and HCP phases exhibit overlapping distributions of
cohesive energies.

The success of our statistical relations in replicating the per atom energies of MS relaxation
calculations motivates a computational search of compositional spaces without the need for
exhaustive atomistic simulations. Figure 6 presents the statistical parameters of the cohesive
energy landscape in ternary plot form for the entire compositional space of the FeNiCr system,
with the compositions reported in Figure 5 traced with a dashed arrow. Some interesting
features emerge from this complete search of the FeNiCr system. Namely, the largest standard
deviations in the per atom energies are found along the binary NiCr terminus of this ternary
diagram. This result may be understood from an examination of the per atom site energies in
the FeNiCr system, which reach their minimum and maximum values at the pure Ni (~ -4.5
eV/atom) and Cr (~ -3.7 eV/atom) compositions, respectively. Consequently, to a first
approximation, the standard deviation can be expected to reach a maximum at an equimolar
chemistry of NiCr. We believe that this finding is consequential within the broader context of

PE landscapes in solid solutions. For instance, recent theories have demonstrated the role of
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large PE fluctuations in driving the unusual strengthening of HEAs. Examples include the
solute-dislocation interaction model of Varvenne et al. [8,13] and the stochastic Peierls-based
model of Zhang et al. [9]. The success of these theories, combined with the community’s
enthusiasm for HEAs, has led to perhaps an overly restrictive perspective on opportunities for
property improvements. That is, increasing the number of components best realizes the benefits
of solid solutions by maximizing solute dispersion. With some caveats, we offer this data as a
theoretical counter example, where a binary sub-alloy exhibits larger PE fluctuations than a
parent ternary. This finding aligns with the growing body of literature (e.g., Ref. [6]) that
underscores the importance of solute interactions within the complex interplay between solute
arrangement, number of components, and ensemble chemistry that define the contributions of

solid solution effects in concentrated systems.
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Figure 6: Ternary plots of the (a) average and (b) standard deviations of the per atom site energies in the FeNiCr
system. All results are calculated using the statistical relations of Section 2.1. The dashed arrow traces the data

presented in Figure 5. In this system, the largest standard deviations are found along the NiCr binary terminus
of this plot, and not at the equimolar composition.

3.3. Statistical analysis of the GPFE landscape

Following the procedures outlined in Section 2.2, the standard deviations in the critical
planar fault energies of the GPFE landscape have been studied for four different FCC solid
solutions. The selected system chemistries are Fe73NigCrio, and equimolar FeNiCr, NiCr, and
NiCo. The inclusion of NiCr is motivated by the peak statistical fluctuations observed at this
chemistry in the cohesive energies of the previous section. Fe73sNigCri9 has been selected due

to its technological relevance in 304-type stainless steels, where deformation twinning is a
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competing plasticity mechanism. As the first step in the determination of fault energies, Figure
7 provides the standard deviations of per atom energies at various faulted conditions for each
of these systems. The data from MS shearing simulations is overlaid with predictions from
statistical relations, showing excellent agreement. The largest deviations between datasets are
found in the equimolar NiCo, but do not exceed 7% error, with most deviations being < 2%.
Standard deviations range from between ~ 0.04 to 0.55 eV / atom, with the lower and upper
extremes found in the equimolar NiCo and NiCr binary systems, respectively. These findings
align with the cohesive energy data of pristine FCC systems, which showed similar ranges.
Indeed, the introduction of planar faults was found to only change per atom energies by a
maximum of ~ 2 % in the FeNiCr chemistries and ~ 6% in equimolar NiCo. However, it should
be noted that fluctuations in individual layers around a n-type fault may hold larger scatter than
the aggregated variance of all M layers within the cutoff distance of the defect, from which

AE} is reported.
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Figure 7: The standard deviation of per atom energies at various faulted conditions. This measurement includes
contributions from {111} layers within the vicinity of planar faults. The FCC condition is shown at zero shear.
MS shearing calculations are shown as markers and the predictions from statistical relations (Analytical) are

overlaid in solid stroke.

Building upon the calculations of AE(, we report the statistical scatter in the critical fault
energies of the GPFE landscapes (Ay™) in Figure 8 for each system. The analytical calculations
of Ay™ are shown as error bars and are overlaid with the GPFE landscapes calculated from
interplanar shearing simulations. Literature values for the average intrinsic stacking fault
energies in each system have been provided for comparison purposes. Some discontinuities in
the GPFE landscape appeared at the stable planar faults, which we associate with changes in
the numbers of non-FCC coordinated layers upon transitions through layer-by-layer shearing
operations. For instance, upon formation of an extrinsic stacking fault, the m = 1 plane exhibits
a momentary FCC coordination (see Supplementary Material, Figure S3). This layer is

therefore not included in the statistical analysis of the GPFE landscape, nor in the MS
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simulations. However, MS simulations represent relaxed structures where some atoms in the m
= 1 plane are in fact non-FCC coordinated and contribute to excess energy, but are no longer
captured in the GPFE landscape calculation. This effect is most evident in the equimolar NiCr
system and is negligible in others. The omission of these layers is required to remain directly
comparable with the approach used in statistical analysis. That is, the determination of the
standard deviations of fault energies in both approaches is sensitive to the number of atoms
sampled. Therefore, to validate the accuracy of the statistical relations the same quantities must
be inserted into the relations for MS and statistical estimates of the GPFE landscape.
Furthermore, the inclusion of FCC-coordinated layers into the GPFE landscape statistics
calculations convolutes the distribution of faulted per atom energies (i.e., EY) with the
cohesive energy landscape (i.e., EFCC) natively present in these concentrated solid solutions,
which creates ambiguity in the interpretation of standard deviations. In the bulk limit, the PE
deviations caused by planar faults become negligible and statistics converge to the cohesive
energy landscape values. To clarify the effect of {111} plane selection in the determination of
the GPFE landscape from MS simulations, we have prepared a plot showing the effect of the
number of {111} planes sampled on the average planar fault energies (see Supplementary

Material, Figure S7), which demonstrates vanishing discontinuities.
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Figure 8: The GPFE landscapes of Fe73NigCrig (a), equimolar FeNiCr (b), NiCr (c), and NiCo (d). Data from
MS interplanar shearing simulations are provided in the colored stroke. The average planar fault energies appear
as dashed lines and a region representing + 1 standard deviation is plotted as a filled curve bounded by solid
lines. Analytical predictions for fluctuations in the critical fault energies are shown as error bars. A dashed line
aty =0 is provided in each plot for readability purposes. Literature data on the average stacking fault energies

of each system are provided as markers. This data is drawn from Refs. [17,28,40,75].

Although the analytical estimates of standard deviations exhibit only a modest agreement

with the MS data, we find this result to be reasonable as the source of error is not related to any
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new failings in our theory. Rather, these errors arise due to the nature of the standard deviation
calculation in Eq. (13) and its extreme sensitivity to small changes in input parameters. Indeed,
while analytical predictions for per atom energies and covariances (see Figure 7 and Figure
C.1) are in excellent agreement with MS relaxation calculations, the subtractive elements of
Eq. (13) greatly amplify any small discrepancies. The units of these fluctuations also provide
useful context for consideration. That is, predictions of statistical scatter on the order of
millijoules over areas of squared meters would seem to be difficult to determine with great
precision.

Despite only a modest numerical agreement between datasets, the trends and broader
context of these results merit some discussion. In both approaches, the sequencing of the
magnitudes of GPFE fluctuations are in agreement. Furthermore, both approaches predict that
the NiCr system, which showed the highest fluctuations in cohesive energies, exhibits the
lowest fluctuations in critical fault energies for each of the FeNiCr chemistries considered. This
reduction in scatter is a result of the strong correlations observed in the NiCr system (see Figure
C.1). An interesting interpretation of this result is that strongly correlated systems with large
fluctuations in per atom site energies do not exhibit proportionally large fluctuations in their
planar fault energies. An additional point of discussion from these results is the observations
of fluctuations causing negative planar fault energies in both the analytical calculations and
MS data. This is particularly relevant for the Fe73NigCri9 measurements as negative stacking
fault energies are linked to the well-known stress-induced HCP martensite transformation

exhibited by related stainless steel chemistries [59—-62].
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Within the broader context of concentrated solid solutions, we believe that the statistical
relations developed in this work contribute to an ongoing discussion within the community on
the interpretation of planar fault energies. For instance, recent studies of planar fault energies
in medium- and high entropy alloys have reported a wide scatter in values [18,51,69,71].
Discussions in the newest literature have brought some clarity [36—39]. Namely, planar fault
energies are sensitive to the arrangement of solute atoms near the fault plane, which gives rise
to the concept of a “local” planar fault energy. Our results here offer a method by which the
statistics of these local planar fault energies can be analytically studied. This contribution finds
direct applications in quantifying the unusual metallurgy of concentrated solid solutions, with
examples including waviness in stacking fault ribbons [8,36], and variations in solute-fault

interaction energies [50].

4. CONCLUSIONS

An analytical approach has been developed to quantify the statistics of PE landscapes in
randomly arranged solid solutions. For this purpose, the equations of EAM-based interatomic
potentials are reparametrized to yield a set of relations defined by the coordination environment
of solute. From these recast equations, exact relations for the statistical parameters of the
embedding and pair interaction energy are derived. This set of initial relations is general and
can be applied to study the cohesive energy landscapes of any crystalline system with an
arbitrary number of components and composition. Using coordination as a key input parameter,
we expanded the applicability of statistical relations to provide an analytical method to examine

fluctuations in the excess energies of planar faults. Collectively, these analytical tools provide

35



the community a method to rapidly quantify PE fluctuations in pristine and defective solid
solution systems described by sets of coordination relations, which finds applications in studies
of local phase stability, and competition between deformation mechanisms.

In the second portion of this study, these relations are leveraged to study the cohesive
energy and GPFE landscapes of FeNiCr and NiCo. In most cases, predictions from statistical
relations were in excellent agreement with validation datasets that were collected from MS
relaxation and interplanar shearing simulations. From this effort, some key insights into the
metallurgy of solid solutions have emerged that contribute to ongoing discussions within the
community. For instance, our results for NiCo offer a nuanced perspective on phase stability.
That is, local variations in composition and solute pairings create sufficiently large fluctuations
in cohesive energy that competing lattices find regions of favorable/unfavorable stability across
a system topology. Within the context of the role of PE fluctuations in the physical properties
of solid solutions, results from a theoretical search of the FeNiCr composition space contribute
to a building theme in the literature. Namely, maximizing the effects of solid solution
ensembles is more nuanced than simply selecting chemistries with the greatest solute
dispersion. An additional outcome of this effort is a method to quantify the statistics of local
planar fault energies, which is a new concept that has emerged from the varied stacking fault

energies reported in the recent HEA literature.

APPENDIX A: DERIVATION OF COMPOSITION AND SOLUTE PAIR
DISTRIBUTIONS

Following the method of Varvenne et al. [28], a multicomponent topology can be described
by a set of binary occupancy vectors, Cf, which take on a value 1 if a solute of type X is
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found at site 7 and are otherwise 0. Here, ‘site’ refers to the atomic positions that solute X
would occupy in a crystal. The distribution of compositions collected by random sampling of
n. solute atoms from C;* is Gaussian with an average of C*. The average composition of
individual samples is ¢*. The standard deviation of the solute ensemble (i.e., the population

standard deviation, AC¥) can be determined directly from its definition:

/2(65 - C¥y?
ACK = | S (A.1)

where N is the length of the vector C/*. As the entries of C are binary, the numerator can

be simplified to:

- =2
ACK — \/NX(l — CX)2 + (N — NX)CX A2

N

where N*¥ =Y C¥ . The ratio N*/N is the population average, C*, by definition.

Recognition of this relationship leads to a compact expression for the standard deviation as:

ACX= ’C_'X(l—C_'X) (A3)

The standard deviation of the distribution of samples (Ac*) then follows naturally as:

era=en
At = |——— (A4)

Using the relation of Eq. (A.4), random sampling of a multicomponent solute ensemble creates

CX(1-CX)

a set of Gaussian distributions of compositions: G*~ <C_' X, -
C

). Similar arguments for
n, random samples from a binary occupancy vector (S;¥) of pairings between solutes X and

_ _ ~XcY(1—c XY
Yleads to a Gaussian distribution that can be parameterized as G*Y ~ (C xcY, M)

ng
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APPENDIX B: STANDARD DEVIATION OF THE PER ATOM PAIR INTERACTION
ENERGY

The calculation of the standard deviation of the pair interaction energy term (AV) begins
with a consideration of the types of pairwise interactions that are available to specific solutes
in randomly arranged solid solutions. For instance, a solute of type X may interact with other
solutes of type X or Y, forming pair interactions XX or XY. However, through the specification
of atom type X as the solute of consideration, interactions of YX or YY are not considered and
belong to a separate set of solute pairings (i.e., as in conditional probabilities). This nuanced
point is significant, as it highlights a pathway to treat the statistical scatter that arises in pair
interactions. That is, the statistical scatter of interactions can be viewed as an aggregation of
separate solute pairing distributions that can be individually specified. Phrased differently,
calculation of AV can be achieved through a separate determination of AVX, where AV is
the standard deviation of interaction energies between a central solute X and all other solute
neighbors within the coordination cutoff. One additional complication is that the pair
interaction energy is formed from the contributions of solute pairings from all neighbors. The
distribution of interaction energies is therefore comprised of additive combinations, which can
be treated using the central limit theorem of sums. Under these considerations, the solute-level
standard deviations can be calculated through a weighted combination of variances in each of

the coordination shells as:

AVX = jZ(VgY ~7X)’CrN, -

where V(X =Dy szy CY is the average interaction energy for a solute X in coordination shell
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¢. In addition to the solute-level standard deviation, the solute-level average of the interaction

energy (V*) is also of interest. This term can be calculated from V7 as:

i7X 7 X _ XY ~
7X = Z VAN, = Z VXYCYN, (B.2)
7 ¥

In the formulation of Eq. (B.1), it is assumed that the variances between coordination shells are
uncorrelated (i.e., their covariance is zero), which is appropriate for randomly arranged solid
solutions. In both equations, the transformation of the statistical parameters of individual solute
pair energies to the distribution of additive combinations of per atom pair interaction energies
is achieved through the coordination number term, N¢, as per the central limit theorem of sums.
Eq. (B.1) provides the standard deviations of the distribution pair interaction energies for each
solute, which can be considered as non-overlapping sub-populations of a larger distribution.
Under this consideration, the aggregated standard deviation (AV) of the system-level pair
interaction energy term can then be calculated as a combination of the solute-level standard

deviations as:

AV = Z[AVX2 + (VX —1)2| Cx

X

(B.3)

where V is the system-level average pair interaction energy over all coordination shells. Eq.
(B.3) can be viewed as a weighted linear combination of individual solute-level variances. The
second term (difference of averages, VX — V) is a correction term to account for differences
between the sub-population and aggregate averages. Eq. (B.3) can be simplified further,

without any loss of numerical accuracy, to eliminate the need to calculate V. This simplified
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relation appears as Eq. (6) in Section 2.1.

APPENDIX C: COVARIANCES OF STATISTICAL VARIABLES

This appendix provides derivations for two covariance terms used in the paper body:
cov (F ,%V) and cov(E™ EF¢). In both derivations, the covariance is derived from its
definition as the difference between the expectation value of products and the product of
expectation values of the statistical variables. Beginning with the embedding and interaction
energy distributions (i.e., cov (F , % V)), the covariance can be calculated from its expectation

value definition as:

1 Fv v
cov (F,EV) = (- (M) .1

where the () operator denotes the expectation value. Here, the individual expectation values of
the embedding (i.e., (F)) and pair interaction energies (i.e., (V/ o)) are given directly by the
terms of Eq. (3). The expectation value of products (i.e., (F V/ 2)) can be calculated from the
sum of the products of (F , V/ 2) pairings weighted by their probability. In these pairings, F
can be separated into solute-specific constants, whose probabilities are weighted by
composition (i.e., C¥F¥), as follows from the average per atom charge density assumption.
Similarly, the pair interaction energy can also be decomposed into the separate distributions of
solute-level interaction energies (i.e., VX). These solute-level distributions are paired with

where p; is the probability of

| A

CXFX coefficients, such that (FV/Z) = %Zx,i CXFXp,vX
obtaining V. The probability-weighted sum of V* can be calculated from its expectation

value, (VX) = ¥;p,VX =V¥*, which is given by Eq. (B.2). Under these considerations, the
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. . 1 = = .
summation of the products of these terms (i.e., > ¥« CXFXVX) returns the expectation value of

products. The covariance (Eq. (10) in the main text) can therefore be calculated as:

1 Fv v
cov (F,EV) = (-6 (C.2a)

1o ) 1 o
_ 52 CXFXTX _ (Z CXFX) 52 VXY N, CXCY (C.2b)

X X X,Y,¢

Analysis of the covariance between the distributions of faulted and FCC-coordinated per

atom energies begins with its definition as the differences of expectation values:
cov(EZ, Eq°) = (Eg E§°“) — (EZ) (EEC) (C3)

Individual expectation values (i.e., (EF¢C) and (E?)) are given directly by Eq. (3). However,
in the latter calculation, the average energies in each of the m {111} layers influenced by the
defect must first be calculated (i.e., EJ"™). The average over all non-FCC layers (i.e., ET) is
then calculated by the weighted sum of per atom average energies (i.e., %Zm E;™)

The expectation value of products (i.e., (EF EFCC)) can be separated into a summation of
expectation values of the embedding (i.e., F™, FF¢C) and pair interaction energy terms (i.e.,
V™, VFCC)in the faulted and fault-free conditions:

(EM EFCCY = <(Fn + %Vn) (chc + %VFCC)> (C.4a)

1 1 1 1
— <FnFFCC) + <FFCC EV‘n) + (Fn EVFCC) + <E Vn EVFCC> (C4b)
Each of these expectation values of products can be further analyzed using arguments similar

to those presented for the determination of cov (F ,%V) in Eq. (C.2b). For instance, the
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expectation value of the product of embedding energy distributions (i.e., (F"FF¢C)) follows
directly from the separation of these terms into their solute-level and fault plane-level constants

(ie., FXmm

and FXFCC) whose probability of pairing is C_X/ - Here, M s the total
number of non-FCC coordinated {111} planes within the cutoff radius of the planar defect. The
expectation value then becomes the summation of paired embedding energies over all solute
and faulted layers, (F"FF¢C) = %Zx,m CXFXnmEXFCC  The expectation values of cross-
products (i.e., (F FCCVn/ o) and (F nVFCC/ ») follow from the expressions in Eq. (C.2b), with
the embedding and pair interaction coefficients updated to reflect the summation over the fault
environment: (FFCCVn/Z) = %lem% CXFXFCCyXnm and (FnVFCC/z) =
%2 X,m% CXFXmmyXFCC  Here, the embedding energies and averages of pair interaction

VX,FCC

energies (i.e., and VX™™) are given by application of the appropriate coordination

FCC
4 /2): we

environments to Eq. (B.2). For the final expectation of products term, (Vn/ 2
assume that these distributions are independent of one another (i.e., cov (Vn/ 2, yree /2) =
0). This assumption enables a separation of the distribution products and a direct estimate for
this term as (Vn/z VFCC/Z) ~ (Vn/z) (VFCC/Z) = %lemivx'n'mvxfcc . Although the
distributions of V™ and VF¢C are likely correlated due to sharing some common neighbor
pairings, we find that this approximation provides excellent estimates of covariances (see
Figure C.1). Combining each of these expectation values delivers an approximate solution for
the expectation value of products of distributions of per atom energies. Without further

approximation, this equation can be factored and simplified in terms of the solute-level average

per atom energies of the faulted and FCC distributions (i.e., EX™™ and E2F¢¢) as:
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1 _ 1 _ 1 _
(Eg. ECI;'CC> ~ MZ CX (FX,n,mFX,FCC + EF'X,FCCVX,Tl,rn + EFX,”rl,”va,FCC
X,m (C.Sa)

+ lvx,n,mVX,FCC)
4
~ 1 ~XoXnmpoX,FCC
~ 2. B (C.5b)
X,m

The solute-level average per atom energies are defined here as:

Ec)l(,n.m — pXmm _l_%vx,n,m (C.6)
=X,FCC xrcc o Loxrec
proce = pusce 4 Ly e

where the VX is given by Eq. (B.2) in the corresponding coordination environment (i.e.,
faulted plane n, m or FCC). Insertion of Eq. (C.5b) into Eq. (C.3) delivers the final analytical

expression for the covariance of per atom energies between the faulted and FCC distributions:

cov(Eg, Eg°°) = (Eg Eq°°) — (Eg) (Eq““) (C.8a)

1 X = _ _
v o <z CXE;™MENTCC — EfcC Z EQ’") (C.8b)
X,m m

This final relation appears as Eq. (14) in the main text. A numerical simulation was performed

o : . n, yFcC
to assess the accuracy of the approximation made in the calculation of (V / 2 4

/ 2). For this
purpose, faulted topologies were computationally generated for a variety of randomly arranged
solid solution single crystals with different compositions. The topologies of these crystals

matched the idealized (i.e., unrelaxed) coordination environments of the faulted FCC systems

considered in the GPFE landscape. The distribution of per atom energies is then calculated

43



through an atom-by-atom examination of chemistry and pair interactions, and the application
of the relevant equations of the EAM potential. The expectation values and covariance terms
of Eq. (C.3) are determined directly from these computational measurements. This process is
similar to the initialization phase of MS calculations, where idealized crystal topologies are
input into the MS software and the initial energies of atoms are computed. Numerical estimates
of the covariances relevant to this study are provided in Figure C.1. These numerical results
are overlaid with analytical estimates from Eq. (C.8b), showing excellent agreement. In
addition, covariance values from MS relaxation calculations are also provided. These relaxed
values also show excellent agreement with analytical estimates. The largest deviations are
found in the equimolar NiCr sample, with all analytical covariance estimates showing less than

a =~ 4% difference with the relaxed data.

— Analytical O Fe;;NigCryg A equi. NiCr
0.35; ~~~ Numerical O equi. FeNiCr v equi. NiCo
0.3 [
N A A A A A A
€ 0.25
T
N> 02 _________ Ij —_-__---D-_ == _I:l = E === —gl-_l
(0]
8 0.5}
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Figure C.1: The covariance between the distributions of FCC and faulted per atom energies across different
planar faults. The distribution of faulted per atom energies includes contributions from all non-FCC coordinated
{111} layers within the cutoff of the planar fault. Covariance predictions from analytical (Eq. (C.8b)) and
numerical estimates are provided in solid and dashed stroke, respectively. Relaxed measurements from MS

shearing calculations are shown as markers.
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