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ABSTRACT 

Recent studies of concentrated solid solutions have highlighted the role of varied solute 

interactions in the determination of a wide variety of mesoscale properties. These solute 

interactions emerge as spatial fluctuations in potential energy, which arise from local variations 

in the chemical environment. Although observations of potential energy fluctuations are well 

documented in the literature, there remains a paucity of methods to determine their statistics. 

Here, we present a set of analytical equations to quantify the statistics of potential energy 

landscapes in randomly arranged solid solutions. Our approach is based on a reparameterization 

of the relations of the embedded-atom method in terms of the solute coordination environment. 

The final equations are general and can be applied to different crystal lattices and energy 

landscapes, provided the systems of interest can be described by sets of coordination relations. 

We leverage these statistical relations to study the cohesive energy and generalized planar fault 

energy landscapes of several different solid solutions. Analytical predictions are validated 

using molecular statics simulations, which find excellent agreement in most cases. The 

outcomes of this analysis provide new insights into phase stability and the interpretation of 

‘local’ planar fault energies in solid solutions, which are topics of ongoing discussion within 
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the community.  

Keywords: Solid solutions; High Entropy Alloys; Embedded-Atom Method; Cohesive Energy; 
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1. INTRODUCTION 

Recent interest in concentrated systems has spurred research activity in the metallurgy of 

multicomponent solid solutions. These efforts have produced new physical insights into the 

role of solute interactions, with a focus on behaviors that emerge in concentrated mixtures. 

Studies in high entropy alloys (HEA)s, which are considered here as a subset of concentrated 

solid solutions, are perhaps the most visible. Notable examples include investigations of solute-

induced lattice distortion [1–5], variations in dislocation glide barriers [6–13], and solute 

effects on planar and twinning fault energies [14–18]. While the effects of solute can be 

revealed by computational studies and inferred by experiments (e.g., as in Refs. [19–21]), new 

theoretical challenges have arisen concerning the prediction of material properties. For instance, 

traditional solute theories such as those for solid solution strengthening [22–25], find limited 

applicability in concentrated systems [8,13]. In many cases, the shortcomings of traditional 

theories can be traced to the irregular nanoscale fluctuations in the potential energy (PE) 

landscape, as demonstrated in recent theoretical advancements from Curtin and coworkers 

[6,8,13]. These topology-induced PE fluctuations emerge from local variations in composition 

and solute interactions, whose effect becomes significant in concentrated solid solutions. 

Perhaps the most basic example of such a PE landscape is that of cohesive energy, but more 

complicated landscapes such as that of the Peierls barrier and the generalized planar fault 

energy (GPFE) are familiar to the community. 
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New literature continues to emerge that highlights the challenges and opportunities these 

fluctuating PE landscapes offer to the physical metallurgy of concentrated solid solutions 

[9,26,27]. Some notable progress has been made in recent works in treating variable PE 

landscape problems. For instance, Varvenne et al. [28] have developed an effective medium 

model, based on the embedded-atom method (EAM) [29–31], which homogenizes the effects 

of solute in randomly arranged solid solutions. Several studies have leveraged this model to 

calculate material properties in concentrated systems including lattice parameters [16,32–35], 

elastic constants [16,32–35], cohesive energies [16,32], and stacking fault energies [16,34,35]. 

While this method is suitable for the calculation of homogenized bulk properties, a limitation 

arises when predicting material phenomena at length scales that approach those of the 

nanoscale fluctuations in the PE landscape. Certainly, there is a building body of literature 

focused on the study of material properties that are controlled by the fluctuations in the PE 

landscape of concentrated solid solutions. For example, Curtin and coworkers [6,8,13] have 

developed a method to measure the fluctuations in dislocation glide barriers that emerge from 

varied dislocation-solute and solute-solute interactions in solid solutions. Additionally, Zhang 

et al. [9] have incorporated a stochastic coefficient function into the classic Peierls-Nabarro 

model to predict a distribution of Peierls stresses in HEAs. Ghazisaeidi and coworkers [36,37] 

report the statistics of a ‘local’ stacking fault energy that arises due to the varied solute 

interactions in the vicinity of planar defects. The qualitative link between these local stacking 

fault energies and the varied local chemical environment in concentrated solid solutions has 

been studied by Zhao et al. [17] and Ma and coworkers [38,39]. Undoubtedly, this new body 
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of literature highlights the emergence of a variable ‘local’ property that arises from the 

statistical distribution of solute interactions that are inherent to concentrated solid solutions. 

Although the observational connection between fluctuations in the PE landscape and the 

emergence of local material properties is now well established, there is a paucity of methods 

to directly calculate these fluctuations from system topology inputs. Specifically, analytical 

techniques that link the statistical variations in composition and neighbor pairings in solid 

solutions with fluctuations in PE landscapes remain sparse. To the authors’ knowledge, the only 

example of a direct analytical relation is found in a recent study by Curtin and coworkers [6], 

where the specific use-case of fluctuations in solute-solute interactions during dislocation slip 

is studied. This dearth of analytical approaches limits the broad exploration of new theoretical 

models, where inputs for compositional and structural PE landscape fluctuations must be 

measured from atomistics [8] or take on assumed forms [9].  

Here, we present an analytical approach to quantify the statistics of fluctuations in PE 

landscapes of randomly arranged solid solutions. This framework is developed here for EAM-

type relations, which are commonly used to model the metallic bonding of alloys. These 

relations are applicable to randomly arranged solid solutions in any crystal system with 

arbitrary numbers of components and concentrations. To demonstrate this approach, we 

consider two PE landscapes: those of the cohesive energy and the GPFE. These landscapes are 

selected due to their roles in phase stability and in defining the intrinsic competition between 

deformation mechanisms. For the purposes of analyzing phase stability, examination of 

cohesive energy landscapes is performed on both face-centered cubic (FCC) and hexagonal 
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close-packed (HCP) solid solutions. Application of this method to other PE landscapes is 

possible, with some limitations discussed later. The outcomes of this work provide analytical 

tools to study the statistics of PE fluctuations, which are important to the advancement of 

several classes of theories in the physical metallurgy of solid solutions. 

2. ANALYTICAL DERIVATION OF STATISTICAL QUANTITIES 

The primary challenge in quantifying the fluctuations in the PE landscape lies in the 

variations in composition and arrangement of neighbors that are encountered when sampling 

small volumes in solid solution ensembles. Indeed, sampling of 𝑛𝑐 solute atoms in a randomly 

arranged solid solution produces a Gaussian distribution of mean compositions of the form 

𝐺𝑋~ (𝐶̅𝑋 , √
𝐶̅𝑋(1−𝐶̅𝑋)

𝑛𝑐
), where 𝐶̅𝑋 is the system-level composition of element 𝑋 presented as 

a molar fraction. In this notation, the first parameter is the distribution average, and the second 

parameter is the standard deviation. Furthermore, capitalized statistical parameters refer to 

population properties and lowercase symbols refer to samples drawn from these populations. 

By a similar calculation, the solute pairings from 𝑛𝑠 samples of two randomly selected solutes 

form a distribution with parameters 𝐺𝑋𝑌~ (𝐶̅𝑋𝐶̅𝑌, √
𝐶̅𝑋𝐶̅𝑌(1−𝐶̅𝑋𝐶̅𝑌)

𝑛𝑠
) . Here, the term solute 

pairing refers to the combinations of chemical pairs XY that exist in a multicomponent system. 

For instance, in a binary system with two atom types, these combinations would be 11, 12, 21, 

and 22. Figure 1 presents the solute pairing statistics for a numerical simulation of a theoretical 

ternary system with randomly drawn samples, which mimics the organization of solute in a 

randomly arranged solid solution. As shown in the figure, the fluctuations in composition and 

solute pairings around the system averages are significant, which underscores the varied 
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chemical environment encountered in solid solutions. A derivation of the statistical parameters 

(i.e., the standard deviation) of these distributions is provided in Appendix A.  

Within the context of energy landscapes, the composite effect of the statistical variations in 

local composition and solute pairings give rise to the fluctuations observed in the PE. An 

 

Figure 1: (a) A numerical simulation of sampled compositions for a randomly arranged solid solution. The 

sample means (𝑐̅𝑋) are plotted as a histogram and the statistical distribution (𝐺𝑋) is plotted in solid stroke. 

Samples (𝑛𝑐 = 50) were randomly collected from a ternary system of 106 atoms with an overall composition 

of 𝐶̅ = (0.5, 0.15, 0.35). (b) The distribution of sampled solute pair fractions (𝑛𝑠= 50) in the same system. The 

sample means (𝑠̅𝑋𝑌) are presented as a fraction and are plotted with the statistical distribution (𝐺𝑋𝑌) for 3 of 9 

possible solute pairings, where 𝑠̅𝑋𝑌 and 𝑠̅𝑌𝑋 are separately expressed. The distributions in (a) and (b) have 

been sampled more than 2 x 104 times with replacement. 
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example of this effect on the per atom site energy (𝐸𝑎) of a solute is provided in Figure 2. Here, 

the term ‘site energy’ refers to the energy of a solute atom that arises from its relative position 

in the local chemical environment. In the figure, the local composition and solute pairings 

within the first two nearest neighbor shells (𝜁) in a FCC lattice have been systematically varied 

for a binary FeNi system using the EAM potential of Bonny et al. [40]. In consideration of the 

statistical distributions shown in Figure 1, each of these local arrangements is possible in a 

randomly arranged solid solution, albeit with differing probabilities. As shown in Figure 2, the 

change in 𝐸𝑎 for a Ni atom varies with the sample composition (𝑐̅𝑁𝑖, Figure 2a), and with the 

partitioning of solute between the first (𝑐1̅
𝑁𝑖, Figure 2b) and second nearest neighbor shells. The 

changes in 𝐸𝑎 can be significant - reaching as high as ~165 meV/atom in some configurations. 

It is this observation of the connection between solute arrangement and the site energy that 

informs our approach to predicting the statistics of fluctuations. 
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2.1. Statistical analysis in the embedded-atom method 

The key to our approach to analyze PE fluctuations lies in recasting the equations of the 

interatomic potential in terms of the coordination environment around an atom such that varied 

compositions and neighbor pairings may be considered. To quantify these PE landscape 

 
Figure 2: The change in per atom site energy of a Ni atom (𝑑𝐸𝑎

𝑁𝑖) within the FCC phase of a FeNi solution. 

The overall sample composition (𝑐̅𝑁𝑖) is varied in (a) with an equi-proportional partitioning of solute between 

each neighbour shell (𝜁). The composition of the first neighbour shell (𝑐1̅
𝑁𝑖) is varied in (b) at an overall sample 

composition of 𝑐̅𝑁𝑖= 0.33. The central Ni atom is not included in composition measurements. The right axis 

plots the nominal energy of the Ni atom (𝐸𝑎
𝑁𝑖). Here, the PE zero-point is selected at the infinite separation of 

atoms. For presentation simplicity, energies are calculated from interactions up to 2 nearest neighbor shells 

only and are referenced relative to a pure Ni sample. The distribution of solute for each sample is illustrated in 

the schematics above each plot. The schematics are drawn from a <111> zone axis and atoms coplanar with the 

central Ni atom are marked by a black hexagon for clarity. Circular and hexagonal atom markers indicate solute 

in the first and second neighbor shells, respectively.  
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fluctuations in the statistical average and standard deviation are of interest. The inspiration for 

our approach follows from Varvenne et al. [28], where solute effects are treated through the 

creation of an EAM-based average-atom interatomic potential, which enables estimates of the 

homogenized properties of the bulk. Under the EAM, the PE of a system (𝐸) is defined by the 

addition of two terms. The first term is the embedding energy (𝐹), which is a function of the 

charge density (𝜌) contributed by neighboring atoms at distance 𝑟. The second term is the 

interaction energy (𝑉) that captures the pairwise potential energy interactions between atoms. 

In their usual presentation, the EAM terms are summed over all atom sites and element types. 

This summation can be directed by binary occupancy vectors 𝐶𝑖
𝑋 (as in Appendix A), which 

return 𝐶𝑖
𝑋= 1 when an atom of type X occupies site i and are otherwise 0. The total PE of the 

system can then be calculated as [28–31]: 

𝐸 = ∑ 𝐶𝑖
𝑋𝐹𝑋(𝜌𝑖)

𝑖,𝑋

+
1

2
∑ 𝑉𝑖𝑗

𝑋𝑌𝐶𝑖
𝑋𝐶𝑗

𝑌

𝑖,𝑗≠𝑖,𝑋,𝑌

 (1) 

with the indices ij and XY specifying the atomic and chemical pairs, respectively. Using the 

occupancy vector, the charge density under the EAM is given as: 

𝜌𝑖 = ∑ 𝐶𝑗
𝑋𝜌𝑖𝑗

𝑋

𝑗≠𝑖,𝑋

 (2) 

For the purposes of this study, we are interested in determining the per atom PE using 

similar relations. To achieve a per atom description, we reparametrize these relations through 

the introduction of the coordination number (𝑁𝜁) , which provides the number of atoms in 

concentric shells at fixed distances from a central atom. For instance, 𝑁1 takes on a value of 

12 for the nearest neighbors in FCC materials. These concentric shells of coordination are a 
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superset of the nearest neighbor shells described above and are incremented with increasing 

radial distance. As demonstrated in the upcoming discussion, this relatively simple 

modification allows for the statistics of varied local solute environments to be analyzed. 

Moreover, this reparameterization can be leveraged to study a variety of PE landscapes, 

provided the coordination relations are known. This information is readily available for perfect 

crystals, which directly delivers the statistics of the cohesive energy landscape and can be 

obtained for some crystal defects such as FCC planar faults. This process is demonstrated in 

Section 2.2, where relations for the statistics of a varied GPFE landscape in a FCC system are 

provided. While this approach implicitly neglects lattice distortion effects on statistical 

parameters, results show that this assumption is reasonable for the systems studied herein.  

 The statistical analysis begins with an examination of the average per atom energy in a 

multicomponent system through summation of the reparametrized EAM relations over all 

element types and coordination shells. Under the assumption of a random arrangement of solute, 

the average per atom site energy (𝐸̅𝑎) can be calculated as: 

𝐸̅𝑎 = ∑ 𝐶̅𝑋𝐹𝑋(𝜌)

𝑋

+
1

2
∑ 𝑉𝜁

𝑋𝑌

𝑋,𝑌,𝜁

𝑁𝜁𝐶̅𝑋𝐶̅𝑌 
(3) 

where 𝐶̅𝑋  is the average concentration of a solute as defined previously. Here, 𝑉𝜁
𝑋𝑌 

represents the pair interaction energies of solutes at distances corresponding to the various 

coordination shells, which are available directly from the interatomic potential. In this work, 

the summation of coordination shells is restricted by a cutoff distance. This cutoff distance was 

chosen to be the same as those specified in the EAM potential used in validation activities (see 
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Section 3). In all materials studied the cutoff distances is no less than √5
2⁄ 𝑎𝑜, where 𝑎𝑜 is 

the lattice parameter (here, 𝑎𝑜 ≈ 0.35 nm). This results in a summation of at least the first five 

coordination shells in all crystals considered, which was found to surpass any cutoff sensitivity. 

Following the assumption of Varvenne et al. [28], the per atom charge density term, 𝜌 , is 

replaced with an average per atom charge density (𝜌̅). This replacement simplifies the statistical 

analysis and is found to retain excellent accuracy for the systems studied in this work. For 

instance, using the systems studied in Section 3.2 as a benchmark, this approximation resulted 

in deviations of less than 0.3% to average per atom embedding energies (𝐹̅, see Eq. (5)), when 

compared against exact calculations. The average per atom charge density follows as: 

𝜌̅ = ∑ 𝜌𝜁
𝑋𝐶̅𝑋𝑁𝜁

𝑋,𝜁

 (4) 

where 𝜌𝜁
𝑋 represents the charge density contributed by solute X in coordination shell 𝜁, and 

is provided by the interatomic potential. In Eqs. (3) and (4), the average concentrations offer 

the weighted probabilities of finding solute X in coordination shell 𝜁 for each term in the EAM 

relations. 

Within the context of previous work, the relations provided in Eqs. (3) and (4) can be 

viewed as per atom analogs to the system-level homogenized relations developed in Varvenne 

et al. [28]. Analysis of the statistical scatter in per atom energies proceeds from separate 

calculations of the standard deviations of the embedding energies (∆𝐹) and pair interaction 

energy terms (∆𝑉). Under the constant charge density assumption, the standard deviation of 

the embedding energy is given as: 
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∆𝐹 = √∑(𝐹𝑋 − 𝐹̅)2𝐶̅𝑋

𝑋

 
(5) 

where 𝐹𝑋 is the embedding energy of element 𝑋 evaluated at 𝜌̅, and 𝐹̅ = ∑ 𝐹𝑋𝐶̅𝑋
𝑋  is the 

average per atom embedding energy. This expression for ∆𝐹 may be interpreted as a weighted 

combination of the variances of individual solute embedding energies.  

Due to the varied pair interactions between different solutes in coordination shells, analysis 

of the standard deviation of the pair interaction energy term requires a systematic approach that 

considers each pairing that contributes to statistical scatter. As demonstrated in Figure 1, the 

local concentration in the vicinity of a solute atom may vary significantly from the global 

chemistry, and the partitioning of solute into differing coordination shells (see Figure 2) 

presents additional pathways for statistical scatter. These added considerations underscore the 

complexities that arise in determining the PE statistics of solid solutions. The final relation for 

the standard deviation of the pair interaction energy is given as: 

∆𝑉 = √∑ 𝐶̅𝑋(∆𝑉𝑋)2

𝑋

+ ∑ 𝐶̅𝑋𝐶̅𝑌(𝑉̅𝑋 − 𝑉̅𝑌)2

𝑋<𝑌

 
(6) 

where 𝑉̅𝑋  and ∆𝑉𝑋  are the average and standard deviations of the per atom interaction 

energies, respectively, when solute X is the central atom. These terms can be separately 

calculated from the parameters of EAM potentials as: 

𝑉̅𝑋 = ∑ 𝑉𝜁
𝑋𝑌𝐶̅𝑌𝑁𝜁

𝜁,𝑌

 (7)  

 



 

13 

∆𝑉𝑋 = √∑(𝑉𝜁
𝑋𝑌 − 𝑉̅𝜁

𝑋)
2

𝐶̅𝑌𝑁𝜁

𝜁,𝑌

 
(8) 

where 𝑉̅𝜁
𝑋 = ∑ 𝑉𝜁

𝑋𝑌𝐶̅𝑌
𝑌  is the average interaction energy for a solute 𝑋 in coordination shell 

𝜁. A detailed derivation of ∆𝑉 and the related terms is provided in Appendix B. Using the 

standard rules for the combinations of statistical variables, Eqs. (5) and (6) may be combined 

to provide the standard deviation of the per atom energy (∆𝐸𝑎): 

∆𝐸𝑎 = √∆𝐹2 +  (
∆𝑉

2
)

2

+ 2𝑐𝑜𝑣 (𝐹,
1

2
𝑉) (9) 

where 𝑐𝑜𝑣 (𝐹,
1

2
𝑉) is the covariance between the embedding and the pair interaction energies. 

The 1
2⁄   coefficient appears in the ∆𝑉  and covariance terms to avoid double counting of 

interaction energies, as in Eq. (1). The covariance term can be calculated directly from the 

overall composition and the interatomic potential coefficients as: 

𝑐𝑜𝑣 (𝐹,
1

2
𝑉) =  

1

2
∑ 𝐶̅𝑋𝐹𝑋𝑉̅𝑋

𝑋

−  (∑ 𝐶̅𝑋𝐹𝑋

𝑋

) (
1

2
∑ 𝑉𝜁

𝑋𝑌

𝑋,𝑌,𝜁

𝑁𝜁𝐶̅𝑋𝐶̅𝑌)  (10) 

A full derivation of this expression is provided in Appendix C.  

Collectively, Eqs. (3) - (10) provide a method to evaluate the statistical variations of per 

atom potential energies in randomly arranged solid solutions. These relations are derived 

directly from the EAM formulation and require only coefficients from the interatomic potential, 

solute concentrations, and coordination relations as inputs. Furthermore, there are no adjustable 

parameters or new assumptions introduced to produce these statistical relations. These 

equations are general and can be applied to any crystalline structure, provided the coordination 

relations are given. Indeed, the application of these relations to planar faults is a necessary step 
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in the analysis of the GPFE landscape that follows in the next section.  

2.2. Extension of per atom EAM relations to the GPFE landscape 

The PE landscapes considered in this study are those of the cohesive energy and the GPFE. 

The cohesive energy landscape is a composite of per atom site energy values that describe the 

potential energy change due to deposition from the gas phase into a crystalline phase, which 

serves as a reference for comparison of phase stability. The statistical parameters of the 

cohesive energy landscape can be therefore retrieved directly from Eqs. (3) - (10). The GPFE 

landscape is formed from the area normalized interplanar excess energy (i.e., the planar fault 

energy, 𝛾  [41,42]) arising from the coordinated shearing of the pristine FCC lattice by 

Shockley partial dislocations along <112>/{111}, as required to form and thicken deformation 

twins. Within the context of deformation mechanisms, the GPFE landscape can be used to 

examine the intrinsic competition between dislocation slip and deformation twinning in a FCC 

material, which has important implications on the evolution of mesoscale plasticity in low 

stacking fault energy systems. The tendency for a material to exhibit deformation twinning is 

described through a variety of twinnability parameters [43–49], which are dependent on the 

critical energies (i.e., peaks and valleys) of the GPFE landscape. Figure 3 provides a schematic 

of a typical GPFE landscape for an FCC material, with the critical energies labeled. These 

energies are the unstable stacking fault energies (𝛾𝑢𝑠𝑓
0.5  and 𝛾𝑢𝑠𝑓

1.5 ), the intrinsic and extrinsic 

stacking fault energies (𝛾𝑖𝑠𝑓
1  and 𝛾𝑒𝑠𝑓

2 ), and the unstable twinning and twinning fault energies 

(𝛾𝑢𝑡𝑓
2.5  and 𝛾𝑡𝑓

3 ). Here, the superscript refers to the crystallographic slip that is required to create 

each fault, referenced as a multiple of the <112> Shockley partial Burger’s vector (b112). 

Fluctuations in these critical energies are of interest to the community, as they have 
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implications on deformation mechanism competition [43–46,48,49], the waviness of stacking 

faults ribbons [8,36], variations in twinning stresses [50], and the local stability of FCC and 

HCP phases [51,52], amongst other elements of mechanical metallurgy. 

Analysis of the fluctuations in the critical energies of the GPFE begins with the recognition 

that the configuration of solute around each of the associated planar faults can be fully 

described by sets of coordination relations. Therefore, the statistical relations of the previous 

section can be leveraged to analyze fluctuations in the local minima and maxima of the GPFE 

landscape. However, in contrast to the pristine FCC lattice, where relations are spatially 

invariant, the coordination environment changes for atoms lying in each of the {111} 

 

Figure 3: A schematic of the GPFE landscape that is formed from the interplanar excess energy of a FCC 

crystal. To form this curve, the crystal is sequentially sheared along <112> in consecutive {111} planes, as 

specified by the deformation twinning formation pathway. Shearing is measured here in increments of the 

<112> Shockley partial Burger’s vector (b112). The critical energies of the GPFE landscape are indicated. 𝛾𝑡𝑓
3  

is normally calculated from an isolated planar fault and is approximately equal to half the twin fault 

configuration shown here [47]. Snapshots of the idealized atom configurations in the vicinity of each fault are 

provided. Green and white atoms are classified as FCC and non-FCC coordinated, respectively. A discussion 

of this classification procedure is provided in the main text. Dashed lines separate the {111} crystallographic 

planes involved in the progressive shearing of the FCC crystal. 
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crystallographic planes near a planar fault due to changes in the local stacking sequence. Figure 

4 illustrates the changes in the coordination relations in the {111} layers near an unstable 

stacking fault for a cutoff of √5
2⁄ 𝑎𝑜. Coordination relations for larger cutoffs appear similar, 

but with more non-FCC layers and peaks. Here, we use a two-index notation (n, m) to refer to 

faulted planes, where n refers to the number of Shockley partial dislocations required to create 

the defect, and m is a {111} layer enumerated sequentially from the shearing interface (m = 0). 

As shown in Figure 4, the disruption of the normal stacking sequence gives rise to new peaks 

in the coordination relations. Intuitively, the appearance of non-FCC peaks occurs at larger 

radial distances in layers further from the shearing interface, until they are pushed outside of 

the cutoff radius (i.e., √5
2⁄ 𝑎𝑜 ). In classifying FCC and non-FCC coordinated 

crystallographic layers, a comparison of coordination relations within the cutoff radius is used 

as the guiding criterion. Other schemes (e.g., based on stacking sequence) may lead to different 

classifications. Coordination relations for the other interplanar defects associated with the 

critical energies of the GPFE landscape (i.e., the unstable stacking and twinning faults, extrinsic 

stacking fault, and twin fault) are provided in the Supplementary Materials, Figures S1-S5. The 

non-FCC coordinated planes used in the statistical analysis of each critical energy of the GPFE 

landscape are provided in Table 1. It should be noted that the location of m = 0 is not the same 

for each planar fault due to the sequencing of plane shearing required to create each defect. 
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Calculation of the average planar fault energy (𝛾̅) follows directly from a comparison of 

average per atom energies in the faulted and fault-free conditions as: 

𝛾̅𝑛 =  𝜌111 ∑(𝐸̅𝑎
𝑛,𝑚 − 𝐸̅𝑎

𝐹𝐶𝐶)

𝑚

 
(11) 

where 𝐸̅𝑎
𝐹𝐶𝐶 and 𝐸̅𝑎

𝑛,𝑚
 are the average per atom energies for an FCC coordination and the 

 
Figure 4: (a) The idealized configuration of atoms in the vicinity of an unstable stacking fault (USF) viewed 

from a <110> axis. The traces of {111} crystallographic planes (red dashed lines) are enumerated sequentially 

from the shearing interface (m = 0, black dashed line). Green and white atoms are classified as FCC and non-

FCC coordinated, respectively. A discussion of this classification procedure is provided in the main text. (b) 

The idealized coordination relations are shown for atoms in {111} layers near the unstable stacking fault 

(𝑁𝜁
𝑛,𝑚 = 𝑁𝜁

0.5,𝑚) . Additional coordination peaks are seen in layers adjacent to the shearing interface. The 

coordination relations return to the FCC sequencing at m = 3, as the additional coordination peaks are pushed 

beyond the cutoff radius. Peaks that differ in position or magnitude to the FCC coordination (blue) are colored 

in red. 𝜁 is the index used to enumerate these peaks in statistical relations. An example of this process is 

provided for the FCC coordination (m = 3). Coordination relations are plotted against distance (r) in multiples 

of the lattice parameter as the radial position of 𝜁 varies by defect type and {111} crystallographic plane.  
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coordination in the mth {111} layer near a n-type fault, respectively. 𝜌111 is the number density 

of atoms in the FCC {111} plane, which is given as 4
√3𝑎𝑜

2⁄ . 𝐸̅𝑎
𝐹𝐶𝐶  can be calculated directly 

from Eq. (3). Determination of 𝐸̅𝑎
𝑛,𝑚

 follows from a separate application of Eq. (3) to each of 

the coordination environments in the m layers around a planar defect (see Figure 4), with 𝐹𝑋 =

𝐹𝑋,𝑛,𝑚 , 𝑉𝜁
𝑋𝑌 = 𝑉𝜁

𝑋𝑌,𝑛,𝑚
 , and 𝑁𝜁 = 𝑁𝜁

𝑛,𝑚
 . The latter terms (𝑉𝜁

𝑋𝑌,𝑛,𝑚
  and 𝑁𝜁

𝑛,𝑚
 ) are given 

directly by the interatomic potential and topology, respectively, and 𝐹𝑋,𝑛,𝑚 is calculated from 

the relevant terms of Eqs. (4) and (5) evaluated under the faulted coordination relations.  

Table 1: Non-FCC coordinated planes in the vicinity of the critical planar faults of the GPFE landscape.  

Planar Fault Energy (𝑛) Total layers (𝑀) Non-FCC planes (𝑚) 

𝛾𝑢𝑠𝑓
0.5  4 ±1, ±2 

𝛾𝑖𝑠𝑓
1  4 ±1, ±2 

𝛾𝑢𝑠𝑓
1.5  5 -3, ±1, ±2 

𝛾𝑒𝑠𝑓
2  3 -3, -1, 2 

𝛾𝑢𝑡𝑓
2.5  5 -4, ±1, ±2 

𝛾𝑡𝑓
3  4 -4, -1, ±2 

 Calculation of the standard deviation of the planar fault energy ( ∆𝛾 ) begins with a 

determination of the standard deviations of per atom energies in each of the m {111} 

crystallographic layers influenced by a n-type fault (i.e., Δ𝐸𝑎
𝑛,𝑚

 ). For standard deviation 

calculations, we consider only those {111} layers whose coordination relations differ from the 

pristine FCC case within the specified cutoff radius to avoid the convolution of cohesive energy 

and excess energy distributions. The Δ𝐸𝑎
𝑛,𝑚

 terms can be retrieved through the application of 

Eqs. (3)-(10) in Section 2.1 using the same modifications to the embedding and pair interaction 

energies and coordination relations as in the calculation of 𝐸̅𝑎
𝑛,𝑚

. Using the same rationale for 

calculating the aggregated statistics of non-overlapping sub-populations in per atom interaction 

energies (see Eq. (6) and Appendix B), the standard deviation of faulted per atom energies 
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(∆𝐸𝑎
𝑛) over all non-FCC layers in the vicinity of a planar fault is calculated as: 

∆𝐸𝑎
𝑛 = √

1

𝑀
[∑(Δ𝐸𝑎

𝑛,𝑚)2 +

𝑚

1

𝑀
∑ (𝐸̅𝑎

𝑛,𝑚1 − 𝐸̅𝑎
𝑛,𝑚2)

2

𝑚1<𝑚2

] (12) 

where M is the total number of non-FCC coordinated layers created by the planar fault. 

Following the rules for the addition and subtraction of statistical variables, we arrive at a 

relation for the standard deviation of the planar fault energy (∆𝛾), which can be calculated from 

the sum of variances in the faulted and fault-free conditions: 

∆𝛾𝑛 = √(∆𝐸𝑎
𝑛)2 + (Δ𝐸𝑎

𝐹𝐶𝐶)2 − 2𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶) 𝜌111 (13) 

where 𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶)  is the covariance between faulted and non-faulted per atom energy 

distributions, and 𝜌111 is the planar number density as defined in Eq. (11). The covariance 

between these distributions can be determined from the difference between the expectation 

value of products and the product of expectation values. We find a good approximation to this 

exact definition from the following relation:  

𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶) ≈   
1

𝑀
(∑ 𝐶̅𝑋𝐸̅𝑎

𝑋,𝑛,𝑚𝐸̅𝑎
𝑋,𝐹𝐶𝐶

𝑋,𝑚

−   𝐸̅𝑎
𝐹𝐶𝐶 ∑ 𝐸̅𝑎

𝑛,𝑚

𝑚

)  (14) 

where 𝐸̅𝑎
𝑋,𝑛,𝑚

 and 𝐸̅𝑎
𝑋,𝐹𝐶𝐶

 are the solute-level average per atom energies in the faulted and 

FCC-coordinated conditions. These terms may be calculated as:  

𝐸̅𝑎
𝑋,𝑛,𝑚 = 𝐹𝑋,𝑛,𝑚 +

1

2
𝑉̅𝑋,𝑛,𝑚 (15) 

𝐸̅𝑎
𝑋,𝐹𝐶𝐶 = 𝐹𝑋,𝐹𝐶𝐶 +

1

2
𝑉̅𝑋,𝐹𝐶𝐶  (16) 
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with the 𝑉̅𝑋 term given by Eq. (7) evaluated in the corresponding coordination environment. 

A detailed derivation of 𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶)  and the associated parameters is provided in 

Appendix C.   

The analysis presented in Sections 2.1 and 2.2 provides a method to calculate the statistics 

of fluctuations in the cohesive energy and GPFE landscapes. These relations are derived for 

EAM-type interatomic potentials, which are relevant for metals and alloys, and can be applied 

to systems of arbitrary components and compositions. While this method is general across a 

variety of material systems, one limitation is that the coordination relations must be fixed by 

symmetry either in a crystal lattice (i.e., as in the cohesive energy landscape) or within a faulted 

plane (i.e., as in the GPFE landscape). PE landscapes that are not captured by these conditions 

require additional derivations. Caution must also be exercised in the interpretation of results, 

as the physical relevance of the statistical analysis is limited by the accuracy of the underlying 

EAM potential, which have known limitations in systems with strong angular-dependent 

interactions [53]. Nonetheless, the relatively simple form of these relations enables scripting in 

algorithms for rapid computation. Python-based codes to calculate the statistical parameters of 

cohesive energy and GPFE landscapes for randomly arranged solid solutions are available at 

an online repository managed by the authors [54]. In subsequent sections, results and validation 

datasets are presented for the cohesive energy and GPFE landscapes in the NiCo and FeNiCr 

systems.     

3. COMPARISON TO DIRECT MS SIMULATIONS 

The statistical relations developed in previous sections are validated using molecular statics 
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(MS) simulations with the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) software package [55]. Visualization of simulation topologies is realized using 

The Open Visualization Tool (OVITO) [56]. Two simulations are performed: simple MS 

relaxation calculations and interplanar shearing simulations, which are used to validate 

predictions of fluctuations in the cohesive energy and GPFE landscapes, respectively. The 

procedures for these simulations are well established within the community (e.g., Refs. [2,14–

16,28,34]). Data presented in the main text corresponds to systems measuring at least 10 by 10 

by 5 nm (> 50,000 atoms) and 35 by 35 by 7 nm (> 800,000 atoms) in size for MS relaxation 

and interplanar shearing simulations, respectively. System sizes are chosen based on 

convergence studies, with the average values of cohesive and planar fault energies used as 

convergence criteria. For instance, GPFE convergence studies in the Fe73Ni8Cr19 system 

showed deviations in average fault energies of less than 7 mJ/m2 (with most deviations less 

than 2 mJ/m2) in simulation cells larger than 10 x 10 nm in the lateral dimension and 3 nm in 

height (see Supplementary Materials, Figure S6). MS relaxation calculations are performed 

using the conjugate gradient minimization tool built within LAMMPS. Simulation boundaries 

are periodic in all directions and are allowed to expand/contract to minimize stresses. For 

interplanar shearing simulations, we have followed the same methodology from our previous 

work [47]. Briefly, single-crystal FCC systems are constructed such that the <110>, <112>, 

and <111> crystallographic directions are aligned to the global x, y, and z axes, respectively. 

Periodic boundary conditions are enforced on the x and y boundaries and the z surfaces are free 

surfaces. The GPFE curve is obtained through a three-stage rigid shearing process, where the 
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shear per stage is equal to the magnitude of a <112>-type Shockley partial dislocation (i.e., 
𝑎𝑜

√6
). 

This shearing process begins its first stage by displacing two halves of the crystal along the 

<112> direction within a {111} shear plane. The second and third stages are completed by 

shearing the crystal at the plane immediately adjacent to the fault formed in the prior stage, as 

required to realize a twin fault. Each shearing stage is executed over 100 shearing increments 

to capture the intermediate configurations and excess energies of the GPFE landscape. In 

between each shearing step, the system is relaxed in the z-direction and the per atom potential 

energies are recorded. The GPFE is then obtained from the per atom energies of the relaxed 

configurations (i.e., the distribution 𝐸𝑎 ). The average planar fault energy (i.e., 𝛾̅ ) can be 

directly calculated over the faulted layers using the relation in Eq. (11). In MS simulations, the 

standard deviation of planar fault energies (i.e., ∆𝛾) is determined from its definition as the 

expectation value of deviations from the mean: ∆𝛾 = √〈([𝐸𝑎
𝑛 − 𝐸̅𝑎

𝑛] − [𝐸𝑎
𝐹𝐶𝐶−𝐸̅𝑎

𝐹𝐶𝐶])2〉𝜌111, 

where ⟨⟩ refers to the expectation value operator. The standard deviation is calculated here from 

non-FCC {111} layers using the same cutoff criteria as described in Section 2.2. 

3.1. Concentrated solid solution system selection 

For the purposes of this study, we have selected the binary NiCo and ternary FeNiCr 

systems as our benchmark materials. One key selection criteria for these systems is their 

relevance in deformation twin [57–59] and stress-induced HCP martensite forming materials 

[59–62], for which the fluctuations in the fault energies of the GPFE landscape are of inherent 

interest. In addition to these characteristics, the FeNiCr system is selected due to its 

technological importance in stainless steels and the availability of computational datasets from 

which results may be validated [28,32,33,63,64]. The NiCo system also offers the opportunity 
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to study the accuracy of our method in polymorphic solid solutions, with a FCC to HCP 

transition known in this system at ~ 70 at.% Co [65]. The following sections present the 

application of the equations of Sections 2.1 and 2.2 to the FeNiCr and NiCo systems over a 

wide compositional range. Although the FeNiCr system exhibits complicated multiphase 

microstructures at some compositions, our analysis focuses on the FCC structure as a 

theoretical exercise. Validation datasets have been generated from MS relaxation studies using 

the procedures described above. For these simulations, the EAM-based potentials of Bonny et 

al. [40] (FeNiCr) and Béland et al. [66] (NiCo) are used to model interatomic interactions. The 

cutoff radii used in the MS simulations and statistical analysis of FeNiCr and NiCo are 0.56 

and 0.65 nm. Using the compositions of Section 3.2 as benchmark systems, the zero Kelvin 

FCC lattice parameters were measured in the ranges of 0.352 – 0.356 nm (Ni1-xCox) and 0.349 

– 0.358 nm (Fe(1-x)/2Ni(1-x)/2Crx).   

3.2. Statistical analysis of the cohesive energy landscape 

The statistical parameters of the cohesive energy landscape are given directly by the 

average and standard deviations of per atom site energies (i.e., 𝐸̅𝑎  and ∆𝐸𝑎 ). Figure 5 

provides these quantities for the FCC phase of the FeNiCr, and the FCC and HCP phases of 

NiCo. The FeNiCr compositional space is charted along a search path of Fe(1-x)/2Ni(1-x)/2Crx, 

with literature data provided from Ref. [28] for validation purposes. Results are obtained for 

NiCo across its entire compositional space. Using the statistical relations of Section 2.1, 

analytical calculations are displayed alongside the results of MS relaxation simulations. As 

shown in the figure, 𝐸̅𝑎 is shown to vary monotonically from ~ -4.5 to -3.7 eV/atom for the 

FeNiCr data. The NiCo system exhibits ranges of ~ -4.45 to -4.38 and ~ -4.43 to -4.39 eV/atom 



 

24 

for the FCC and HCP phases, respectively. MS relaxation data show excellent agreement with 

the predictions of the statistical relations for both systems. Indeed, the analytical estimates of 

per atom average energies deviate by less than 0.5% for both FeNiCr and NiCo. Furthermore, 

the statistical relations accurately capture the transition in FCC to HCP phase stability at Co-

rich compositions of > 70 at.%. 

 
Figure 5: The average (𝐸̅𝑎) and standard deviations (∆𝐸𝑎) of per atom site energies in the (a) Fe(1-x)/2Ni(1-x)/2Crx 

and (b) NiCo systems. Predictions from the statistical relations (Analytical) are overlaid with data from MS 

relaxation simulations, showing excellent agreement. Cohesive energy data from Varvenne et al. [28] are also 

provided for the FeNiCr system. The average energies and standard deviations are plotted against the primary 

(blue) and secondary axes (green), respectively. 
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Standard deviations in the per atom energies were found to vary between 0 to ~0.46 

eV/atom and 0 to ~ 0.043 eV/atom across the sampled FeNiCr and NiCo systems, respectively. 

The large standard deviations in FeNiCr datasets are driven by the dramatic change in per atom 

energies with increasing Cr content. Conversely, NiCo per atom energies vary only slightly 

across its compositional space, which leads to lower standard deviations. As with the average 

per atom energies, the standard deviations in the MS data show excellent agreement with 

analytical calculations. Indeed, deviations in analytical estimates of standard deviations are < 

5% for both FeNiCr and NiCo, except at singularities near the terminal compositions where 

the standard deviations approach zero. Comparison between datasets shows that these 

analytical relations accurately capture the order of magnitude changes in statistical fluctuations 

across different systems and chemistries. Some features of this agreement bear noting. Namely, 

the statistical relations accurately predict a vanishing standard deviation at pure chemistries 

(i.e., right of FeNiCr plot and terminuses of the NiCo plot). Furthermore, our statistical 

relations also capture the asymmetry in the standard deviation of the NiCo system. More 

broadly, the strong agreement between our idealized analytical approach and relaxed MS 

datasets demonstrates the importance of the distribution of solute arrangements in driving PE 

fluctuations. Moreover, these results also indicate that lattice distortion effects hold a minor 

role in the determination of per atom energy statistics. To contextualize this interpretation, we 

have quantified the lattice distortion of the equimolar FeNiCr and NiCo systems using the 

atomic size difference parameter (δ) [67,68]. This parameter is calculated as: 𝛿 =

√∑ 𝐶̅𝑋(1 − 𝑟𝑋 𝑟̅⁄ )𝑋  , where 𝑟𝑋  is the atomic radius of the solute and 𝑟̅ = ∑ 𝐶̅𝑋𝑟𝑋
𝑋   is the 
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average radius. Using data extracted from the radial distribution functions of FCC MS 

relaxation calculations on pure element systems, we obtain atomic size differences of 1.14% 

and 1.20% for FeNiCr and NiCo, respectively. For comparison, a similar calculation on the 

Cantor alloy (equimolar CrMnFeCoNi) produces an atomic size difference of 1.26%. One 

interpretation from these findings is that although lattice distortion certainly exists in these 

solid solutions, the energetic fluctuations induced by disruptions to the lattice on an atom-by-

atom basis are self-reconciling. However, caution must be taken when generalizing this finding 

to other PE landscapes or systems with more pronounced mismatches in atoms size, where 

lattice distortion effects may exhibit a stronger effect on the emergence of relaxed energies. 

In addition to insights into lattice distortion effects, these results provide new tools to 

quantify local phase stability, which contributes to the ongoing dialogue of metastable 

microstructures in concentrated solid solutions. For instance, recent studies of FCC equimolar 

CrCoNi have provided some conflicting results. Here, the intrinsic stacking fault energy, whose 

polarity can be taken as an indicator of FCC/HCP stability, finds a wide range of positive and 

negative values in the literature. Namely, density functional theory (DFT) studies of this system 

report energies between -24 to -62 mJ/m2 [51,69–71], which contradicts experimental 

measurements of positive values for the stacking fault energy (~ 22 mJ/m2) [72,73]. Although 

there are several explanations for these discrepancies such as overlooked ordering effects [74] 

and drag on fault ribbons from strong solute/dislocation interactions [37], an alternative 

interpretation is that the varied chemical environment in low stacking fault energy FCC 

concentrated solid solutions possess regions where the HCP phase is favored due to fluctuations 
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in the FCC/HCP cohesive energies. This interpretation aligns with the work of Zhao et al. [17], 

which demonstrated strong size effects in DFT calculations of the stacking fault energies of 

NiCo and CrCoNi. In both materials, a distribution of stacking fault energies is reported, with 

some positive and negative values being captured in the statistics. The results of this section 

add new quantitative tools to analyze this metastability argument. As demonstrated in the NiCo 

system, local variations in chemistry and solute pairings create sufficiently large statistical 

fluctuations in PE such that the FCC and HCP phases exhibit overlapping distributions of 

cohesive energies.  

The success of our statistical relations in replicating the per atom energies of MS relaxation 

calculations motivates a computational search of compositional spaces without the need for 

exhaustive atomistic simulations. Figure 6 presents the statistical parameters of the cohesive 

energy landscape in ternary plot form for the entire compositional space of the FeNiCr system, 

with the compositions reported in Figure 5 traced with a dashed arrow. Some interesting 

features emerge from this complete search of the FeNiCr system. Namely, the largest standard 

deviations in the per atom energies are found along the binary NiCr terminus of this ternary 

diagram. This result may be understood from an examination of the per atom site energies in 

the FeNiCr system, which reach their minimum and maximum values at the pure Ni (~ -4.5 

eV/atom) and Cr (~ -3.7 eV/atom) compositions, respectively. Consequently, to a first 

approximation, the standard deviation can be expected to reach a maximum at an equimolar 

chemistry of NiCr. We believe that this finding is consequential within the broader context of 

PE landscapes in solid solutions. For instance, recent theories have demonstrated the role of 
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large PE fluctuations in driving the unusual strengthening of HEAs. Examples include the 

solute-dislocation interaction model of Varvenne et al. [8,13] and the stochastic Peierls-based 

model of Zhang et al. [9]. The success of these theories, combined with the community’s 

enthusiasm for HEAs, has led to perhaps an overly restrictive perspective on opportunities for 

property improvements. That is, increasing the number of components best realizes the benefits 

of solid solutions by maximizing solute dispersion. With some caveats, we offer this data as a 

theoretical counter example, where a binary sub-alloy exhibits larger PE fluctuations than a 

parent ternary. This finding aligns with the growing body of literature (e.g., Ref. [6]) that 

underscores the importance of solute interactions within the complex interplay between solute 

arrangement, number of components, and ensemble chemistry that define the contributions of 

solid solution effects in concentrated systems.  
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3.3. Statistical analysis of the GPFE landscape 

Following the procedures outlined in Section 2.2, the standard deviations in the critical 

planar fault energies of the GPFE landscape have been studied for four different FCC solid 

solutions. The selected system chemistries are Fe73Ni8Cr19, and equimolar FeNiCr, NiCr, and 

NiCo. The inclusion of NiCr is motivated by the peak statistical fluctuations observed at this 

chemistry in the cohesive energies of the previous section. Fe73Ni8Cr19 has been selected due 

to its technological relevance in 304-type stainless steels, where deformation twinning is a 

 
Figure 6: Ternary plots of the (a) average and (b) standard deviations of the per atom site energies in the FeNiCr 

system. All results are calculated using the statistical relations of Section 2.1. The dashed arrow traces the data 

presented in Figure 5. In this system, the largest standard deviations are found along the NiCr binary terminus 

of this plot, and not at the equimolar composition. 
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competing plasticity mechanism. As the first step in the determination of fault energies, Figure 

7 provides the standard deviations of per atom energies at various faulted conditions for each 

of these systems. The data from MS shearing simulations is overlaid with predictions from 

statistical relations, showing excellent agreement. The largest deviations between datasets are 

found in the equimolar NiCo, but do not exceed 7% error, with most deviations being < 2%. 

Standard deviations range from between ~ 0.04 to 0.55 eV / atom, with the lower and upper 

extremes found in the equimolar NiCo and NiCr binary systems, respectively. These findings 

align with the cohesive energy data of pristine FCC systems, which showed similar ranges. 

Indeed, the introduction of planar faults was found to only change per atom energies by a 

maximum of ~ 2 % in the FeNiCr chemistries and ~ 6% in equimolar NiCo. However, it should 

be noted that fluctuations in individual layers around a n-type fault may hold larger scatter than 

the aggregated variance of all M layers within the cutoff distance of the defect, from which 

∆𝐸𝑎
𝑛 is reported. 
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Building upon the calculations of ∆𝐸𝑎
𝑛, we report the statistical scatter in the critical fault 

energies of the GPFE landscapes (∆𝛾𝑛) in Figure 8 for each system. The analytical calculations 

of ∆𝛾𝑛 are shown as error bars and are overlaid with the GPFE landscapes calculated from 

interplanar shearing simulations. Literature values for the average intrinsic stacking fault 

energies in each system have been provided for comparison purposes. Some discontinuities in 

the GPFE landscape appeared at the stable planar faults, which we associate with changes in 

the numbers of non-FCC coordinated layers upon transitions through layer-by-layer shearing 

operations. For instance, upon formation of an extrinsic stacking fault, the m = 1 plane exhibits 

a momentary FCC coordination (see Supplementary Material, Figure S3). This layer is 

therefore not included in the statistical analysis of the GPFE landscape, nor in the MS 

 

Figure 7: The standard deviation of per atom energies at various faulted conditions. This measurement includes 

contributions from {111} layers within the vicinity of planar faults. The FCC condition is shown at zero shear. 

MS shearing calculations are shown as markers and the predictions from statistical relations (Analytical) are 

overlaid in solid stroke. 
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simulations. However, MS simulations represent relaxed structures where some atoms in the m 

= 1 plane are in fact non-FCC coordinated and contribute to excess energy, but are no longer 

captured in the GPFE landscape calculation. This effect is most evident in the equimolar NiCr 

system and is negligible in others. The omission of these layers is required to remain directly 

comparable with the approach used in statistical analysis. That is, the determination of the 

standard deviations of fault energies in both approaches is sensitive to the number of atoms 

sampled. Therefore, to validate the accuracy of the statistical relations the same quantities must 

be inserted into the relations for MS and statistical estimates of the GPFE landscape. 

Furthermore, the inclusion of FCC-coordinated layers into the GPFE landscape statistics 

calculations convolutes the distribution of faulted per atom energies (i.e., 𝐸𝑎
𝑛 ) with the 

cohesive energy landscape (i.e., 𝐸𝑎
𝐹𝐶𝐶) natively present in these concentrated solid solutions, 

which creates ambiguity in the interpretation of standard deviations. In the bulk limit, the PE 

deviations caused by planar faults become negligible and statistics converge to the cohesive 

energy landscape values. To clarify the effect of {111} plane selection in the determination of 

the GPFE landscape from MS simulations, we have prepared a plot showing the effect of the 

number of {111} planes sampled on the average planar fault energies (see Supplementary 

Material, Figure S7), which demonstrates vanishing discontinuities.  
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Although the analytical estimates of standard deviations exhibit only a modest agreement 

with the MS data, we find this result to be reasonable as the source of error is not related to any 

 

Figure 8: The GPFE landscapes of Fe73Ni8Cr19 (a), equimolar FeNiCr (b), NiCr (c), and NiCo (d). Data from 

MS interplanar shearing simulations are provided in the colored stroke. The average planar fault energies appear 

as dashed lines and a region representing ± 1 standard deviation is plotted as a filled curve bounded by solid 

lines. Analytical predictions for fluctuations in the critical fault energies are shown as error bars. A dashed line 

at 𝛾 = 0 is provided in each plot for readability purposes. Literature data on the average stacking fault energies 

of each system are provided as markers. This data is drawn from Refs. [17,28,40,75]. 
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new failings in our theory. Rather, these errors arise due to the nature of the standard deviation 

calculation in Eq. (13) and its extreme sensitivity to small changes in input parameters. Indeed, 

while analytical predictions for per atom energies and covariances (see Figure 7 and Figure 

C.1) are in excellent agreement with MS relaxation calculations, the subtractive elements of 

Eq. (13) greatly amplify any small discrepancies. The units of these fluctuations also provide 

useful context for consideration. That is, predictions of statistical scatter on the order of 

millijoules over areas of squared meters would seem to be difficult to determine with great 

precision.  

Despite only a modest numerical agreement between datasets, the trends and broader 

context of these results merit some discussion. In both approaches, the sequencing of the 

magnitudes of GPFE fluctuations are in agreement. Furthermore, both approaches predict that 

the NiCr system, which showed the highest fluctuations in cohesive energies, exhibits the 

lowest fluctuations in critical fault energies for each of the FeNiCr chemistries considered. This 

reduction in scatter is a result of the strong correlations observed in the NiCr system (see Figure 

C.1). An interesting interpretation of this result is that strongly correlated systems with large 

fluctuations in per atom site energies do not exhibit proportionally large fluctuations in their 

planar fault energies. An additional point of discussion from these results is the observations 

of fluctuations causing negative planar fault energies in both the analytical calculations and 

MS data. This is particularly relevant for the Fe73Ni8Cr19 measurements as negative stacking 

fault energies are linked to the well-known stress-induced HCP martensite transformation 

exhibited by related stainless steel chemistries [59–62]. 
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Within the broader context of concentrated solid solutions, we believe that the statistical 

relations developed in this work contribute to an ongoing discussion within the community on 

the interpretation of planar fault energies. For instance, recent studies of planar fault energies 

in medium- and high entropy alloys have reported a wide scatter in values [18,51,69,71]. 

Discussions in the newest literature have brought some clarity [36–39]. Namely, planar fault 

energies are sensitive to the arrangement of solute atoms near the fault plane, which gives rise 

to the concept of a “local” planar fault energy. Our results here offer a method by which the 

statistics of these local planar fault energies can be analytically studied. This contribution finds 

direct applications in quantifying the unusual metallurgy of concentrated solid solutions, with 

examples including waviness in stacking fault ribbons [8,36], and variations in solute-fault 

interaction energies [50].  

4. CONCLUSIONS 

An analytical approach has been developed to quantify the statistics of PE landscapes in 

randomly arranged solid solutions. For this purpose, the equations of EAM-based interatomic 

potentials are reparametrized to yield a set of relations defined by the coordination environment 

of solute. From these recast equations, exact relations for the statistical parameters of the 

embedding and pair interaction energy are derived. This set of initial relations is general and 

can be applied to study the cohesive energy landscapes of any crystalline system with an 

arbitrary number of components and composition. Using coordination as a key input parameter, 

we expanded the applicability of statistical relations to provide an analytical method to examine 

fluctuations in the excess energies of planar faults. Collectively, these analytical tools provide 
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the community a method to rapidly quantify PE fluctuations in pristine and defective solid 

solution systems described by sets of coordination relations, which finds applications in studies 

of local phase stability, and competition between deformation mechanisms. 

In the second portion of this study, these relations are leveraged to study the cohesive 

energy and GPFE landscapes of FeNiCr and NiCo. In most cases, predictions from statistical 

relations were in excellent agreement with validation datasets that were collected from MS 

relaxation and interplanar shearing simulations. From this effort, some key insights into the 

metallurgy of solid solutions have emerged that contribute to ongoing discussions within the 

community. For instance, our results for NiCo offer a nuanced perspective on phase stability. 

That is, local variations in composition and solute pairings create sufficiently large fluctuations 

in cohesive energy that competing lattices find regions of favorable/unfavorable stability across 

a system topology. Within the context of the role of PE fluctuations in the physical properties 

of solid solutions, results from a theoretical search of the FeNiCr composition space contribute 

to a building theme in the literature. Namely, maximizing the effects of solid solution 

ensembles is more nuanced than simply selecting chemistries with the greatest solute 

dispersion. An additional outcome of this effort is a method to quantify the statistics of local 

planar fault energies, which is a new concept that has emerged from the varied stacking fault 

energies reported in the recent HEA literature.  

APPENDIX A: DERIVATION OF COMPOSITION AND SOLUTE PAIR 

DISTRIBUTIONS 

Following the method of Varvenne et al. [28], a multicomponent topology can be described 

by a set of binary occupancy vectors, 𝐶𝑖
𝑋, which take on a value 1 if a solute of type 𝑋 is 
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found at site i and are otherwise 0. Here, ‘site’ refers to the atomic positions that solute 𝑋 

would occupy in a crystal. The distribution of compositions collected by random sampling of 

𝑛𝑐 solute atoms from 𝐶𝑖
𝑋 is Gaussian with an average of 𝐶̅𝑋. The average composition of 

individual samples is 𝑐̅𝑋. The standard deviation of the solute ensemble (i.e., the population 

standard deviation, ∆𝐶𝑋) can be determined directly from its definition:  

∆𝐶𝑋 = √
∑(𝐶𝑖

𝑋 − 𝐶̅𝑋)2

𝑁
 (A.1) 

where 𝑁 is the length of the vector 𝐶𝑖
𝑋. As the entries of 𝐶𝑖

𝑋 are binary, the numerator can 

be simplified to:  

∆𝐶𝑋 = √𝑁𝑋(1 − 𝐶̅𝑋)2 + (𝑁 − 𝑁𝑋)𝐶̅𝑋2

𝑁
 (A.2) 

where 𝑁𝑋 = ∑ 𝐶𝑖
𝑋 . The ratio 𝑁𝑋 𝑁⁄   is the population average, 𝐶̅𝑋 , by definition. 

Recognition of this relationship leads to a compact expression for the standard deviation as:  

∆𝐶𝑋 = √𝐶̅𝑋(1 − 𝐶̅𝑋) (A.3) 

The standard deviation of the distribution of samples (∆𝑐𝑋) then follows naturally as:  

∆𝑐𝑋 = √
𝐶̅𝑋(1 − 𝐶̅𝑋)

𝑛𝑐
 (A.4) 

Using the relation of Eq. (A.4), random sampling of a multicomponent solute ensemble creates 

a set of Gaussian distributions of compositions: 𝐺𝑋~ (𝐶̅𝑋 , √
𝐶̅𝑋(1−𝐶̅𝑋)

𝑛𝑐
). Similar arguments for 

𝑛𝑠 random samples from a binary occupancy vector (𝑆𝑖
𝑋𝑌) of pairings between solutes X and  

Y leads to a Gaussian distribution that can be parameterized as 𝐺𝑋𝑌~ (𝐶̅𝑋𝐶̅𝑌, √
𝐶̅𝑋𝐶̅𝑌(1−𝐶̅𝑋𝐶̅𝑌)

𝑛𝑠
). 
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APPENDIX B: STANDARD DEVIATION OF THE PER ATOM PAIR INTERACTION 

ENERGY   

The calculation of the standard deviation of the pair interaction energy term (∆𝑉) begins 

with a consideration of the types of pairwise interactions that are available to specific solutes 

in randomly arranged solid solutions. For instance, a solute of type X may interact with other 

solutes of type X or Y, forming pair interactions XX or XY. However, through the specification 

of atom type X as the solute of consideration, interactions of YX or YY are not considered and 

belong to a separate set of solute pairings (i.e., as in conditional probabilities). This nuanced 

point is significant, as it highlights a pathway to treat the statistical scatter that arises in pair 

interactions. That is, the statistical scatter of interactions can be viewed as an aggregation of 

separate solute pairing distributions that can be individually specified. Phrased differently, 

calculation of ∆𝑉 can be achieved through a separate determination of ∆𝑉𝑋, where ∆𝑉𝑋 is 

the standard deviation of interaction energies between a central solute X and all other solute 

neighbors within the coordination cutoff. One additional complication is that the pair 

interaction energy is formed from the contributions of solute pairings from all neighbors. The 

distribution of interaction energies is therefore comprised of additive combinations, which can 

be treated using the central limit theorem of sums. Under these considerations, the solute-level 

standard deviations can be calculated through a weighted combination of variances in each of 

the coordination shells as: 

∆𝑉𝑋 = √∑(𝑉𝜁
𝑋𝑌 − 𝑉̅𝜁

𝑋)
2

𝐶̅𝑌𝑁𝜁

𝜁,𝑌

 
(B.1) 

where 𝑉̅𝜁
𝑋 = ∑ 𝑉𝜁

𝑋𝑌𝐶̅𝑌
𝑌  is the average interaction energy for a solute X in coordination shell 
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𝜁. In addition to the solute-level standard deviation, the solute-level average of the interaction 

energy (𝑉̅𝑋) is also of interest. This term can be calculated from 𝑉̅𝜁
𝑋 as:  

𝑉̅𝑋 = ∑ 𝑉̅𝜁
𝑋𝑁𝜁

𝜁

= ∑ 𝑉𝜁
𝑋𝑌𝐶̅𝑌𝑁𝜁

𝜁,𝑌

 (B.2) 

 

In the formulation of Eq. (B.1), it is assumed that the variances between coordination shells are 

uncorrelated (i.e., their covariance is zero), which is appropriate for randomly arranged solid 

solutions. In both equations, the transformation of the statistical parameters of individual solute 

pair energies to the distribution of additive combinations of per atom pair interaction energies 

is achieved through the coordination number term, 𝑁𝜁, as per the central limit theorem of sums. 

Eq. (B.1) provides the standard deviations of the distribution pair interaction energies for each 

solute, which can be considered as non-overlapping sub-populations of a larger distribution. 

Under this consideration, the aggregated standard deviation (∆𝑉)  of the system-level pair 

interaction energy term can then be calculated as a combination of the solute-level standard 

deviations as: 

∆𝑉 = √∑[∆𝑉𝑋2
+ (𝑉̅𝑋 − 𝑉̅)2]

𝑋

𝐶̅𝑋 
(B.3) 

where 𝑉̅ is the system-level average pair interaction energy over all coordination shells. Eq. 

(B.3) can be viewed as a weighted linear combination of individual solute-level variances. The 

second term (difference of averages, 𝑉̅𝑋 − 𝑉̅) is a correction term to account for differences 

between the sub-population and aggregate averages. Eq. (B.3) can be simplified further, 

without any loss of numerical accuracy, to eliminate the need to calculate 𝑉̅. This simplified 
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relation appears as Eq. (6) in Section 2.1. 

APPENDIX C: COVARIANCES OF STATISTICAL VARIABLES 

This appendix provides derivations for two covariance terms used in the paper body: 

𝑐𝑜𝑣 (𝐹,
1

2
𝑉)  and 𝑐𝑜𝑣(𝐸𝑛, 𝐸𝐹𝐶𝐶) . In both derivations, the covariance is derived from its 

definition as the difference between the expectation value of products and the product of 

expectation values of the statistical variables. Beginning with the embedding and interaction 

energy distributions (i.e., 𝑐𝑜𝑣 (𝐹,
1

2
𝑉)), the covariance can be calculated from its expectation 

value definition as:  

𝑐𝑜𝑣 (𝐹,
1

2
𝑉) =  〈

𝐹𝑉

2
〉 −  〈𝐹〉 〈

𝑉

2
〉 (C.1) 

where the ⟨⟩ operator denotes the expectation value. Here, the individual expectation values of 

the embedding (i.e., 〈𝐹〉) and pair interaction energies (i.e., 〈𝑉
2⁄ 〉) are given directly by the 

terms of Eq. (3). The expectation value of products (i.e., 〈𝐹𝑉
2⁄ 〉) can be calculated from the 

sum of the products of (𝐹, 𝑉
2⁄ ) pairings weighted by their probability. In these pairings, 𝐹 

can be separated into solute-specific constants, whose probabilities are weighted by 

composition (i.e., 𝐶̅𝑋𝐹𝑋), as follows from the average per atom charge density assumption. 

Similarly, the pair interaction energy can also be decomposed into the separate distributions of 

solute-level interaction energies (i.e., 𝑉𝑋 ). These solute-level distributions are paired with 

𝐶̅𝑋𝐹𝑋  coefficients, such that 〈𝐹𝑉
2⁄ 〉 =  

1

2
∑ 𝐶̅𝑋𝐹𝑋𝑝𝑖𝑉𝑖

𝑋
𝑋,𝑖  , where 𝑝𝑖  is the probability of 

obtaining 𝑉𝑖
𝑋. The probability-weighted sum of 𝑉𝑋 can be calculated from its expectation 

value, 〈𝑉𝑋〉 = ∑ 𝑝𝑖𝑉𝑖
𝑋 =𝑖 𝑉̅𝑋, which is given by Eq. (B.2). Under these considerations, the 
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summation of the products of these terms (i.e., 
1

2
∑ 𝐶̅𝑋𝐹𝑋𝑉̅𝑋

𝑋 ) returns the expectation value of 

products. The covariance (Eq. (10) in the main text) can therefore be calculated as:  

𝑐𝑜𝑣 (𝐹,
1

2
𝑉) =  〈

𝐹𝑉

2
〉 −  〈𝐹〉 〈

𝑉

2
〉 (C.2a) 

=   
1

2
∑ 𝐶̅𝑋𝐹𝑋𝑉̅𝑋

𝑋

−  (∑ 𝐶̅𝑋𝐹𝑋

𝑋

) (
1

2
∑ 𝑉𝜁

𝑋𝑌

𝑋,𝑌,𝜁

𝑁𝜁𝐶̅𝑋𝐶̅𝑌) (C.2b) 

 

Analysis of the covariance between the distributions of faulted and FCC-coordinated per 

atom energies begins with its definition as the differences of expectation values:  

𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶) =  〈𝐸𝑎
𝑛 𝐸𝑎

𝐹𝐶𝐶〉 − 〈𝐸𝑎
𝑛〉 〈𝐸𝑎

𝐹𝐶𝐶〉 (C.3) 

Individual expectation values (i.e., 〈𝐸𝑎
𝐹𝐶𝐶〉 and 〈𝐸𝑎

𝑛〉) are given directly by Eq. (3). However, 

in the latter calculation, the average energies in each of the m {111} layers influenced by the 

defect must first be calculated (i.e., 𝐸̅𝑎
𝑛,𝑚

). The average over all non-FCC layers (i.e., 𝐸̅𝑎
𝑛) is 

then calculated by the weighted sum of per atom average energies (i.e., 
1

𝑀
∑ 𝐸̅𝑎

𝑛,𝑚
𝑚 ).  

The expectation value of products (i.e., 〈𝐸𝑎
𝑛 𝐸𝑎

𝐹𝐶𝐶〉) can be separated into a summation of 

expectation values of the embedding (i.e., 𝐹𝑛, 𝐹𝐹𝐶𝐶) and pair interaction energy terms (i.e., 

𝑉𝑛, 𝑉𝐹𝐶𝐶) in the faulted and fault-free conditions: 

 〈𝐸𝑎
𝑛 𝐸𝑎

𝐹𝐶𝐶〉 = 〈(𝐹𝑛 +
1

2
𝑉𝑛) (𝐹𝐹𝐶𝐶 +

1

2
𝑉𝐹𝐶𝐶)〉  

=  〈𝐹𝑛𝐹𝐹𝐶𝐶〉 + 〈𝐹𝐹𝐶𝐶
1

2
𝑉𝑛〉 + 〈𝐹𝑛

1

2
𝑉𝐹𝐶𝐶〉 + 〈

1

2
𝑉𝑛

1

2
𝑉𝐹𝐶𝐶〉 

(C.4a) 

 

(C.4b) 

Each of these expectation values of products can be further analyzed using arguments similar 

to those presented for the determination of 𝑐𝑜𝑣 (𝐹,
1

2
𝑉)  in Eq. (C.2b). For instance, the 
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expectation value of the product of embedding energy distributions (i.e., 〈𝐹𝑛𝐹𝐹𝐶𝐶〉) follows 

directly from the separation of these terms into their solute-level and fault plane-level constants 

(i.e., 𝐹𝑋,𝑛,𝑚  and 𝐹𝑋,𝐹𝐶𝐶 ), whose probability of pairing is 𝐶̅𝑋
𝑀⁄  . Here, 𝑀  is the total 

number of non-FCC coordinated {111} planes within the cutoff radius of the planar defect. The 

expectation value then becomes the summation of paired embedding energies over all solute 

and faulted layers, 〈𝐹𝑛𝐹𝐹𝐶𝐶〉 =
1

𝑀
∑ 𝐶̅𝑋𝐹𝑋,𝑛,𝑚𝐹𝑋,𝐹𝐶𝐶

𝑋,𝑚  . The expectation values of cross-

products (i.e., 〈𝐹𝐹𝐶𝐶𝑉𝑛

2⁄ 〉 and 〈𝐹𝑛𝑉𝐹𝐶𝐶

2⁄ 〉 follow from the expressions in Eq. (C.2b), with 

the embedding and pair interaction coefficients updated to reflect the summation over the fault 

environment: 〈𝐹𝐹𝐶𝐶𝑉𝑛

2⁄ 〉 =
1

𝑀
∑

1

2
𝐶̅𝑋𝐹𝑋,𝐹𝐶𝐶𝑉̅𝑋,𝑛,𝑚

𝑋,𝑚   and 〈𝐹𝑛𝑉𝐹𝐶𝐶

2⁄ 〉 =

1

𝑀
∑

1

2
𝐶̅𝑋𝐹𝑋,𝑛,𝑚𝑉̅𝑋,𝐹𝐶𝐶

𝑋,𝑚  . Here, the embedding energies and averages of pair interaction 

energies (i.e., 𝑉̅𝑋,𝐹𝐶𝐶 and 𝑉̅𝑋,𝑛,𝑚) are given by application of the appropriate coordination 

environments to Eq. (B.2). For the final expectation of products term, 〈𝑉𝑛

2⁄ 𝑉𝐹𝐶𝐶

2⁄ 〉 , we 

assume that these distributions are independent of one another (i.e., 𝑐𝑜𝑣 (𝑉𝑛

2⁄ , 𝑉𝐹𝐶𝐶

2⁄ ) =

0). This assumption enables a separation of the distribution products and a direct estimate for 

this term as 〈𝑉𝑛

2⁄ 𝑉𝐹𝐶𝐶

2⁄ 〉  ≈ 〈𝑉𝑛

2⁄ 〉 〈𝑉𝐹𝐶𝐶

2⁄ 〉 =
1

𝑀
∑

1

4
𝑉̅𝑋,𝑛,𝑚𝑉̅𝑋,𝐹𝐶𝐶

𝑋,𝑚  . Although the 

distributions of 𝑉𝑛 and 𝑉𝐹𝐶𝐶  are likely correlated due to sharing some common neighbor 

pairings, we find that this approximation provides excellent estimates of covariances (see 

Figure C.1). Combining each of these expectation values delivers an approximate solution for 

the expectation value of products of distributions of per atom energies. Without further 

approximation, this equation can be factored and simplified in terms of the solute-level average 

per atom energies of the faulted and FCC distributions (i.e., 𝐸̅𝑎
𝑋,𝑛,𝑚

 and 𝐸̅𝑎
𝑋,𝐹𝐶𝐶

) as: 
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 〈𝐸𝑎
𝑛 𝐸𝑎

𝐹𝐶𝐶〉  ≈   
1

𝑀
∑ 𝐶̅𝑋 (𝐹𝑋,𝑛,𝑚𝐹𝑋,𝐹𝐶𝐶 +

1

2
𝐹𝑋,𝐹𝐶𝐶𝑉̅𝑋,𝑛,𝑚 +

1

2
𝐹𝑋,𝑛,𝑚𝑉̅𝑋,𝐹𝐶𝐶

𝑋,𝑚

+ 
1

4
𝑉̅𝑋,𝑛,𝑚𝑉̅𝑋,𝐹𝐶𝐶) 

(C.5a) 

≈   
1

𝑀
∑ 𝐶̅𝑋𝐸̅𝑎

𝑋,𝑛,𝑚𝐸̅𝑎
𝑋,𝐹𝐶𝐶

𝑋,𝑚

 (C.5b) 

The solute-level average per atom energies are defined here as: 

𝐸̅𝑎
𝑋,𝑛,𝑚 = 𝐹𝑋,𝑛,𝑚 +

1

2
𝑉̅𝑋,𝑛,𝑚 (C.6) 

𝐸̅𝑎
𝑋,𝐹𝐶𝐶 = 𝐹𝑋,𝐹𝐶𝐶 +

1

2
𝑉̅𝑋,𝐹𝐶𝐶   (C.7) 

where the 𝑉̅𝑋  is given by Eq. (B.2) in the corresponding coordination environment (i.e., 

faulted plane n, m or FCC). Insertion of Eq. (C.5b) into Eq. (C.3) delivers the final analytical 

expression for the covariance of per atom energies between the faulted and FCC distributions:  

𝑐𝑜𝑣(𝐸𝑎
𝑛, 𝐸𝑎

𝐹𝐶𝐶) =  〈𝐸𝑎
𝑛 𝐸𝑎

𝐹𝐶𝐶〉 −  〈𝐸𝑎
𝑛〉 〈𝐸𝑎

𝐹𝐶𝐶〉 (C.8a) 

≈   
1

𝑀
(∑ 𝐶̅𝑋𝐸̅𝑎

𝑋,𝑛,𝑚𝐸̅𝑎
𝑋,𝐹𝐶𝐶

𝑋,𝑚

−   𝐸̅𝑎
𝐹𝐶𝐶 ∑ 𝐸̅𝑎

𝑛,𝑚

𝑚

)  (C.8b) 

This final relation appears as Eq. (14) in the main text. A numerical simulation was performed 

to assess the accuracy of the approximation made in the calculation of 〈𝑉𝑛

2⁄ 𝑉𝐹𝐶𝐶

2⁄ 〉. For this 

purpose, faulted topologies were computationally generated for a variety of randomly arranged 

solid solution single crystals with different compositions. The topologies of these crystals 

matched the idealized (i.e., unrelaxed) coordination environments of the faulted FCC systems 

considered in the GPFE landscape. The distribution of per atom energies is then calculated 
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through an atom-by-atom examination of chemistry and pair interactions, and the application 

of the relevant equations of the EAM potential. The expectation values and covariance terms 

of Eq. (C.3) are determined directly from these computational measurements. This process is 

similar to the initialization phase of MS calculations, where idealized crystal topologies are 

input into the MS software and the initial energies of atoms are computed. Numerical estimates 

of the covariances relevant to this study are provided in Figure C.1. These numerical results 

are overlaid with analytical estimates from Eq. (C.8b), showing excellent agreement. In 

addition, covariance values from MS relaxation calculations are also provided. These relaxed 

values also show excellent agreement with analytical estimates. The largest deviations are 

found in the equimolar NiCr sample, with all analytical covariance estimates showing less than 

a ≈ 4% difference with the relaxed data. 

 

Figure C.1: The covariance between the distributions of FCC and faulted per atom energies across different 

planar faults. The distribution of faulted per atom energies includes contributions from all non-FCC coordinated 

{111} layers within the cutoff of the planar fault. Covariance predictions from analytical (Eq. (C.8b)) and 

numerical estimates are provided in solid and dashed stroke, respectively. Relaxed measurements from MS 

shearing calculations are shown as markers. 
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