IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

6863

Graph-Based Depth Denoising & Dequantization
for Point Cloud Enhancement
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Abstract— A 3D point cloud is typically constructed from depth
measurements acquired by sensors at one or more viewpoints.
The measurements suffer from both quantization and noise
corruption. To improve quality, previous works denoise a point
cloud a posteriori after projecting the imperfect depth data onto
3D space. Instead, we enhance depth measurements directly on
the sensed images a priori, before synthesizing a 3D point cloud.
By enhancing near the physical sensing process, we tailor our
optimization to our depth formation model before subsequent
processing steps that obscure measurement errors. Specifically,
we model depth formation as a combined process of signal-
dependent noise addition and non-uniform log-based quantiza-
tion. The designed model is validated (with parameters fitted)
using collected empirical data from a representative depth sensor.
To enhance each pixel row in a depth image, we first encode intra-
view similarities between available row pixels as edge weights via
feature graph learning. We next establish inter-view similarities
with another rectified depth image via viewpoint mapping and
sparse linear interpolation. This leads to a maximum a posteriori
(MAP) graph filtering objective that is convex and differentiable.
We minimize the objective efficiently using accelerated gradient
descent (AGD), where the optimal step size is approximated via
Gershgorin circle theorem (GCT). Experiments show that our
method significantly outperformed recent point cloud denoising
schemes and state-of-the-art image denoising schemes in two
established point cloud quality metrics.

Index Terms— 3D point cloud, depth sensing, signal-dependent
noise, non-uniform quantization, graph signal processing.

I. INTRODUCTION
OINT Cloud (PC) is a collection of discrete geometric
samples of the surface of a physical object in 3D space,
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Fig. 1. Depth measurements from a consumer sensor suffer from signal-
dependent noise and variable-size quantization. We enhance multi-view depth
measurements as close to the physical sensing process as possible, resulting
in higher-quality subsequent 3D point cloud construction.

useful for a range of imaging applications such as immer-
sive communication and virtual/augmented reality (AR/VR)
[1], [2], [3], [4]. With the ubiquity of inexpensive active sen-
sors like Microsoft Kinect and Intel RealSense, one common
method to generate a PC is to deploy one or more sensors
at multiple viewpoints to capture depth measurements (in the
form of images) of an object, then project these measurements
to 3D space to synthesize a PC [5], [6]. However, limitations
in the depth acquisition process mean that the acquired depth
measurements suffer from both imprecision (due to quantiza-
tion) and additive noise. This results in a noisy synthesized
PC, and previous works focus on denoising PCs using a
variety of methods: low-rank prior, low-dimensional manifold
model (LDMM), surface smoothness priors expressed as graph
total variation (GTV), graph Laplacian regularizer (GLR) and
feature graph Laplacian regularizer (FGLR), Moving Robust
Principal Components Analysis (MRPCA), data-driven learn-
ing, etc [7], [8], [9], [10], [11], [12].

However, all the aforementioned denoising methods
enhance a PC a posteriori, i.e., after a PC is synthesized from
corrupted depth measurements. Recent works in image denois-
ing [13], [14] have shown that by denoising raw sensed RGB
measurements directly on the Bayer-patterned grid before
demosaicking, contrast boosting and other steps typical in an
imaging pipeline [15], [16] that obscure acquisition noise, one
can dramatically improve performance compared to denoising
the constructed image after the pipeline (up to 15dB in
PSNR).

Inspired by these works, we propose to enhance depth
measurements in sensed images a priori, before projecting
to the 3D space to synthesize a PC. By “enhancement”,
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Fig. 2. Example of collected images using the Intel RealSense™ D435
(a) the color image, (b) the corresponding depth map with missing pixels.

here we mean performing joint denoising and dequantization
based on our proposed depth formation model. In our case,
by enhancing near the physical sensing process before steps
in a PC synthesis pipeline including projection, registration,
stitching, and filtering [17], we can tailor our optimization
by parameterizing our proposed depth formation model to
a specific sensor. As illustrated in Fig. 1, this means fitting
model parameters for signal-dependent noise and variable-
size quantization that are unique for individual sensors. This
precise modeling of sensed depth measurements is in stark
contrast to the grossly inaccurate i.i.d. Gaussian noise! typ-
ically assumed in the PC denoising literature [7], [8], [9],
[10], [11], [12].

Mathematically, we first model depth pixel acquisition as a
combined process of signal-dependent noise addition and non-
uniform log-based quantization. We verify the validity of this
model and fit model parameters through an empirical study
using the Intel RealSense™ D435 camera—a representative
depth sensor that employs stereo correspondence technology
on a pair of IR images to improve depth quality. We parameter-
ize the signal-dependent noise variance as a function of depth
from empirical data using the golden-section (GS) search [18]
in a maximum likelihood (ML) formulation.

To enhance a row of available pixels in a left depth
image—often interleaved with missing pixels> as shown in
Fig. 2—we first encode intra-view similarities between neigh-
boring available pixels as edge weights in a graph via feature
graph learning [9]. Specifically, estimated 3D features per
depth pixel—i.e., 3D coordinate and surface normal—are used
to compute feature distance d;; between pixel pair (i, j),
so that edge weight w;; = exp(—d;;) can be computed using
rich 3D structure information to construct a similarity graph.

We next establish inter-view similarities with a rectified
right depth image via viewpoint mapping [20] and sparse
linear interpolation. Appropriate approximations via Taylor
series expansion lead to a maximum a posteriori (MAP)
graph filtering objective that is convex and differentiable.
We minimize the objective efficiently using accelerated gra-
dient descent (AGD) [21], [22], where the optimal step size

For example, a corrupted depth pixel is erred perpendicular to the image
plane, which is very different from a projected 3D point corrupted by i.i.d.
Gaussian noise along its three coordinates as assumed in existing works.

ZA depth pixel from a structured light sensor is missing if an occlusion or
optical interference occurs [19]. A depth pixel from a time-of-flight sensor
is missing if the emitted laser arrives at an incident angle such that it is not
reflected and returned to the sensor [19].
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is efficiently approximated via Gershgorin circle theorem
(GCT) [23]. Experimental results show that by enhancing
depth measurements in the image domain prior to PC syn-
thesis, our method significantly outperformed several recent
PC denoising algorithms [7], [10], [11], [12], [24], [25] and
representative image denoising schemes® [26], [27], [28] in
two commonly used PC quality metrics [29], [30] for three
different types of depth datasets.
We summarize our technical contributions as follows:

(i) To improve PC construction quality near the physical
sensing process, we enhance depth measurements in the
image domain, where we can parameterize our depth
formation model for a specific sensor.

(i) We design the depth formation model by combining
both signal-dependent noise addition and non-uniform
log-based quantization process, validated with collected
empirical data from a representative depth sensor.

(iii) We encode intra-view similarities for available pixel

pairs in a depth image row as edge weights via feature

graph learning, and inter-view similarities via viewpoint
mapping and sparse linear interpolation.

We minimize the resulting convex and differentiable

MAP graph filtering objective via AGD, where the

important step size is approximated speedily via GCT.

@v)

We stress that, while the general approach to denoise/restore
observed data as close to the physical layer as possible is not
new, our specialization for 3D point cloud is novel. In particu-
lar, we are the first in the 3D point cloud literature to propose a
joint non-uniform quantization/signal-dependent additive noise
model, and a corresponding restoration algorithm designed for
the proposed model.

The outline of the paper is as follows. We first overview
related works in Section II. We then describe our depth cap-
turing system and the depth formulation model in Section III.
We also present our empirical study based on collected depth
data. The formulation of our optimization problem and the cor-
responding algorithm to solve it are discussed in Section IV.
We discuss the graph learning procedure to capture inter-pixel
similarities in Section V. Experimental results and conclusion
are presented in Section VI and VII, respectively.

II. RELATED WORKS

We review two categories of related works: depth image
denoising/enhancement and 3D point cloud denoising.

A. Depth Image Denoising/Enhancement

1) Depth Image Denoising: Unlike natural image denois-
ing [28], [31], [32], existing literature in depth image denoising
is dominated by model-based schemes [26], [33], [34], [35],
[36], [37], [38], [39], [40]. Specifically, it is common to
perform depth denoising using an assumed signal prior or
filter [33], [34], [35], [36], [37], [38]. For example, [33] used a
sparsity prior for each pixel patch in the graph Fourier domain,

30ur paper is a non-trivial journal extension of our earlier work [26] that
assumed signal-independent noise and uniform quantization. We compare
against [26] experimentally in Section VI.
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while [35] employed a regularized shock filter. Both methods
exploited the known piecewise smooth (PWS) characteristic
of depth images [41] for better performance. When the color
image associated to the depth map is available, denoising
performance can be further boosted. For example, [39] built
neighborhood graphs from color images for depth denoising.

However, these works modeled the depth degradation pro-
cess with signal-independent noise—e.g., i.i.d. additive Gaus-
sian noise [33], [37], [38]—for simplicity. As discussed
in [42], [43] and also verified in our work, depth measurements
are noisier for larger depth values; i.e., the noise variance is
signal-dependent. Moreover, existing depth image denoising
algorithms offer no explicit procedures to handle missing depth
values that are common in real-world sensed depth images,
as shown in Fig. 2. In contrast, our proposed depth formation
model accounts for noise variance’s signal dependency, which
we parameterize accurately using collected empirical data of
an actual depth sensor in Section III-C. Further, our graph-
based optimization enhances available pixels around missing
ones by capturing inter-pixel similarity via feature graph
learning [9]. We compare against several representative image-
denoising schemes [26], [27], [28] in Section VI.

2) Depth Image Dequantization: Depth images are quan-
tized by depth sensors for storage or transmission pur-
poses [44]. To enhance depth precision, previous works
adopted different strategies. Given several depth maps from
different views, [45] used the Projection On Convex Set
(POCS) procedure to enhance precision of two depth images
simultaneously, while [26], [41], [46] employed a graph-signal
smoothness prior to enhance a single depth image.

Previous research all assumed that depth images are quan-
tized uniformly. However, in practical sensors, larger quanti-
zation bin are used as depth values increase, as confirmed by
our empirical data in Section III-D. Thus, we propose a non-
uniform log-based quantization process, so that larger depth
values have coarser quantization.

B. 3D Point Cloud Denoising

PC denoising [47] is necessary prior to 2D viewpoint
image rendering or another down-stream task. Related model-
based methods can be roughly categorized into four types:
moving least square (MLS)-based methods [25], [48], [49],
locally optimal projection (LOP)-based methods [50], [51],
sparsity-based methods [52], [53] and nonlocal-based methods
[71, [54], [55]. Among these works, with the exception
of [53] that related the noise variance to surface normal,
they all assumed independent additive noise. For instance,
[71, [52], [55] adopted the additive i.i.d. Gaussian noise model
to simplify analysis. As discussed earlier, we model noise on
each measurement in a depth image as signal-dependent.

Beyond the signal-dependent nature of acquisition noise,
another drawback of existing methods is the assumption that
the 3D coordinates of each PC point are omnidirectionally
corrupted by additive noise. This is a gross oversimplification:
depth measurements are first corrupted by additive noise and
quantization perpendicular to the image plane, before 3D
projection to synthesize a PC—the resulting distortion in the
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Fig. 3. Example of the depth camera system. Two depth cameras with focal
length f are placed distance D apart capturing the same 3D scene. Assuming
that the corresponding depth images are rectified, a left pixel row x; maps to
a right pixel row x, via a view-to-view mapping described in Section IV-B,
y; and y, are corrupted observations.

projected 3D space is far from omnidirectional. In contrast,
we enhance depth measurements on an image before 3D
projection.

Recent developments of deep neural networks (DNN) have
revolutionized different areas in computer vision and image
processing, including PC denoising [11], [12]. Beyond the
inaccurate assumption of each PC corrupted by i.i.d. Gaussian
noise, these learning-based approaches are purely data-driven,
and a large amount of labeled data is required for training [56].
However, it is difficult to collect noiseless ground-truth data for
supervised learning, since the PCs acquired from depth sensors
are always noise-corrupted. One option to circumvent this
issue is to synthesize training data via computer graphics [57].
However, it still suffers from inaccurate modeling of noise
and missing pixels of actual depth sensors. Different from
the learning-based methods, by optimizing only a small set
of parameters, our model-based method can easily adapt to
new depth sensors with different specifications. Moreover,
compared to complex deep models acting like black boxes,
the derived filters of our methods are interpretable [58].

III. FORWARD MODEL AND VALIDATION
A. System Overview

We consider a depth-sensing system consisting of two depth
sensors from different viewpoints, which are separated by a
distance D.* For systems with two sensors (or one sensor
placed at two locations at different time instants), there exists
an overlapping field of view (FoV), where the same object
surface is observed twice from two different viewpoints as
illustrated in Fig. 3. The output of each depth sensor is a depth
map of resolution H x N. Each pixel is a noise-corrupted
observation of the physical distance between the camera and
the object, and is non-uniformly quantized to a finite B-bit

4The extension to the more general multiple-camera (more than two) case
is straightforward. We omitted this discussion for brevity.
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Fig. 4. Tllustration of (a) quantization mapping R(x) in (1) and (b) non-

uniform quantization function Q(x) in (3), with 6 = 2, p = 1, xpip = 50,
Xmax = 450.

representation. Without access to the underlying hardware
directly, we assume that the depth map is the “rawest” signal
we can acquire from the sensor. To simplify later discussion,
we assume that two viewpoint depth maps are rectified; i.e.,
pixel row A in the left view is capturing the same slice of the
object as pixel row & in the right view. Rectification is a well-
studied problem, and a known procedure [59] can be executed
prior to our depth enhancement algorithm.

We now present the image formation model of a depth pixel.
Our model consists of two parts: non-uniform quantization and
signal-dependent noise.

B. Non-Uniform Quantization

Typically, a depth camera quantizes an input depth value
into a finite B-bit representation. For example, Microsoft
Kinect version 1.0 has a 11-bit per-pixel representation, while
version 2.0 has a 13-bit representation. Such a quantization
is common for depth sensors in the consumer market, where
limited precision is allocated more for objects closer to the
camera than ones further away.

To model non-uniform quantization, we define our non-
uniform quantizer with wider quantization bins for larger input
depth values.

Definition 1 (Quantization Mapping): Let X € [Xmin, Xmax)
be the input value. We define the quantization mapping func-
tion R(x) using the natural log and rounding functions as

R(x) & round[¢ In(@x 4+ p) — Ro + O.5:|, (1)

where ¢, 0 and p are parameters, and Ry = ¢ In(0xmin + p).
The rounding operation in (1) implies that the quantization
mapping (OM) R(x) € 7T is piecewise constant.

The quantization mapping R(x) maps the input depth value
x with range [Xmin, Xmax) to one of 28 discrete values:’
{1,...,28). To make sense of this definition, we note that
0 > 0 and Oxmin + p > 1. Since 6x + p > 1, we use only
the non-negative part of the log function in (1). The rounding
operation also means that a smaller slope of function In(6x+p)
would lead to a coarser quantization of x; i.e., a larger
range of x would map to the same rounded integer R(x).
Thus, concavity of the log function means that larger x

SA depth sensor typically specifies a range of depth sensitivity. For example,
the range for MS Kinect 2.0 is 0.5m to 4.5m.
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has coarser quantization, as desired. See Fig. 4(a) for an
illustration.

We note that the use of log function in (1) is similar to the
p-law companding algorithm in ITU-T’s G.711 standard for
PCM digital communication,® where non-uniform quantization
is used for audio encoding.

The parameter ¢ is chosen so that R(x) € {1,...,25} can
represent 28 quantization bins given available B-bit represen-
tation per pixel. Specifically, ¢ is computed as

23
B In(@xmax + ) — In(@xmin + IO).

In contrast, 6 and p are fitting parameters to fit characteristics
of a particular depth sensor (to be discussed in Section III-D).
Fig. 4(a) shows R(x) when B = 2, and there are 28 =
4 quantization bins, i.e., R(x) € {1, 2, 3, 4}.

Given quantization mapping R(x) in (1), we can now define
quantization function Q(x).

Definition 2 (Quantization Function): We define the quan-
tization function Q(x) as
Q(x)zé(exp[R(x)—i-—RoO.S -o). (3)
The quantization function in (3) essentially reverses the oper-
ations in quantization mapping R(-) in (1) to recover input x.
Given that R(x) is piecewise constant, Q(x) is also piecewise
constant, as shown in Fig. 4(b). We verify that Q(x) is indeed
a quantization function—the centers of each quantization step
coincide with the identity function f(x) = x—while the
quantization bin size is increasing with x as intended.

¢ 2)

C. Signal-Dependent Noise Model

Before quantization Q(-), we assume that each measurement
x is first corrupted by signal-dependent noise n ~ N (0, o'?)
following a zero-mean Gaussian distribution. Noise variance
o2 € R is dependent on signal x. Specifically, as done in [42]
and [43], we assume that the standard deviation (SD) o is a
quadratic function of signal x, i.e.,

o=a(x+wr+k, forx>—p @)

where parameters « > 0, © < 0 and « > 0. It means that o
increases quadratically with signal magnitude.

D. Validation of the Model

To provide a concrete example of the quantization and noise
model we just presented, we use the Intel RealSense™ D435
camera to validate this model and fit model parameters through
an empirical study. Our chosen Intel sensor is representative
of popular depth sensors in the market and shares similar
characteristics. Although the working principles of various
types of 3D sensors, stereo, structured light, and time of flight
(ToF), are slightly different, existing works [60], [61], [62]
commonly assumed non-uniform  quantization and
[43], [63], [64] assumed signal-dependent noise in their
depth sensor models. We stress, however, that we are

6https://www.itu.int/rec/T—REC—G.71 1
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Fig. 5. Experimental Setup for obtaining set of measurements for different
depths. The Intel RealSense™ D435 camera is placed in front of the
cardboard box and the distance between them is varied in steps of 100mm
from 615mm to 1525mm.
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Fig. 6. Histogram of experimental data (top row) and corresponding

histogram generated using image formation model described in Section III B)
(bottom row). For each set of experimental measurements obtained at a fixed
distance (differentiated by colour) in the top row, the corresponding theoretical
distribution is obtained by generating samples from equation (3) with mean
xl" ; and standard deviation oy ; are chosen as the mean and variance of the
corresponding samples from actual data. The variable quantization parameter
R(x), which ultimately determines the quantization output Q(x), was set using
trial and error to match the quantization bins for each set.

the first to combine both non-uniform quantization and
signal-dependent noise into the same forward model.

Our experimental setup is shown in Fig. 5, where a card-
board box was placed at a measurable distance from the
camera, while ensuring that both the camera and the box
axes were aligned to each other. From each frame of the
depth camera stream, five randomly selected measurements
were collected from a 5 x 5 window around the center of
the frame until 100 measurements for a single distance were
obtained. This process was repeated for multiple clusters of
measurements, with distances between the camera and the box
ranging from 615mm to 1525mm in steps of approximately
100mm. The obtained measurements are shown as a histogram
in the top half of Fig. 6.

1) Empirical Distribution: From the top half of Fig. 6, two
observations can be made. First, the variance of measurements
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Fig. 7. Quantization Function Q(x) used to generate second row of
histograms in Figure 6. As expected, the quantization function stays close
to the y = x line but on zooming in, we notice it is a staircase function with
size of steps of the steps increasing as the argument of the function increases.

for a measurement cluster increases as distance increases. This
suggests that (4) is a reasonable assumption, since the noise
SD o increases’ with true distance x of a cluster. Second,
the quantization step size increases as distance increases.
Specifically, at 0.6m, measurements varied in step of Imm,
while at 1.5m, measurements varied in step of 3mm. This
justifies the use of a non-uniform quantization function.

2) Theoretical Distribution: We synthesized the theoreti-
cal statistics using the image formation model described in
(3) to match the corresponding experimental measurements.
To generate these synthetic measurements, we estimated the
ground truth to be equal to the mean of the corresponding
experimental distribution. Then, zero-mean Gaussian noise of
variance o> was added to the estimated ground truth followed
by quantization using function Q(x). The SD of the noise o
varied quadratically as described in (4), and the parameters
were set as o = 1 x 1079, u = —528 and ¥k = 1.4.
Quantization mapping R(x) as defined in (1) was determined
similarly to qualitatively match the bins of experimental dis-
tributions. After data fitting, the parameters were found to be
¢ = 500,80 = 500, p = 200, xymin = 10. Given R(x), the
corresponding Q(x) was determined and was plotted in Fig. 7.
The figure shows that the function remains close to the y = x
line but on closer inspection, it is a staircase function with
quantization bins of increasing size.

The lower half of Fig. 6 shows the histogram of the syn-
thetic measurements. Based on the similarity between the top
and bottom halves of Fig. 6, we can conclude that the image
formation model described in previous subsection provides a
good fit for measurements taken from a real depth sensor.

E. Parameter Estimation for Noise Variance

We next discuss how we compute noise variance o> given
observed depth measurements in a cluster in Fig. 6. Denote by
Y ={y1,y2,...,yu} a set of noise-corrupted and quantized

observations of ground-truth depth x*. For each observation

"Note that the variance of measurements and noise variance o2 are
fundamentally two different quantities, though the former is determined by
the latter, and thus are positively correlated.
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yi € RY, R(y;) € Z% is the corresponding quantization
mapping value. Thus, x* 4+ n; must reside in the quantization
bin indexed by R(y;), i.e.,

1 1 1
R(yi) — 5= ¢In(O(x* +n;)+ p) — Ro + 5= R(yi) + >
(5)

Thus, we can derive that additive noise n; is lower- and
upper-bounded as follows:

n” (i, x*) < np < nt(yi, x),

n”(yi, x*) £ 67! (exp (—R(y,-) _;RO _ 1) — p) —x*,

i

nt (i, x*) 207! (eXP (W) — ,0) —x*. (6)
i

Note that z;” and z;“ are both function of y;.
Since the y;’s in ) are independent, we formulate a maxi-
mum likelihood estimation (MLE) problem for variance o2

M
nclr%x Pr(Y|o?) = H Pr(yi|o?)

—

Pr (n_(yi, x*) < nj <nt(yi, x| 02) :

L

(7N
Since n; ~ N(0, 0%), we can write

2

M
1 n:
Pr()|o?) = / —expl ——% ) dn; £ p(o) B
| ,1;[1 o Tamg P\ ez ) i =P
where the region of integration R; is
Ri={ni | n~ (i, x") <ni <n¥(yi,xM}. )

The probability p(c) in (8) is difficult to maximize over
o for two reasons. First, each term in the product is of the
form le_ e_”iz/ 2"2dni, which has no closed-form expression.
Second, (8) involves a product of M terms, each integrating
over a different region R;. Thus, we propose the following
fast search procedure to find a near-optimal o.

For simplicity, first we assume there is only one observation,
i.e., M = 1. Then the optimization problem becomes

o) = arg max (CD (n+(y1 , x*)) —_) (n_(y1 , x*)))
n~(y1, x")o

arg max (( )ex (— M)
M\ =G o2 +02) P 207

_( nt (v, x*)o )ex (_(n*(yl,x*»z))
2 +02) P 202

g(o)

&

(10)
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Fig. 8. Tllustration of (a) unimodal objective g(o) in (10) with a single local
maximum at crl* and (b) parameterization of o in (4).

where @ (x) is the cumulative distribution function (CDF) of
ni, and in (10) we use the approximation of ®(x) in [65], i.e.,

®(x) / ! AR
X) = €X —_ n
—oo V2O P 202 !

| 1 xXo x?
o (an)
One can show that g(o) in (10) is a unimodal objective with
a single local maximum at o}, as shown in Fig. 8(a). This
means that o can be computed using numerical methods like
the Newton’s method [18] to locate o] where g'(o]") = 0.

More generally, when there are M > 1 observations, the
approximate objective g(o) becomes:

(1)

M

N n=(yi, x*)o (n=(yi, x))?
g(")zn((m(y,-,x*>)2+o2)exp(_ 207 )

i=1

_( n* (i, x)o )ex (_(n+(yi,x*>)2))
(n*(yi, x))? + 02 P 202 '

(12)

The optimal ¢* in this general M > 1 case is lower- and
upper-bounded as follows

min

13
ie{l,...M ( )

* *
}(Ui )<o" < I
Thus, we can first compute the lower/upper bounds, then use
the Golden-section (GS) search [18] to find o*. GS finds
the optimal value o* that maximizes/minimizes g(c*) via an
iterative search, given g(o) is unimodal.® See [18] for details.

Finally, given computed o*’s for different clusters with
corresponding ground-truth depth x*’s, we can parameterize
a=1x1072, u = —528 and k = 1.4 in (4) via nonlinear
least-squares algorithm [66] as shown in Fig. 8(b).

IV. APPROXIMATION AND OPTIMIZATION

The image formation model in Section III-B is difficult to
optimize directly; we first present a practical approximation.
We then introduce a mapping function from left-view pixels
to right-view pixels assuming FoV overlapped. We next define
a likelihood term and a signal prior for individual pixel rows
in depth images. Finally, we formulate a MAP optimization
problem and derive a corresponding algorithm based on AGD
to reconstruct a target pixel row.

8Though in general the multiplication of unimodal functions is not neces-
sarily unimodal, in our experiments we found this to be the case.
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(b)

Fig. 9. Example of depth map segmentation: (a) the ground-truth disparity
map, (b) the segmented eight layers of pre-filtered depth map, each of
approximately the same depth with the same noise variance.

A. Approximation of Image Formation Model

Additive noise in our image formation model, as discussed
in Section III-C, is signal-dependent, which is difficult to
address directly. Thus, as a pre-processing step, we first
segment a depth image into non-overlapping layers, each of
approximately the same depth, and then assume the same fixed
noise variance in each layer. This constitutes a reasonable
approximation in practice, as a depth image is typically
composed of a static indoor background plus one or more
foreground objects, each with roughly the same distance to
the depth sensor.

To achieve robust image segmentation, we first segment the
corrupted depth image into layers using the k-means algorithm,
where the optimal number of layers is determined by the
Elbow method [67]. We then pre-filter it using bilateral filter
(BF) [27] layer by layer, where for each layer we compute the
SD of the layer for the range filter parameter, while fixing the
domain filter parameter at 3 for all layers. Finally, we perform
segmentation again on the pre-filtered depth map. See Fig. 9
for an example.

After segmentation, for each layer ¢ we compute an average
depth X, given observed depth pixels of the layer, then use (4)
to compute a noise variance 65 for the layer. In the sequel,
we will assume a constant and pre-computed noise variance
63 for each depth layer ¢.

B. View-to-View Mapping

Consider two depth images of adjacent viewpoints with
FoV overlapped, as shown in Fig. 3. Pixels in the left and
right rectified images corresponding to overlapping FoV are
projections of the same object surface onto two different
camera planes, and thus are related. We optimize a left pixel
row of a layer exploiting this inter-view redundancy as follows.
(Optimization of a right pixel row is similar and thus omitted.)
Specifically, denote by x; a row with N available pixels in a
layer of the left view, and by x, a corresponding sub-row of
M pixels, where M < N, capturing the overlapping spatial
region. For simplicity, we assume that there is no occlusion
in the overlapping region between x; and Xx,.

Given that the two depth images are rectified, we employ
a known 1D warping procedure [20] to relate x; and x,. For
the i-th pixel in the left view, x; ;, its (non-integer) horizontal
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Xyi’S s(i,x1)
T eeeee @881 1
j=h j j+h
x; € RV x, € RM

Fig. 10. Illustration of view-to-view mapping: using left pixels x;;’s
with mapped (non-integer) positions s(i, x; ;) falling within right pixel x;, ;’s
neighborhood N'j £ (j — h, j + h) to interpolate right pixel x,. ;.

position s(i, x;;) € R in the right view after projection is

s, x1;) =1 —8(x11),
fD
8(xp ) = —
X1,

(14)

where §(x;;) € R is the disparity of x;;, f € RT is the
camera focal length, and D € RT is the baseline between the
two capturing cameras. Note that s(-) is a function of both left
pixel’s integer horizontal position i and depth value x; ;. Here,
we use the pre-filtered depth values X;; to compute reliable
disparities §(x;,;) for view-to-view mapping.

1) Sparse BF Interpolation: Assuming that the object sur-
face is smooth, we interpolate each right pixel x, ; in sub-
row X, as a sparse weighted combination of left pixels x;;’s;
i.e., each x, ; is linearly interpolated using x; ;’s with mapped
positions s(i, x;;) falling within x, ;’s neighborhood N; &
(j—h,j+h), where h € ZT is a parameter that determines
neighborhood size. See Fig. 10 for an illustration, where a left
pixel x; ; maps to a location within neighborhood A; of right
pixel x;, ;, and thus will be used for linear interpolation of x,. ;.

We use linear interpolation for two practical reasons. First,
it has been commonly used in the multiview-plus-depth imag-
ing literature and shown to obtain high quality rendering
[68], [69]. Second, linear interpolation will ease computation
of our optimization problem, to be formulated in Section IV-E.

In matrix form, we write the interpolation as

x, = W) x; = g(xp) 15)

where W(x;) € RM*N jg a sparse weight matrix. We model
the weight w;; between right pixel x, ; and left pixel x; ; using
a Gaussian kernel based on the spatial proximity between the
projected position s(i, x; ;) of left pixel i and the target right
pixel position j in x,. ;, i.e.,

1 .’ N 2
Wiy = - exp (_M) (16)
Wj Oy
— )2
b = Z exp (_(s(m,x;n;) J) ) (17)
m|s(m,xlv,,,)€./\/’j S
where w; is a normalization term so that > w;; = 1.

Gaussian kernel is commonly used in image filtering schemes
such as BF [27]. In words, weight w;; is large if the distance
between location s(i, x; ;) of mapped left pixel x;; and loca-
tion j of target right pixel x,; is small. To simplify (16),
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Fig. 11. Linear approximation of the Gaussian pdf.

we assume w; is a constant. Combining with (14), (16) is
rewritten as

L (i — fDx;} = j)?
Wi j :wj exXpy — .

18
p (18)

Given (18), the interpolation of g(x;) in (15) is differen-
tiable w.r.t. X;. We use the first-order Taylor series expansion
around X;, the pre-filtered estimate of x;, to obtain a linear
approximation. Thus,

g(x) ~ gX) + g &) (x; — X))
=g &)x; +g&) — g XX

— Hx; +e (19)

where H = g/'(%)) = [%ﬁ’?)] € RMXN s the Jacobian
matrix (first-order partial derivatii/es) of g(x;) at x; = X;, and
e = g(X)—g (X)X is a constant vector in R™. Note that row j
of H contains only non-zero entries H; ; corresponding to left
pixels x;; that map to positions s(i, x; ;) within right pixel
xr,j’s neighborhood N;. Thus, H is sparse, where sparsity
depends on the number of left pixels x;; mapping to N/j.

C. Likelihood Term

Since every entry of the zero-mean additive noise n; € RV
follows an independent Gaussian distribution, the probability
density function (pdf) of ny is

N N 1 n[z
Prow) = [ Priu) = [T o=—ew (—20—2) (20)
i=1 Li

i=1 i

where 0121. is the noise variance for left pixel i given that

it belongs to a known layer ¢ during image segmentation,
as discussed in Section I'V-A. Recall that o7 ; is computed via
(4), using the average depth x; of layer ¢.

Given observation y;, the likelihood term Pr(y;|x;) is

N
Pr(yilx) = ] /R Pr(nyi) dny, 1)
1,i

i=1
where the region of integration R;; is

Rei={ni | n~Ouivx) <mi <ntOuiox)}. (22

The lower and upper bounds, n™ (y;;, x;,;) = z;; — X1,; and

nt (i, xi) = Z?:i — x1.i, are defined in (6).
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Each integration in (21) is over a Gaussian pdf, which
has no closed-form expression. For ease of later optimiza-
tion, we approximate each Gaussian function Pr(n;;) as
a linear function over the region of integration R;; =

[~ Ouis x1,0), n Gy x1,0))s e,

Pr(n; i) = apini +bi, nii € Ry (23)

a;,; and by ; are constant scalars computed using Taylor series
expansion at the initial estimate n?i = y.i — X1,i, where the
recovered X;; is updated throughout the algorithm iterations
(to be discussed in detail later). See Fig. 11 for an illustration.

The linear approximation (23) is good if i) the integration
region R; is narrow, or ii) the Gaussian function Pr(n; ;) is flat.
When the captured depth pixel x; ; is near, the corresponding
quantization bin is small, and hence R; is narrow. On the other
hand, when x; ; is far, the noise variance olz’i is large, and hence
Pr(n; ;) is flat. As we will demonstrate in Section VI, in either
case the linear approximation is sufficiently accurate.

Denote by 1; a suitably long canonical vector of all zeros
except entry i is 1. We now rewrite (21) as

N
Pr(y;|x;) ~ H/R (arinii +bii)dng;
1,i

i=1

N
=[1a/ix + 5.0 (24)
i=1
where ﬁzT,i = al,i(z;i—zfi)liT and l;l,,- = %((Zfi)2_(zl—,i)2)+
bl,i(ZZr,- —z;,;). (24) is proven in the Appendix.
Similarly, for noise n, € RM | we can write

M
Pr(}’r|Xl) ~ ]‘_‘[/73 (ar,jnr,j +br,j)d}’lr,j
i=1 r,j

M
~ TTiT A
~ []@}Hx; + b, ) (25)
j=1
=T o o~ o+ \T P 2T oy i+ N2_
where a, ;= a,,j(zr’j—zr’j)lj and b, ; —ar’je—i— 5 ((zr,j)

(z, j)z) + b, j(zjj. —z,.;)- (25) is proven in the Appendix.

D. Signal Prior

As done in graph-based image processing work [70],
[71], [72], we model the similarities of pixel pairs in X; using
a graph Laplacian matrix L;, and thus prior Pr(x;) can be

written as
XITLZXZ
Pr(x;) = exp| — 5
%p

where o, > 0 is a weight parameter that is a function of
noise variance. o, determines the importance of prior Pr(x;)
in a MAP formulation. In particular, we define o), as

2 1
Op= 3
glag + 82

(26)

27)

where g1 > 0 and g, are empirically fitted constants for a
dataset. Recall that 52 is the noise variance for the layer ¢ in
which pixels in x; reside. In words, (27) states that a larger
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noise variance 63 leads to a smaller ag, making prior Pr(x;)
more important in a noisy setting.

We assume that the previous K pixel rows in the left depth
image have been enhanced first. Assuming in addition that the
next row i follows a similar image structure, L; can be learned
from the previous K rows. See Section V for details.

E. MAP Formulation

We now formulate a MAP problem for X; as follows.

max Pr(y;, y-|x;, X,) Pr(x;, x,) (28)
X;

= Pr(y;, yrI1x;, g(x1)) Pr(x;, g(x1)) 29

= Pr(y;1x)Pr(y,|g(x;)) Pr(x;)Pr(g(x;)) (30)

N M
~ [[@x + b0 [] @] Hx + b))
i=1 j=1

L T
xexp(—X’ lez exp _gxp) ng(XI) 31)
Op Op

where in (29) we substituted g(x;) for x,, and in (30) we split
up the first term since left and right noise, n; and n,, are
independent. Note that parameters a; ;, l;l,,‘, a, ; and l;,, j are
all computed from Taylor series expansion using the updated
X; in each algorithm iteration.

To ease optimization, we minimize the negative log of (31):

N M
: T - T A
n}{}n —In .1_[1(3”)([ +bi) —In -l_[](ar‘jHXl +br.j)
i= J=
+x] Lix; + g(x) "Ly g(x1)

N M
== > @/ x + b)) — > In@ Hx; + by ;)
i=1 j=1

1
+ (x,Tlel +x H'LHx; +2 eTL,Hx,) . (32)
P

(32) is an unconstrained convex and differentiable objec-
tive, but has no closed-form solution. Thus, we solve for
its minimum efficiently using AGD [21], [22]. AGD is an
extension of gradient descent (GD) that provably achieves a
convergence rate of 1/¢% after ¢ steps in the convex scenario.
To execute AGD efficiently, selecting an appropriate step size
is important. We next overview AGD and our choice of step
size in our optimization.

F. Optimization of x|

For notation simplicity, we rewrite the objective in (32) as

N M
min f(x) = = > In@x+by.) = > In@ Hxi+br )
i=l1 j=1

1
+= (xfﬁx, + 2th,) (33)
9p

where £L=L;+H'L,Hand h" =e¢"L,H.
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Algorithm 1 Accelerated Gradient Descent

Input: Convergence parameter €, smooth parameter 3.
1: Initialize ¢} + xj, t < 1 and % « 0;
2: while [|[Vf(x!)]|? > € do

3 et « xt - %Vf(xf),
t—1)2

4 nt 1+ 1+;1(77 )

t
5: ’yt — ;;71

1
6 X (L) e
7: t+—t+1.
8: endwhile
Output: x|

We summarize AGD in Algorithm 1. Suppose objective
f(xp) is B-smooth (i.e., ,B-Lipschitz),9 with gradient denoted
by Vf(x;). From (33), Vf(x;) is

N ~ M

Vi) ==

A X+ b oA

+ (% (Lx;+h). (34
P

At each iteration 7, AGD first takes a greedy step in the
negative gradient direction —V f(x]) from previous solution
x; to cf“ with step size 1/8. Then, new solution xf“
convex combination of c}“ and previously computed ¢} in
iteration ¢ — 1, given parameter ' determined by AGD.

The only remaining question is how to best estimate
smoothness B8 of f(x;) for step size 1/8. As discussed in [22],
B is the upper bound of the largest eigenvalue of the Hessian
matrix ¥ of f(x;). Thus, we first write the Hessian matrix

V2f(x;) of f(x;) as

is a

v? —ﬁ: ﬁl'iﬁl—,ri i HTi_lr,ji_leH
100 = G X ¢ b,
o @x+b)? T @ Hx A+ b j)
2
+S5L. (35)
9p

Recall that ﬁlTl.xl + 51,i, Vi are linear functions in (24) that
approximate Gaussian integrals over quantization bins. In con-
trast, matrix ay, iﬁIi in the numerator of the first summation has
a single non-zero entry proportional to (z;fl- - z;i)z, which is
small when compared to (d;ixl + Bl,i)z. (A similar argument
can be made for matrix a, jﬁrT,j of the second summation.)
Hence, the two summations in (35) are small compared to
(2/03)5, and we can approximate V2 f(x;) ~ (2/0,%)[1.

Instead of using computation-expensive  eigen-
decomposition, we consider Gershgorin Circle Theorem
(GCT) [23] to compute an upper bound of the largest
eigenvalue Amax of £. By GCT, each eigenvalue A of W
resides in at least one Gershgorin disc corresponding to row
i of £, with center o; = £;; and radius r; = Zj# IL; .

9Though log functions are used in (33), each argument is an approximation
of Gaussian density integral over a quantization bin in (24), and thus is
sufficiently larger than 0. Hence, the log function slopes are upper-bounded.
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Thus, Amax must satisfy

IA

Amax max (0; +ri)
i

=max | Lij+ D 1Li 1| £ hgn (D). (6)
’ j#i
At (L) can be computed efficiently given L is a sparse

matrix. Thus, we can finally compute 8 £ (2/02) Ak, (£).

G. Computation Complexity Analysis

We analyze the computation complexity of our algorithm.
Assuming metric matrix M is optimized via feature graph
learning (see Section V for details), we compute sparse sym-
metric graph Laplacian matrices L; € RV*Y and L, € RM*M
where M < N, with non-zero entries (7, j) iff i—2 < j <i+42.
From Section IV-B, we know H € R™*N jg also sparse, with
non-zero entries (j,i) iff s(i,x;;) € Nj. Thus, assuming
h > 2, matrix product L,H has non-zero entries (i, j) iff
s(i,x1;) € U,j(:j_zf\/k = J\/'j+. Since each i of N left pixels
is mapped to O(1) neighborhoods H;‘ of right pixels j, L,H
is sparse and has O(N) non-zero entries. Similarly, we can
conclude H'L,H is also sparse and contains O(N) non-zero
entries.

Thus, £ =L; + H'L,H is also sparse and contains O(N)
non-zero entries, computed in O(N). Similarly, h" =e'L,H
contains O(N) non-zero entries. To compute At (L) in (36),
we compute all candidates i, which requires accessing each
non-zero entry in L exactly once, and thus complexity is
O(N). Thus, computing ,3 is also O(N).

Given £, h and E , we execute AGD iteratively. In each iter-
ation, we calculate gradient V f (x;) in (34). Recalling that a, ;
has only one single non-zero entry and H is sparse, the cost
of computing HTﬁr, j and éIijl in the second summation
can be omitted. Computing L£x; has complexity O(N) since
L has O(N) non-zero entries. Thus, computing V f(x;) has
complexity O(N +M + N) = O(N). Since the number of iter-

ations of AGD is O(1/./€) [22], executing AGD has O (%)

computation. To summarize, combining the computation cost
of L, h, B and AGD, we get O<N+N+N+%) —

(’)(%), which is linear time. Linear-time complexity essen-
tially means accessing each datum once, which constitutes a
complexity lower bound for serial data processing. Thus, our
depth enhancement algorithm is practical and can potentially
be implemented in real-time.

V. FEATURE GRAPH LEARNING
A. Learning Metric for Graph Construction

When pixel row i of the left view is optimized, we assume
that the previous_ K rows, i — 1,...i — K, have already been
enhanced into 3(';_1, .. .if_K . Using these K enhanced rows,
we compute graph Laplacian L; to define prior Pr(x) in (26).
Given K < N in practice, estimating L; € RV*V reliably
using only K signal observations is difficult. In particular,
statistical graph learning algorithms such as graphical lasso
(GLASSO) [73] that compute a sparse precision matrix using
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as input a reliable empirical covariance matrix estimated from
many observations do not work in our scenario.

Instead, we construct an appropriate similarity graph via
metric learning [9]. We first assume that associated with each
pixel (graph node) i in x; is a length-F relevant feature vector
f; € RY (to be discussed). The feature distance d;; between
two nodes i and j is computed using a real, symmetric and
PD metric matrix M € RF*F ag

dij = (£ —£;) TM(f; —£). (37

(37) is also called the Mahalanobis distance in the machine
learning literature [74]. Since M is PD, d;; > O for f; —f; # 0.
The edge weight u;; between nodes i and j is then computed
using a Gaussian kernel:

Ujj = exp (—d,'j) . (38)

Note that, to reduce computation complexity, we construct a
sparse graph where each pixel i is only connected to its four
closest neighbors i =1 and i 2. Thus, Laplacian L is sparse
with O(1) non-zero entries per row/column.

To optimize M, we minimize the graph Laplacian regular-
izer (GLR) evaluated using K previous pixel rows, i.e.,

K

(%) LRt (39)

K 2
=22 Ui (fzk,i - ’7zk,j) (40)
where edge weights ui.‘j in Laplacian Lf‘ (M) is computed using
features ff‘ and fX of the k-th observation 325‘ via (37) and (38).
To optimize M 1n (39), [9] proposed a fast algorithm to opti-

mize the diagonal and off-diagonal entries of M alternately.
See [9] for details.

B. Feature Selection for Metric Learning

To construct a feature vector f; for each pixel i in x,
we first compute the pixel’s corresponding surface normal
n; € R? by projecting it to 3D space and computing it using
its neighboring points via a method in [53]. Then, together
with depth value x; and location 1; € R? in the 2D grid,
we construct f; € RS, Because M is symmetric, the number
of matrix entries we need to estimate is only 21.

VI. EXPERIMENTATION
A. Experimental Setup

We conducted simulations with three types of datasets:

(i) Public synthetic dataset: in [57], three synthetic datasets,
FlyingThings, Monkaa and Driving, were intro-
duced. They are generated using Blender,'” and the
ground-truth depth images of both views are provided.

As a pre-processing, we projected the depth images to
3D space, leading to PCs with around 1 million points;

1 Ohttps://Www.blender.org/
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(ii) Public real dataset: the Middlebury dataset is col-
lected with structured-light sensor [75], which also pro-
vides the ground-truth depth images of both views.
We adopted five representative cases for our test, ie.,
Adir, Playtable, Recycle, Teddy, and ArtL.
After projecting the depth images into 3D space, the PCs
of Adir,Playtable and Recycle have roughly 60K
points, while Teddy and ArtL have roughly 32K and
17K points, respectively;

(iii) In-house real dataset: we collected three pairs of raw
depth images using the Intel RealSense™ D435 for three
different scenes, Scene0, Scenel and Scene?2. The
associated projected PCs have roughly 17k points. This
dataset has no ground-truths.

For the datasets (i) and (ii), we first added signal-dependent
Gaussian noise (SDGN) to both views according to (4),
then they were quantized using (3). In addition, instead of
Gaussian noise, we added signal-dependent Laplacian noise
(SDLN) [8] to both views according to (4) in order to evaluate
the robustness of our approach. For dataset (iii), the collected
data was already corrupted by real noise.

When learning the metric for graph construction, we consid-
ered the previous K = 30 pixel rows. To reduce computation
complexity, the same optimized M was used for the right
view when enhancing the left view, and vice versa. Given
feature vector in yi of the current row i, we computed the
corresponding Laplacian L’ (M).

We compared our 3D PC enhancement method against three
model-based image denoising schemes, BF [27], BM3D [28]
and the early version of this work, SINUQ — short for
Signal-Independent Noise Uniform Quantization [26]. Similar
to our workflow, we applied these three schemes on the noise-
corrupted and quantized depth image pairs before the PC
synthesis steps. We also compared our work with six repre-
sentative PC denoising algorithms, APSS [24], RIMLS [25],
MRPCA [10], GLR [7], PCN [11], and DMR [12]. This set of
methods was applied to the PCs projected from the corrupted
left and right views. Among these six methods, PCN and DMR
are based on deep learning, where we directly applied their
released trained models to our test datasets.

To make different PCs comparable, we re-centered each PC
to the origin then scaled it inside the unit sphere. For datasets
(1) and (ii) with ground-truth PCs, we adopted two commonly
used PC evaluation metrics for objective evaluation, i.e., the
parameter-free point-to-point (C2C) error [29] and point-to-
plane (C2P) error [30], where plane normal in C2P was
computed using six neighboring points (the only parameter).
For dataset (iii) without ground-truths, we employed a no-
reference metric (i.e., Pseudo MOS) using sparse convolutional
neural network, designed specifically for quality assessment of
3D PCs [76]. We include also visual comparisons.

B. Experimental Results

1) Linear Approximation of the Gaussian Pdf: To verify
the accuracy of the linear approximation (23) of the Gaussian
pdf, we constructed two extreme cases, as shown in Fig. 12.
We first consider a close depth pixel x;,; = 0.5m and with a
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Fig. 12.  Gaussian pdf of (a) x;1 = 0.5m and (b) x; | = 4.5m, where

the red dots are pdf of the lower and upper bounds n™ (y;,1,x;,1) and
n+(yl,1,xl,1) in the region of integration R; i, respectively, which is an
empirical demonstration corresponding to Fig. 11.

TABLE 1

C2C(x 10*3) AND C2P(><10*5) RESULTS OF COMPETING METHODS FOR
THE PCs OF THE PUBLIC SYNTHETIC DATASET CORRUPTED BY SDGN

o @c ‘ ‘ FlyingThings ‘ Monkaa ‘ Driving ‘ Average
1.83 0.88 2.06 1.59
BF [27] [ 7237 77702 7|7 763 | 29 °
4.71 1.15 4.11 3.34
BM3D [28] [~ 7837 7 17703 7|~ 168 | 85
1.44 1.03 2.09 1.52
SINUQ [26] [ 729"~ 7703 7|7 102 | 45 °
2.67 1.00 2.94 2.20
APSS [24] [~ 721" 71702 7|7 759 7| 27
2.65 0.99 2.95 2.20
RIMLS [25] [~ 721 71702 7|7 759 7| 27 °
2.69 0.95 2.93 2.19
MRPCA [10] [~ 721" 1702 7|52 7| 257 °
2.77 1.03 3.02 2.27
GLR[7l \r = =5~ =102 ~|~ 35 [ 26~
2.13 0.98 1.62 1.58
PCN[11] [~ 11~ ~ 7702 7|22 7| 127~
2.70 0.96 2.98 2.21
DMR [12] [~ 720"~ 702 7|~ 49 7| T24°
1.12 0.59 1.22 0.98
Proposed TT05T T ] or 7| 1T T 05 T

small quantization bin, which results in a very narrow region
of integration R, as shown in Fig. 12(a). We observe that
the pdf Pr(n; 1) within Ry is roughly linear. Specifically, the
likelihood term Pr(y; 1]x;1) in (21) is 0.0098, and its linear
approximation in (23) is 0.0083. In contrast, for a far depth
pixel x;;; = 4.5m, and a large noise variance ‘712:1’ the pdf
Pr(n;,1) becomes relatively flat, see Fig. 12(b). We observe
that Pr(n; 1) within R is roughly linear as well. In this case,
the likelihood term Pr(y;1l|x; 1) in (21) is 0.0209, and its
linear approximation in (23) is 0.0209. Thus, we can conclude
that, in both cases, the linear approximation was sufficiently
accurate.

2) Comparison for Public Dataset: In the case of the depth
views corrupted by SDGN, quantitative results of different
methods in terms of C2C and C2P errors are shown in
Table I and II, where the former one provides results for
the PCs of the synthetic datasets, and the latter one is for
the PCs of the Middlebury dataset. Overall, our method
achieved by far the best performance under both metrics
for both datasets. For synthetic datasets in Table I, our
proposal outperformed the second-best algorithm SINUQ by
0.54 in terms of C2C (x1073) and PCN by 0.7 in terms of
C2P (x107°) on average, respectively. For the Middlebury
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(b)

BF [27] MRPCA [10]
Visual comparisons using (a) Recycle and (b) ArtL in the Middlebury dataset [75] and (c) Driving in the synthetic dataset [57] in terms of
C2C errors, where the depth views were corrupted by SDGN. From blue to red, C2C absolute errors gradually become larger. More blue points are noticeably
included in the proposed method.

GLR [7]
Fig. 13.

TABLE 11

C2C(x 10*3) AND C2P(><10*5) RESULTS OF COMPETING METHODS FOR
THE PCs OF THE PUBLIC REAL DATASET CORRUPTED BY SDGN

cop cc H Adir ‘ ArtL ‘ Teddy ‘ Recycle ‘ Playtable | Average
s | Lo | e |
A e
oo | 37| e |4 Ag- R A
sson | B EB TS e T es i
waves | A TR
e T g M
AT e Sl ' Y el =
T e S oy e B
T e e e
Proposed H 72‘6707‘74;17 + ,3‘7717‘7 218 + _258 ‘, 304
0.9 1.7 14 0.7 1.2 1.2
TABLE III

C2C(x1073) AND C2P(x1075) RESULTS OF THE PCs OF THE PUBLIC
SYNTHETIC DATASET AND REAL DATASET CORRUPTED BY SDLN

o @c H FlyingThings ‘ Driving ‘ Adir ‘ ArtL ‘ Teddy ‘ Average
o |- o oA
oo | i | e
o | ] o e L
(e e e A B
I A b B AR R
a2 A e [ e
I e R m
T A <A 1
|- A S
Proposed H oz { REY 7‘ ,2‘E67‘74;10, + 367 _ ‘, 255
0.4 1.1 1.0 1.7 14 1.1

dataset in Table II, in terms of C2C(x10_3), our method
outperformed the second-best algorithm SINUQ by 1.23,
while in terms of C2P (x1075), our method outperformed the
second-best algorithm BF by 2.5 on average.

PCN [11]
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C2C absolute distances
0223488
0212017

0200545
0.189073
0177602
0.166130
0.154658
0.143187
0131715
0120243
0108772
0.097300
0.085828
0074357
0.062885
0051413
0039942
0029956
0019971

0.000000 L

DMR [12]

Proposed

The synthetic datasets had relatively small depth values,
meaning that the signal-dependent additive noise was small.
Thus, the performance of the six PC denoising algorithms
were comparable to that of the three image denoising schemes.
However, for the Middlebury dataset capturing real-world
scenes, they had relatively large depth values, and thus the
additive noise was large.

Table III shows C2C and C2P results of the PCs from
both the public synthetic dataset and real dataset, corrupted
by SDLN. Similarly, our proposal outperformed nine com-
petitors in both metrics, with C2C (x1073) error reduced by
0.91 compared with the second-best algorithm SINUQ, and
C2P (x107) error reduced by 2.0 compared with the second-
best algorithm PCN, respectively.

Visual results of the denoised PCs Recycle and ArtL
from the Middlebury dataset, and a PC Driving from the
synthetic dataset for the additive SDGN case are shown in
Fig. 13, where we colored the point clouds according to the
C2C absolute distances between the ground truth points and
their closest denoised points. For the result of Driving,
we only show its background for better visualization. From
Fig. 13, it is obvious that our proposal achieved smaller C2C
errors compared to the competitors.

Overall, one can observe that the six PC denoising algo-
rithms were worse than the image denoising schemes. The
reason is that these PC denoising algorithms assume that i.i.d.
Gaussian noise are added to the point coordinates in 3D space.
This assumption is inaccurate in practice, because a corrupted
depth pixel causes errors only in the depth dimension per-
pendicular to the image plane, which is quite different from
i.i.d. noise in 3D space. Thus, enhancing depth measurements
before synthesizing a PC is more sensible. In contrast, the
three selected image denoising schemes performed poorly
under signal-dependent noise and non-uniform quantization.
Further, it was difficult for BF [27] and BM3D [28] to handle
existing holes throughout the images, leading to locally poor
performance.

In contrast, our proposal enhances depth measurements
before projecting to 3D space to synthesize a PC. It allows
us to tailor the optimization specifically for our depth for-
mation model which complies with the physical acquisition
process. Particularly, we model the combination of signal-
dependent noise addition and non-uniform log-based quanti-
zation. Further, by employing feature graph learning, we can
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(c) ﬁ

RGB and depth images

BF [27]

PCN [11]

6875

DMR [12] Proposed

Fig. 14. Visual comparisons for the denoised PCs (a) Scene0, (b) Scenel and (¢) Scene2, projected from our in-house raw depth image pairs collected
using Intel RealSense M p435. Smoother surface silhouette implies a higher denoising quality. Note that the collected RGB images and depth images are for
reference without alignment, and thus are different view images captured by slightly offset cameras. The resulting PCs are shown from a particular chosen

viewpoint.

TABLE IV
PSEUDO MOS RESULTS OF COMPETING METHODS FOR
THE PCs OF THE IN-HOUSE REAL DATASET
Pseudo MOS “ Scene0 [ Scenel [ Scene2 [ Average

BF [27] 2.96 273 2.55 2.75
BM3D [28] 2.72 231 2.15 2.39
SINUQ [26] 2.88 247 247 2.61
APSS [24] 2.94 2.88 3.06 2.96
RIMLS [25] 2.99 2.80 2.94 291

MRPCA [10] 311 282 284 292

GLR [7] 284 265 297 282
PCN [11] 3.10 3.02 3.16 3.09
DMR [12] 3.05 2.59 2.84 2.83

Proposed [ 313 [ 315 [ 335 [ 321

flexibly enhance only the available pixels around missing ones
in a depth image. For these reasons, our scheme achieved
noticeable performance gains.

3) Comparison for In-House Dataset: All the above exper-
iments were conducted using artificial noise. To see the
effectiveness of our method on real sensor noise, we computed
Pseudo MOS scores of no-reference metric [76] for different
methods using PCs from our in-house dataset. When MOS
score equals 5, it means that no discernible distortion is
perceived in the PC. MOS score equaling 3 implies that dis-
tortion slightly obstructs viewing. Note that this no-reference
metric considers both color and geometry attributes, while
our optimization restores only geometric information, and thus
generally lowering the scores. However, we observe that our
method still outperformed three model-based image denoising
schemes and six PC denoising algorithms.

We next show visual comparisons for our in-house collected
PCs as perceived from the right depth image in Fig. 14. For the
denoised PCs, a smoother surface silhouette basically implies
a higher restoration quality. Note that BF reconstructed the
intensity of each pixel with a weighted average of intensity
values from nearby pixels. Consequently, given an image with
many missing pixels, this method diffused the available pixels
to the missing pixels and propagated errors from missing pixels

to the target pixels, as shown in the enlarged regions in the
second column. Due to the i.i.d. Gaussian noise assumption on
PCs, distortion in 3D points stemming from the real formation
process were challenging for the two deep learning based
methods, PCN and DMR, leading to poor restoration results.
In contrast, our proposal provided restoration with noticeably
better visual quality, which has smoother surface and fewer
noisy points.

VII. CONCLUSION AND DISCUSSION

Point clouds are typically synthesized from finite-precision
depth measurements that are noise-corrupted. In this paper,
we improve the quality of a synthesized point cloud by jointly
enhancing multiview depth images—the “rawest” signal we
can acquire from an off-the-shelf sensor—prior to steps in a
typical point cloud synthesis pipeline that obscure acquisition
noise. We formulate a graph-based MAP optimization that
specifically targets an image formation model accounting for
both signal-dependent noise addition and non-uniform log-
based quantization. We validate the designed model using
collected empirical data from an actual depth sensor. We opti-
mize the objective efficiently using AGD with GCT-aided opti-
mal step size determination. Simulation results show that our
proposed scheme outperforms competing schemes that denoise
point clouds after the synthesis pipeline and representative
image denoising schemes.

APPENDIX
PROOF OF MULTIPLE INTEGRAL

We first prove (24) by induction.

N
Pr(yi[x;) = H/R (aringi +bri)dn
1,i

i=l
N Zl-t—i_xl»"
= H/ (ar,ini 4 br i) dny

i=1"%i T
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N

— + Wi +2 -2

= [T = dfm + S7(@)° = G)»)
i=1

+b1i (2 — 2 ) (41)

Denote by 1; an one-hot vector, which is a suitably long
canonical vector of all zeros except entry i is 1, ﬁlTl. =

— ~ aji —
al,i(Zl’i - ZIJ’FI)IIT and bl,i = [T((Z;T,)z - (Zl’l‘)z) + bl,i
(ZfLi — 2, ;). We now rewrite (41) as

N
Pr(y|x) ~ [ [ @ xi + bri).

i=1

(42)

Given (41), (42) and (19), we now prove (25) for noise n,.

M

Pr(y,|x;) ~ H/ (ar,jnr,j +br,j)dnr,j
YL r
j=170

M M
= H(E‘Ijxr + by j) & H(ﬁL(HXl +e) + by ).
j=1 =1
(43)
Denote by é;l,—j = ferj = arjz,; — Z::j)liT and by, =

~ ~ = ar,j —
a etbj=al e+ ()= (5 ) +b ) 2
We now rewrite (43) as

rj)-

M
Pr(y|x)) ~ [ [ @] Hx; + by, ). (44)

j=1
(]
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