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ABSTRACT 

The competition between deformation twinning and dislocation slip underpins the evolution 

of mesoscale plasticity in face-centered cubic materials. While competition between these 

mechanisms is known to be related to the critical features of the generalized planar fault energy 

landscape, a physical theory that tracks competition over extended plasticity has yet to emerge. 

Here, we report a methodology to predict the mesoscale evolution of this competition in deformed 

crystals. Our approach implements kinetic Monte Carlo simulations to examine fault structure 

evolution in face-centered cubic metals using intrinsic material parameters as inputs. These results 

are leveraged to derive an analytical model for the evolution of the fault fraction, fault densities, 

and partitioning of plastic strains among deformation mechanisms. In addition, we define a 

competition parameter that measures the tendencies for deformation twinning and dislocation slip. 

In contrast to previous ‘twinnability’ parameters, our derivation considers deformation history 

when examining mechanism competition. This contribution therefore extends the reach of 

deformation twinning theory beyond incipient nucleation events. These products find direct 

applications in work hardening and crystal plasticity models, which have previously relied on 

phenomenological relations to predict the mesoscale evolution of deformation twin 

microstructures.  
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Monte Carlo simulations 

______________________________________________________________________________ 

1. INTRODUCTION  

The mesoscale plasticity of face-centered cubic (FCC) metals is underpinned by the operation 

of competing deformation mechanisms. Amongst these, dislocation slip and deformation twinning 

are widely recognized to be two important mechanisms that actively compete during plastic 

deformation. The comparative dominance of one mechanism is determined by a complex interplay 

between intrinsic material properties and extrinsic factors. Competition in the former category can 

be conceptualized using the generalized planar fault energy (GPFE) landscape, which has its roots 

in works from Vítek [1,2]. Various investigators have leveraged the GPFE landscape concept to 

produce parameter-based descriptors of deformation mechanism competition. For competition 

between deformation twinning and slip, Tadmor and co-workers provided the seminal parameters.  

Their earliest work defines a twinning tendency criterion for the onset of deformation twinning at 

a crack-tip [3], where a direct relationship between the critical features of the GPFE landscape 

(i.e., the unstable stacking fault and twinning energies) and deformation twinning is defined. These 

results demonstrate the multi-parameter dependencies of deformation twinning and challenge the 

general belief that twinning tendency is driven solely by the intrinsic stacking fault energy. A 

subsequent work broadened this approach by homogenizing the crack-tip model over a distribution 

of crack orientations in a polycrystal [4]. Asaro and Suresh [5] considered a specific slip system 

geometry, under the crack-tip parameter of Tadmor and Hai, to examine the competition between 

deformation twinning and dislocation slip at grain boundaries in nanostructured FCC materials. 

Jin et al. [6] reparameterized the criterion of Asaro and Suresh to provide a single parameter 

relation for twinning tendency under the original analytical framework of Tadmor and co-workers. 
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In an independent approach, Jo et al. [7] consolidated considerations of crystal orientation and the 

GPFE to develop a unified parameter that predicts tendencies for deformation twinning, slip, and 

stacking fault emission. These descriptors of competition between deformation twinning and slip 

are referred to here as ‘twinnability’ parameters, following the nomenclature of Tadmor and 

Bernstein [4]. Each of these parameters is summarized in a recent review from De Cooman et al. 

[8].  

While these twinnability parameters provide a fundamental understanding of the intrinsic 

competition between deformation mechanisms, there are some notable limitations. Namely, these 

descriptors offer insight into incipient deformation tendencies (i.e., the first emission of an 

extended dislocation or formation of a twin embryo from stacking of adjacent planar faults) but do 

not track competition as deformation proceeds. Consequently, these parameters cannot be 

leveraged to determine the evolution of correlated phenomena such as work hardening, which 

requires consideration of deformation history. Nor can they be used to predict the partitioning of 

plastic strain amongst the mechanisms of deformation twinning and dislocation slip. These 

limitations become evident in twinning-induce plasticity (TWIP) steels [9–14], where the relative 

contributions of deformation twinning and dislocation slip are well-known to vary over the stages 

of work hardening [8,15,16]. Additional systems of technological relevance, where the evolution 

of mechanism competition is important, include nanotwinned materials [17–19] and high entropy 

alloys [20–24]. Analytical efforts to segment the contributions of dislocation slip and deformation 

twinning in work hardening and crystal plasticity models are well documented, with significant 

contributions presented in the works of Bouaziz and coworkers [25–29], Kim et al. [30], Steinmetz 

et al. [16], and Kalidindi [31,32]. However, a shortcoming in each of these approaches is the 

reliance on empirical relations for the accumulation of deformation twins during deformation, 
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which can provide unphysical results. For instance, early empirical modeling efforts estimate a 

twin fraction as high as 0.69 in TWIP steels [25]. Later works have predicted a twin fraction in the 

range of ~0.10-0.20 [27,33], with 0.15 being the commonly accepted value [8]. While these later 

predictions better align with experimental observations, the broad applicability of current 

evolution models remains poor due to their reliance on phenomenology and empirical fitting. 

Within the context of twinnability, an opportunity exists to propose new, physical models that 

not only track the competition between deformation twinning and dislocation slip but provide 

predictive tools to examine deformed microstructures under extended plastic deformation. Here, 

we present a methodology to quantify the partitioning of plastic strain between deformation 

twinning and dislocation slip mechanisms and measure the accumulation of fault structures in 

deformed FCC crystals. For this purpose, the competition between deformation twinning and 

dislocation slip is studied using kinetic Monte Carlo (kMC) simulations. Based on kMC 

simulations, a set of analytical relations are derived that leverage the critical energies of the GPFE 

landscape to predict the evolution of fault structures. The outcomes of this study are two-fold. The 

primary result provides a new method to predict the evolution of competition between deformation 

mechanisms over extended plastic deformation using only intrinsic material properties as inputs. 

From a fundamental perspective, this contribution expands the twinnability framework originally 

developed by Tadmor and coworkers [3,4] by extending its scope beyond incipient events. The 

second outcome is a series of relations to predict the partitioning of plastic strain between 

deformation twinning and dislocation slip mechanisms and the storage of fault structures over 

extended deformation in FCC metals. We anticipate that this product will enhance existing work 

hardening and crystal plasticity models, by providing first-principles-based predictions of defect 

evolution in deformed microstructures.  
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2. METHODOLOGY 

2.1. Kinetic Monte Carlo approach 

To address the question of mechanism competition, we have implemented the relevant kinetic 

equations for dislocation slip and deformation twinning mechanisms following the kMC algorithm 

outlined in Bortz et al. [34]. The kMC simulation cell can be envisioned as a discretized FCC 

crystal, where the kMC relations are evaluated at each node of the mesh. The nucleation and 

progression of defects in this cell are considered by traversing system states that are separated by 

kinetic barriers. These features are well-suited to the objectives of this work, which require 

tracking defects over extended deformation and monitoring the relative kinetics between 

deformation mechanisms. A similar approach has been used to examine the competition between 

the process of deformation twin nucleation and deformation twin thickening in our previous work 

[35]. The kMC method described in this section has been implemented in Python and will be made 

available to the community through online repositories.  

The kMC simulation cell is considered as a FCC single crystal that is initially deformation free 

with the <110> and <111> crystallographic axes oriented along the global 𝑥 and 𝑦 direction, 

respectively. The simulation cell measures 𝑀𝑏110 by 𝑁𝑑111 where 𝑏110 is the magnitude of the 

Burger’s vector of the <110> dislocation, 𝑑111 is the interplanar distance between {111} planes, 

and 𝑀 and 𝑁 are integers. The simulation cell possesses free surfaces along the 𝑥 axis and periodic 

boundaries along the 𝑦 axis. A schematic of the kMC simulation cell is provided in Fig. 1a. Two 

different kinetic processes are evaluated in kMC simulations: partial dislocation nucleation and 

partial dislocation glide. The operation of each of these processes is separately considered for 

leading and trailing partial dislocations. Competition is assessed through the sequential activation 

of the relevant processes required to realize deformation twinning or dislocation slip. In order to 
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provide an intrinsic comparison, extrinsic factors such as Schmid effects are removed, and 

competition is examined along a single twinning/slip system. All dislocations considered in this 

study are <112>-type Shockley partial dislocations. Each leading and trailing partial dislocation 

has a Burger’s vector (𝑏112) with a magnitude of 
𝑎𝑜

√6
⁄ , where 𝑎𝑜 is the lattice parameter. Leading 

and trailing partials are assumed to be conjugate, with a 60° mixed character that acts along a line 

parallel to the <112> crystallographic axis (global z-axis). Deformation proceeds through the 

nucleation and glide of partial dislocations under a boundary/surface-mediated mechanism, which 

is described in subsequent paragraphs. The incipient nucleation event of a leading partial 

dislocation forms an intrinsic stacking fault (ISF). Subsequent leading partial nucleation events on 

adjacent {111} slip planes lead to the formation of a two-layer extrinsic stacking fault (ESF) and 

a multi-layer twin fault (TF). Dislocation slip proceeds through the nucleation and glide of trailing 

partials at locations in the simulation cell where a fault structure already exists. This process causes 

slip in the FCC lattice and a layer-by-layer decrement in the thickness of planar faults (i.e., 

detwinning). Upon removal of the ISF, the lattice returns to a fault-free configuration, but is in a 

slipped state. To enable an intrinsic study of a single twin/slip system, cross-slip mechanisms, and 

detwinning and slip within the interior of fault structures are not considered. 
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The boundary-mediated partial dislocation emission mechanism implemented in this study can 

be seen as an extension of the crack-tip problem considered by Tadmor and coworkers [3,4]. 

However, to facilitate an intrinsic comparison of deformation mechanisms over extended plasticity 

we have replaced the crack-tip with a surface of equivalent nucleation sites. This treatment is 

 

Fig. 1: (a) The kMC simulation cell with the relevant crystal directions and geometric parameters noted. The 

signature fault structures of deformation twinning (i.e., ISF, ESF, and TF) and dislocation slip (i.e., dissociated 

partials) are shown schematically. The nucleation barriers for deformation twinning and dislocation slip are shown 

in red and blue stroke, respectively. The determination of nucleation barriers is defined by the deformation history 

of the simulation cell. (b) The GPFE landscape for a typical FCC material. The relation between process barriers 

and the local fault environment is illustrated. The values on the abscissa indicate the number of leading partial 

dislocations required to create each fault structure, where 𝑏112 and 𝑎𝑜 are the magnitudes of the <112> Shockley 

partial dislocation Burger’s vector and the lattice parameter, respectively. Please see the main text for a description 

of other symbols. 
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inspired by the boundary-mediated twin formation mechanism that is established in the 

experimental literature for a diverse set of systems including TWIP steels [10], nanostructured 

FCC materials [36–38], nanowires [39,40], and hexagonal close-packed metals [41]. This twin 

formation mechanism is distinct from classical processes such as the Cohen-Weertman [42] and 

Fujita-Mori [43] cross-slip mechanisms and the pole-based mechanism of Venables [44] but bears 

some similarities to the three-layer twin nucleus mechanism of Mahajan and Chin [45]. We have 

previously validated our implementation of this formation mechanism against molecular dynamics 

simulations of deformation twin nucleation and growth in FCC nanowires [35]. One important 

note regarding our approach is that dislocation processes are considered as homogeneous events, 

where the system is agnostic of local microstructural heterogeneities (e.g., crack-tips, grain 

boundary energies) that may bias rates. This treatment has the intended effect of providing an 

intrinsic comparison of deformation mechanisms that arise explicitly from their various process 

barriers.  Our approach is similar to that of Jo et al. [7], where a homogeneous treatment was used 

to study the competition between incipient mechanisms. Heterogeneities may only arise in this 

study due to fault structures that emerge from the deformation history. Yet, the kMC approach is 

sufficiently general such that microstructure heterogeneities can be specified with some effort. 

Although this modification is not trivial, it is not necessary to achieve the objectives of this work.   

The barriers to dislocation nucleation and glide processes are defined using the energies (𝛾) of 

the GPFE landscape (see Fig. 1b), following the method of Ogata et al. [46]. In this approach, the 

barrier that acts at the jth slip plane within the crystal is determined by the local fault environment 

and thus reflects the deformation history of the system (see Fig. 1a). We have selected four 

common FCC metals (Ag, Au, Cu, and Al) for kMC simulations, for which the GPFE landscape 

is well-known. This selection was found to encompass the extremes in the behaviors of mechanism 
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competition. As Al is not anticipated to exhibit deformation twinning, it is included in this study 

to confirm that the kMC model captures slip-dominated behavior. That is, deformation by extended 

dislocations, as shown schematically in Fig. 1a. Deformation twinning initiates with the incipient 

nucleation barrier (𝐸1
+ = 𝛾𝑢𝑠𝑓

1 ) for a leading <112>-type Shockley partial dislocation. The 

thickening of deformation twins proceeds by overcoming additional process barriers (𝐸2
+, 𝐸3

+, 𝐸∞
+) 

that are defined as the difference between the relevant fault (i.e., 𝛾𝑖𝑠𝑓 , 𝛾𝑒𝑠𝑓, 𝛾𝑡𝑓) and the peak 

energies (i.e., 𝛾𝑢𝑠𝑓
1 , 𝛾𝑢𝑠𝑓

2 , 𝛾𝑢𝑡𝑓
3 , 𝛾𝑢𝑡𝑓

∞ ) of the subsequent defect along the GPFE landscape. 

Conversely, the reverse parameters (𝐸1
−, 𝐸2

−, 𝐸3
−, 𝐸∞

−) describe the process barriers for the 

nucleation of trailing <112>-type Shockley partial dislocations, which activate dislocation slip. 

The relations between process barriers and the peak energies of the GPFE landscape are shown 

schematically in Fig. 1b. The peak energies 𝛾𝑢𝑠𝑓
1  and 𝛾𝑢𝑠𝑓

2  refer to the unstable fault energies that 

must be overcome to form an ISF and an ESF, respectively. Similarly, the peak energies of 𝛾𝑢𝑡𝑓
3  

and 𝛾𝑢𝑡𝑓
∞  define the energies for an embryotic and a thickened deformation twin, respectively. In 

each case, the superscript refers to the number of leading dislocations required to form the relevant 

fault structure. Table I provides the values for the critical energies of the GPFE landscape 

(i.e., 𝛾𝑢𝑠𝑓
1 , 𝛾𝑢𝑠𝑓

2 , 𝛾𝑢𝑡𝑓
∞ , 𝛾𝑖𝑠𝑓 , 𝛾𝑒𝑠𝑓𝛾𝑡𝑓) used in kMC simulations. These values are obtained from 

density functional theory calculations using the climbing-image nudged elastic band method, as 

reported in Jin et al. [6]. In FCC metals, the critical energies of the GPFE landscape are known to 

stabilize after the formation of an ESF [46], which can be considered as a twin embryo with two 

adjacent twin boundaries. Therefore, the process barriers to twinning (𝐸3
+) and detwinning (𝐸3

−) of 

the twin embryo are determined using the approximation 𝛾𝑢𝑡𝑓
3 ≈ 𝛾𝑢𝑠𝑓

2 . The energy of the three-

layer twin embryo is taken as ≈ 2𝛾𝑡𝑓, where 𝛾𝑡𝑓 is the energy of an isolated coherent twin 
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boundary. The process barrier for twinning and detwinning at thicknesses of beyond three {111} 

planes is defined by 𝐸∞
+  and 𝐸∞

− , respectively. Each of these approximations are common within 

the community, as discussed in Jin et al. [6] and De Cooman et al. [8]. 

 The rates (𝑅𝑖,𝑗) of nucleation and glide events are evaluated at nodes along a 2-dimensional 

mesh that maps to the activation sites for these dislocation processes in the slip planes of the kMC 

cell. Following the kMC method, these rates are determined using the Arrhenius relation: 

𝑅𝑖,𝑗 = 𝑅𝑜𝑒𝑥𝑝 {
−(𝜎̂𝑖,𝑗 − 𝜎𝑖,𝑗)𝑉

𝑘𝑏𝑇
}   (1) 

where 𝑅𝑜 is the pre-exponential factor (taken as the Debye frequency [47]), 𝑉 is the activation 

volume (taken as 10𝑏112
3 , as per Ramachandramoorthy et al. [48]), 𝑘𝑏 is the Boltzmann constant, 

and 𝑇 is the temperature (set at 300 K). 𝜎̂𝑖,𝑗 and 𝜎𝑖,𝑗 are the process barrier and elastic stresses, 

respectively, that operate at the ith activation site in the jth slip plane of the kMC simulation cell. 

The values for 𝜎̂𝑖,𝑗 represent the stress to nucleate a partial dislocation or the stress for glide of a 

partial dislocation depending on the deformation history of the kMC simulation. For instance, in a 

pristine simulation cell  𝜎̂𝑖,𝑗 reduces to 𝜎̂0,𝑗, which defines the stress to nucleate a leading partial 

dislocation. After nucleation of a leading partial in the jth slip plane, 𝜎̂0,𝑗 then becomes the stress 

to nucleate a conjugate trailing partial (for dislocation slip) and 𝜎̂𝑖,𝑗 is the stress required for glide 

of the leading partial at the ith activation site (taken as the Peierls-Nabarro stress, 𝜎𝑃𝑁, see Fig. 1a).  

These nucleation and glide stresses are then updated as the kMC simulation proceeds to reflect the 

local fault environment. Following the method of Ogata et al. [46], the undulations of the GPFE 

landscape are taken as a Peierls potential and may be used to directly determine the process barriers 

of nucleation and glide. Dislocation nucleation stresses are retrieved from the athermal limit using 

a harmonic approximation for the shape of process barriers (see Ref. [46]). This simple model for 
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nucleation finds excellent agreement with benchmarking validation studies [35]. More complex 

nucleation models consider the elastic energy of the nucleated dislocation and the stress-

dependency of the critical energies of the GPFE [49–51]. When glide is operative, the process 

barrier stress may be calculated from the solution to the Peierls-Nabarro problem for a partial 

dislocation [52]. These considerations lead to a conditional definition for the process barrier stress 

𝜎̂𝑖,𝑗: 

𝜎̂𝑖,𝑗 =

{
 
 

 
 𝜋𝐸0,𝑗

𝑏112
, 𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 (𝑖 = 0)

𝐾𝜌
𝑏112
𝜌
𝑒𝑥𝑝 {

−2𝜋𝜍𝜌(𝑖,𝑗)

𝜌
} , 𝑔𝑙𝑖𝑑𝑒 (𝑖 ≠ 0)

   (2) 

where 𝐸𝑖,𝑗 is the process barrier (e.g., 𝐸𝑖,𝑗 = 𝐸1
+, 𝐸1

−, etc.) for leading or trailing dislocations in the 

relevant fault environment and 𝜍𝜌(𝑖,𝑗) =
𝐾𝜌𝑏112

2

4𝜋2𝐸𝑖,𝑗
 is the half-width of the dislocation core. 𝜌 is a 

geometric parameter that represents the distance between adjacent atomic rows along the shear 

direction. 𝐾𝜌 is an elastic constant that is defined by the shear modulus (𝐺) and Poisson’s ratio (𝜈). 

Following the approximation of Nabarro [53], partial dislocations were assigned an edge character 

for glide stress calculations (i.e., 𝜌 =
3

2
𝑏112, 𝐾𝜌 =

𝐺

(1−𝜈)
). This modest simplification allows the 

glide barrier of dislocations to be defined by a single shear stress, which is required for kMC rate 

determination steps in Eq. (1). The elastic constants are calculated using the method of Bacon and 

coworkers [54,55]. This method provides effective isotropic constants from dislocation energy 

factors in anisotropic media. The relevant material parameters used in all kMC calculations are 

provided in Table I. The effective process barrier stress (i.e., 𝜎̂𝑖,𝑗 − 𝜎𝑖,𝑗) is determined by 

considering the additive contributions of elastic stress fields from partial dislocations stored in the 

kMC simulation cell. Individual stress fields are calculated using the Volterra solution to the 
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dislocation elasticity problem for each leading and trailing partial dislocation [56]. The relevant 

stress tensors are rotated to align with the Burger’s vectors of the respective defect (i.e., ± 60º 

partial dislocations). Boundary effects are accounted for using the image dislocation method, 

which enforces a vanishing condition along free surfaces (i.e., the <110> surfaces of the kMC 

simulation). For further details on the dislocation elasticity calculations performed in this study, 

see the supplementary material Section S1 and Figure S-1 (refer to online supplementary material). 

In addition to stresses arising from internal defects, the application of external far-field loadings 

can reduce the effective process barriers. The effects of far-field loadings are not specifically 

considered here as they exert a uniform influence on rate kinetics. However, it should be noted 

that our formulation is sufficiently general to include their effects along with the associated Schmid 

factors.  

Table I: Material parameters used in kMC simulations. Fault energies are provided in units of (mJ/m2).b 

Material 𝑎𝑜 (nm) G (GPa)a νa Ro (1013/s) 𝛾𝑢𝑠𝑓
1  𝛾𝑢𝑠𝑓

2   𝛾𝑢𝑡𝑓
∞   𝛾𝑖𝑠𝑓  𝛾𝑒𝑠𝑓 𝛾𝑡𝑓  

Ag 0.409 27.8 0.43 3.94 91 100 93 16 12 8 

Au 0.408 25.9 0.48 4.92 68 79 72 25 27 12 

Cu 0.361 44.2 0.41 7.98 158 179 161 36 40 18 

Al 0.405 25.9 0.36 9.66 140 196 135 112 112 50 

aCalculated from compliance constants in Huntington [57] using the method of Bacon and coworkers [54,55].  
bRetrieved from Jin et al. [6] 

Implementation of Eqs. (1) and (2) within the kMC method enables a kinetically-weighted 

observation of deformation phenomena where the likelihood of deformation twinning and 

dislocation slip is determined by the deformation history. At each simulation step, the fault fraction 

(F) and number of faults (𝑁𝐹) are measured from a lineal section of the simulation cell. The 

calculation of the fault fraction and number includes contributions from single and two-layer 

defects such as ISFs and ESFs, and also twin defects (TFs), which is consistent with the treatment 

of the deformation twinning mechanism sequence in previous works [3,4,46]. For this reason, we 
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use the terms fault and twin interchangeably throughout the results and discussion. The simulation 

cell is initialized in a pristine condition and simulations are terminated once the plastic strain (𝛾𝑃) 

reaches 0.2. Plastic strain is calculated as a shear strain relative to the <110> and <111> crystal 

axes (i.e., 𝛾𝑥𝑦 relative to the global x and y axes). Therefore, the annihilation of 60º leading and 

trailing partial dislocations at the exit boundary contributes increments of 
√3

2√2
|𝑑𝐹|𝑚𝑎𝑥 to the 

cumulative plastic strain, respectively, where |𝑑𝐹|𝑚𝑎𝑥 =
1

𝑁
. 

2.2. Analytical model 

An analytical model has been developed to track the competition between deformation 

twinning and dislocation slip over extended plasticity. This model consists of a system of coupled 

equations that can be solved using standard numerical techniques. This system of equations 

contains no empirical fitting parameters or phenomenological constants. The intended outcome of 

this effort is to provide a physical model for the evolution of planar fault structures and the 

partitioning of plastic strains, which can be leveraged to pass mesoscale deformation information 

to the microstructure/continuum scales. 

The evolution of the fault fraction can be quantified as the summation of the fault fraction 

increment (
𝑑𝐹+

𝑑𝛾𝑃
) and decrement (

𝑑𝐹−

𝑑𝛾𝑃
) per increment of plastic strain: 

𝑑𝐹

𝑑𝛾𝑃
= 
𝑑𝐹+

𝑑𝑁⊥

𝑑𝑁⊥
𝑑𝛾𝑃

−
𝑑𝐹−

𝑑𝑁⊥

𝑑𝑁⊥
𝑑𝛾𝑃

   (3) 

where 
𝑑𝑁⊥

𝑑𝛾𝑃
= (

√3

2√2
|𝑑𝐹|)

−1

 is the incremental change in the number of nucleated dislocations per 

increment of plastic strain. The terms 
𝑑𝐹+

𝑑𝑁⊥
 and 

𝑑𝐹−

𝑑𝑁⊥
 are related to the probability that a nucleation 

event (i.e., an increment to the number of nucleated dislocations, 𝑑𝑁⊥) results in an increase or 
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decrease in the fault fraction, respectively. These terms may be determined directly from the 

probabilities for leading (𝑃+) and trailing nucleation (𝑃−):   

𝑑𝐹+

𝑑𝑁⊥
= 𝑃+|𝑑𝐹|𝑚𝑎𝑥  (4a) 

𝑑𝐹−

𝑑𝑁⊥
= 𝑃−|𝑑𝐹|𝑚𝑎𝑥 (4b) 

By inspection, the nucleation probabilities define the likelihood of an incremental or decremental 

change to the fault fraction (i.e., |𝑑𝐹|𝑚𝑎𝑥 =
1

𝑁
) and by definition 𝑃+ and 𝑃− fall in the range of 0 

to 1. The fault fraction, therefore, evolves at partial increments of −
1

𝑁
≤ 𝑑𝐹 ≤

1

𝑁
, which reflects 

the weightings of leading and trailing nucleation probabilities. The probabilities for these events 

may be derived from the proportion of leading (𝑅+) and trailing (𝑅−) nucleation rates to the total 

rates (𝑅) summed over all nucleation sites in the kMC model: 

𝑃+ =
𝑅+

𝑅
 

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘𝐸̅𝑘+1

+
𝑘

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘(𝐸̅𝑘+1

+ + 𝐸̅𝑘
−)𝑘 − 𝑛1𝐸̅1

−   (5a) 

𝑃− = 
𝑅−

𝑅
=

2∑ 𝑛𝑘𝐸̅𝑘
−

𝑘 − 𝑛1𝐸̅1
−

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘(𝐸̅𝑘+1

+ + 𝐸̅𝑘
−)𝑘 − 𝑛1𝐸̅1

− (5b)   

where 𝐸̅𝑘
+,−

 is the relevant leading or trailing barrier coefficient such that 𝐸̅𝑘
+,− =

𝑒𝑥𝑝 {
−𝑉𝜋

𝑘𝐵𝑇𝑏112
𝐸𝑘
+,−}, and 𝑛𝑘 = 

𝑁𝑘

𝑁
 and 𝑛𝐹 =

∑ 𝑁𝑘𝑘

𝑁
=

𝑁𝐹

𝑁
 are the fault number densities. 𝑛𝑘 represents 

the density of single (𝑘 = 1, ISFs) and multi-layer faults (𝑘 > 1, ESFs and TFs) and 𝑛𝐹 is the total 

fault number density. Faults thicker than three layers are counted towards 𝑛∞ and evaluated using 

the barriers 𝐸∞
+  and 𝐸∞

− , which is consistent with kMC methods. The second term (third term) in 

the numerator (denominator) of Eq. (5) avoids double counting of trailing nucleation from an ISF, 

which only has one nucleation site (see Fig. 1a). For further details on the derivation of Eq. (5), 
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the reader is referred to our earlier work [35], which examines the competition between 

deformation twin nucleation and thickening using a related approach. 

The partitioning of plastic strain amongst the mechanisms of deformation twinning and 

dislocation slip can be determined using the parameters defined for the evolution of the fault 

fraction. The dislocation slip strain (𝛾𝑆) is incremented through the operation of trailing 

dislocations, with the probability of these events defined by 𝑃−. The increment to the dislocation 

slip strain is counted as twice the partial strain increment, to account for the prior operation of the 

leading partial that then contributes to the dislocation slip mechanism. The deformation twinning 

strain (𝛾𝐹) can then be calculated from the difference of the total plastic and dislocation slip strains, 

which leads to the following set of relations:  

𝑑𝛾𝑆
𝑑𝑁⊥

= 2𝑃−
𝑑𝛾𝑃
𝑑𝑁⊥

= 𝑃−√
3

2
|𝑑𝐹|𝑚𝑎𝑥   (6a) 

𝛾𝐹 = 𝛾𝑃 − 𝛾𝑆 (6b)   

Evaluation of Eqs. (3)- (6) requires a series of evolution rules for the fault number densities. 

We consider two outcomes that can alter the number of faults – namely, the nucleation of leading 

and trailing partial dislocations. As in Eq. (3), the evolution in the number of faults with plastic 

strain is described by an additive relation: 

𝑑𝑛𝐹
𝑑𝛾𝑃

= 
𝑑𝑛𝐹

+

𝑑𝑁⊥

𝑑𝑁⊥
𝑑𝛾𝑃

−
𝑑𝑛𝐹

−

𝑑𝑁⊥

𝑑𝑁⊥
𝑑𝛾𝑃

   (7) 

where 
𝑑𝑛𝐹

+

𝑑𝑁⊥
 and 

𝑑𝑛𝐹
−

𝑑𝑁⊥
 are related to the probabilities of an increase or decrease in the fault number 

density, respectively. To model the probability of an increase in the number of faults, we consider 

the comparative kinetics of these outcomes as deformation proceeds. That is, an increase to 𝑛𝐹 
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only occurs when a leading partial dislocation is nucleated in a defect-free area of a crystal and a 

decrease to 𝑛𝐹 is accompanied by the nucleation of a trailing partial dislocation at an ISF. The 

relevant quantities are defined as follows: 

𝑑𝑛𝐹
+

𝑑𝑁⊥
= 
1

𝑁

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘(𝐸̅𝑘+1

+ + 𝐸̅𝑘
−)𝑘 − 𝑛1𝐸̅1

−   (8a) 

𝑑𝑛𝐹
−

𝑑𝑁⊥
= 
1

𝑁

2𝑛1𝐸̅1
−

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘(𝐸̅𝑘+1

+ + 𝐸̅𝑘
−)𝑘 − 𝑛1𝐸̅1

− (8b) 

In order to solve Eqs. (8a) and (8b), a rule for the evolution of is 𝑛𝑘 required, which is described 

by the following relations:  

𝑑𝑛1
𝑑𝑁⊥

= 
1

𝑁

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2𝑛2𝐸̅2

− − 2𝑛1𝐸̅2
+ − 𝑛1𝐸̅1

−

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘(𝐸̅𝑘+1

+ + 𝐸̅𝑘
−)𝑘 − 𝑛1𝐸̅1

−   𝑘 = 1   (9a) 

𝑑𝑛𝑘
𝑑𝑁⊥

= 
1

𝑁

2𝑛𝑘−1𝐸̅𝑘
+ + 2𝑛𝑘+1𝐸̅𝑘+1

− − 2𝑛𝑘𝐸̅𝑘+1
+  − 2𝑛𝑘𝐸̅𝑘

−

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑙(𝐸̅𝑙+1

+ + 𝐸̅𝑙
−)𝑙 − 𝑛1𝐸̅1

−  𝑘 = 2,3 (9b) 

𝑛∞ = 𝑛𝐹 − 𝑛1 − 𝑛2 − 𝑛3 (9c) 

which accounts for the change in the number densities of the various fault structures due to fault 

nucleation/thickening or detwinning/slip processes.  

The ratio of the probabilities for leading and trailing partial dislocation nucleation is also of 

interest, given the influence that these parameters have on mechanism competition. We define here 

the competition parameter (η) as the ratio of leading and trailing probabilities as: 

𝜂 =  𝑙𝑛 (
𝑃+

𝑃−
) = 𝑙𝑛 (

(1 − 𝐹 − 2𝑛𝐹)𝐸̅1
+ + 2∑ 𝑛𝑘𝐸̅𝑘+1

+
𝑘

2∑ 𝑛𝑘𝐸̅𝑘
−

𝑘 − 𝑛1𝐸̅1
− )   (10) 

Examination of Eq. (10) offers interesting insights. Leading dislocation nucleation is favored 
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when 𝜂 > 0 and trailing dislocation nucleation is favored when 𝜂 < 0. Therefore, this simple 

criterion enables facile tracking of deformation tendencies over extended plasticity. Given the 

relevance of leading/trailing nucleation to the mechanisms of deformation twinning and 

dislocation slip, this parameter may also be viewed as a measure of mechanism competition. 

Indeed, the relevant process barriers (e.g., 𝐸1
+, 𝐸2

+, 𝐸1
− and 𝐸2

−) in the competition parameter 

contain the GPFE parameters (i.e., 𝛾𝑢𝑠𝑓
1 , 𝛾𝑢𝑠𝑓

2 , 𝛾𝑖𝑠𝑓) that are found in many of the incipient 

twinnability parameters available in the literature [3,4,6,7]. In addition to these variables, 

additional parameters appear (i.e., 𝐹, 𝑛𝑘, and 𝑛𝐹) that account for the evolution of the mesoscale 

defect structures during deformation. In this regard, this competition parameter combines two 

distinct components - intrinsic material properties and microstructure parameters – to examine the 

evolution of mechanism competition from its measure of nucleation preferences for 

leading/trailing dislocations. 

Collectively, the kMC model and analytical relations developed in this section offer a direct 

method to evaluate the evolution of deformation mechanism competition in FCC metals, as defined 

by their intrinsic metallurgical properties. Nonetheless, it is important to acknowledge some of the 

limitations of this approach. Namely, this method inherently assumes homogeneous deformation, 

which does not account for microstructural features that may bias deformation (e.g., crack-tips, 

grain boundaries, and other defects). Single crystal systems with small volumes (i.e., very low 

defect densities) present the closest physical representation of this model, with nanowires offering 

one example. In addition, our method considers a single twin/slip system in its formulation. 

Caution must therefore be exercised when applying this approach to more complex deformation 

patterns and microstructures such as those that underpin mechanism competition in polycrystalline 

aggregates. 
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3. RESULTS AND DISCUSSION 

The kMC model described in Section 2.1 is implemented to study the mechanism competition 

in a variety of crystal sizes for Ag, Au, Cu, and Al. The results for kMC systems measuring 60𝑏110 

by 200𝑑111 for Ag, Au, and Cu form the basis of the analysis presented in the main text. kMC 

simulations of Al do not exhibit deformation twinning but are provided in the supplementary 

material to demonstrate how the kMC model also captures pure dislocation slip behavior (see 

supplementary material Figure S-2). Each kMC simulation condition has been replicated 500 times 

for statistical sampling and was observed to converge well below the replication limit (see 

supplementary material Figure S-3). All error bars are reported as ±1 standard deviation. All 

contour plots are normalized from a binning strategy performed on the kMC simulation results. 

The raw kMC data is binned along the x and y axes of the plot and bin counts are presented as 

normalizations of the maximum measurements along the plot ordinate. The coupled analytical 

equations from Section 2.2 are sequentially solved using the 4th order Runge-Kutta numerical 

method. Additional results examining kMC size effects are provided in the supplementary material 

Figure S-4 and Figure S-5.  

3.1. Mesoscale evolution of deformed microstructures 

Representative snapshots of the kMC simulation cell at several stages of plastic deformation 

are shown in Fig. 2 for Ag, Au, and Cu. The shaded stroke represents regions where a fault is 

currently present. As anticipated, several fault structures (i.e., ISFs, ESFs, and TFs) are 

progressively nucleated and annihilated during plastic deformation. Ag exhibited the highest 

storage of faults, whereas faults nucleated in Cu were found to be rapidly annihilated by the 

emission of a trailing partial dislocation. Videos of the evolution of deformed microstructures with 

increasing plastic strain are made available as supplementary videos. The deformation processes 
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and morphologies presented in Fig. 2 are supported by tensile experiments of single crystal 

nanowires [38,48]. Although experimental studies inherently probe loading orientation factors 

(i.e., Schmid effects), which are intentionally neglected herein, single-crystal nanowires represent 

a reasonable system for comparison to kMC simulations as they possess analogous boundary 

conditions (i.e., free surfaces). Within this context, Ramachandramoorthy et al. [48] observed the 

nucleation and storage of thin twin lamellae ( < 5𝑑111) in nanotensile experiments of single crystal 

Ag nanowires. Lee et al. [38] observed partial dislocation-mediated twinning and detwinning 

mechanisms in Au nanowires subjected to cyclic tensile/compressive loadings. These experimental 

reports correlate well with the deformation structures observed in kMC simulations.  
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The evolution of the fault fraction with increasing plastic strain for Ag, Au, and Cu is plotted 

in Fig. 3. The raw data from all replications of the kMC simulations are provided as normalized 

contours, as described above, and the averaged data is plotted using the relevant markers. 

Analytical predictions from the model defined in Section 2.2 are plotted in dashed stroke. In each 

 

Fig. 2: Snapshots from kMC simulations at plastic strains of 0.05, 0.1, 0.15, and 0.2 for Ag (a), Au (b), and Cu (c). 

The shaded stroke in the kMC cell indicates the presence of a fault. For Ag, the simulation cell is segmented by 

several fault structures. By contrast, deformation in Cu is more slip-dominated and planar faults are readily 

annihilated by the nucleation of trailing partial dislocations. This representation of the faulted region follows the 

schematic presented in Fig. 1a, but the leading and trailing dislocations at the boundaries of the faulted regions are 

not shown for clarity of presentation. 
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material, a monotonic increase in the fault fraction is predicted, with Ag exhibiting the highest 

fault storage. The analytical model is in excellent agreement and captures the critical features of 

the kMC simulation data. In each material, the rate of increase in the fault fraction is highest at the 

incipient stages of plasticity and approaches a linear relation at higher plastic strains. Cu and Au 

exhibit only modest increases in the fault fraction after the early stages of plastic strain 0.01-0.05 

plastic strain, whereas Ag tends to continue to store faults at higher strains, albeit at a reduced rate. 

This behavior is in line with the experimental literature, which reports a steep increase in the twin 

fraction during early plastic events [8]. In the case of Cu, a noticeable asymmetry exists in the 

binned kMC data, where the average response deviates significantly from the most common fault 

behavior. Since the fault fraction cannot be negative, this asymmetry arises due to the preference 

for the removal of fault structures in Cu over extended deformation, which produces frequent 

system configurations at 𝐹 = 0.  

Results for the evolution of the deformation twinning-accommodated strain are provided in 

Fig. 4. The agreement between model predictions and the kMC datasets is again excellent. As 

anticipated from the results of Fig. 3, Ag accommodates the most plastic strain by deformation 

twinning. Indeed, the evolution of  𝛾𝐹 maps closely to the development of 𝐹, which reflects their 

correlation through the trailing nucleation probability term, 𝑃−, and the relations of Eqs. (4) and 

(6). Fig. 5 presents the evolution of the fault number density for each material in the study. 

Analytical predictions from the model defined in Section 2.2 are plotted in dashed stroke. For each 

material, the model predictions of fault number density match the kMC averages very closely. In 

each system, a monotonic increase in the fault number density is predicted as deformation 

proceeds. This behavior correlates well with the results of fault fraction and plastic partitioning 

calculations. Additional results showing the kMC data and model predictions for various fault 
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density morphologies (i.e., 𝑛𝑘) are provided in the supplementary material Figure S-6. 

 

Fig. 3: The evolution of the fault fraction as predicted by kMC simulations is overlaid with the analytical model 

(dashed lines). The data is plotted for Ag (a), Au (b), and Cu (c). The average kMC data is plotted as markers. Error 

bars represent ±1 standard deviation over 500 replications of the kMC simulation. The contour plots are color-

coded using a normalized counting scheme implemented along the ordinate axis. See the main text for further 

details. 
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The ability of the analytical model to capture the evolution of defect structures over extended 

plasticity is perhaps the most notable outcome of these results. Indeed, using only process barriers 

derived from the GPFE landscape, we have developed a methodology that can predict the 

partitioning of plastic strains between the mechanisms of deformation twinning and dislocation 

slip for several FCC materials. This physical description of strain partitioning is free from 

 

Fig. 4: The evolution of the plastic strain accommodated by twinning/fault formation over extended deformation 

for Ag (a), Au (b), and Cu (c). The average and standard deviation of kMC results are plotted in markers and error 

bars, respectively. The results of model calculations are overlaid in dashed stroke. The normalized counts of kMC 

replications are collected as described in the main text. 
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empirical fitting and is therefore anticipated to improve the phenomenological relations currently 

implemented in work hardening and crystal plasticity models. Examples, where a direct 

application of this approach would be beneficial, are found in the dislocation storage work 

hardening models of Bouaziz and coworkers [25–27] and deformation-twinning crystal plasticity 

models [58–60], among others.  

 

Fig. 5: The evolution of the fault number density as predicted by kMC simulations is overlaid with the analytical 

model (dashed line). The data is plotted for Ag (a), Au (b), and Cu (c). The average kMC data is plotted as markers. 

Error bars represent ±1 standard deviation over 500 replications of the kMC simulation. The raw kMC simulation 

data is shown in the contour plots. The contour plots are color-coded using a normalization scheme implemented 

along the ordinate axis. See the main text for further details. 
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3.2. Evolution of mechanism competition under extended deformation 

The excellent agreement between kMC simulations and analytical modeling motivates an 

examination of the evolution of mechanism competition in FCC metals over extended plastic 

deformation. Fig. 6 presents the evolution of the competition parameter, η, with the fault fraction. 

The analytical definition of η (Eq. (10)) is plotted in dashed stroke for each material. The average 

kMC data is provided as markers and the data distribution is represented as contours. As shown in 

the figure each of the materials exhibits a reduction in the competition parameter with increasing 

fault fraction. This finding is intuitive, as additional activation sites become available for trailing 

dislocation nucleation when more fault structures are present. The competition parameter is 

observed to be the largest for Ag across all fault fractions, whereas it quickly decreases towards 

parity for Cu and Au. The average and most common occurrences in the kMC data are well-

captured by the analytical model for each material under study.  
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Taking the nucleation of leading/trailing dislocations as representative of competition between 

deformation twinning and dislocation slip tendencies, the analytical model provides an excellent 

platform to compare against existing twinnability parameters in the literature. This comparison is 

particularly strong in incipient stages (i.e., after nucleation of the first fault), where the system 

configurations across all parameters are similar. For this purpose, we have plotted η against the 

twinnability parameters of Jo et al. [7], Jin et al. [6], Asaro and Suresh [5], and Tadmor and 

 

Fig. 6: Average kMC predictions (markers) for the competition parameter are overlaid with the analytical model 

(dashed line). The data is plotted for Ag (a), Au (b), and Cu (c). The contour plots show the raw kMC data and are 

normalized relative to the maximum bin values at increasing fault fraction intervals. See the main text for details. 

The results of the analytical model are in excellent agreement with the average and contour data from kMC 

simulations. 
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Bernstein [4] in Fig. 7. The incipient values of 𝜂 are plotted with markers, and the demarcation 

between twinning-dominated and slip-dominated behavior is denoted in a dashed stroke. Incipient 

data for Al has also been included to show alignment with other twinnability parameters in the 

slip-dominated regime. As Al does not exhibit any meaningful fault storage, the range of values 

for the competition parameter overlap within a single marker. Comparison with the literature 

parameters yields several interesting results. For instance, the ranking of Ag as the material with 

the highest twinnability is common across all literature parameters. However, the sequencing of 

Au above Cu is unique to our calculations. This outcome finds support from several sources in the 

literature. For example, wire drawing experiments from English and Chin show that deformation 

twinning initiates at much lower stresses in Au than in Cu [61]. Furthermore, this discrepancy in 

twinnability predictions and twinning stress data is noted by Tadmor and Bernstein [4], but remains 

unresolved by their study. This improvement is a result of the additional microstructure features 

(i.e., 𝑛𝑘) and GPFE landscape barriers (i.e., 𝐸3
+,−

, 𝐸∞
+) considered in our parameter, which are 

absent in previous works. We also note that 𝜂 returns the same conditional inequalities as other 

twinnability parameters when the microstructural evolution parameters are omitted, and process 

barrier definitions are aligned. For instance, Jo et al. [7] examined single-site twin thickening and 

trailing partial nucleation after ISF emission with process barriers of 
𝐸

𝑐𝑜𝑠𝜃
, where θ is the angle 

between the Burger’s vectors of dislocations. For θ = 60° (i.e., conjugate leading/trailing partial 

dislocations) considered at comparable incipient conditions (𝐹 =
1

𝑁
, 𝑛1 = 𝑛𝐹 =

1

𝑁
, 1 − 𝐹 −

2𝑛𝐹 = 0 (i.e., new ISF nucleation disallowed)), and using the transformation 𝛾𝑢𝑠𝑓
2 ≈ 𝛾𝑢𝑠𝑓

1 +

1

2
𝛾𝑖𝑠𝑓 [6], η predicts twinning when 

𝛾𝑖𝑠𝑓

𝛾 𝑢𝑠𝑓
1 − 𝛾𝑖𝑠𝑓

< 2. This is the same twinning inequality presented 

by Jo et al  [7]. Through the development of this parameter, we have demonstrated a method to 
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predict the twinnability of FCC metals by separately weighing the contributions of process barriers 

and deformation history to defining the competition between deformation mechanisms. In a broad 

sense, this outcome expands the application of the twinnability concept to describe the evolution 

of deformation twinning and dislocation slip in deformed microstructures.  

4. CONCLUSIONS 

The competition between deformation twinning and dislocation slip has been studied for four 

common FCC metals (Ag, Au, Cu, and Al) using kMC simulations. In contrast to previous efforts, 

which examine only incipient events, the evolution of mechanism competition has been considered 

over extended plastic deformation. Kinetics in kMC simulations are informed directly by the 

critical features of the GPFE landscape and therefore provide an intrinsic comparison of 

mechanism competition. From the kMC simulation data, the evolution of the fault number density, 

 

Fig. 7: (a) Model predictions for the evolution of the competition parameter over extended deformation is re-plotted 

for comparison purposes for Ag, Au, and Cu. (b) The competition parameter (𝜂) is compared against the parameters 

of Jo et al. [7] (c), Jin et al. [6] (d), Asaro and Suresh [5] (e), and Tadmor and Bernstein [4] (f). The dashed line 

demarcates twinning- and slip-dominated regimes. Incipient data is plotted as a marker for each material and the 

incipient data for Al (slip-dominated) is provided for comparison. 
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fault fraction, and the partitioning of plastic strains between deformation twinning and dislocation 

slip mechanisms was measured. Results from these efforts show that Ag exhibited the highest 

storage of faults and the largest deformation twinning strain over the entire deformation range 

studied. Based on kMC results, an analytical framework has been developed to provide a physical 

model for the mesoscale evolution of defect structures in FCC crystals. Predictions from this model 

find excellent agreement with kMC simulations. In addition, the relations of this model were used 

to define a competition parameter that can be used to examine the evolution of mechanism 

competition in FCC metals over extended deformation. Predictions from this parameter align with 

experimental data showing the higher twinnability of Au relative to Cu, which is not captured by 

existing twinnability descriptors. The outcomes of this study expand the applicability of 

deformation twinning theory beyond incipient plasticity and provide the community with relations 

for the evolution of the fault fraction and fault number density, and the strain partitioning between 

deformation twinning and dislocation slip mechanisms. These relations are free from empirical 

fitting constants and may be implemented to improve current work hardening and crystal plasticity 

models, which have previously relied on phenomenology.  
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