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ABSTRACT

The competition between deformation twinning and dislocation slip underpins the evolution
of mesoscale plasticity in face-centered cubic materials. While competition between these
mechanisms is known to be related to the critical features of the generalized planar fault energy
landscape, a physical theory that tracks competition over extended plasticity has yet to emerge.
Here, we report a methodology to predict the mesoscale evolution of this competition in deformed
crystals. Our approach implements kinetic Monte Carlo simulations to examine fault structure
evolution in face-centered cubic metals using intrinsic material parameters as inputs. These results
are leveraged to derive an analytical model for the evolution of the fault fraction, fault densities,
and partitioning of plastic strains among deformation mechanisms. In addition, we define a
competition parameter that measures the tendencies for deformation twinning and dislocation slip.
In contrast to previous ‘twinnability’ parameters, our derivation considers deformation history
when examining mechanism competition. This contribution therefore extends the reach of
deformation twinning theory beyond incipient nucleation events. These products find direct
applications in work hardening and crystal plasticity models, which have previously relied on
phenomenological relations to predict the mesoscale evolution of deformation twin
microstructures.
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1. INTRODUCTION

The mesoscale plasticity of face-centered cubic (FCC) metals is underpinned by the operation
of competing deformation mechanisms. Amongst these, dislocation slip and deformation twinning
are widely recognized to be two important mechanisms that actively compete during plastic
deformation. The comparative dominance of one mechanism is determined by a complex interplay
between intrinsic material properties and extrinsic factors. Competition in the former category can
be conceptualized using the generalized planar fault energy (GPFE) landscape, which has its roots
in works from Vitek [1,2]. Various investigators have leveraged the GPFE landscape concept to
produce parameter-based descriptors of deformation mechanism competition. For competition
between deformation twinning and slip, Tadmor and co-workers provided the seminal parameters.
Their earliest work defines a twinning tendency criterion for the onset of deformation twinning at
a crack-tip [3], where a direct relationship between the critical features of the GPFE landscape
(i.e., the unstable stacking fault and twinning energies) and deformation twinning is defined. These
results demonstrate the multi-parameter dependencies of deformation twinning and challenge the
general belief that twinning tendency is driven solely by the intrinsic stacking fault energy. A
subsequent work broadened this approach by homogenizing the crack-tip model over a distribution
of crack orientations in a polycrystal [4]. Asaro and Suresh [5] considered a specific slip system
geometry, under the crack-tip parameter of Tadmor and Hai, to examine the competition between
deformation twinning and dislocation slip at grain boundaries in nanostructured FCC materials.
Jin et al. [6] reparameterized the criterion of Asaro and Suresh to provide a single parameter

relation for twinning tendency under the original analytical framework of Tadmor and co-workers.



In an independent approach, Jo et al. [7] consolidated considerations of crystal orientation and the
GPFE to develop a unified parameter that predicts tendencies for deformation twinning, slip, and
stacking fault emission. These descriptors of competition between deformation twinning and slip
are referred to here as ‘twinnability’ parameters, following the nomenclature of Tadmor and
Bernstein [4]. Each of these parameters is summarized in a recent review from De Cooman et al.
[8].

While these twinnability parameters provide a fundamental understanding of the intrinsic
competition between deformation mechanisms, there are some notable limitations. Namely, these
descriptors offer insight into incipient deformation tendencies (i.e., the first emission of an
extended dislocation or formation of a twin embryo from stacking of adjacent planar faults) but do
not track competition as deformation proceeds. Consequently, these parameters cannot be
leveraged to determine the evolution of correlated phenomena such as work hardening, which
requires consideration of deformation history. Nor can they be used to predict the partitioning of
plastic strain amongst the mechanisms of deformation twinning and dislocation slip. These
limitations become evident in twinning-induce plasticity (TWIP) steels [9-14], where the relative
contributions of deformation twinning and dislocation slip are well-known to vary over the stages
of work hardening [8,15,16]. Additional systems of technological relevance, where the evolution
of mechanism competition is important, include nanotwinned materials [17-19] and high entropy
alloys [20-24]. Analytical efforts to segment the contributions of dislocation slip and deformation
twinning in work hardening and crystal plasticity models are well documented, with significant
contributions presented in the works of Bouaziz and coworkers [25-29], Kim et al. [30], Steinmetz
et al. [16], and Kalidindi [31,32]. However, a shortcoming in each of these approaches is the

reliance on empirical relations for the accumulation of deformation twins during deformation,
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which can provide unphysical results. For instance, early empirical modeling efforts estimate a
twin fraction as high as 0.69 in TWIP steels [25]. Later works have predicted a twin fraction in the
range of ~0.10-0.20 [27,33], with 0.15 being the commonly accepted value [8]. While these later
predictions better align with experimental observations, the broad applicability of current
evolution models remains poor due to their reliance on phenomenology and empirical fitting.
Within the context of twinnability, an opportunity exists to propose new, physical models that
not only track the competition between deformation twinning and dislocation slip but provide
predictive tools to examine deformed microstructures under extended plastic deformation. Here,
we present a methodology to quantify the partitioning of plastic strain between deformation
twinning and dislocation slip mechanisms and measure the accumulation of fault structures in
deformed FCC crystals. For this purpose, the competition between deformation twinning and
dislocation slip is studied using kinetic Monte Carlo (kMC) simulations. Based on kMC
simulations, a set of analytical relations are derived that leverage the critical energies of the GPFE
landscape to predict the evolution of fault structures. The outcomes of this study are two-fold. The
primary result provides a new method to predict the evolution of competition between deformation
mechanisms over extended plastic deformation using only intrinsic material properties as inputs.
From a fundamental perspective, this contribution expands the twinnability framework originally
developed by Tadmor and coworkers [3,4] by extending its scope beyond incipient events. The
second outcome is a series of relations to predict the partitioning of plastic strain between
deformation twinning and dislocation slip mechanisms and the storage of fault structures over
extended deformation in FCC metals. We anticipate that this product will enhance existing work
hardening and crystal plasticity models, by providing first-principles-based predictions of defect

evolution in deformed microstructures.



2. METHODOLOGY
2.1. Kinetic Monte Carlo approach

To address the question of mechanism competition, we have implemented the relevant kinetic
equations for dislocation slip and deformation twinning mechanisms following the kMC algorithm
outlined in Bortz et al. [34]. The kMC simulation cell can be envisioned as a discretized FCC
crystal, where the kMC relations are evaluated at each node of the mesh. The nucleation and
progression of defects in this cell are considered by traversing system states that are separated by
kinetic barriers. These features are well-suited to the objectives of this work, which require
tracking defects over extended deformation and monitoring the relative kinetics between
deformation mechanisms. A similar approach has been used to examine the competition between
the process of deformation twin nucleation and deformation twin thickening in our previous work
[35]. The kMC method described in this section has been implemented in Python and will be made
available to the community through online repositories.

The kMC simulation cell is considered as a FCC single crystal that is initially deformation free
with the <110> and <111> crystallographic axes oriented along the global x and y direction,
respectively. The simulation cell measures Mb;1o by Nd;1; where b;q¢ is the magnitude of the
Burger’s vector of the <110> dislocation, d;; is the interplanar distance between {111} planes,
and M and N are integers. The simulation cell possesses free surfaces along the x axis and periodic
boundaries along the y axis. A schematic of the kMC simulation cell is provided in Fig. 1a. Two
different kinetic processes are evaluated in kMC simulations: partial dislocation nucleation and
partial dislocation glide. The operation of each of these processes is separately considered for
leading and trailing partial dislocations. Competition is assessed through the sequential activation

of the relevant processes required to realize deformation twinning or dislocation slip. In order to
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provide an intrinsic comparison, extrinsic factors such as Schmid effects are removed, and
competition is examined along a single twinning/slip system. All dislocations considered in this

study are <112>-type Shockley partial dislocations. Each leading and trailing partial dislocation

has a Burger’s vector (b;1,) with a magnitude of Qo / NG where a,, is the lattice parameter. Leading

and trailing partials are assumed to be conjugate, with a 60° mixed character that acts along a line
parallel to the <112> crystallographic axis (global z-axis). Deformation proceeds through the
nucleation and glide of partial dislocations under a boundary/surface-mediated mechanism, which
is described in subsequent paragraphs. The incipient nucleation event of a leading partial
dislocation forms an intrinsic stacking fault (ISF). Subsequent leading partial nucleation events on
adjacent {111} slip planes lead to the formation of a two-layer extrinsic stacking fault (ESF) and
a multi-layer twin fault (TF). Dislocation slip proceeds through the nucleation and glide of trailing
partials at locations in the simulation cell where a fault structure already exists. This process causes
slip in the FCC lattice and a layer-by-layer decrement in the thickness of planar faults (i.e.,
detwinning). Upon removal of the ISF, the lattice returns to a fault-free configuration, but is in a
slipped state. To enable an intrinsic study of a single twin/slip system, cross-slip mechanisms, and

detwinning and slip within the interior of fault structures are not considered.



Fig. 1: (a) The kMC simulation cell with the relevant crystal directions and geometric parameters noted. The
signature fault structures of deformation twinning (i.e., ISF, ESF, and TF) and dislocation slip (i.e., dissociated
partials) are shown schematically. The nucleation barriers for deformation twinning and dislocation slip are shown
in red and blue stroke, respectively. The determination of nucleation barriers is defined by the deformation history
of the simulation cell. (b) The GPFE landscape for a typical FCC material. The relation between process barriers
and the local fault environment is illustrated. The values on the abscissa indicate the number of leading partial
dislocations required to create each fault structure, where b,,, and a, are the magnitudes of the <112> Shockley
partial dislocation Burger’s vector and the lattice parameter, respectively. Please see the main text for a description
of other symbols.

The boundary-mediated partial dislocation emission mechanism implemented in this study can
be seen as an extension of the crack-tip problem considered by Tadmor and coworkers [3,4].
However, to facilitate an intrinsic comparison of deformation mechanisms over extended plasticity

we have replaced the crack-tip with a surface of equivalent nucleation sites. This treatment is



inspired by the boundary-mediated twin formation mechanism that is established in the
experimental literature for a diverse set of systems including TWIP steels [10], nanostructured
FCC materials [36-38], nanowires [39,40], and hexagonal close-packed metals [41]. This twin
formation mechanism is distinct from classical processes such as the Cohen-Weertman [42] and
Fujita-Mori [43] cross-slip mechanisms and the pole-based mechanism of Venables [44] but bears
some similarities to the three-layer twin nucleus mechanism of Mahajan and Chin [45]. We have
previously validated our implementation of this formation mechanism against molecular dynamics
simulations of deformation twin nucleation and growth in FCC nanowires [35]. One important
note regarding our approach is that dislocation processes are considered as homogeneous events,
where the system is agnostic of local microstructural heterogeneities (e.g., crack-tips, grain
boundary energies) that may bias rates. This treatment has the intended effect of providing an
intrinsic comparison of deformation mechanisms that arise explicitly from their various process
barriers. Our approach is similar to that of Jo et al. [7], where a homogeneous treatment was used
to study the competition between incipient mechanisms. Heterogeneities may only arise in this
study due to fault structures that emerge from the deformation history. Yet, the kMC approach is
sufficiently general such that microstructure heterogeneities can be specified with some effort.
Although this modification is not trivial, it is not necessary to achieve the objectives of this work.

The barriers to dislocation nucleation and glide processes are defined using the energies (y) of
the GPFE landscape (see Fig. 1b), following the method of Ogata et al. [46]. In this approach, the
barrier that acts at the j” slip plane within the crystal is determined by the local fault environment
and thus reflects the deformation history of the system (see Fig. 1a). We have selected four
common FCC metals (Ag, Au, Cu, and Al) for kMC simulations, for which the GPFE landscape

is well-known. This selection was found to encompass the extremes in the behaviors of mechanism
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competition. As Al is not anticipated to exhibit deformation twinning, it is included in this study
to confirm that the kKMC model captures slip-dominated behavior. That is, deformation by extended
dislocations, as shown schematically in Fig. 1a. Deformation twinning initiates with the incipient
nucleation barrier (Ef = ytllsf) for a leading <112>-type Shockley partial dislocation. The
thickening of deformation twins proceeds by overcoming additional process barriers (ES, ES, EY)
that are defined as the difference between the relevant fault (i.e., Yiss, Vess, Vey) and the peak
energies (i.e., )/Lllsf, ]/isf, yﬁtf,y{ﬁf) of the subsequent defect along the GPFE landscape.
Conversely, the reverse parameters (Ei,E,,E;, E5) describe the process barriers for the
nucleation of trailing <112>-type Shockley partial dislocations, which activate dislocation slip.
The relations between process barriers and the peak energies of the GPFE landscape are shown
schematically in Fig. 1b. The peak energies ¥, s and Y s refer to the unstable fault energies that
must be overcome to form an ISF and an ESF, respectively. Similarly, the peak energies of yﬁtf
and v,z define the energies for an embryotic and a thickened deformation twin, respectively. In
each case, the superscript refers to the number of leading dislocations required to form the relevant
fault structure. Table I provides the values for the critical energies of the GPFE landscape
(i.e, y&sf! yisf: Yatp VisfrYesfVer) used in kMC simulations. These values are obtained from
density functional theory calculations using the climbing-image nudged elastic band method, as
reported in Jin et al. [6]. In FCC metals, the critical energies of the GPFE landscape are known to
stabilize after the formation of an ESF [46], which can be considered as a twin embryo with two
adjacent twin boundaries. Therefore, the process barriers to twinning (EJ) and detwinning (E3 ) of
the twin embryo are determined using the approximation )/Stf ~ yﬁsf. The energy of the three-

layer twin embryo is taken as =~ 2y, where y;r is the energy of an isolated coherent twin
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boundary. The process barrier for twinning and detwinning at thicknesses of beyond three {111}
planes is defined by EY and E, respectively. Each of these approximations are common within
the community, as discussed in Jin et al. [6] and De Cooman et al. [8].

The rates (R; ;) of nucleation and glide events are evaluated at nodes along a 2-dimensional
mesh that maps to the activation sites for these dislocation processes in the slip planes of the kMC

cell. Following the kMC method, these rates are determined using the Arrhenius relation:

—(6,; =0, )V
Ryj= Roexp{ ( l’kaT 1) } (1)

where R, is the pre-exponential factor (taken as the Debye frequency [47]), V is the activation
volume (taken as 10b3,,, as per Ramachandramoorthy et al. [48]), k,, is the Boltzmann constant,
and T is the temperature (set at 300 K). 6; ; and o; ; are the process barrier and elastic stresses,
respectively, that operate at the i activation site in the j” slip plane of the kMC simulation cell.
The values for 6, ; represent the stress to nucleate a partial dislocation or the stress for glide of a
partial dislocation depending on the deformation history of the kMC simulation. For instance, in a
pristine simulation cell 6; ; reduces to 6, j, which defines the stress to nucleate a leading partial
dislocation. After nucleation of a leading partial in the j slip plane, &, ; then becomes the stress
to nucleate a conjugate trailing partial (for dislocation slip) and §; ; is the stress required for glide
of the leading partial at the i" activation site (taken as the Peierls-Nabarro stress, opy, see Fig. 1a).
These nucleation and glide stresses are then updated as the kMC simulation proceeds to reflect the
local fault environment. Following the method of Ogata et al. [46], the undulations of the GPFE
landscape are taken as a Peierls potential and may be used to directly determine the process barriers
of nucleation and glide. Dislocation nucleation stresses are retrieved from the athermal limit using

a harmonic approximation for the shape of process barriers (see Ref. [46]). This simple model for
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nucleation finds excellent agreement with benchmarking validation studies [35]. More complex
nucleation models consider the elastic energy of the nucleated dislocation and the stress-
dependency of the critical energies of the GPFE [49-51]. When glide is operative, the process
barrier stress may be calculated from the solution to the Peierls-Nabarro problem for a partial
dislocation [52]. These considerations lead to a conditional definition for the process barrier stress
6

=, nucleation (i = 0)
~ b112

b =27y i
LKP 1plz exp{ ;p(l’])},glide (i+0)

2

where E; ; is the process barrier (e.g., E; j = ET, ET, etc.) for leading or trailing dislocations in the

2
Kpb

relevant fault environment and ¢, ;) = F;Z_ is the half-width of the dislocation core. p is a
Lj

geometric parameter that represents the distance between adjacent atomic rows along the shear

direction. K, is an elastic constant that is defined by the shear modulus (G) and Poisson’s ratio (v).
Following the approximation of Nabarro [53], partial dislocations were assigned an edge character

for glide stress calculations (i.e., p = 219112, K, = (15—1/))' This modest simplification allows the

glide barrier of dislocations to be defined by a single shear stress, which is required for kMC rate
determination steps in Eq. (1). The elastic constants are calculated using the method of Bacon and
coworkers [54,55]. This method provides effective isotropic constants from dislocation energy
factors in anisotropic media. The relevant material parameters used in all kMC calculations are
provided in Table 1. The effective process barrier stress (i.e., 6;; — 0; ;) is determined by
considering the additive contributions of elastic stress fields from partial dislocations stored in the

kMC simulation cell. Individual stress fields are calculated using the Volterra solution to the
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dislocation elasticity problem for each leading and trailing partial dislocation [56]. The relevant
stress tensors are rotated to align with the Burger’s vectors of the respective defect (i.e., = 60°
partial dislocations). Boundary effects are accounted for using the image dislocation method,
which enforces a vanishing condition along free surfaces (i.e., the <110> surfaces of the kMC
simulation). For further details on the dislocation elasticity calculations performed in this study,
see the supplementary material Section S1 and Figure S-1 (refer to online supplementary material).
In addition to stresses arising from internal defects, the application of external far-field loadings
can reduce the effective process barriers. The effects of far-field loadings are not specifically
considered here as they exert a uniform influence on rate kinetics. However, it should be noted
that our formulation is sufficiently general to include their effects along with the associated Schmid

factors.

Table I: Material parameters used in kMC simulations. Fault energies are provided in units of (mJ/m?).?

Material  a, (nm) G (GPa)? Vo R.(10%8)  Yass  Vass  Yuir  Viss Yess  Vis

Ag 0.409 27.8 0.43 3.94 91 100 93 16 12 8
Au 0.408 259 0.48 4.92 68 79 72 25 27 12
Cu 0.361 44.2 0.41 7.98 158 179 161 36 40 18
Al 0.405 259 0.36 9.66 140 196 135 112 112 50

Calculated from compliance constants in Huntington [57] using the method of Bacon and coworkers [54,55].
PRetrieved from Jin et al. [6]

Implementation of Egs. (1) and (2) within the kMC method enables a kinetically-weighted
observation of deformation phenomena where the likelithood of deformation twinning and
dislocation slip is determined by the deformation history. At each simulation step, the fault fraction
(F) and number of faults (Ng) are measured from a lineal section of the simulation cell. The
calculation of the fault fraction and number includes contributions from single and two-layer
defects such as ISFs and ESFs, and also twin defects (TFs), which is consistent with the treatment

of the deformation twinning mechanism sequence in previous works [3,4,46]. For this reason, we
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use the terms fault and twin interchangeably throughout the results and discussion. The simulation
cell is initialized in a pristine condition and simulations are terminated once the plastic strain (yp)
reaches 0.2. Plastic strain is calculated as a shear strain relative to the <110> and <111> crystal

axes (i.e., Yy, relative to the global x and y axes). Therefore, the annihilation of 60° leading and

trailing partial dislocations at the exit boundary contributes increments of % |dF | max to the

: : . : 1
cumulative plastic strain, respectively, where |dF |0 = =

2.2. Analytical model

An analytical model has been developed to track the competition between deformation
twinning and dislocation slip over extended plasticity. This model consists of a system of coupled
equations that can be solved using standard numerical techniques. This system of equations
contains no empirical fitting parameters or phenomenological constants. The intended outcome of
this effort is to provide a physical model for the evolution of planar fault structures and the
partitioning of plastic strains, which can be leveraged to pass mesoscale deformation information
to the microstructure/continuum scales.

The evolution of the fault fraction can be quantified as the summation of the fault fraction

+ —
increment (Z%) and decrement (Z%) per increment of plastic strain:
P P
ar dFtdN, dF~dN, 3)
dyp dN, dyp dN, dyp
dN, V3 -1 . ) ) .
where —= = (— |dF I) is the incremental change in the number of nucleated dislocations per
dyp 2V2

. . . drt dF~ - .
increment of plastic strain. The terms TR and —N- are related to the probability that a nucleation
1 1

event (i.e., an increment to the number of nucleated dislocations, dN, ) results in an increase or

13



decrease in the fault fraction, respectively. These terms may be determined directly from the

probabilities for leading (P™") and trailing nucleation (P~):

+
dN, = P+|dF|max (4a)
dF~
m = P_ldFImax (4b)

By inspection, the nucleation probabilities define the likelihood of an incremental or decremental

change to the fault fraction (i.e., |dF | ey = %) and by definition P* and P~ fall in the range of 0

1

to 1. The fault fraction, therefore, evolves at partial increments of —% < dF < —, which reflects

=2

the weightings of leading and trailing nucleation probabilities. The probabilities for these events
may be derived from the proportion of leading (R™) and trailing (R ™) nucleation rates to the total

rates (R) summed over all nucleation sites in the kMC model:

., _RY (1—F = 2np)Ef + 2%, ni By (58)
= — — — — — a
R (1—F=2np)Ef + 2%, n (Egyq + E) —E7
R~ 2Y . n Er —nEf
p- = Zk k*k 1+1 (Sb)

R~ (I—F - 200)E; + 25, ni (Bfyy + Ep) — iEy
where E,"~ is the relevant leading or trailing barrier coefficient such that E,'~ =

+,- Ng

-Vr Yk Ni
expi——E, }andn =—andnp = =
p {kBTb112 k J k=N F

N ..
WF are the fault number densities. n;, represents

the density of single (k = 1, ISFs) and multi-layer faults (k > 1, ESFs and TFs) and ng is the total
fault number density. Faults thicker than three layers are counted towards n,, and evaluated using
the barriers E and Ex, which is consistent with kMC methods. The second term (third term) in
the numerator (denominator) of Eq. (5) avoids double counting of trailing nucleation from an ISF,

which only has one nucleation site (see Fig. 1a). For further details on the derivation of Eq. (5),
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the reader is referred to our earlier work [35], which examines the competition between
deformation twin nucleation and thickening using a related approach.

The partitioning of plastic strain amongst the mechanisms of deformation twinning and
dislocation slip can be determined using the parameters defined for the evolution of the fault
fraction. The dislocation slip strain (ys) is incremented through the operation of trailing
dislocations, with the probability of these events defined by P~. The increment to the dislocation
slip strain is counted as twice the partial strain increment, to account for the prior operation of the
leading partial that then contributes to the dislocation slip mechanism. The deformation twinning
strain (y ) can then be calculated from the difference of the total plastic and dislocation slip strains,

which leads to the following set of relations:

—— =2P"—— =P~ [=|dF|max (6a)
YFr=VYp — Vs (6b)

Evaluation of Egs. (3)- (6) requires a series of evolution rules for the fault number densities.
We consider two outcomes that can alter the number of faults — namely, the nucleation of leading
and trailing partial dislocations. As in Eq. (3), the evolution in the number of faults with plastic
strain is described by an additive relation:

dng  dngdN, dnpdN,
dyp dNpdyp dN,dyp

(7

dnf dng [N . .
where # and # are related to the probabilities of an increase or decrease in the fault number
1 1

density, respectively. To model the probability of an increase in the number of faults, we consider

the comparative kinetics of these outcomes as deformation proceeds. That is, an increase to ng

15



only occurs when a leading partial dislocation is nucleated in a defect-free area of a crystal and a
decrease to ny is accompanied by the nucleation of a trailing partial dislocation at an ISF. The

relevant quantities are defined as follows:

dnf 1 (1—F —2np)Ef (83)
= = - - — — a
dN,  N@Q—F—=2np)Ef +2F,ne(Efyy + Ep) —mEr
dng 1 2nEy
Fo_ 1£4 (8b)

dN, N(l—F—ZnF)Ef+22knk(E,j+1+E,;)—n1E1‘

In order to solve Egs. (8a) and (8b), a rule for the evolution of is n;, required, which is described

by the following relations:

dny 1 (1—F —2np)Ef +2nE; — 20y E; —myEy

_1 "/ _ £ — k=1 9a
dN, N1 —F —2np)Ef + 2% m(Egyq + Ep) —ngET Y
dny _ 1 an—ﬂ?};r + an+1Ek_+1 - anEI—cF+1 - ang’; k=23 (9b)
AN, N(1-F=2np)Ef +25m(Efy + E) —mEr

Moy = Np — Ny — Ny — M3 (9c)

which accounts for the change in the number densities of the various fault structures due to fault
nucleation/thickening or detwinning/slip processes.

The ratio of the probabilities for leading and trailing partial dislocation nucleation is also of
interest, given the influence that these parameters have on mechanism competition. We define here

the competition parameter (1) as the ratio of leading and trailing probabilities as:

0= In (P_+) — <(1 - F - an)liﬁf + ZZ_k nkEI:—+1>
- 2 Yk —nEy

(10)

Examination of Eq. (10) offers interesting insights. Leading dislocation nucleation is favored
16



when 1 > 0 and trailing dislocation nucleation is favored when n < 0. Therefore, this simple
criterion enables facile tracking of deformation tendencies over extended plasticity. Given the
relevance of leading/trailing nucleation to the mechanisms of deformation twinning and
dislocation slip, this parameter may also be viewed as a measure of mechanism competition.
Indeed, the relevant process barriers (e.g., E;,ES,E{ and E;) in the competition parameter

contain the GPFE parameters (i.e., y&sf, yzisfo Yiss) that are found in many of the incipient

twinnability parameters available in the literature [3,4,6,7]. In addition to these variables,
additional parameters appear (i.e., F, ng, and ng) that account for the evolution of the mesoscale
defect structures during deformation. In this regard, this competition parameter combines two
distinct components - intrinsic material properties and microstructure parameters — to examine the
evolution of mechanism competition from its measure of nucleation preferences for
leading/trailing dislocations.

Collectively, the kMC model and analytical relations developed in this section offer a direct
method to evaluate the evolution of deformation mechanism competition in FCC metals, as defined
by their intrinsic metallurgical properties. Nonetheless, it is important to acknowledge some of the
limitations of this approach. Namely, this method inherently assumes homogeneous deformation,
which does not account for microstructural features that may bias deformation (e.g., crack-tips,
grain boundaries, and other defects). Single crystal systems with small volumes (i.e., very low
defect densities) present the closest physical representation of this model, with nanowires offering
one example. In addition, our method considers a single twin/slip system in its formulation.
Caution must therefore be exercised when applying this approach to more complex deformation
patterns and microstructures such as those that underpin mechanism competition in polycrystalline

aggregates.
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3. RESULTS AND DISCUSSION

The kMC model described in Section 2.1 is implemented to study the mechanism competition
in a variety of crystal sizes for Ag, Au, Cu, and Al. The results for kMC systems measuring 60b; 4,
by 200d,1; for Ag, Au, and Cu form the basis of the analysis presented in the main text. kMC
simulations of Al do not exhibit deformation twinning but are provided in the supplementary
material to demonstrate how the kMC model also captures pure dislocation slip behavior (see
supplementary material Figure S-2). Each kMC simulation condition has been replicated 500 times
for statistical sampling and was observed to converge well below the replication limit (see
supplementary material Figure S-3). All error bars are reported as +1 standard deviation. All
contour plots are normalized from a binning strategy performed on the kMC simulation results.
The raw kMC data is binned along the x and y axes of the plot and bin counts are presented as
normalizations of the maximum measurements along the plot ordinate. The coupled analytical
equations from Section 2.2 are sequentially solved using the 4™ order Runge-Kutta numerical
method. Additional results examining kMC size effects are provided in the supplementary material
Figure S-4 and Figure S-5.

3.1. Mesoscale evolution of deformed microstructures

Representative snapshots of the kMC simulation cell at several stages of plastic deformation
are shown in Fig. 2 for Ag, Au, and Cu. The shaded stroke represents regions where a fault is
currently present. As anticipated, several fault structures (i.e., ISFs, ESFs, and TFs) are
progressively nucleated and annihilated during plastic deformation. Ag exhibited the highest
storage of faults, whereas faults nucleated in Cu were found to be rapidly annihilated by the
emission of a trailing partial dislocation. Videos of the evolution of deformed microstructures with

increasing plastic strain are made available as supplementary videos. The deformation processes
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and morphologies presented in Fig. 2 are supported by tensile experiments of single crystal
nanowires [38,48]. Although experimental studies inherently probe loading orientation factors
(i.e., Schmid effects), which are intentionally neglected herein, single-crystal nanowires represent
a reasonable system for comparison to kMC simulations as they possess analogous boundary
conditions (i.e., free surfaces). Within this context, Ramachandramoorthy et al. [48] observed the
nucleation and storage of thin twin lamellae ( < 5d;41) in nanotensile experiments of single crystal
Ag nanowires. Lee et al. [38] observed partial dislocation-mediated twinning and detwinning
mechanisms in Au nanowires subjected to cyclic tensile/compressive loadings. These experimental

reports correlate well with the deformation structures observed in kMC simulations.
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Fig. 2: Snapshots from kMC simulations at plastic strains of 0.05, 0.1, 0.15, and 0.2 for Ag (a), Au (b), and Cu (c).
The shaded stroke in the kMC cell indicates the presence of a fault. For Ag, the simulation cell is segmented by
several fault structures. By contrast, deformation in Cu is more slip-dominated and planar faults are readily
annihilated by the nucleation of trailing partial dislocations. This representation of the faulted region follows the
schematic presented in Fig. 1a, but the leading and trailing dislocations at the boundaries of the faulted regions are
not shown for clarity of presentation.

The evolution of the fault fraction with increasing plastic strain for Ag, Au, and Cu is plotted
in Fig. 3. The raw data from all replications of the kMC simulations are provided as normalized
contours, as described above, and the averaged data is plotted using the relevant markers.

Analytical predictions from the model defined in Section 2.2 are plotted in dashed stroke. In each
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material, a monotonic increase in the fault fraction is predicted, with Ag exhibiting the highest
fault storage. The analytical model is in excellent agreement and captures the critical features of
the kMC simulation data. In each material, the rate of increase in the fault fraction is highest at the
incipient stages of plasticity and approaches a linear relation at higher plastic strains. Cu and Au
exhibit only modest increases in the fault fraction after the early stages of plastic strain 0.01-0.05
plastic strain, whereas Ag tends to continue to store faults at higher strains, albeit at a reduced rate.
This behavior is in line with the experimental literature, which reports a steep increase in the twin
fraction during early plastic events [8]. In the case of Cu, a noticeable asymmetry exists in the
binned kMC data, where the average response deviates significantly from the most common fault
behavior. Since the fault fraction cannot be negative, this asymmetry arises due to the preference
for the removal of fault structures in Cu over extended deformation, which produces frequent
system configurations at F = 0.

Results for the evolution of the deformation twinning-accommodated strain are provided in
Fig. 4. The agreement between model predictions and the kMC datasets is again excellent. As
anticipated from the results of Fig. 3, Ag accommodates the most plastic strain by deformation
twinning. Indeed, the evolution of yr maps closely to the development of F, which reflects their
correlation through the trailing nucleation probability term, P~, and the relations of Egs. (4) and
(6). Fig. 5 presents the evolution of the fault number density for each material in the study.
Analytical predictions from the model defined in Section 2.2 are plotted in dashed stroke. For each
material, the model predictions of fault number density match the kMC averages very closely. In
each system, a monotonic increase in the fault number density is predicted as deformation
proceeds. This behavior correlates well with the results of fault fraction and plastic partitioning

calculations. Additional results showing the kMC data and model predictions for various fault
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density morphologies (i.e., ny) are provided in the supplementary material Figure S-6.
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Fig. 3: The evolution of the fault fraction as predicted by kMC simulations is overlaid with the analytical model
(dashed lines). The data is plotted for Ag (a), Au (b), and Cu (c). The average kMC data is plotted as markers. Error
bars represent 1 standard deviation over 500 replications of the kMC simulation. The contour plots are color-
coded using a normalized counting scheme implemented along the ordinate axis. See the main text for further
details.

22



oogf © Au
¢ Cu
0.06f =--- Model
0.04F

0.02f

0.051 1.0

(b)
0.041 0.8
0.03 0.6

T

0.02} 0.4

Norm. counts

0.01f 0.2

0.0

0.03y

(c)

0.02f

0.01f

Fig. 4: The evolution of the plastic strain accommodated by twinning/fault formation over extended deformation
for Ag (a), Au (b), and Cu (c). The average and standard deviation of kMC results are plotted in markers and error
bars, respectively. The results of model calculations are overlaid in dashed stroke. The normalized counts of kMC
replications are collected as described in the main text.

The ability of the analytical model to capture the evolution of defect structures over extended
plasticity is perhaps the most notable outcome of these results. Indeed, using only process barriers
derived from the GPFE landscape, we have developed a methodology that can predict the
partitioning of plastic strains between the mechanisms of deformation twinning and dislocation

slip for several FCC materials. This physical description of strain partitioning is free from
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empirical fitting and is therefore anticipated to improve the phenomenological relations currently
implemented in work hardening and crystal plasticity models. Examples, where a direct
application of this approach would be beneficial, are found in the dislocation storage work
hardening models of Bouaziz and coworkers [25-27] and deformation-twinning crystal plasticity

models [58-60], among others.
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Fig. 5: The evolution of the fault number density as predicted by kMC simulations is overlaid with the analytical
model (dashed line). The data is plotted for Ag (a), Au (b), and Cu (c). The average kMC data is plotted as markers.
Error bars represent +1 standard deviation over 500 replications of the kMC simulation. The raw kMC simulation
data is shown in the contour plots. The contour plots are color-coded using a normalization scheme implemented
along the ordinate axis. See the main text for further details.
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3.2. Evolution of mechanism competition under extended deformation

The excellent agreement between kMC simulations and analytical modeling motivates an
examination of the evolution of mechanism competition in FCC metals over extended plastic
deformation. Fig. 6 presents the evolution of the competition parameter, #, with the fault fraction.
The analytical definition of # (Eq. (10)) is plotted in dashed stroke for each material. The average
kMC data is provided as markers and the data distribution is represented as contours. As shown in
the figure each of the materials exhibits a reduction in the competition parameter with increasing
fault fraction. This finding is intuitive, as additional activation sites become available for trailing
dislocation nucleation when more fault structures are present. The competition parameter is
observed to be the largest for Ag across all fault fractions, whereas it quickly decreases towards
parity for Cu and Au. The average and most common occurrences in the kMC data are well-

captured by the analytical model for each material under study.
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Fig. 6: Average kMC predictions (markers) for the competition parameter are overlaid with the analytical model
(dashed line). The data is plotted for Ag (a), Au (b), and Cu (c). The contour plots show the raw kMC data and are
normalized relative to the maximum bin values at increasing fault fraction intervals. See the main text for details.
The results of the analytical model are in excellent agreement with the average and contour data from kMC
simulations.

Taking the nucleation of leading/trailing dislocations as representative of competition between
deformation twinning and dislocation slip tendencies, the analytical model provides an excellent
platform to compare against existing twinnability parameters in the literature. This comparison is
particularly strong in incipient stages (i.e., after nucleation of the first fault), where the system
configurations across all parameters are similar. For this purpose, we have plotted # against the

twinnability parameters of Jo et al. [7], Jin et al. [6], Asaro and Suresh [5], and Tadmor and
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Bernstein [4] in Fig. 7. The incipient values of n are plotted with markers, and the demarcation
between twinning-dominated and slip-dominated behavior is denoted in a dashed stroke. Incipient
data for Al has also been included to show alignment with other twinnability parameters in the
slip-dominated regime. As Al does not exhibit any meaningful fault storage, the range of values
for the competition parameter overlap within a single marker. Comparison with the literature
parameters yields several interesting results. For instance, the ranking of Ag as the material with
the highest twinnability is common across all literature parameters. However, the sequencing of
Au above Cu is unique to our calculations. This outcome finds support from several sources in the
literature. For example, wire drawing experiments from English and Chin show that deformation
twinning initiates at much lower stresses in Au than in Cu [61]. Furthermore, this discrepancy in
twinnability predictions and twinning stress data is noted by Tadmor and Bernstein [4], but remains
unresolved by their study. This improvement is a result of the additional microstructure features
(i.e., ny) and GPFE landscape barriers (i.e., E;' ", E&) considered in our parameter, which are
absent in previous works. We also note that n returns the same conditional inequalities as other
twinnability parameters when the microstructural evolution parameters are omitted, and process
barrier definitions are aligned. For instance, Jo et al. [7] examined single-site twin thickening and
trailing partial nucleation after ISF emission with process barriers of %, where 6 is the angle
between the Burger’s vectors of dislocations. For 6 = 60° (i.e., conjugate leading/trailing partial
dislocations) considered at comparable incipient conditions (F = %,nl =ngp = %, 1—-F—
2np = 0 (i.e., new ISF nucleation disallowed)), and using the transformation yﬁsf ~ y&sf +

Yisf

%yis 7 [6], 7 predicts twinning when ————

< 2. This is the same twinning inequality presented
Yusf~ Visf

by Jo et al [7]. Through the development of this parameter, we have demonstrated a method to
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predict the twinnability of FCC metals by separately weighing the contributions of process barriers
and deformation history to defining the competition between deformation mechanisms. In a broad
sense, this outcome expands the application of the twinnability concept to describe the evolution

of deformation twinning and dislocation slip in deformed microstructures.
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Fig. 7: (a) Model predictions for the evolution of the competition parameter over extended deformation is re-plotted
for comparison purposes for Ag, Au, and Cu. (b) The competition parameter (1) is compared against the parameters
of Jo et al. [7] (c), Jin et al. [6] (d), Asaro and Suresh [5] (e), and Tadmor and Bernstein [4] (f). The dashed line
demarcates twinning- and slip-dominated regimes. Incipient data is plotted as a marker for each material and the
incipient data for Al (slip-dominated) is provided for comparison.

4. CONCLUSIONS

The competition between deformation twinning and dislocation slip has been studied for four
common FCC metals (Ag, Au, Cu, and Al) using kMC simulations. In contrast to previous efforts,
which examine only incipient events, the evolution of mechanism competition has been considered
over extended plastic deformation. Kinetics in kMC simulations are informed directly by the
critical features of the GPFE landscape and therefore provide an intrinsic comparison of

mechanism competition. From the kMC simulation data, the evolution of the fault number density,
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fault fraction, and the partitioning of plastic strains between deformation twinning and dislocation
slip mechanisms was measured. Results from these efforts show that Ag exhibited the highest
storage of faults and the largest deformation twinning strain over the entire deformation range
studied. Based on kMC results, an analytical framework has been developed to provide a physical
model for the mesoscale evolution of defect structures in FCC crystals. Predictions from this model
find excellent agreement with kMC simulations. In addition, the relations of this model were used
to define a competition parameter that can be used to examine the evolution of mechanism
competition in FCC metals over extended deformation. Predictions from this parameter align with
experimental data showing the higher twinnability of Au relative to Cu, which is not captured by
existing twinnability descriptors. The outcomes of this study expand the applicability of
deformation twinning theory beyond incipient plasticity and provide the community with relations
for the evolution of the fault fraction and fault number density, and the strain partitioning between
deformation twinning and dislocation slip mechanisms. These relations are free from empirical
fitting constants and may be implemented to improve current work hardening and crystal plasticity
models, which have previously relied on phenomenology.
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