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Abstract—The one-bit quanta image sensor (QIS) is a
photon-counting device that produces binary measurements
where each bit represents the presence or absence of a
photon. The sensor quantizes the analog voltage into the
binary bits using a threshold value gq. The average number
of ones in the bitstream is known as the bit density and is
the sufficient statistics for signal estimation. An intriguing
phenomenon is observed when the quanta exposure is at the

unity and the threshold is g = 0.5. The bit density demonstrates an insensitivity as long as the read noise level does not
exceed a certain limit. In other words, the bit density stays at a constant independent of the amount of read noise. This
article provides a mathematical explanation of the phenomenon by deriving conditions under which the phenomenon
happens. It was found that the insensitivity holds when some forms of the symmetry of the underlying Poisson—Gaussian

distribution hold.

Index Terms— Bit density, quanta exposure, quanta image sensor (QIS), read noise, signal processing, single-photon

image sensor, statistical estimation.

[. INTRODUCTION

HE quanta image sensor (QIS) is a photon counting
device first proposed by Fossum in 2005 as a candidate
solution for the next-generation digital image sensors after
the CCD and CMOS image sensors (CISs) [1], [2], [3]. QIS
can be implemented using various technology including the
single-photon avalanche diodes (SPADs) [4], [5], [6], [7], [8],
[9], [10], [11] and the existing CMOS active pixels [12], [13],
[14], [15] by reducing the capacitance at the floating diffusion.
As reported in 2021 by Ma et al. [16], the latest CIS-based
QIS has achieved a resolution of 16 M pixels with 0.19¢— read
noise, where the pixel pitch is 1.1 um. This offers a compet-
itive solution to a variety of photon counting applications in
consumer electronics, medical imaging, security and defense,
low-light photography, autonomous vehicles, and more.
One of the features of the QIS is its capability to gener-
ate one-bit signals by accurately measuring the presence or
absence of a photoelectron [17], [18], [19], [20]. In CIS, the
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signals are mostly 12-bit to 16-bit digital numbers converted
by the analog-to-digital converter of the voltage. In QIS,
instead of reporting a multibit digital number, each jot reports
a binary value of either 1 or 0. The density of the 1s is related
to the underlying photon flux—brighter scenes will have more
1Is and darker scenes will have more Os. With an appropriate
image reconstruction algorithm such as [19], [21], [22], [23],
and [24], the image can be computationally recovered.

As a historical remark, when QIS was first proposed,
it was also known as a digital film as it is reminiscent to
a silver halide film where the density of the crystalized silver
molecules determines the brightness of the scene [2]. If we plot
the bit density as a function of the quanta exposure, also known
as the D-logH curve in Fig. 1, there is a surprising match with
the very first curve made by Hurter and Driffield [25].

A. Quantization Threshold of QIS

The subject of this article is related to the quantization
threshold of a one-bit QIS. The starting point of the problem is
the familiar Poisson—Gaussian distribution! where we denote
the measured analog voltage as a random variable X

X ~ Poisson(#) + Gaussian(0, o). (1)

Here, 6 is the quanta exposure which is also the average
number of photons integrated over the sensing area and
exposure time, and o is the standard deviation of the read

I This article follows the statistical signal processing literature by denoting
the Poisson parameter as 6. In the sensor’s literature, this parameter is often
known as the quanta exposure and is denoted by H [27].
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Fig. 1. Surprising similarity of the D-logH curve of a QIS and the

photographic plate Hurter and Driffield used in 1890. (Left) Simulation
of the QIS. (Right) Curves reported by Hurter and Driffield [25]. A similar
comparison was presented in [26].
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Fig. 2. Probability density function px(x) of the Poisson—Gaussian
random variable X with 6 = 1 and several values of o. The gray shaded
region denotes the states X > q for g = 0.5, which is also equivalent to
Y = 1. The unshaded region corresponds to Y = 0.

noise. The probability density function of X is the convolution
of the Poisson part and the Gaussian part, leading to a familiar
equation [27]

>, oke=? 1 (x — k)2
px(x) = %T : WCXP[—T]- 2

Fig. 2 shows a pictorial illustration of this probability density
function px(x) for 6 = 1 and ¢ = 0.2. If the read
noise o increases, the individual Gaussian peaks will start to
merge. When o is too large, two adjacent peaks will become
indistinguishable.

The one-bit QIS produces a quantized version of the signal
X by comparing it with a threshold ¢

15
Y =
Oa

For example, in Fig. 2, we set the threshold as g = 0.5.
Since Y is a binary random variable, its probability masses
can be determined. All the probabilities in the shaded region in
Fig. 2 will be merged to give the probability mass for ¥ = 1,
and the unshaded region will be merged to give the probability
mass for Y = 0. Mathematically, the probability distribution

X>gq,

X <gq. ®)

of Y follows the integral:

pr(1) =/ px(x) dx
q

/Wiekﬂ 1 ep[ (x—k)2]d
= c—eXp)———— X,
q k' ,\/27-[0*2 202

k=0
1 = e 70k q—k
= — erfc 4
2w (%) @
and py(0) = 1— py (1), where erfc is the complementary error
function.

The statistical expectation of the random variable Y, i.e.,
E[Y], is called the bit density D. The bit density measures the
average number of 1s that the random variable Y can generate.
In statistical estimation, bit density is the sufficient statistics
for solving inverse problems [28].

The mathematical expression of the bit density is straight-
forward. Since Y is binary, it follows that:

DEE[YI=1-py(1)+0- py(0)

= pr(D)

e¢]

I o —k
iy erfc(qﬁa). (5)

k=0

Note that D is a function of the threshold ¢, the read noise
o, and the underlying exposure 6.

B. Unexpected Observation

Consider a threshold ¢ = 0.5. If we plot the bit density as
a function of 8, how does the plot look like?

Without much deep analysis, we can quickly anticipate that
in the extreme case when the read noise is o = 0, the error
function erfc(-) will become a step function, and hence the bit
density will be as simple as

D*=>" 0 . (6)

k=1

As 0 increases, the bit density D* also increases. If we plot
the function in the semilog-x scale, it will look like one of
the curves shown in Fig. 3.

Now, consider the case where the read noise o is no longer
zero. Fig. 3 shows a few of these cases. The observation is
that regardless of the read noise level o (at least for o <
0.5 considered in this plot), the bit density at 8 = 1 appears
to be a constant. In other words, it appears that there is an
insensitivity of the bit density to the read noise.

The insensitivity to the read noise implies that if we set
the threshold to ¢ = 0.5 and observe an average bit density
that is equal to D* = 1 — e~ ! then it is guaranteed that the
underlying exposure is & = 1. So, the insensitivity to the read
noise has the potential to offer a perfect estimate of the analog
signal by just using the digital measurements that have been
severely quantized.

The above observation was first mentioned by Fossum [29].
The intuitive argument was that when o is sufficiently
small, the symmetry of the Poisson and the Gaussian will make
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Fig. 3. Bitdensity D as a function of the exposure 6, for different levels of
read noise. The threshold is chosen as g = 0.5. Note that when 6 = 1,
the bit densities of different read noise all intersect at the same point.
The goal of this article is to mathematically explain this phenomenon
and provide conditions under which the intersection occurs.

the loss of probability mass before the threshold compensated
for the gain of the probability mass after the threshold. For this
phenomenon to hold, it was mentioned that ¢ < 0.5 would be
a sufficient condition. This article is a follow-up work of [29],
where it was commented that “This interesting insensitivity
has been proven mathematically by Chan after a discussion
of this paper.” Here, we present the proof by answering two
questions.
1) Where does the insensitivity of read noise come from?
Is there a mathematical proof of the existence?
2) Under what conditions will the insensitivity exist? Will
the insensitivity exist for exposures other than 6 = 1 and
thresholds other than ¢ = 0.5?

C. Other QIS Threshold Analyses in Literature

The analysis of the threshold of one-bit QIS has been
reported in various occasions since early 2010. In the first
theory article Bits from Photons by Yang et al. [30], it was
shown that when the threshold is ¢ = 1, the standard
maximum-likelihood estimation of the underlying quanta
exposure 6 will achieve the Cramer—Rao lower bound asymp-
totically. Thus, unless the exposure is so strong such that
the jots are completely saturated (which can be avoided
using a shorter integration time), a threshold ¢ = 1 would
be sufficient. A generalized analysis was then presented by
Elgendy and Chan [20], where they showed that the optimal
threshold g should be configured to match 6, i.e., ¢ = 6. The
optimality is based on the statistical signal-to-noise ratio, but
one can also derive the same result using entropy [28].

As far as algorithms are concerned, a few threshold update
schemes have been proposed using Markov chain and other
statistical techniques [31], [32]. The algorithm presented
in [20] uses a bisection approach by checking the percentage
of ones and zeros.

For the SPAD-based QIS, the interaction between the
threshold and the read noise is irrelevant because an SPAD
has zero read noise. However, the large dark current is a

bigger challenge for the SPAD-based QIS, although recent
advancements in SPAD have demonstrated improvements in
dark current [33], [34]. For SPAD, there are more considera-
tions about the dead time [23]. On the algorithmic side, the
SPAD-based QIS largely shares the same mathematical results
as the CIS-based QIS [23], [35]. The bigger question, which
is not the subject of our present article, is the scene motion.
The work by Ma et al. [24] gave a good assessment of how
much image reconstruction can we expect using the image
registration techniques. Another line of work about using the
SPAD-based QIS for high dynamic range imaging can be
found in [36] and [37].

In the electronic device literature, the focus is slightly
different. Instead of analyzing the quantized Poisson statistics,
the interest is about stabilizing the threshold to a fixed value,
say ¢ = 0.5. The motivation is that the common-mode voltage
of the jot output fluctuates, leading to a strong jot-to-jot
variation in the D-logH curve. New sensor architectures were
invented to improve the uniformity of the threshold [38], and
new calibration techniques are developed to characterize the
conversion gain and read noise [39].

The present article is a mathematical analysis of the thresh-
old. Specific considerations are put into the presence of read
noise which were not analyzed in the previous theoretical work
such as [20] and [30]. The theoretical results are also different
from what are recently reported in [28] and [40], where the
focus was about deriving the signal-to-noise ratio. The math-
ematical tools developed in this article and their associated
conclusions are complementary to hardware solutions such
as [38], [39] and [41].

1. MAIN RESULT

A. Statement and Numerical Inspection

The main result is stated in Theorem 1. The theorem
provides a mathematical condition under which the constant
bit density D can be observed. The theorem also predicts
that when the read noise is above the limit predicted by the
theorem, the bit density will drop.

Theorem 1: Define the bit density of a 1-bit Poisson—
Gaussian random variable as

1 = e 90k —k
D=—- Z ¢ erfc A . @)
2 = k! V20
Suppose 6 = 1 and ¢ = 0.5. Then, for any o < 0.4419
D~1—e ' ¥ p* (8)

where the approximation is measured such that the relative
error (D* — D)/D* < 0.0001.

The approximation above uses a relative error (D* —
D)/D* < 0.0001. It means that as long as the read noise o
does not exceed 0.4419, the bit density will be sufficiently
close to D* up to a relative error of 0.0001. If we want
a smaller relative error, the corresponding read noise upper
bound needs to be reduced, as shown in Table 1.2

2The derivation of these numbers is based on (24) which will be given in
the proof. The idea is to substitute the relative error o to obtain o.
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TABLE |
RELATIVE ERROR AND THE CORRESPONDING o
relative error o upper bound o | relative error «  upper bound o
1073 0.5550 10~8 0.2781
1074 0.4419 1079 0.2589
10=° 0.3768 10-10 0.2432
106 0.3335 10~ 0.2299
107 0.3021 1012 0.2187
0.64

Bit density D
o o
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o

0.59
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Read noise o

Fig. 4. Bit density D as a function of the read noise standard deviation
o. Shown in this plot is the case where 6 = 1 and g = 0.5. When
o < 0.4419, the bit density stays at the constant 1 — e~'. This implies
the insensitivity of the bit density to small read noise.

Before proving the theorem, it would be useful to inspect
the validity of the theorem. Fig. 4 shows the bit density D
as a function of the read noise standard deviation o. As o
increases, the bit density decreases. There exists a theoretical
cutoff ¢ < 0.4419 such that the bit density stays at the
constant 1 —e~!. Therefore, as long as the read noise is small
(o < 0.4419), the bit density is insensitive to the read noise.
However, if the noise level grows beyond o = 0.4419, the
bit density will no longer stay as a constant, as is evident
in Fig. 4.

B. Mathematical Tools

The proof of the main theorem requires several elementary
probabilistic tools. To make the calculus well-defined, the
variable k is relaxed from being integers to real numbers.

The first one is the relationship between the complementary
error function (er fc) and the cumulative distribution function
(cdf) of the standard Gaussian.

Lemma 1: The complementary error function can be writ-
ten equivalently through the cdf of the standard Gaussian

e (V) = [ e[| 4
—eric|{ —— | = —eX = 7
2 V20 q 2702 P 202 y

d:efl—CD(q_k) 9)

o

where ®(-) is the cdf of the standard Gaussian, defined as

X 2
CI>(x)=/ Lexp[—y—] dy.

—o0 N2 2
Proof: Note that 1 — ®(x) = [>Z(1/@2m)!/?)
exp{—(y2/2)} dy. Then by letting x = (¢ — k)/o, the result

is proven. (]
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Fig. 5. Complementary error function erfc(x) and cdf ®(x) are related
by an amplitude and time scaling.
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Fig. 6. Black and red curves are the two Gaussian probability density
functions centered at g and k, respectively. The figure highlights the
equivalence between the two shaded areas.

The shape of the complementary error function and the cdf
is shown in Fig. 5. They are related by a simple amplitude
and time scaling.

The next lemma is about flipping the roles of g and k in the
Gaussian distribution. This allows us to recenter the Gaussian
to ¢ and evaluate it up to k.

Lemma 2: The cdf evaluated with respect to g can be
switched to the cdf evaluated with respect to k

[ ol
———exp|———— dy
q ~2mo? 202

o (v — q)?
[ el 25

Proof: The left-hand side is 1 — ®((¢ — k)/o), whereas
the right-hand side is ® ((k—¢q)/o). Since ®(x) = 1 —d(—x),
the equality in (10) is proven. ]
A direct consequence of the lemma is that the error function
in (9) can be simplified to 1 — ®((¢ —k)/o) = ®((k—q)/0),
which is the Gaussian cdf with mean of g evaluated at k.
The intuition can be seen from Fig. 6. The integral on the
left-hand side of (10) is the black curve which is a Gaussian
with mean k = 4. The area under the curve is colored in gray.
The integral on the right-hand side of (10) is the red curve
which is a Gaussian with mean ¢ = 5. The area under the
curve is colored in pink. The lemma asserts that the area of
the gray region is identical to the area of the pink region.
The third mathematical tool is the derivative of the cdf.
Lemma 3: The derivative of the cdf is

_w—wq

202

1
v )]: W"Xp[ (an

If the derivative is evaluated at k = g, then the exponential
term is eliminated, leaving a constant (1/ QroH)l/?).
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Proof: The proof goes as follows:

d | k—q) d [F 1 (v —q)?
ﬁ[q)( o )]_E/oo 2n02exp[— 202 ]dy
@ |1 (k —g)*
= exp [——202 ] (12)

where (a) is due to the fundamental theorem of calculus. [

C. Proof of Main Result

The key idea of the proof is to zoom into the transient of
the Gaussian cdf and evaluate the residue compared with an

ideal sharp cutoff.
First, define the following notations:
k —
@ (—q) .
o
To make the bit density D explicitly depending on the read
noise o, we use Lemmas 1 and 2 to define D(o) as
1w e 0k —k
- Z ¢ erfc a
24 k! V2o
0 et ek
- (
When the read noise is zero, i.e., 0 = 0, the Gaussian part
Gs (k) will become a unit step function with the transition

occurring at g = 0.5. The bit density D(o) in this case is the
ideal bit density such that

ke—9

Pothk) = ——.

and Gy (k) = (13)

D(o) =

) Z%®%® (14)

k=0

D* = D(0) = (15)

> Py(k)
k=1

where the summation starts at k = 1 (instead of k = 0) if the
threshold is g = 0.5.

Since the read noise insensitivity is the phenomenon that
D(o) ~ D*, any error made in such approximation needs to
be measured by

> Potk) = D Pa(k)Go (k)

k=1 k=0

Z%w hm%w+2mm%®}

k=1

— D(o) =

=29®aﬂmm—%®%@. (16)

Therefore, the task now becomes how to evaluate the sum.

Fig. 7 shows the behavior of the infinite sum for the case
g = 0.5 and 6 = 1. For entries with the index k > 3, it is
almost sure that the ideal Gaussian cdf Gy (k) is identical to the
actual Gaussian cdf G, (k) for any reasonably small o. That
is, the pink color region is exactly the same as the region
covered by the red stems for any k > 3. Thus, for k > 3, one
should expect that the residue D* — D(o) can be completely
described by the terms with k = 0, 1, 2 only.

I
K

o(k), ideal
— Gu(k), actual
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Fig. 7. Behavior of the Poisson part Py (k) and the Gaussian part G (k)
forc=0.8and 6 = 1.

The precise relationship between k and o is given as

follows. Note that
k — 3—
o o

because @ (-) is monotonically increasing. Setting ¢ = 0.5 and
®((3 — g/o)) > 0.999 will give ¢ < ®~1(2.5) = 0.8090.
Therefore, for all o < 0.8090 and k > 3, G, (k) > 0.999, the
term G, (k) will be at unity for kK > 3. Thus, G, (k) ~ 1, and
so the infinite sum in (16) can be simplified to just the terms
for k =0, 1, 2. This means

Go (k)

— D(0) = D Po(k)(1 — Gy (k) — Py(0)G, (0)

k=1

= > Pok)(1 = Gy (k)
k=3

=0

2
+ D Pok)(1 = G (k) — Py(0)G5 (0). (17)

k=1

The finite sum can be broken down into two parts: k = 0, 1,
and k = 2. Consider the term k = 1

Po(D(1 = Go (1)) — Py (0)Go (0)

=Py (1) = (Po(1)Gs (1) + Py(0)G5 (0)).  (18)
However, note that Pg(1) = P»(0) when 6 = 1 because
1,-0
Poty = 2 le' — ¢!
90 —6
Pp(0) = g! —e . (19)

Also, note that G, (0) = 1 — G5 (1) when g = 0.5 because

0-05 -05
o o

Gy (1) = c1>(1 _0‘5) = @(E).
o o

(20)
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Using these two facts, it follows that: ! ! // |
o8- s fER S P
Po(1)Go (1) + Py (0)G5 (0) z | |
= Po(1)Gs (1) + Po(1)(1 — G (1) g/ e e
Q | |
- co4f S+ b
=Ps(1) 2 | |
and so the right-hand side of (18) is zero. 0.2 —/r —— —3 ——————— ::;t::x?n::;)oz =1,94=05
Based on the above observations, the residue is essentially 0 / | \
determined by the term k = 2 0 0.5 K 1 15

2
D* = D(0) = >_ Pa(k)(1 = G5 (k) — Ps(0)Go (0)

k=1

= Pe(2)(1 — G, (2)). @1

To this end, setting a tolerance level @ = 0.0001, the criteria
will become
%
D* — D(o) u
D* -

which implies D* — D(0) < aD*. Using (21), one can show
that Py(2)(1 — G,(2)) < aD*. Rearranging the terms will
yield

(22)

*

Go(2) > 1— . 23
2 ) (23)
Since G5 (2) = ®((2 — q/0)), it follows that for g = 0.5
2—¢q
0 < — ~ 04419 24)

.| _ aD*
o1 (1- #5)
where 6 = 1, Pg(2) = 6%¢79/21 =0.1839, D* =1 — ¢~ =
0.6321, and @ = 0.0001. This completes the main proof.

D. Alternative and (Coarser) Estimate

The result in (24) is arguably intimidating. Thus, it would
be useful to obtain a slightly more “civilized” version. The
goal here is to derive a simpler estimate of o.

Corollary 1: Under the same conditions as Theorem 1,
if o < 1/(2m)"/? ~ 0.4, it holds that D(c) &~ D*.

Proof: The intuition is to use a piecewise linear function
to approximate the Gaussian cdf as shown in Fig. 8. The linear
portion approximates the cdf as

def =

Go (k) = ® (";—q) ~ak +b% G, (k) (25)

where a is the slope to be determined, and b is the y-intercept
to be determined.

To determine the piecewise linear function, first consider
the slope of ®((k — ¢g/0)). By Lemma 3, it is known that

d (k=4 L (k — q)*
JR— = X — .
&k \ o VamoZ P T T 52

The function ®((k — g /o)) is symmetric at k = q. Atk =g,
the slope is

d k—gq
- 29
4T Uk ( o )

(26)

1
= /imo? @7

q=k

Fig. 8. Function G5 (k) when 6 =1, g= 0.5, and ¢ = 0.2. The transition
point can be theoretically derived.

The y-intercept is chosen such that the linear function is
0.5 when k = ¢, i.e., ag + b = 0.5. This gives

q
b=05-— . (28)
V2mo?
Therefore, the cdf is approximated
0, k=<¢,
e _ | g
Got) = { () b+ (05— ), t<k=u @9
1, k>u

where ¢ and u are the lower and upper limits, respectively.
The upper limit can be determined by evaluating the expres-
sion when ®((k — g/o)) = 1. This yields

1 q
k + (0.5 - ) =1 (30)
(v 27{02) V2mo?
which translates to
u® q + 0.5+ 2no.
Similarly, the lower limit is determined by
( ! )k+(05 4 )—o 31)
V2mo? ' V2mo?

which gives
def
£t =¢q—05v2rno.

The more conservative estimate is derived by enforcing
Gs(0) =0, and Gy(k) =1, fork > 1.

If this can be enforced, then the actual bit density in (14) will
be exactly the same as the ideal bit density in (15). To ensure
this happens, o can be approximately chosen such that u =
1 and £ = 0. This, in turn, implies that

0_2(u—q)_ 1
V2

by substituting # = 1 and ¢ = 0.5. Therefore, as long as
o < (1/(2m)'/?) 2 0.4, D will be sufficiently close to D*. [J

(32)
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Fig. 9. Gg(k) for 0 = 0.8 and 8 = 1. Note the values of Gy (k) at
k=0,1,2, and the location of the pink region.

[1l. GENERALIZATION TO ARBITRARY @ AND q

The analysis presented in Section II is a special case where
the quanta exposure is # = 1 and the threshold is ¢ = 0.5.
A natural question is how does the analysis generalize to
other situations. Clearly, as we can see in the proof above,
the key of the insensitivity is due to the symmetry of certain
special cases of the Poisson distribution and the Gaussian cdf.
When such symmetry is broken (as will be discussed next),
the insensitivity will not appear.

A. Insensitivity Does Not Appear When g # 0.5 for6 = 1

Consider again the special case where 6 = 1, but this time
a threshold g # 0.5. Tracing back to the proof, one can follow
the same argument to show that for any o < 0.4419:

k _
Gy (k) = @ (—q) > 0999, k>3
o

for any 0 < g < 1. Therefore, the residue is characterized by

D(0) — D* = Py(0)[G5(0) — 0] + Py (1)[Go (1) — 1]

+Po(2)[Gs(2) — 1]
For different choices of the threshold 0 < ¢ < 1, both
the Gaussian cdf G, (0) and the ideal cdf Go(0) will appear
differently as shown in Fig. 9.

A sufficient condition for the residue D(o) — D* to vanish
is to find a o such that

Go(0)~0, and Gy(1)~1 (33)

because then G, (2) ~ 1 since 1 > G,(2) > G,(1) ~ 1. For
(33) to hold, pick a tolerance « (say o = 0.001). Then the
two conditions in (33) become

— 1 —
dD(O q)zoz, and @( q)fl—a
o o

which is equivalent to

. q l—¢q

o <min{— , .
> Ha) 11 — )

For example, if @ = 0.001, the required o is o < 0.0647 for

q = 0.2 or ¢ = 0.8. But such a small o basically means that

the insensitivity only exists for an extremely small read noise.
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Fig. 10. Bit density D(c) as a function of o for 6 = 1.
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Fig. 11. Range of o such that (D(c’) — D*)/D* < 0.0001 for 6 = 1. Note
the sharp peak at g = 0.5, which means that the insensitivity is only
observed for the special case of 6 = 1 and g = 0.5.

Fig. 10 shows the bit density D(o’) as a function of the read
noise o for a set of thresholds ¢ = 0.1, ...,0.9. This can be
seen as a “zoomed out” version of Fig. 4. As predicted by
the theory, the bit density D(o) stays at its ideal value D*
only briefly as o grows. The maximum range of ¢ is attained
when g = 0.5, but for other choices of ¢, the affordable read
noise o is quite small.

The upper half and lower half of Fig. 10 demonstrate a
symmetric behavior for ¢ > 0.5 and ¢ < 0.5. This is
attributed to the symmetry of the Gaussian cdf. As one adjusts
the threshold ¢, the transition of G, (k) changes. However,
shifting ¢ upward by a certain amount versus shifting ¢
downward by the same amount will result in identical residues
as demonstrated in the two cases of Fig. 9.

To further elaborate on the statement that the insensitivity
is a special event for ¢ = 0.5, one can estimate the range
of o such that the bit density D(o) remains close to D*.
Fig. 11 shows the result. Here, the “closedness” is measured
by checking the relative error (D(o) — D*)/D* to be within
a certain tolerance level of ¢ = 0.0001. As one can see in
this experiment, the range of ¢ has a sharp and tall spike
at g = 0.5. This spike quickly goes off and sees a linear
decay on the two sides as g deviates from 0.5. Therefore, the
insensitivity is largely a special event for 6 =1 and ¢ = 0.5
(among other integer value 6 which will be discussed next).
For arbitrarily chosen 6 and ¢, the insensitivity does not occur
because the symmetry is broken.

B. Insensitivity Appears for Any Integer6 and g =6 — 0.5

If the key reason for the read noise insensitivity is the
symmetry, it is natural to expect the insensitivity to occur when
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quanta exposure 6 is any integer and when the threshold ¢ is
6 — 0.5. The requirement of an integer 6 is that the Poisson
random variable is symmetric when 6 is an integer. This is
due to a standard approximation of Poisson using Gaussian:
Lemma 4 (Gaussian Approximation of Poisson): For large
0 (i.e., ® > 1), it holds that
def 0%e™? 1
px(x) = Y. = (35
See [28] for proof. If 8 is not an integer, the symmetry of the
Poisson is broken and so the insensitivity will not appear.
When 6 is an integer, choosing ¢ = 6 — 0.5 ensures that
symmetry is preserved. Define

_a=0)?
e 260

q=q+05 and g=4¢g—-05

as the ceiling and floor operations of the threshold g. Then it
holds that for any o < 0.8090

Go (k) = 0.999,

Go (k) < 0.001, (36)

The residue D(o) — D* in this case is

D(o) — D* = > Py(k)[Gy (k) — Go(k)]

k=0

2
=> Polg — OIGs(q — £) = 0]

£=0

2
+ D Po@+0IG@G+0—11. (37
=0

Since Py(q —€) =~ Py(q + £) for large 0, it follows that the
residue is simplified to:

2
D(o) — D* = 27’0(6_1+E)[Qa(6_1+€) +Go(q — 0 —1].
=0

Again, by the symmetry of the Gaussian cdf that G, (g + ¢) =
1—Gy(g —0) for g =6 — 0.5, it follows that:

2
D(o) — D* = 27’0(§+5)[ga(§+€) +0Go(qg — 0 —1].
=0

~0

Fig. 12 shows an example where the quanta exposure is
6 = 10 and the threshold is ¢ = 9.5. The read noise in
this example is o = 0.8. For such a large quanta exposure
6, the Poisson random variable is approximately a Gaussian
with symmetric probability masses. The ideal bit density D*
is calculated by summing the Poisson masses over the region
highlighted in pink, whereas the actual bit density D(o) is
calculated by summing the Poisson masses weighted by the
Gaussian cdf (over the entire index set k = 0, 1, ...). Because
of the symmetry, G, (9)+G, (10) = 1 and G, (8)+ G, (11) = 1.
Thus, it can be visually justified that the actual bit density
will be the same as the ideal bit density. Similar arguments
hold for other integer valued 6. For small integer 6 (such as
6 = 1,2,3), the clipping near the origin needs to be taken
care of but those are minor.
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Fig. 12.  Behavior of the Poisson part Py(k) and the Gaussian part

Go(K) for o = 0.8 and 6 = 10. For such a large quanta exposure 6 = 10,
the Poisson mass is symmetric. If one chooses g = 6 — 0.5 = 9.5, the
symmetry of the Gaussian cdf and the symmetry of the Poisson mass
will make the bit density to become insensitive to the read noise.

IV. CONCLUSION

The insensitivity of the bit density of a 1-bit QIS is analyzed.
It was found that for a quanta exposure & = 1 and an analog
voltage threshold ¢ = 0.5, the bit density D is nearly a
constant whenever the read noise satisfies the condition o <
0.4419. The proof is derived by exploiting the symmetry of
the Gaussian cdf, and the symmetry of the Poisson probability
mass function at the threshold £ = 0.5. An approximation
scheme is introduced to provide a simplified estimate where
o< (1/2m)!?) =0.4.

In general, the analysis shows that the insensitivity of
the bit density is more of a (very) special case of the
1-bit quantized Poisson—Gaussian statistics. Insensitivity can
be observed when the quanta exposure 6 is an integer and the
threshold is ¢ = 6 — 0.5. As soon as the pair (6, g) deviates
from this configuration, the insensitivity will no longer appear.

ACKNOWLEDGMENT

The author would like to thank Prof. Eric Fossum for
showing the intriguing Fig. 3, which then led to many great
discussions. The author would also like to thank Abhiram
Gnanasambandam for sharing thoughts about the article.

REFERENCES

[1] E. R. Fossum, “Gigapixel digital film sensor (DFS) proposal,” in Proc.
7th Takayanagi Kenjiro Memorial Symp., 2nd Int. Symp. Nanovision Sci.
Hamamatsu, Japan: Univ. of Shizuoka, 2005.

[2] E. R. Fossum, “Some thoughts on future digital still cameras,” in Image
Sensors and Signal Processing for Digital Still Cameras. CRC Press,
2006, p. 305.

[3] J. Nakamura, Image Sensors and Signal Processing for Digital Still
Cameras. Boca Raton, FL, USA: CRC Press, 2005.

[4] C. Bruschini et al., “Monolithic SPAD arrays for high-performance,
time-resolved single-photon imaging,” in Proc. IEEE Int. Conf. Opt.
MEMS Nanophotonics, Jul. 2018, pp. 1-5.

[5] N. A. Dutton et al., “A SPAD-based QVGA image sensor for single-
photon counting and quanta imaging,” IEEE Trans. Electron Devices,
vol. 63, no. 1, pp. 189-196, Sep. 2015.

[6] N. Dutton, I. Gyongy, L. Parmesan, and R. Henderson, “Single photon
counting performance and noise analysis of CMOS SPAD-based image
sensors,” Sensors, vol. 16, no. 7, p. 1122, Jul. 2016.

Authorized licensed use limited to: Purdue University. Downloaded on May 02,2023 at 02:50:58 UTC from IEEE Xplore. Restrictions apply.



3674 IEEE SENSORS JOURNAL, VOL. 23, NO. 4, 15 FEBRUARY 2023
[7]1 N. Dutton, T. Al Abbas, I. Gyongy, F. M. D. Rocca, and R. Henderson,  [23] A. Ingle, A. Velten, and M. Gupta, “High flux passive imaging with
“High dynamic range imaging at the quantum limit with single photon single-photon sensors,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
avalanche diode-based image sensors,” Sensors, vol. 18, no. 4, p. 1166, Recognit. (CVPR), Jun. 2019, pp. 6760-6769.
Apr. 2018. [24] S. Ma, S. Gupta, A. C. Ulku, C. Bruschini, E. Charbon, and M. Gupta,
[8] K. Morimoto et al., “Megapixel time-gated SPAD image sensor for 2D “Quanta burst photography,” ACM Trans. Graph., vol. 39, no. 4, p. 79,
and 3D imaging applications,” OSA Optica, vol. 7, no. 4, pp. 346-354, Aug. 2020.
2020. [25] F. Hurter and V. C. Diriffield, “Photo-chemical investigations and a
[9] M. M. El-Desouki, D. Palubiak, M. J. Deen, Q. Fang, and O. Marinov, new method of determination of the sensitivity of photographic plates,”
“A novel, high-dynamic-range, high-speed, and high-sensitivity CMOS J. Soc. Chem. Ind., vol. 4, pp. 455-469, May 1890. [Online]. Available:
imager using time-domain single-photon counting and avalanche photo- https://archive.org/details/memorialvolumecoOOhurtiala/mode/2up
diodes,” IEEE Sensors J., vol. 11, no. 4, pp. 1078-1083, Apr. 2011. [26] E.Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta

[10] W. Jiang, Y. Chalich, R. Scott, and M. J. Deen, “Time-gated and multi- image sensor: Every photon counts,” Sensors, vol. 16, no. 8, p. 1260,
junction SPADs in standard 65 nm CMOS technology,” IEEE Sensors Aug. 2016.

J., vol. 21, no. 10, pp. 12092-12103, May 2021. [27] E. R. Fossum, “Modeling the performance of single-bit and multi-bit

[11] I. Vornicu, J. M. Lopez-Martinez, F. N. Bandi, R. C. Galan, and quanta image sensors,” IEEE J. Electron Device Soc., vol. 1, no. 9,
A. Rodriguez-Vazquez, “Design of high-efficiency SPADs for LiDAR pp. 166-174, Sep. 2013.
applications in 110 nm CIS technology,” IEEE Sensors J., vol. 21, no. 4,  [28] A. Gnanasambandam and S. H. Chan, “Exposure-referred signal-to-
pp. 47764785, Feb. 2021. noise ratio,” IEEE Trans. Comput. Imag., vol. 8, pp. 561-575, 2022.

[12] J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3 e-rm.s.  [29] E. R. Fossum, “Analog read noise and quantizer threshold estimation
read noise and photon counting capability,” IEEE Electron Device Lett., from quanta image sensor bit density,” IEEE J. Electron Devices Soc.,
vol. 36, no. 9, pp. 926-928, Sep. 2015. vol. 10, pp. 269-274, 2022.

[13] J. Ma, S. Masoodian, D. A. Starkey, and E. Fossum, “Photon- [30] F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli, “Bits from photons:
number-resolving megapixel image sensor at room temperature without Oversampled image acquisition using binary Poisson statistics,” IEEE
avalanche gain,” Optica, vol. 4, no. 12, pp. 1474-1481, Dec. 2017. Trans. Image Process., vol. 21, no. 4, pp. 1421-1436, Apr. 2011.

[14] J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion [31] C. Hu and Y. M. Lu, “Adaptive time-sequential binary sensing for high
gain for a quanta image sensor,” I[EEE J. Electron Devices Soc., vol. 3, dynamic range imaging,” Proc. SPIE, vol. 8375, p. 83750, May 2012.
no. 2, pp. 73-77, Mar. 2015. [32] Y. M. Lu, “Adaptive sensing and inference for single-photon imaging,”

[15] S.Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5 plJ/b in Proc. Annu. Conf. Inf. Sci. Syst., Mar. 2013, pp. 1-6.
binary image sensor as a pathfinder for quanta image sensors,” JEEE  [33] J. Ma, S. Chan, and E. R. Fossum, “Review of quanta image sensors for
Trans. Electron Devices, vol. 63, no. 1, pp. 100-105, Jan. 2016. ultralow-light imaging,” IEEE Trans. Electron Devices, vol. 69, no. 6,

[16] J. Ma, D. Zhang, O. A. Elgendy, and S. Masoodian, “A 0.19 e-rms pp. 2824-2839, Jun. 2022.
read noise 16.7 Mpixel stacked quanta image sensor with 1.1 um-pitch  [34] K. Morimoto et al., “3.2 megapixel 3D-stacked charge focusing SPAD
backside illuminated pixels,” IEEE Electron Device Lett., vol. 42, no. 6, for low-light imaging and depth sensing,” in IEDM Tech. Dig.,
pp. 891-894, Jun. 2021. Dec. 2021, p. 20.

[17] A. Gnanasambandam, J. Ma, and S. H. Chan, “High dynamic range [35] A. Gupta, A. Ingle, and M. Gupta, “Asynchronous single-photon 3D
imaging using Quanta Image Sensors,” in Proc. Int. Image Sensors imaging,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
Workshop, 2019, pp. 1-4, Paper R23. pp. 7909-7918.

[18] A. Gnanasambandam and S. H. Chan, “HDR imaging with quanta image  [36] A. Ingle et al., “Passive inter-photon imaging,” in Proc. IEEE/CVF Conf.
sensors: Theoretical limits and optimal reconstruction,” IEEE Trans. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 8581-8591.
Comput. Imag., vol. 6, pp. 1571-1585, 2020. [371 Y. Liu, F. Gutierrez-Barragan, A. Ingle, M. Gupta, and A. Velten,

[19] S. H. Chan, O. A. Elgendy, and W. Xiran, “Images from bits: Non- “Single-photon camera guided extreme dynamic range imaging,” in
iterative image reconstruction for quanta image sensors,” Sensors, Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2022,
vol. 16, no. 11, p. 1961, Nov. 2016. pp. 1575-1585.

[20] O. A. Elgendy and S. H. Chan, “Optimal threshold design for quanta  [38] Z. Yin, J. Ma, S. Masoodian, and E. Fossum, “Threshold uniformity
image sensor,” IEEE Trans. Comput. Imag., vol. 4, no. 1, pp. 99-111, improvement in 1b QIS readout circuit,” in Proc. Int. Image Sensor
Mar. 2018. Workshop, Sep. 2021, pp. 1-4, Paper P31.

[21] Y. Chi, A. Gnanasambandam, V. Koltun, and S. H. Chan, “Dynamic low-  [39] D. Starkey, J. Ma, S. Masoodian, and E. Fossum, “A novel threshold
light imaging with quanta image sensors,” in Proc. Eur. Conf. Comput. calibration methodology for Quanta Image Sensors (QIS),” in Proc. Int.
Vis., 2020, pp. 122-138. Image Sensor Workshop, Jun. 2019, pp. 1-4, Paper P21.

[22] O. A. Elgendy, A. Gnanasambandam, S. H. Chan, and J. Ma, [40] S. H. Chan, “What does a one-bit quanta image sensor offer?” IEEE

“Low-light demosaicking and denoising for small pixels using learned
frequency selection,” IEEE Trans. Comput. Imag., vol. 7, pp. 137-150,
2021.

[41]

Trans. Comput. Imag., vol. 8, pp. 770-783, 2022.
E. R. Fossum, “Multi-bit quanta image sensors,” in Proc. Int. Image
Sensors Workshop, 2015, pp. 292-295.

Authorized licensed use limited to: Purdue University. Downloaded on May 02,2023 at 02:50:58 UTC from IEEE Xplore. Restrictions apply.



