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On the Insensitivity of Bit Density to Read Noise
in One-Bit Quanta Image Sensors

Stanley H. Chan , Senior Member, IEEE

Abstract—The one-bit quanta image sensor (QIS) is a
photon-counting device that produces binary measurements
where each bit represents the presence or absence of a
photon. The sensor quantizes the analog voltage into the
binary bits using a threshold value q. The average number
of ones in the bitstream is known as the bit density and is
the sufficient statistics for signal estimation. An intriguing
phenomenon is observed when the quanta exposure is at the
unity and the threshold is q = 0.5. The bit density demonstrates an insensitivity as long as the read noise level does not
exceed a certain limit. In other words, the bit density stays at a constant independent of the amount of read noise. This
article provides a mathematical explanation of the phenomenon by deriving conditions under which the phenomenon
happens. It was found that the insensitivity holds when some forms of the symmetry of the underlying Poisson–Gaussian
distribution hold.

Index Terms— Bit density, quanta exposure, quanta image sensor (QIS), read noise, signal processing, single-photon
image sensor, statistical estimation.

I. INTRODUCTION

THE quanta image sensor (QIS) is a photon counting
device first proposed by Fossum in 2005 as a candidate

solution for the next-generation digital image sensors after
the CCD and CMOS image sensors (CISs) [1], [2], [3]. QIS
can be implemented using various technology including the
single-photon avalanche diodes (SPADs) [4], [5], [6], [7], [8],
[9], [10], [11] and the existing CMOS active pixels [12], [13],
[14], [15] by reducing the capacitance at the floating diffusion.
As reported in 2021 by Ma et al. [16], the latest CIS-based
QIS has achieved a resolution of 16 M pixels with 0.19e− read
noise, where the pixel pitch is 1.1 µm. This offers a compet-
itive solution to a variety of photon counting applications in
consumer electronics, medical imaging, security and defense,
low-light photography, autonomous vehicles, and more.

One of the features of the QIS is its capability to gener-
ate one-bit signals by accurately measuring the presence or
absence of a photoelectron [17], [18], [19], [20]. In CIS, the
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signals are mostly 12-bit to 16-bit digital numbers converted
by the analog-to-digital converter of the voltage. In QIS,
instead of reporting a multibit digital number, each jot reports
a binary value of either 1 or 0. The density of the 1s is related
to the underlying photon flux—brighter scenes will have more
1s and darker scenes will have more 0s. With an appropriate
image reconstruction algorithm such as [19], [21], [22], [23],
and [24], the image can be computationally recovered.

As a historical remark, when QIS was first proposed,
it was also known as a digital film as it is reminiscent to
a silver halide film where the density of the crystalized silver
molecules determines the brightness of the scene [2]. If we plot
the bit density as a function of the quanta exposure, also known
as the D-logH curve in Fig. 1, there is a surprising match with
the very first curve made by Hurter and Driffield [25].

A. Quantization Threshold of QIS
The subject of this article is related to the quantization

threshold of a one-bit QIS. The starting point of the problem is
the familiar Poisson–Gaussian distribution1 where we denote
the measured analog voltage as a random variable X

X ∼ Poisson(θ) + Gaussian(0, σ 2). (1)

Here, θ is the quanta exposure which is also the average
number of photons integrated over the sensing area and
exposure time, and σ is the standard deviation of the read

1This article follows the statistical signal processing literature by denoting
the Poisson parameter as θ . In the sensor’s literature, this parameter is often
known as the quanta exposure and is denoted by H [27].
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Fig. 1. Surprising similarity of the D-logH curve of a QIS and the
photographic plate Hurter and Driffield used in 1890. (Left) Simulation
of the QIS. (Right) Curves reported by Hurter and Driffield [25]. A similar
comparison was presented in [26].

Fig. 2. Probability density function pX(x) of the Poisson–Gaussian
random variable X with θ = 1 and several values of σ. The gray shaded
region denotes the states X > q for q = 0.5, which is also equivalent to
Y = 1. The unshaded region corresponds to Y = 0.

noise. The probability density function of X is the convolution
of the Poisson part and the Gaussian part, leading to a familiar
equation [27]

pX (x) =

∞∑
k=0

θke−θ

k!
·

1
√

2πσ 2
exp

{
−

(x − k)2

2σ 2

}
. (2)

Fig. 2 shows a pictorial illustration of this probability density
function pX (x) for θ = 1 and σ = 0.2. If the read
noise σ increases, the individual Gaussian peaks will start to
merge. When σ is too large, two adjacent peaks will become
indistinguishable.

The one-bit QIS produces a quantized version of the signal
X by comparing it with a threshold q

Y =

{
1, X ≥ q,

0, X < q.
(3)

For example, in Fig. 2, we set the threshold as q = 0.5.
Since Y is a binary random variable, its probability masses

can be determined. All the probabilities in the shaded region in
Fig. 2 will be merged to give the probability mass for Y = 1,
and the unshaded region will be merged to give the probability
mass for Y = 0. Mathematically, the probability distribution

of Y follows the integral:

pY (1) =

∫
∞

q
pX (x) dx

=

∫
∞

q

∞∑
k=0

θke−θ

k!
·

1
√

2πσ 2
exp

{
−

(x − k)2

2σ 2

}
dx,

=
1
2

∞∑
k=0

e−θθk

k!
erfc

(
q − k
√

2σ

)
(4)

and pY (0) = 1− pY (1), where erfc is the complementary error
function.

The statistical expectation of the random variable Y , i.e.,
E[Y ], is called the bit density D. The bit density measures the
average number of 1s that the random variable Y can generate.
In statistical estimation, bit density is the sufficient statistics
for solving inverse problems [28].

The mathematical expression of the bit density is straight-
forward. Since Y is binary, it follows that:

D def
= E[Y ] = 1 · pY (1) + 0 · pY (0)

= pY (1)

=
1
2

∞∑
k=0

e−θθk

k!
erfc

(
q − k
√

2σ

)
. (5)

Note that D is a function of the threshold q, the read noise
σ , and the underlying exposure θ .

B. Unexpected Observation
Consider a threshold q = 0.5. If we plot the bit density as

a function of θ , how does the plot look like?
Without much deep analysis, we can quickly anticipate that

in the extreme case when the read noise is σ = 0, the error
function erfc(·) will become a step function, and hence the bit
density will be as simple as

D∗
=

∞∑
k=1

θke−θ

k!
= 1 − e−θ . (6)

As θ increases, the bit density D∗ also increases. If we plot
the function in the semilog-x scale, it will look like one of
the curves shown in Fig. 3.

Now, consider the case where the read noise σ is no longer
zero. Fig. 3 shows a few of these cases. The observation is
that regardless of the read noise level σ (at least for σ ≤

0.5 considered in this plot), the bit density at θ = 1 appears
to be a constant. In other words, it appears that there is an
insensitivity of the bit density to the read noise.

The insensitivity to the read noise implies that if we set
the threshold to q = 0.5 and observe an average bit density
that is equal to D∗

= 1 − e−1, then it is guaranteed that the
underlying exposure is θ = 1. So, the insensitivity to the read
noise has the potential to offer a perfect estimate of the analog
signal by just using the digital measurements that have been
severely quantized.

The above observation was first mentioned by Fossum [29].
The intuitive argument was that when σ is sufficiently
small, the symmetry of the Poisson and the Gaussian will make
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Fig. 3. Bit density D as a function of the exposure θ, for different levels of
read noise. The threshold is chosen as q = 0.5. Note that when θ = 1,
the bit densities of different read noise all intersect at the same point.
The goal of this article is to mathematically explain this phenomenon
and provide conditions under which the intersection occurs.

the loss of probability mass before the threshold compensated
for the gain of the probability mass after the threshold. For this
phenomenon to hold, it was mentioned that σ ≤ 0.5 would be
a sufficient condition. This article is a follow-up work of [29],
where it was commented that “This interesting insensitivity
has been proven mathematically by Chan after a discussion
of this paper.” Here, we present the proof by answering two
questions.

1) Where does the insensitivity of read noise come from?
Is there a mathematical proof of the existence?

2) Under what conditions will the insensitivity exist? Will
the insensitivity exist for exposures other than θ = 1 and
thresholds other than q = 0.5?

C. Other QIS Threshold Analyses in Literature
The analysis of the threshold of one-bit QIS has been

reported in various occasions since early 2010. In the first
theory article Bits from Photons by Yang et al. [30], it was
shown that when the threshold is q = 1, the standard
maximum-likelihood estimation of the underlying quanta
exposure θ will achieve the Cramer–Rao lower bound asymp-
totically. Thus, unless the exposure is so strong such that
the jots are completely saturated (which can be avoided
using a shorter integration time), a threshold q = 1 would
be sufficient. A generalized analysis was then presented by
Elgendy and Chan [20], where they showed that the optimal
threshold q should be configured to match θ , i.e., q = θ . The
optimality is based on the statistical signal-to-noise ratio, but
one can also derive the same result using entropy [28].

As far as algorithms are concerned, a few threshold update
schemes have been proposed using Markov chain and other
statistical techniques [31], [32]. The algorithm presented
in [20] uses a bisection approach by checking the percentage
of ones and zeros.

For the SPAD-based QIS, the interaction between the
threshold and the read noise is irrelevant because an SPAD
has zero read noise. However, the large dark current is a

bigger challenge for the SPAD-based QIS, although recent
advancements in SPAD have demonstrated improvements in
dark current [33], [34]. For SPAD, there are more considera-
tions about the dead time [23]. On the algorithmic side, the
SPAD-based QIS largely shares the same mathematical results
as the CIS-based QIS [23], [35]. The bigger question, which
is not the subject of our present article, is the scene motion.
The work by Ma et al. [24] gave a good assessment of how
much image reconstruction can we expect using the image
registration techniques. Another line of work about using the
SPAD-based QIS for high dynamic range imaging can be
found in [36] and [37].

In the electronic device literature, the focus is slightly
different. Instead of analyzing the quantized Poisson statistics,
the interest is about stabilizing the threshold to a fixed value,
say q = 0.5. The motivation is that the common-mode voltage
of the jot output fluctuates, leading to a strong jot-to-jot
variation in the D-logH curve. New sensor architectures were
invented to improve the uniformity of the threshold [38], and
new calibration techniques are developed to characterize the
conversion gain and read noise [39].

The present article is a mathematical analysis of the thresh-
old. Specific considerations are put into the presence of read
noise which were not analyzed in the previous theoretical work
such as [20] and [30]. The theoretical results are also different
from what are recently reported in [28] and [40], where the
focus was about deriving the signal-to-noise ratio. The math-
ematical tools developed in this article and their associated
conclusions are complementary to hardware solutions such
as [38], [39] and [41].

II. MAIN RESULT

A. Statement and Numerical Inspection
The main result is stated in Theorem 1. The theorem

provides a mathematical condition under which the constant
bit density D can be observed. The theorem also predicts
that when the read noise is above the limit predicted by the
theorem, the bit density will drop.

Theorem 1: Define the bit density of a 1-bit Poisson–
Gaussian random variable as

D =
1
2

∞∑
k=0

e−θθk

k!
erfc

(
q − k
√

2σ

)
. (7)

Suppose θ = 1 and q = 0.5. Then, for any σ ≤ 0.4419

D ≈ 1 − e−1 def
= D∗ (8)

where the approximation is measured such that the relative
error (D∗

− D)/D∗
≤ 0.0001.

The approximation above uses a relative error (D∗
−

D)/D∗
≤ 0.0001. It means that as long as the read noise σ

does not exceed 0.4419, the bit density will be sufficiently
close to D∗ up to a relative error of 0.0001. If we want
a smaller relative error, the corresponding read noise upper
bound needs to be reduced, as shown in Table I.2

2The derivation of these numbers is based on (24) which will be given in
the proof. The idea is to substitute the relative error α to obtain σ .
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TABLE I
RELATIVE ERROR AND THE CORRESPONDING σ

Fig. 4. Bit density D as a function of the read noise standard deviation
σ. Shown in this plot is the case where θ = 1 and q = 0.5. When
σ ≤ 0.4419, the bit density stays at the constant 1 − e−1. This implies
the insensitivity of the bit density to small read noise.

Before proving the theorem, it would be useful to inspect
the validity of the theorem. Fig. 4 shows the bit density D
as a function of the read noise standard deviation σ . As σ

increases, the bit density decreases. There exists a theoretical
cutoff σ ≤ 0.4419 such that the bit density stays at the
constant 1− e−1. Therefore, as long as the read noise is small
(σ ≤ 0.4419), the bit density is insensitive to the read noise.
However, if the noise level grows beyond σ = 0.4419, the
bit density will no longer stay as a constant, as is evident
in Fig. 4.

B. Mathematical Tools
The proof of the main theorem requires several elementary

probabilistic tools. To make the calculus well-defined, the
variable k is relaxed from being integers to real numbers.

The first one is the relationship between the complementary
error function (erfc) and the cumulative distribution function
(cdf) of the standard Gaussian.

Lemma 1: The complementary error function can be writ-
ten equivalently through the cdf of the standard Gaussian

1
2

erfc
(

q − k
√

2σ

)
=

∫
∞

q

1
√

2πσ 2
exp

{
−

(y − k)2

2σ 2

}
dy

def
= 1 − 8

(
q − k

σ

)
(9)

where 8(·) is the cdf of the standard Gaussian, defined as

8(x) =

∫ x

−∞

1
√

2π
exp

{
−

y2

2

}
dy.

Proof: Note that 1 − 8(x) =
∫
∞

x (1/(2π)1/2)

exp{−(y2/2)} dy. Then by letting x = (q − k)/σ , the result
is proven. □

Fig. 5. Complementary error function erfc(x) and cdf Φ(x) are related
by an amplitude and time scaling.

Fig. 6. Black and red curves are the two Gaussian probability density
functions centered at q and k, respectively. The figure highlights the
equivalence between the two shaded areas.

The shape of the complementary error function and the cdf
is shown in Fig. 5. They are related by a simple amplitude
and time scaling.

The next lemma is about flipping the roles of q and k in the
Gaussian distribution. This allows us to recenter the Gaussian
to q and evaluate it up to k.

Lemma 2: The cdf evaluated with respect to q can be
switched to the cdf evaluated with respect to k∫

∞

q

1
√

2πσ 2
exp

{
−

(y − k)2

2σ 2

}
dy

=

∫ k

−∞

1
√

2πσ 2
exp

{
−

(y − q)2

2σ 2

}
dy. (10)

Proof: The left-hand side is 1 − 8((q − k)/σ ), whereas
the right-hand side is 8((k−q)/σ ). Since 8(x) = 1−8(−x),
the equality in (10) is proven. □

A direct consequence of the lemma is that the error function
in (9) can be simplified to 1−8((q − k)/σ ) = 8((k −q)/σ ),
which is the Gaussian cdf with mean of q evaluated at k.
The intuition can be seen from Fig. 6. The integral on the
left-hand side of (10) is the black curve which is a Gaussian
with mean k = 4. The area under the curve is colored in gray.
The integral on the right-hand side of (10) is the red curve
which is a Gaussian with mean q = 5. The area under the
curve is colored in pink. The lemma asserts that the area of
the gray region is identical to the area of the pink region.

The third mathematical tool is the derivative of the cdf.
Lemma 3: The derivative of the cdf is

d
dk

{
8(

k − q
σ

)

}
=

1
√

2πσ 2
exp

{
−

(k − q)2

2σ 2

}
. (11)

If the derivative is evaluated at k = q, then the exponential
term is eliminated, leaving a constant (1/(2πσ 2)1/2).
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Proof: The proof goes as follows:

d
dk

{
8(

k − q
σ

)

}
=

d
dk

∫ k

−∞

1
√

2πσ 2
exp

{
−

(y − q)2

2σ 2

}
dy

(a)
=

1
√

2πσ 2
exp

{
−

(k − q)2

2σ 2

}
(12)

where (a) is due to the fundamental theorem of calculus. □

C. Proof of Main Result
The key idea of the proof is to zoom into the transient of

the Gaussian cdf and evaluate the residue compared with an
ideal sharp cutoff.

First, define the following notations:

Pθ (k) =
θke−θ

k!
, and Gσ (k) = 8

(
k − q

σ

)
. (13)

To make the bit density D explicitly depending on the read
noise σ , we use Lemmas 1 and 2 to define D(σ ) as

D(σ ) =
1
2

∞∑
k=0

e−θθk

k!
erfc

(
q − k
√

2σ

)

=

∞∑
k=0

e−θθk

k!
8

(
k − q

σ

)
=

∞∑
k=0

Pθ (k)Gσ (k). (14)

When the read noise is zero, i.e., σ = 0, the Gaussian part
Gσ (k) will become a unit step function with the transition
occurring at q = 0.5. The bit density D(σ ) in this case is the
ideal bit density such that

D∗
= D(0) =

∞∑
k=1

Pθ (k) (15)

where the summation starts at k = 1 (instead of k = 0) if the
threshold is q = 0.5.

Since the read noise insensitivity is the phenomenon that
D(σ ) ≈ D∗, any error made in such approximation needs to
be measured by

D∗
− D(σ ) =

∞∑
k=1

Pθ (k) −

∞∑
k=0

Pθ (k)Gσ (k)

=

∞∑
k=1

Pθ (k) −

[
Pθ (0)Gσ (0) +

∞∑
k=1

Pθ (k)Gσ (k)

]

=

∞∑
k=1

Pθ (k)(1 − Gσ (k)) − Pθ (0)Gσ (0). (16)

Therefore, the task now becomes how to evaluate the sum.
Fig. 7 shows the behavior of the infinite sum for the case

q = 0.5 and θ = 1. For entries with the index k ≥ 3, it is
almost sure that the ideal Gaussian cdf G0(k) is identical to the
actual Gaussian cdf Gσ (k) for any reasonably small σ . That
is, the pink color region is exactly the same as the region
covered by the red stems for any k ≥ 3. Thus, for k ≥ 3, one
should expect that the residue D∗

− D(σ ) can be completely
described by the terms with k = 0, 1, 2 only.

Fig. 7. Behavior of the Poisson part Pθ(k) and the Gaussian part Gσ(k)
for σ = 0.8 and θ = 1.

The precise relationship between k and σ is given as
follows. Note that

Gσ (k) = 8

(
k − q

σ

)
≥ 8

(
3 − q

σ

)
because 8(·) is monotonically increasing. Setting q = 0.5 and
8((3 − q/σ)) ≥ 0.999 will give σ ≤ 8−1(2.5) = 0.8090.
Therefore, for all σ ≤ 0.8090 and k ≥ 3, Gσ (k) ≥ 0.999, the
term Gσ (k) will be at unity for k ≥ 3. Thus, Gσ (k) ≈ 1, and
so the infinite sum in (16) can be simplified to just the terms
for k = 0, 1, 2. This means

D∗
− D(σ ) =

∞∑
k=1

Pθ (k)(1 − Gσ (k)) − Pθ (0)Gσ (0)

=

∞∑
k=3

Pθ (k)(1 − Gσ (k))︸ ︷︷ ︸
=0

+

2∑
k=1

Pθ (k)(1 − Gσ (k)) − Pθ (0)Gσ (0). (17)

The finite sum can be broken down into two parts: k = 0, 1,
and k = 2. Consider the term k = 1

Pθ (1)(1 − Gσ (1)) − Pθ (0)Gσ (0)

= Pθ (1) − (Pθ (1)Gσ (1) + Pθ (0)Gσ (0)). (18)

However, note that Pθ (1) = Pθ (0) when θ = 1 because

Pθ (1) =
θ1e−θ

1!
= e−1

Pθ (0) =
θ0e−θ

0!
= e−1. (19)

Also, note that Gσ (0) = 1 − Gσ (1) when q = 0.5 because

Gσ (0) = 8

(
0 − 0.5

σ

)
= 8

(
−0.5

σ

)
Gσ (1) = 8

(
1 − 0.5

σ

)
= 8

(
0.5
σ

)
. (20)
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Using these two facts, it follows that:

Pθ (1)Gσ (1) + Pθ (0)Gσ (0)

= Pθ (1)Gσ (1) + Pθ (1)(1 − Gσ (1))

= Pθ (1)

and so the right-hand side of (18) is zero.
Based on the above observations, the residue is essentially

determined by the term k = 2

D∗
− D(σ ) =

2∑
k=1

Pθ (k)(1 − Gσ (k)) − Pθ (0)Gσ (0)

= Pθ (2)(1 − Gσ (2)). (21)

To this end, setting a tolerance level α = 0.0001, the criteria
will become

D∗
− D(σ )

D∗
≤ α (22)

which implies D∗
− D(σ ) ≤ αD∗. Using (21), one can show

that Pθ (2)(1 − Gσ (2)) ≤ αD∗. Rearranging the terms will
yield

Gσ (2) ≥ 1 −
αD∗

Pθ (2)
. (23)

Since Gσ (2) = 8((2 − q/σ)), it follows that for q = 0.5

σ ≤
2 − q

8−1
(

1 −
αD∗

Pθ (2)

) ≈ 0.4419 (24)

where θ = 1, Pθ (2) = θ2e−θ/2! = 0.1839, D∗
= 1 − e−1

=

0.6321, and α = 0.0001. This completes the main proof.

D. Alternative and (Coarser) Estimate
The result in (24) is arguably intimidating. Thus, it would

be useful to obtain a slightly more “civilized” version. The
goal here is to derive a simpler estimate of σ .

Corollary 1: Under the same conditions as Theorem 1,
if σ ≤ 1/(2π)1/2

≈ 0.4, it holds that D(σ ) ≈ D∗.
Proof: The intuition is to use a piecewise linear function

to approximate the Gaussian cdf as shown in Fig. 8. The linear
portion approximates the cdf as

Gσ (k) = 8

(
k − q

σ

)
≈ ak + b def

= Ĝσ (k) (25)

where a is the slope to be determined, and b is the y-intercept
to be determined.

To determine the piecewise linear function, first consider
the slope of 8((k − q/σ)). By Lemma 3, it is known that

d
dk

8

(
k − q

σ

)
=

1
√

2πσ 2
exp

{
−

(k − q)2

2σ 2

}
. (26)

The function 8((k − q/σ)) is symmetric at k = q . At k = q,
the slope is

a =
d

dk
8

(
k − q

σ

) ∣∣∣∣
q=k

=
1

√
2πσ 2

. (27)

Fig. 8. Function Gσ(k) when θ = 1, q = 0.5, and σ = 0.2. The transition
point can be theoretically derived.

The y-intercept is chosen such that the linear function is
0.5 when k = q , i.e., aq + b = 0.5. This gives

b = 0.5 −
q

√
2πσ 2

. (28)

Therefore, the cdf is approximated

Ĝσ (k) =


0, k ≤ ℓ,(

1
√

2πσ 2

)
k +

(
0.5 −

q
√

2πσ 2

)
, ℓ ≤ k ≤ u

1, k ≥ u

(29)

where ℓ and u are the lower and upper limits, respectively.
The upper limit can be determined by evaluating the expres-

sion when 8((k − q/σ)) = 1. This yields(
1

√
2πσ 2

)
k +

(
0.5 −

q
√

2πσ 2

)
= 1 (30)

which translates to

u def
= q + 0.5

√
2πσ.

Similarly, the lower limit is determined by(
1

√
2πσ 2

)
k +

(
0.5 −

q
√

2πσ 2

)
= 0 (31)

which gives

ℓ
def
= q − 0.5

√
2πσ.

The more conservative estimate is derived by enforcing

Gσ (0) = 0, and Gσ (k) = 1, for k ≥ 1.

If this can be enforced, then the actual bit density in (14) will
be exactly the same as the ideal bit density in (15). To ensure
this happens, σ can be approximately chosen such that u =

1 and ℓ = 0. This, in turn, implies that

σ =
2(u − q)
√

2π
=

1
√

2π
(32)

by substituting u = 1 and q = 0.5. Therefore, as long as
σ ≤ (1/(2π)1/2) ≈ 0.4, D will be sufficiently close to D∗. □

Authorized licensed use limited to: Purdue University. Downloaded on May 02,2023 at 02:50:58 UTC from IEEE Xplore.  Restrictions apply. 



3672 IEEE SENSORS JOURNAL, VOL. 23, NO. 4, 15 FEBRUARY 2023

Fig. 9. Gσ(k) for σ = 0.8 and θ = 1. Note the values of Gσ(k) at
k = 0,1,2, and the location of the pink region.

III. GENERALIZATION TO ARBITRARY θ AND q
The analysis presented in Section II is a special case where

the quanta exposure is θ = 1 and the threshold is q = 0.5.
A natural question is how does the analysis generalize to
other situations. Clearly, as we can see in the proof above,
the key of the insensitivity is due to the symmetry of certain
special cases of the Poisson distribution and the Gaussian cdf.
When such symmetry is broken (as will be discussed next),
the insensitivity will not appear.

A. Insensitivity Does Not Appear When q ̸= 0.5 for θ = 1
Consider again the special case where θ = 1, but this time

a threshold q ̸= 0.5. Tracing back to the proof, one can follow
the same argument to show that for any σ ≤ 0.4419:

Gσ (k) = 8

(
k − q

σ

)
≥ 0.999, k ≥ 3

for any 0 < q < 1. Therefore, the residue is characterized by

D(σ ) − D∗
= Pθ (0)[Gσ (0) − 0] + Pθ (1)[Gσ (1) − 1]

+Pθ (2)[Gσ (2) − 1].

For different choices of the threshold 0 < q < 1, both
the Gaussian cdf Gσ (0) and the ideal cdf G0(0) will appear
differently as shown in Fig. 9.

A sufficient condition for the residue D(σ )− D∗ to vanish
is to find a σ such that

Gσ (0) ≈ 0, and Gσ (1) ≈ 1 (33)

because then Gσ (2) ≈ 1 since 1 ≥ Gσ (2) ≥ Gσ (1) ≈ 1. For
(33) to hold, pick a tolerance α (say α = 0.001). Then the
two conditions in (33) become

8

(
0 − q

σ

)
≥ α, and 8

(
1 − q

σ

)
≤ 1 − α

which is equivalent to

σ ≤ min
{
−

q
8−1(α)

,
1 − q

8−1(1 − α)

}
. (34)

For example, if α = 0.001, the required σ is σ ≤ 0.0647 for
q = 0.2 or q = 0.8. But such a small σ basically means that
the insensitivity only exists for an extremely small read noise.

Fig. 10. Bit density D(σ) as a function of σ for θ = 1.

Fig. 11. Range of σ such that (D(σ)−D∗)/D∗
≤ 0.0001 for θ = 1. Note

the sharp peak at q = 0.5, which means that the insensitivity is only
observed for the special case of θ = 1 and q = 0.5.

Fig. 10 shows the bit density D(σ ) as a function of the read
noise σ for a set of thresholds q = 0.1, . . . , 0.9. This can be
seen as a “zoomed out” version of Fig. 4. As predicted by
the theory, the bit density D(σ ) stays at its ideal value D∗

only briefly as σ grows. The maximum range of σ is attained
when q = 0.5, but for other choices of q, the affordable read
noise σ is quite small.

The upper half and lower half of Fig. 10 demonstrate a
symmetric behavior for q > 0.5 and q < 0.5. This is
attributed to the symmetry of the Gaussian cdf. As one adjusts
the threshold q , the transition of Gσ (k) changes. However,
shifting q upward by a certain amount versus shifting q
downward by the same amount will result in identical residues
as demonstrated in the two cases of Fig. 9.

To further elaborate on the statement that the insensitivity
is a special event for q = 0.5, one can estimate the range
of σ such that the bit density D(σ ) remains close to D∗.
Fig. 11 shows the result. Here, the “closedness” is measured
by checking the relative error (D(σ ) − D∗)/D∗ to be within
a certain tolerance level of α = 0.0001. As one can see in
this experiment, the range of σ has a sharp and tall spike
at q = 0.5. This spike quickly goes off and sees a linear
decay on the two sides as q deviates from 0.5. Therefore, the
insensitivity is largely a special event for θ = 1 and q = 0.5
(among other integer value θ which will be discussed next).
For arbitrarily chosen θ and q , the insensitivity does not occur
because the symmetry is broken.

B. Insensitivity Appears for Any Integer θ and q = θ − 0.5
If the key reason for the read noise insensitivity is the

symmetry, it is natural to expect the insensitivity to occur when
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quanta exposure θ is any integer and when the threshold q is
θ − 0.5. The requirement of an integer θ is that the Poisson
random variable is symmetric when θ is an integer. This is
due to a standard approximation of Poisson using Gaussian:

Lemma 4 (Gaussian Approximation of Poisson): For large
θ (i.e., θ ≫ 1), it holds that

pX (x)
def
=

θ x e−θ

x !
≈

1
√

2πθ
e−

(x−θ)2
2θ . (35)

See [28] for proof. If θ is not an integer, the symmetry of the
Poisson is broken and so the insensitivity will not appear.

When θ is an integer, choosing q = θ − 0.5 ensures that
symmetry is preserved. Define

q = q + 0.5, and q = q − 0.5

as the ceiling and floor operations of the threshold q . Then it
holds that for any σ ≤ 0.8090

Gσ (k) ≥ 0.999, k − q ≥ 2
Gσ (k) ≤ 0.001, k − q ≤ 2. (36)

The residue D(σ ) − D∗ in this case is

D(σ ) − D∗
=

∞∑
k=0

Pθ (k)[Gσ (k) − G0(k)]

=

2∑
ℓ=0

Pθ (q − ℓ)[Gσ (q − ℓ) − 0]

+

2∑
ℓ=0

Pθ (q + ℓ)[Gσ (q + ℓ) − 1]. (37)

Since Pθ (q − ℓ) ≈ Pθ (q + ℓ) for large θ , it follows that the
residue is simplified to:

D(σ ) − D∗
=

2∑
ℓ=0

Pθ (q + ℓ)[Gσ (q + ℓ) + Gσ (q − ℓ) − 1].

Again, by the symmetry of the Gaussian cdf that Gσ (q +ℓ) =

1 − Gσ (q − ℓ) for q = θ − 0.5, it follows that:

D(σ ) − D∗
=

2∑
ℓ=0

Pθ (q + ℓ)[Gσ (q + ℓ) + Gσ (q − ℓ) − 1]︸ ︷︷ ︸
≈0

.

Fig. 12 shows an example where the quanta exposure is
θ = 10 and the threshold is q = 9.5. The read noise in
this example is σ = 0.8. For such a large quanta exposure
θ , the Poisson random variable is approximately a Gaussian
with symmetric probability masses. The ideal bit density D∗

is calculated by summing the Poisson masses over the region
highlighted in pink, whereas the actual bit density D(σ ) is
calculated by summing the Poisson masses weighted by the
Gaussian cdf (over the entire index set k = 0, 1, . . .). Because
of the symmetry, Gσ (9)+Gσ (10) = 1 and Gσ (8)+Gσ (11) = 1.
Thus, it can be visually justified that the actual bit density
will be the same as the ideal bit density. Similar arguments
hold for other integer valued θ . For small integer θ (such as
θ = 1, 2, 3), the clipping near the origin needs to be taken
care of but those are minor.

Fig. 12. Behavior of the Poisson part Pθ(k) and the Gaussian part
Gσ(k) for σ = 0.8 and θ = 10. For such a large quanta exposure θ = 10,
the Poisson mass is symmetric. If one chooses q = θ − 0.5 = 9.5, the
symmetry of the Gaussian cdf and the symmetry of the Poisson mass
will make the bit density to become insensitive to the read noise.

IV. CONCLUSION

The insensitivity of the bit density of a 1-bit QIS is analyzed.
It was found that for a quanta exposure θ = 1 and an analog
voltage threshold q = 0.5, the bit density D is nearly a
constant whenever the read noise satisfies the condition σ ≤

0.4419. The proof is derived by exploiting the symmetry of
the Gaussian cdf, and the symmetry of the Poisson probability
mass function at the threshold k = 0.5. An approximation
scheme is introduced to provide a simplified estimate where
σ ≤ (1/(2π)1/2) = 0.4.

In general, the analysis shows that the insensitivity of
the bit density is more of a (very) special case of the
1-bit quantized Poisson–Gaussian statistics. Insensitivity can
be observed when the quanta exposure θ is an integer and the
threshold is q = θ − 0.5. As soon as the pair (θ, q) deviates
from this configuration, the insensitivity will no longer appear.
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