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Abstract—Numerical simulation of atmospheric turbulence is
one of the biggest bottlenecks in developing computational tech-
niques for solving the inverse problem in long-range imaging. The
classical split-step method is based upon numerical wave prop-
agation which splits the propagation path into many segments
and propagates every pixel in each segment individually via the
Fresnel integral. This repeated evaluation becomes increasingly
time-consuming for larger images. As a result, the split-step simu-
lation is often done only on a sparse grid of points followed by an
interpolation to the other pixels. Even so, the computation is ex-
pensive for real-time applications. In this article, we present a new
simulation method that enables real-time processing over a dense
grid of points. Building upon the recently developed multi-aperture
model and the phase-to-space transform, we overcome the memory
bottleneck in drawing random samples from the Zernike correla-
tion tensor. We show that the cross-correlation of the Zernike modes
has an insignificant contribution to the statistics of the random
samples. By approximating these cross-correlation blocks in the
Zernike tensor, we restore the homogeneity of the tensor which then
enables Fourier-based random sampling. On a 512 ×  512 image,
the new simulator achieves 0.025 seconds per frame over a dense
field. On a 3840 ×  2160 image which would have taken 13 hours to
simulate using the split-step method, the new simulator can run at
approximately 60 seconds per frame.

Index Terms—Atmospheric turbulence, wave propagation,
Zernike basis, Phase-to-Space Transform, Fourier optics.

I. INTRODUCTION

IGHT propagating through the atmosphere suffers from
distortions due to the random spatio-temporal fluctuations

in the index of refraction. Over a long distance, these distortions
will accumulate and degrade the image quality. The development
of atmospheric turbulence mitigation algorithms has received a
considerable amount of interest over the past few decades [1],
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[2], [3], [4], [5], [6], [7], [8], [9]. Deep-learning-based techniques
have recently been reported with some promising preliminary
results [10], [11], [12], [13]. However, as in any inverse problem,
the atmospheric turbulence problem requires a forward model
that can accurately describe the image formation process. To
this end, simulating the turbulent effect becomes a critical step
toward the goal of designing algorithms, evaluating methods,
and understanding the limitations of imaging systems.

For decades, simulating atmospheric turbulence is most accu-
rately performed in the wave domain because there is no simple
intensity domain model. The “gold standard” approach is the
split-step propagation [5], [14], [15].1 The idea is to split the
propagation path into segments and model the phase distortion
in each segment for every pixel individually. However, split-step
propagation is not scalable. For a 256 ×  256 sized image, the
split-step simulator reported in [5] can evaluate a grid of size
64 ×  64 where the remaining pixels are interpolated. The
reported runtime was approximately 24.6 seconds per frame on a
GPU. If the size of the image grows to 3840 ×  2160 (4 K
resolution) and the grid is dense, i.e. without interpolation, a
rough estimate is about 13.7 hours for one image. To synthesize
a training dataset containing 1000 of these sequences where each
sequence has 100 frames, this will take 156 years. Recognizing
the pressing need for an accurate and fast turbulence simulator,
we present a method that enables turbulence simulation in real
time.

A preview of our results is shown in Fig. 1. While split-step
propagation is largely limited to a small grid of sprase points,
the proposed method can directly generate a dense field. The
run-time of the proposed method is approximately 0.025 seconds
for a 512 ×  512 image. For a high-definition (HD) image of
size 3840 ×  2160, the runtime is approximately 60 seconds.
As can be seen in Fig. 1, the new simulator allows us to zoom
in to any region of the image while the turbulent effect is still
globally correlated according to the theoretical statistics. To our
knowledge, this is the first practical demonstration of an HD
dense-field turbulence simulation documented in the literature.

The proposed approach, named the Dense Field Phase-to-
Space (DF-P2S) simulation, is built upon the multi-aperture
model by Chimitt and Chan [18], and the phase-to-space (P2S)
transform by Mao et al. [19]. DF-P2S overcomes a fundamental

1There exist other modalities for the simulation of these effects that do not
require computationally costly numerical wave propagation [16], [17], however,
split-step is presently the most theoretically justifiable approach.
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a function defined across the aperture, we use the coordinates ξ
=  (ξ, η) or its polar form ρ =  (ρ, θ). We also use the polar
coordinates s =  (s, ϕ) to denote the displacement in the Zernike
space.

The turbulence effect is modeled by convolving a spatially
varying point spread function (PSF) to a diffraction-limited
clean image. In the case of incoherent light, which is the focus of
this work, the observed image I ( x )  is

I ( x )  =  hx (u)  ~  Ig (u), (1)

Fig. 1.     [Top] This article presents a new turbulence simulation method that
produces dense-field turbulence in real-time. For a 512 ×  512 image, the
classical split-step propagation takes 1 s to generate a 32 ×  32 grid followed by
interpolation of the field. The proposed method takes 0.03 seconds to generate
the turbulence at dense-grid. [Bottom] Snapshot of a simulated turbulence image
from an input image with a 4 K resolution (3840 ×  2160 pixels).

limitation of [19] which is the size of the cross-correlation
matrix (tensor). In [19], the cross-correlation tensor must be
pre-computed, stored, and decomposed before running the sim-
ulator. This causes some computational overhead, however, the
bigger issue is memory. The largest cross-correlation tensor that
can be stored is for a spatial grid of size 32 ×  32 using 36 basis
coefficients. To simulate an image with a higher resolution, we
need to interpolate the field, which limits the overall accuracy
of such a simulation. Our solution to overcome this memory
bottleneck is to maintain the homogeneity along the spatial di-
mensions of the correlation tensor and perform an approximation
of the cross-correlation functions which otherwise restrict this
behavior. This is based on a new observation that the exact form
of the cross-correlation functions can be approximated without
severely hurting the tensor statistics. As a result, we can employ
Fourier-based techniques to draw dense field samples spatially
at a low computational cost. This allows us to maintain a similar
speed as P2S [19], yet gain an increase in statistical accuracy.

To summarize, this article offers two contributions:
1) Real-time dense field turbulence simulation. We report the

first turbulence simulator that can simulate over a dense
field and in real-time.

2) New approximation to the cross-correlation function.
We show how certain off-diagonal blocks of the cross-
correlation matrix used in [19] can be removed to utilize
Fourier-based generation, hence enabling a significant
resolution upscale.

II. OUTLINE OF GENERAL SIMULATION PRINCIPLES: BUILDING

BLOCKS

To keep track of the notations, we use object plane coordi-
nates x  =  (x, y ) and image plane coordinates u =  (u, v). For

where hx (u)  is the PSF with the subscript to emphasize that it is
spatially varying, and Ig (u)  is the distortion-free image. Note
that the observed image is indexed by x  whereas the PSF and
ideal image are indexed by u. This is to emphasize that after
hx (u)  is convolved with Ig (u) ,  only the center pixel is used to
construct I (x ) .

The per-pixel PSF can be generated per the Fraunhofer diffrac-
tion equation with phase error [20]. Denoting P (ξ )  as the
aperture function, hx (u)  is

n o
hx (u)  =  Fourier P (ξ )e − j φ x ( ξ )       , (2)

withholding some constants that determine the size of the PSF
according to the optical parameters. Here, φ x (ξ )  is the phase
distortion function that varies over ξ  for coordinate x  in the
image. Note that φx 0  (ξ )  =6  φx 1  (ξ )  if x0  =6  x1 .

Given that the PSF generation (2) and the image formation (1)
is relatively standard, the central focus of a simulation approach
then falls upon the generation of the random phase φx (ξ )  in
accordance with its theoretically given statistics. There are two
main categories for generating φx : (i) split-step propagation [5],
[14], [15], which numerically propagates a wave through a
random volume, and hence modeling the medium; (ii) collapsed
phase-over-aperture [18], which generates the phase function
directly at the aperture, which we refer to as the multi-aperture
model. We illustrate the differences in these two approaches in
Fig. 2.

A. Computational Bottleneck of Split-Step

Before we discuss the two building blocks of our simulator,
it would be useful to highlight the limitations of the split-step
method [5], [14], [15]. The split-step method directly mirrors
the physical process by which light propagates. After a point
propagates through the simulated medium, it arrives at the
aperture of the imaging system with a phase component φ(ξ).
In the case of turbulence, the statistics of φ(ξ ) is determined by
the structure function

Dφ (ξ, ξ0 ) =  E[(φ(ξ ) −  φ(ξ0))2]. (3)

Assuming that the random function φ(ξ ) is homogeneous and
isotropic, the structure function can be simplified to

Dφ(|ξ −  ξ0|) =  6.88(|ξ −  ξ0|/r0)5/3, (4)

where r0 is the Fried parameter [21].
To numerically generate the phase φ, the split-step method

uses the Kolmogorov power spectrum density (PSD) [22] (or
similarly Von Karman spectrum [5], etc) to generate discrete
planes of turbulent distortions, referred to as phase screens [15].
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Fig. 2.     Here we show the main difference between classical approaches of modeling the medium and propagation directly, [5], [14], and our approach based on
[18], [19]. In split-step, a subset of pixels in the image have point sources propagated through the medium which are then interpolated between to form the image at
full resolution. In our approach, every single point has its own basis vector representation, meaning a phase function is generated for each pixel without interpolation.
We emphasize that both approaches generate phase realizations for the image formation process, but it is the generation approach that differs.

This can be done directly with knowledge of the PSD and the
Fourier transform based random field generation approach. The
phase screens are placed along the propagation path as shown in
Fig. 2. The size of the phase screens is generated larger than the
input image in order to model the spatial correlations which are
determined by the overlap of the phase screen along the path.

Since the split-step models the medium directly, it is regarded
as the most theoretically justifiable approach. A comprehensive
discussion of this model is provided in [15]. However, the main
limitation of split-step is its computational requirements. For
every point source, we need to perform multiple fast Fourier
transforms (FFTs). A simulation with M phase screens results
in M (W ×  H )  2D FFTs for an W ×  H  image, with each FFT
being at the size of the image. Scaling the process of generating a
large dataset is nearly impossible.

B. Building Block 1: Multi-Aperture Model

Recognizing the speed limit of the split-step simulation,
Chimitt and Chan proposed a new concept in [18] which they
named the multi-aperture model. The idea is to skip the prop-
agation by going to the statistical description of the resultant
phase φx (ξ )  using the Zernike representation first proposed by
Noll in 1976 [23]. The idea is to define a radius R  and a vector ρ
such that Rρ  is the polar coordinate representation of ξ . Then,
the phase φx  can be represented as

∞ N

φx (Rρ )  = a x , j Z j (ρ )  ≈ ax , j Z j (ρ ) , (5)

φ x ( ξ )              
j = 1                                      j = 1

with Z j (ρ )  as the j th Zernike function and a x , j  as its re-
spective coefficient. We emphasize that the phase φx  is lo-
cation specific, i.e., the phase function at x  is different from
the phase at x0 if x  6=  x0. Therefore, the Zernike coefficients
a x , j      are different from ax0 ,j . However, the basis function

Z j (ρ )  is shared for all locations. In this article, we set N  =
36, though this can easily be increased at the cost of some
speed.

The coefficients a x , j  are zero-mean Gaussian, and have a
correlation matrix (technically, a tensor stored in the matrix
form) which we denote the (x, x,0 i, j )th element of the matrix
A  as

[A]x , x , 0 i , j  =  E[ax , i  ax0 ,j ]. (6)

This notation stresses that the matrix A  is location dependent
on the pair x  and x0. In the special case when the correlation
matrix is spatially invarying, we write [A]x , x , 0 i , j  as [A]x−x , 0 i , j .
If we further assume that x0 =  x, the correlation matrix becomes
[A] 0 , i , j  =  E[ax , i  ax , j ], which is equivalent to the covariance
matrix given by Noll [23].

Based on the decomposition in (5), we can simulate the
turbulence in three steps [18]: (i) Collapse the screens; (ii) Draw
spatially correlated Zernike vectors; (iii) Draw inter-modally
correlated Zernike vector. Therefore, we have effectively con-
verted the split-step propagation into a sampling problem of the
Zernike coefficients.

This multi-aperture model provides roughly a 6 ×  increase
in speed over split-step. However, the major drawback is that
the spatial correlation for the higher order (ax , i  where i  ≥  3)
Zernike terms are not computationally feasible. The genera-
tion of the spatial and intermodal correlated vectors requires a
large covariance matrix, which exponentially increases in size
with the size of the image. Therefore, only tilts are
reasonably implementable for this method. Furthermore, the
image formation process is the same as split-step, requiring us
to generate one PSF for one pixel repeatedly over the entire
field of view plus convolutions to produce the final image.
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C. Building Block 2: Phase-to-Space

While the multi-aperture approach reduced the computation
by collapsing the propagation into a sampling problem, the PSFs
still need to be generated according to (2) and the spatially vary-
ing convolution still needs to be performed via (1). To address
these computational limitations, Mao et al. [19] introduced the
phase-to-space (P2S) transform that reformulates the PSF via a
spatial decomposition:

M

hx (u)  = βx , mϕm (u) , (7)
m = 1

where ϕm (u)  is a spatial basis function for the PSF. In [19],
these basis functions are learned by running the principle com-
ponent analysis on a database on PSFs. The parameter β x , m
denotes the coefficient associated with each basis ϕm (u). What
(7) says is that the spatially varying convolution in (1) can now
be replaced by a set of spatially invariant convolutions using
ϕm (u) . To form the image, we simply compute the per-pixel
coefficient β x , m  and form the weighted average:

I ( x )  =  hx (u)  ~  Ig (u)

M

= β x , m ϕm (u) ~  Ig (u)      , (8)
m = 1               

spatially invariant convolution

where we should emphasize the speed improvement due to the
spatially invariant convolution. However, the biggest challenge
here is that there is no analytic expression that allows us to
translate the Zernike basis Z j (ρ )  to the spatial basis ϕm (u) .
The solution proposed in Mao et al. [19] is to train a small neural
network to convert the coefficients from the Zernike coefficients
ax  =  [ax,1 , ax,2 , . . . , ax ,N ] (which are sampled from A )  to the
PSF coefficients β x  =  [βx,1 , βx,2 , . . . , βx,M ].

The phase-to-space transform eliminates the necessity of tak-
ing any FFT for the formation of a PSF, dramatically speeding
up the generation process by 1000× compared to split-step.
However, the limitation of the phase-to-space transform is the
memory requirement. For an image of size W ×  H ,  the gen-
eration using 36 Zernike coefficients requires the construction
of a matrix that is 36H W ×  36H W . What is worse is that we
can not leverage the homogeneity property (analogous to the
wide-sense stationary in random processes) and so we cannot use
Fourier transforms to decompose the correlation matrix and draw
random samples. The workaround solution in [19] is to focus on
a small grid of points H/d ×  W/d where d is the sampling ratio,
followed by decomposing the 36 H W/d2 ×  36 H W/d2 matrix
and interpolating between these points. The grid sizes, in most of
the demonstrations, are in the range of 16 × 16 to 32 × 32 due to
memory limitations. In this article, we resolve this memory issue
by completely eliminating the interpolation by approximation,
thus enabling a truly dense field turbulence generation.

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

are based on the solution to ray optics simulation through a series
of phase screens. Their comparisons with the split-step can be
found in [25]. Additionally, empirically-driven methods such as
Hunt et al. [17] model the atmospheric distortion basis represen-
tations. There are also low-order approximation methods such
as [6], [26], [27], which can generate visually plausible images
but fail to satisfy the turbulence statistics.

III. DENSE FIELD PHASE-TO-SPACE SIMULATION (DF-P2S
SIMULATION)

In this section, we outline the proposed DF-P2S simulation.
DF-P2S uses the same backbone as the original P2S in [19] but
offers a dense field simulation not possible with P2S.

The overall simulation can be broken down into two steps as
shown in Fig. 3:

1) Generate correlated Zernike coefficients. The goal of this
step is to use Building Block 1: Multi-Aperture Model to
draw random but correlated Zernike coefficients according
to the correlation matrix.

2) Apply the Zernike coefficients using the P2S transform.
This step uses Building Block 2: Phase-to-Space Trans-
form to convert the correlated Zernike coefficients to
the spatial basis coefficients. Consequently, the resulting
image can be formed by (8).

The biggest innovation of DF-P2S is a new way to accomplish
the first step. We ask the question: how can we efficiently draw
the Zernike coefficients from A  without suffering from the
memory bottleneck? To answer this question, it is important to
investigate the structure of the correlation matrix A .

A. Intuition of the New Method

The idea of drawing correlated Zernike coefficients according
to a correlation matrix is not difficult if the number of grid points
is small. Consider a multivariate Gaussian random variable with
mean E[y] =  0 and the correlation matrix Σ =  E [ y y T  ]. To draw
a random vector y  from this distribution, we can decompose the
correlation matrix Σ  =  U S U T  via the eigen-decomposition,
and define Σ 2  =  U S 2  U T  . Then, starting with a white noise
vector e � Gaussian(0, I), the transformed vector y  =  Σ 2  e

will satisfy the desired property that E[y] =  0 and E[yyT ] =  Σ .
When the size of the grid is small so that the dimension of

the correlation matrix Σ  is small, the matrix Σ
1  

can be gener-
ated using standard numerical techniques such as the Cholesky
factorization. However, for a large grid of points, storing the
matrix Σ  and running the factorization would become infea-
sible. One exception is that if y  is homogeneous (wide-sense
stationary), then the correlation matrix Σ  is circulant and so the
eigen-decomposition is equivalent to the Fourier transform. In
this case, generating the random vector y  can be implemented
via **

D. Other Simulation Approaches y  =  U S 2  U T  e =  F − 1 ( S 2  F (e)) , (9)

While split-step is regarded as the most accurate simulation
method, other approaches do exist. The most closely related one
is the brightness function simulation [16], [24]. These methods

where F  denotes the discrete-time Fourier transform, and the
diagonal matrix S is the Fourier spectrum of one row (or column)
of the correlation matrix Σ .
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Fig. 3.     Here we present the overall DF-P2S simulation pipeline. We first generate a Zernike vector for every point in the image, a feat only possible through our
simulation technique. Next, we feed these Zernike vectors parallely into the P2S transform. The P2S transform maps the phase coefficients to PSF coefficients,
which are then used to implement a fast version of a spatially varying convolution.

Fig. 4.     The Zernike Space is a representation describing the phase decompo-
sition by its basis functions. For every point on an object, or analogously every
pixel in an image, there is a Zernike vector that describes the distortion across
the aperture. This motivates us to define the Zernike space as a tensor.

The significance of the homogeneity is that it allows us to
speed up the sampling process by performing all computations in
the Fourier space. In addition, the memory bottleneck is resolved
because we do need to construct the full correlation matrix Σ and
run the Cholesky factorization. The question is: For the Zernike
correlation matrix we are considering in this article, does it have
any kind of wide sense stationarity? If not, can we approximate it
using something that has such a property?

B. Structure of the Correlation Matrix

In this subsection, we take a closer look at the structure of the
Zernike correlation matrix A. As defined in (6), the (x, x,0 i, j )th
entry of the correlation matrix at the location-pair (x, x0 ) and
the Zernike mode-pair ( i , j )  is [A]x , x , 0 i , j  =  E[ax , i  ax0 ,j ]. Thus,
A  is a four-dimensional tensor, with two dimensions allocated
to the pair of spatial coordinates (organized through a column-
wise stack), and two dimensions allocated to the pair of Zernike
modes. One way to visualize the Zernike space is to consider the
illustration shown in Fig. 4. For a fixed pixel location x ,  there

is a vector ax  =  [ax,1 , . . . , ax,N ] where n =  1, . . . , N denotes
the Zernike mode index. As we move to another pixel location
x0, the vector becomes ax0 =  [ax,0 1, . . . , ax,0 N ].

For a fixed Zernike mode pair ( i, j ) ,  the correlation is limited
to the spatial axis. This will give us the (i, j )th slice of the
four-dimensional tensor

�
[A] x 1 , x 1 , i , j . . . [A] x p , x 1 , i , j

A i , j  =  � . . . .              . �,

[A ] x p , x 1 , i , j . . . [ A ] x p , x p , i , j

where x1 , . . . , xp are the p coordinates in the grid. Assuming
that the Zernike coefficients across the field of view is homoge-
neous [18], the (x, x0 )th element [A i , j ] x , x 0  will be the function
of x  −  x0 instead of the absolute positions (x, x0 ). In this case,
we can write [Ai,j ]x,x0 as [A i , j ]s  where s =  ( x  −  x0 )/D with D
being the aperture diameter2. For a grid of points x1, x2, . . . , xp,
the matrix A i , j  takes the form

�
[A]s 0 , i , j [A] s 1 , i , j . . . [A] s p , i , j  

�

�[A]s 1 , i , j [A] s 0 , i , j . . . [ A ] s p − 1 , i , j  �
i , j

� .                  . . . .             . �
[A] s p , i , j [ A ] s p − 1 , i , j . . . [A] s 0 , i , j

Because of homogeneity, A i , j  can be decomposed via the
Fourier transform. This “slice” of the tensor is representative of
a single Zernike coefficient field.

2The necessity to normalize the coordinate using D  comes from the fact
that the geometry of the optical system has a certain impact to the Zernike
coefficients. In particular, two aperture diameters D 1  and D 2  will lead to
two different Zernike space because the imaging systems are viewing through
different effective slices as a function of aperture size. Therefore, we define a
standardized unitless vector corresponding to correlation length in accordance
with [18] to be s =  L (θ −θ 0 )  =  x − x 0  

, where θ,θ0 are two vectors pointing
from the center of the imaging system to points x, x0 , respectively.
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For a fixed location pair (x, x0 ), we can obtain another slice
of the correlation matrix

�
[A]s ,1 ,1 . . . [A]s , 1 , N

A x , x 0  =  A s  =  � . . . .            . �.

[A]s , N , 1 . . . [A] s , N , N

The special case where s =  0, which gives matrix A 0  is exactly
the Noll matrix [23] that specifies the correlation between the
Zernike modes at a single pixel location x .  In general, the
matrix A s  does not have the circulant structure and cannot be
decomposed via the Fourier transform.

The prior notation allows us to easily identify the homoge-
neous and the non-homogeneous components of the tensor. The

entire Zernike correlation tensor A  can be written as
�A1 , 1 · · · A 1 , N A s 0 · · · A s p

A  =  �     .
. . . . � =  � . . . . . �,

A N , 1 · · · A N , N A s p · · · A s 0

The entire tensor structure is non-homogeneous. Thus, it is not
possible to draw samples via the FFT method, which highlights a
fundamental limitation of [18] and [19].

C. Generation of the Random Zernike Fields

Due to the non-homogeneity of A ,  we propose an approx-
imate tensor A  which we claim captures a majority of the
statistical behavior while having the property of homogeneity.
Reserving the accuracy of this approximation for Section III-D,
we propose the following method for the generation of the
Zernike fields:

1) Generate i =  {1, 2, . . . , N } unit-variance, spatially corre-
lated random fields according to Ai,i. Note this generation
uses only autocovariance functions. At this stage, our
N  fields are independent, thus utilizing the FFT-based
method based on their homogeneity.

2) Perform a point-wise mixing of the random fields accord-
ing to the Noll matrix A 0 .  This mixing is done pixel-wise
(across the coefficient index dimension) per pixel.

This generation process will give us random fields which are
in accordance with the autocovariance functions, however, for
the cross-covariance terms there will exist some deviation. This
is most simply presented by the form of the covariance structure
of the tensor,

�
A1 ,1 0 . . . 0

�

A  =  L � 
.

A
.

, 2 . . . 0
�L T  , (10)

0 0 · · · A N , N

where L L T  =  A 0 .  We note the resultant matrix is no longer
diagonal. Therefore, the off-diagonal entries of A  differ from
A ,  which will be the focus of our numerical analysis.

We provide a visualization of the resulting covariance matrix
in Fig. 5 using a simplistic example in the case of an 8 × 8 image
with 3 coefficient fields. Initially, white noise is generated for an
8 ×  8 ×  3 random volume, which is then spatially correlated for

Fig. 5.     We give a visual representation of the covariance structure as it
changes through the generation process. First, white noise has a covariance
structure applied to it, resulting in spatially correlated, yet independent random
fields. Next, along the index axis, a mixing matrix is applied via Cholesky
decomposition. Finally, the resulting fields are correlated both spatially and
along the index dimension and have the covariance structure shown.

each slice according to its autocovariance function. The resulting
covariance matrix has a considerable amount of zero-entries
corresponding to the other 8 ×  8 random fields. After this, the
fields are mixed according to the 3 ×  3 covariance matrix along
the final index axis, after which the covariance matrix becomes
much denser. This same principle is extended to the case of an
W ×  H  image with N  coefficient fields.

D. The Impact of Cross-Correlation Functions

The core innovation in this work is the ability to utilize
property of homogeneity for individual fields as , i  (or equiv-
alently, eas,i). This allows us to quickly draw samples using
FFT-based generation followed by a mixing matrix. To justify
this approximation, we begin with the following considerations:

1) The correlation functions Ai,j for i =6  j  sharply decay and
approximately vanish for s >  4;

2) The off-diagonal terms for the matrix A x , x  (correspond-
ing to indices i  =6  j ) contain a small proportion of the
energy.

Together, these two properties suggest that the overall energy
lost by the removal of the cross-correlation functions will be neg-
ligible. Intuitively, the reason for this lies within the sharp decay
of the correlation functions (1), which are already significantly
smaller than their counterparts (2).

With this observation, we turn to the numerical analysis
performed to more concretely justify this approximation. We
wish to measure the energy that will be contained within our
approximation and compare it with the energy contained if the
entire cross-correlation functions were to be retained. To do
so, we integrate outward in the Zernike space and quantify the
deviation of A  from A  as a function of s. While the correlation
functions Ai,j  have angular dependencies, we integrate over the
angular components for ease of presenting our comparison. We
note that along any particular direction individually, the results
do not vary considerably. Mathematically, we write the energy
contained with all functions considered via the Frobenius norm
as

Z s  Z 2π

E (s )  = ds0 Tr A T  As 0      , (11)
0        0
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Fig. 6.     The results from our numerical evaluation of the three proposed energy
functions. The axis for E ( s )  and E ( s )  are on the right, while the axis for
residual difference energy function E ( − )  is on the left. We note the apparent
match between the two individual energy functions. More importantly, there is a
comparably small magnitude for the difference function, suggesting a reasonable
match.

Fig. 7.     A heat chamber is built to collect real turbulence data. The heat chamber
consists of three blocks where the total optical path length is 20 meters. The
temperature along the path can be controlled by the number of heat lamps that
are switched on. At one end of the heat chamber, we put a monitor displaying
the target pattern. An 800 mm lens camera is placed at the other end of the setup to
capture the image.

where we’ve integrated spatially outwards up to s, as we intend
show the accuracy of the approximation as the size of our field in
the Zernike space grows. As s becomes large with respect to the
spread of the function, E (s )  will converge. The energy within
our approximation can be written similarly as

Z s  Z 2π
E (s )  = ds0 Tr A T  As 0         . (12)

0        0

In addition to comparing the energies separately, we may also
consider measuring the difference between them. To this end,
we propose to measure

Z s  Z 2π

E ( − ) (s )  = ds0 Tr A T  As 0  −  A T  As 0        , (13)
0        0

where we are only interested in the magnitude of the residual,
therefore measuring its absolute value.

These three functions will help to provide insight into the
accuracy of our approximation. Ideally, we want E (s )  and E (s )
to match. However, this alone is not enough to claim accuracy,
as this is only a way of measuring the total joint behavior. We
additionally then propose to use E ( − ) (s )  to measure the total
index-wise residuals. An optimal result for E (−)(s) would be for
it to vanish at every point. We present the results of this numerical
analysis in Fig. 6 which we note is cumulative, therefore reaching

a steady state means no additional errors will be incurred. We
also choose to not include the first three Zernike coefficients
(piston and x, y-tilts) for this plot, as these terms dominate
the plot significantly in magnitude, though the conclusion of
the analysis is unchanged. With this, we present the following
observations:

1) At s =  0 there is no loss in energy/statistical accuracy (e.g.
for a single point we are perfectly accurate);

2) A majority of the errors are for small s, which is expected
as the correlation functions have not yet vanished at this
point;

3) For separations s >  4, there is no additional loss in energy
and remains at steady state. The energy of the difference
E ( − ) (s )  is two orders of magnitude smaller than the total
energy, suggesting its overall accuracy.

These three observations suggest that our approximation re-
tains a majority of the field’s statistical behavior, while allowing
for considerable speed-up.

E. Spatio-Temporally Correlated Fields

The extension of the proposed ideas to spatio-temporally cor-
related fields is possible through the adoption of Taylor’s frozen
flow hypothesis [28]. Under this hypothesis, a displacement in
time t  may be written as a spatial displacement y  through the
relationship vt =  y ,  with v as the mean transverse velocity of
the turbulent medium. Taylor’s frozen flow hypothesis allows us
to extend the results by considering z  =  x  +  vt. This will give us
a spatio-temporal tensor Az , z 0  of analogous structure to the
previously described A x , x 0  .

A downside of the frozen flow hypothesis is that we need to
pre-compute and store multiple three-dimensional random
fields. The workaround solution is to enforce the temporal cor-
relation via an auto-regressive process. Therefore, the random
seed e used to generate the Zernike fields as in (9) are updated
according to et =  γet−1 + 1 −  γ2n. Here we’ve introduced
subscript t to indicate a temporal index along with n as a
zero-mean, unit-variance Gaussian vector and γ � [0, 1]. While
the theoretical justification of such a model is limited, the speed
of simulation is marginally impacted. We observe the visual
effects under the auto-regressive approximation to be suitable in
practice.

IV. EXPERIMENTS

In this section, we discuss comparisons between the proposed
DF-P2S scheme and split-step. We view the P2S method [19]
as a fast way to generate our PSFs, which may be optionally
replaced by (2) at the cost of speed. Therefore, we do not
compare directly to this method. We begin with visual com-
parisons with split-step, which we emphasize are helpful as a
reality check, though are not as useful as a statistical compar-
ison. As a result, we take care in comparing our simulation
results to the theoretically predicted statistics, which we find to
be more informative. Finally, we compare the runtime and
resolution of the DF-P2S approach compared against other
methods.
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Fig. 8.     Comparison of our simulation approach against our observed heat chamber data and split-step. We observe a reasonable match for both cases, with our
approach having the capability to easily operate on high-resolution images. Taking the first row as our example, DF-P2S can operate under a second while split-step
would take an estimated time of 20 minutes. Our estimate is based on the grid size used by the split-step.

A. Visual Comparisons

Visual comparisons require a ground truth image to simulate,
as well as turbulent pairs. For this purpose, we use a heat
chamber, where we have a series of heating lamps along a
20-meter path, as shown in Fig. 7. This allows us to easily use a
digital image displayed on a monitor at the end of the path.

We compare our method with our heat chamber data, as well
as split-step [5], [15]. We present a few examples of our visual
comparisons in Fig. 8. Visually, we can observe a reasonable
match between both generation methods, though we have up-
scaled the distortions of split-step according to [5] to match the
image resolution.

The direct visual comparison is a useful reality check; it serves
to show that a method can produce visually realistic images.
However, there is no easily quantifiable approach to validating a
simulator via visual comparison. This motivates us to emphasize
other modes of validation.

B. Statistical Validations

In analyzing the simulation approach, adherence to the de-
sired statistical behavior is a key metric by which we judge
the quality of our simulation approach. The validation here is
divided into two categories: (1) aperture statistics and (2) spatial
statistics. For statistics on the aperture, the key comparison is
our generated statistics plotted against the theoretical structure
function. With respect to spatial statistics, our comparison is
with the known tilt statistics; there is a limitation on the known
behavior of the spatial statistics with respect to the blur without
the approximation in [18], so no direct comparison is possible.

Aperture Statistics: For the evaluation of aperture statistics,
the most important function to match is that of the structure
function given by (4). By matching this function, as we show

Fig. 9.     A comparison between the theoretical structure function (solid curves)
at different distortion levels vs. our generated statistics (dotted lines). We observe
a reasonable match across multiple levels of distortions.

in Fig. 9, we are able to match any statistical value that can be
written in terms of the structure function, such as the Fried
parameter. We show a good match to the structure function at
varying levels of turbulent distortions.

We also perform another experiment on the temporal averages
of the distortions, the short exposure (SE) and long exposure
(LE) optical transfer functions (OTFs). The OTF in general is
defined as

H ( ξ )  =  P (ξ )e− j φ ( ξ )       ~  P (−ξ ) e j φ ( − ξ )       , (14)

which is the autocorrelation operation of the overall pupil func-
tion and phase distortion. The LE OTF is then given by a
temporal average over realizations of individual OTFs. Math-
ematically, the LE OTF is given as

h i
HLE (ξ )  =  E P (ξ )e− j φ ( ξ )       ~  P (−ξ ) e j φ ( − ξ ) . (15)
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Fig. 11.     Comparing theoretical (solid and dashed) vs. empirical spatial tilt
statistics (dotted). We note that this is for one configuration of camera and
geometry, though among our tests we can match to this level of accuracy in a wide
variety of scenarios. The limitation of this match is inherent to the approximation
of [18].

Fig. 10.     Comparing the long and short exposure OTFs at different distortion
levels with the theoretical curves (solid lines) and our statistics (dotted lines).

The SE OTF is similarly defined using the temporal average,
however, this measure uses a “tilt-corrected” phase function ϕ
given by

ϕ(ξ ) =  φ(ξ ) −  α T  ξ , (16)

where α T  f is the plane of best fit, effectively removing the
tilt. The remaining phase distortion ϕ will then only describe
the high-order distortions. This differs from the LE OTF, which
includes both blur and tilt/shifting. The SE is then described as

h i
HSE (ξ )  =  E P (ξ )e − j ϕ ( ξ )       ~  P (−ξ ) e j ϕ ( − ξ ) . (17)

The LE and SE OTFs have analytic expressions [28], which
we compare with the results of our simulation in Fig. 10 which
also includes the diffraction OTF. We observe a wide variety of
D /r 0  levels that we perform with sufficient accuracy. Some
slight deviation may be improved by subharmonic methods such
as those described by Schmidt [15].

Spatial Statistics: For further validation, we also make a
comparison with spatial statistics, of which we choose the tilt
correlation and differential tilt variance. The tilt correlation
measures the similarity between tilts as a function of position,
therefore monotonically decreasing, while the differential tilt
variance measures the difference between the tilt, and as a result,
monotonically increases. The expression for tilt correlation has
been carried out by Basu (now Bose-Pillai) et al. [29], which is
what we use for our comparison. However, as the expression is
analytically cumbersome, we state the definition as given by

Fried [30]
ZZ

E[α(0)α(θ )]  � drdr0W (r)W (r0 )r · r0 Dφ (r −  r,0 θ)

(18)
with a somewhat modified structure function from [29], [30].
We present a comparison with these theoretical statistics with
our generated statistics in Fig. 11. In addition to tilt correlations,
we may also calculate differential tilt variance (DTV) from the
tilt correlation via

E[(α(0) −  α(θ ))2 ] =  2 E[α2 (0)] −  E[α(0)α(θ )], (19)

which quantifies the overall variance in the distortions as a
function of position of the Zernike tilt terms. We again observe a
match across a wide variety of D /r 0  values. The deviation of
these results is a result of a Taylor series performed in the
analysis of [18] upon the structure function. The tilt correla-
tion and DTV changes with different combinations of imaging
geometries and camera parameters, though in our tests we can
typically match to this degree of accuracy assuming a constant
C n .  For more details regarding this approximation, we would
refer the reader to [18].

C. Speed and Resolution Comparisons

For our runtime comparison, we consider the generation
contained in Fig. 2. That is, we want to compare the time to
generate only the phase distortions, not the application of the
point spread functions. We choose not to include this as this can
be replaced in either approach with either the analytic formula
(2) or the P2S network. We feel this is the most fair comparison
of an atmospheric turbulent simulation tool, as the core goal is to
produce the phase distortions. Therefore, Fig. 12(a) reflects the
time to generate the turbulent phase distortions at varying
resolutions between our approach and split step. We then show
additional resolution for our simulation in Fig. 12(b) to which
split-step is not scalable. Notably, our simulator can generate an
image at an image resolution of 512 ×  512 in the same time as
approximately a 10 ×  10 image with split-step, which would
then typically be upscaled 4× ,  resulting in a 40 ×  40 image.
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some interfacing with the camera and calculation of statistics in
real-time, this is not performed at the same speed as reported in
Fig. 12. However, we can achieve approximately 8 frames per
second (FPS) for a 512 ×  512 image on a nVidia GeForce GTX
1080 Ti GPU with the GUI and additional statistical information
displayed. To our knowledge, this is the first simulator in the
literature that has the capability of performing a simulation
with this level of accuracy at this speed, making this the first
real-time demo of turbulent imaging simulation. Additionally,
we can modify the imaging geometry and turbulence strength in
real-time, for which we have tunable knobs in our GUI.

Fig. 12.     A comparison of the runtimes of split-step [5] and ours. (a) Low
resolution. (b) High resolution. Note that split-step cannot handle any high
resolution.

Fig. 13.     Graphics User Interface (GUI). Our GUI can be connected to a
standard camera and generate dense-field turbulence effects at 7 fps for a
512 ×  512 image.

D. GUI for Real-Time Simulation

As a result of our simulation being computationally efficient,
a real-time generation of turbulent images can be developed.
We show a real-time demonstration using a camera and GPU in
which we can display the distorted video stream, pixel displace-
ments, and an 8 ×  8 grid of sub-sampled PSFs in Fig. 13. Given

V. CONCLUSION

In this article, we’ve proposed the DF-P2S simulator for imag-
ing through atmospheric turbulence. The DF-P2S approach can
generate real-time turbulent realizations for standard 512 ×  512
images and is capable of generating large-scale datasets for train-
ing purposes. In addition to its speed, it maintains competitive
accuracy against with the traditional split-step simulation. This is
leveraged by the approximation on the Zernike space covariance
tensor, which we justify via numerical experiments. Statistically,
the DF-P2S simulation can generate distortions that match with
their theoretically predicted curves. We further demonstrate with
the speed of our simulator, we can perform these actions in nearly
real-time.
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