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Abstract—It remains challenging to train billion-scale DNN
models on a single modern multi-GPU server due to the GPU
memory wall. Unfortunately, existing memory-saving techniques
such as GPU-CPU swap, recomputation, and ZeRO-Series come
at the price of extra computation, communication overhead, or
limited memory reduction.

We present MPress, a new single-server multi-GPU system
that breaks the GPU memory wall of billion-scale model training
while minimizing extra cost. MPress first discusses the trade-offs
of various memory-saving techniques and offers a holistic solu-
tion, which alternatively chooses the inter-operator parallelism
with low cross-GPU communication traffics, and combines with
recomputation and swap, to balance training performance and
sustained model sizes. Additionally, MPress employs a novel, fast
D2D swap technique, which simultaneously utilizes multiple high-
bandwidth NVLink to swap tensors to light-load GPUs, based
on a key observation that inter-operator parallel training may
result in imbalanced GPU memory utilization and spare memory
space from least used devices plus the high-end interconnects
among them have the opportunity to support low-overhead
swapping. Finally, we integrate MPress with PipeDream and
DAPPLE, two representative inter-operator parallel training
systems. Experimental results with two popular DNN models,
Bert, and GPT, on two modern GPU servers from the DGX-
1 and DGX-2 generation, equipped with 8 V100 or A100 cards,
respectively, demonstrate that MPress significantly improves the
training throughput over ZeRO-Series with the identical memory
reduction, while being able to train larger models than the
recomputation baseline.

Index Terms—Inter-Operator Parallelism, DNN Training,
Swap, Recomputation

I. INTRODUCTION

To support today’s AI revolution, deep neural networks
(DNNs) are becoming larger with the number of parameters
increasing from million-scale to billion-scale [3], [20], [62].
The model size is expected to continue growing in the future,
as recent studies prove that the model accuracy and resource
efficiency have been improved with the growth of model
size [37], [51]. Along with this trend, there is an unprecedented
growth of GPU memory demands, far beyond a single GPU’s
memory capacity (typically a few tens of GBs). Thus, it has
been a norm to break the GPU memory wall by parallelizing
large DNN model training over multiple GPU accelerators.

In this paper, we focus on scaling up billion-scale model
training on a single modern multi-GPU server for the following
reasons. First, billion-scale DNN models have already covered
a wide range of applications [30], [57]. Second, enhanced

single-server performance can be the building block for ac-
celerating cross-server giant model training [50]. However,
this is challenging because of the GPU memory bottleneck.
For example, a high-end 8-V100 GPU server (AWS EC2
p3dn.24xlarge instance), offering 256 GB GPU memory in
total (32 GB per GPU card), still can not sustain the training
of a GPT model with over 10.3 billion parameters, which,
however, requires 325 GB GPU memory. The huge memory
space is used to accommodate not only model parameters, but
also the dynamically generated data alongside computation,
such as activations, optimizer states, gradients, etc.

To alleviate GPU memory limitation, intra- and inter-
operator parallelism split DNN models and distribute partitions
with lower GPU memory footprints to multiple GPUs [64].
However, the stand-alone model partitioning solution is insuf-
ficient to fulfill the goal. For instance, even using the leading
inter-operator parallel training system PipeDream [43], we
observe out-of-memory errors when the Bert model with over
640 million parameters, on the above 8-V100 GPU server.

There are also various memory-saving techniques [31],
[33], [38], [49]. For instance, recomputation drops activations
generated by the forward pass and recovers them when needed
in the backward pass by triggering the original computation
again [33]. However, it results in extra computation overhead
and is not applicable to data other than activation. In compar-
ison, a more general approach is to swap model data between
GPU and CPU memory during computation [31]. However,
existing GPU-CPU swap solutions suffer non-negligible per-
formance loss, mainly due to the limited PCIe bandwidth,
precluding the opportunities to overlap computation and swap-
ping. Most recently, ZeRO-Series eliminate data redundancy
in data parallel training and combine both recomputation and
swap to reduce GPU memory consumption, at the price of in-
troducing cross-GPU communication overhead for exchanging
all data except activations.

To break the GPU memory wall and address the above
challenges, we propose MPress, a single-server multi-GPU
system that enables billion-scale model training with improved
performance. Note that MPress outperforms ZeRO-Series
w.r.t the same-sized large models because we choose inter-
operator parallelism as the underlying parallel training strat-
egy, which introduces extremely lower cross-GPU communi-
cation than data parallel that the latter systems rely on.

More importantly, MPress strategically saves the GPU
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memory usage of inter-operator training by considering new
hardware features and its unique GPU memory consumption.
First, high-end GPU machines such as NVIDIA DGX Systems
[14] bring advanced interconnects between GPUs with very
high bandwidth, e.g., up to 50 GB/s between two GPUs,
212.5% higher than the bandwidth of PCIe 3.0 x 16. In addi-
tion, with up to 6 high-bandwidth in/outbound links per GPU,
one can achieve even higher aggregated bandwidth. Second,
we identify the ill-imbalanced GPU memory consumption in
inter-operator parallel training, where the memory utilization
of GPUs that host early stages of the whole pipeline is
significantly higher than the rest (e.g., up to 7.9 × gap between
the most and least used GPU memory).

The two findings motivate us to propose a new GPU
memory swapping methodology (named D2D swap), which
swaps tensors from GPUs with high memory pressure to their
peers with spare memory resources. It further enables fast,
parallel data transfer between GPU devices by weighted data
stripping and stage-device mapping to better leverage the spare
GPU memory resources and available NVLink interconnects.
Ultimately, our new D2D swap technique can accelerate the
speed and bandwidth of swapping and improve the perfor-
mance and scale of inter-operator parallel training.

Despite being fast, the size of spare GPU memory is limited.
Therefore, MPress only applies the D2D swap method to
reduce short-lived tensors’ memory footprint. This is difficult
to be achieved by existing techniques as the overhead of
swapping short-lived tensors can only be compensated by a
very fast swapping speed. To further improve the available
memory capacity, we also leverage the large capacity of
CPU memory and the recomputation technique. Different
optimizations present different trade-offs between memory-
saving amounts and extra overheads, depending on several
factors such as tensor sizes, computation complexity, operator
dependency and scheduling, and swapping speed. Therefore,
to support billion-scale models, while delivering reasonable
training throughput, MPress carefully combines D2D swap,
GPU-CPU swap, and recomputation together with proper
configurations. To do so, MPress employs a decision maker
that compares the benefits and costs of D2D swap, GPU-CPU
swap, and recomputation; uses key factors such as data-flow
computation graph, operator dependencies, live interval anal-
ysis, and tensor sizes to strategically optimize configurations
for tensors produced by different stages.

Finally, we integrate MPress into PipeDream and DAP-
PLE, two representative inter-operator parallel training sys-
tems, and train two widely-used DNN models, Bert and
GPT, from the natural language processing (NLP) field using
two high-end GPU servers following the DGX-1 or DGX-2
architecture. They both have 8 GPUs connected via NVLinks.
However, the DGX-2 server uses A100 GPUs (40GB memory
per each) and the symmetric GPU connection topology, while
DGX-1 uses V100 (32GB per each) and asymmetric connec-
tions. Experimental results show that MPress supports Bert
with up to 6.2 billion parameters and GPT with up to 25.5
billion parameters, 3.7× and 1.7× of the counterparts achieved

by the Recomputation baseline, respectively. When executing
training jobs with the same large model, under GPU memory
pressure, MPress introduces 1.4 - 2.3× speedups of training
throughput, compared to the ZeRO-Series baselines.

The rest of the paper is organized as follows: we introduce
the background and preliminary studies to motivate our work
in Section II. We outline the design overview and key tech-
niques of MPress in Section III. We analyze experimental
results in Section IV, position our work in comparison to
existing proposals in Section VI and conclude in Section VII.

II. BACKGROUND AND MOTIVATION

A. Parallel DNN Training

As DNN computation is resource-hungry, it is a norm to par-
allelize the model training jobs across multiple GPU devices
to leverage the massive parallelism. There are three main
parallel training methods, each corresponding to a different
partitioning strategy, namely, partitioning by input samples
(data parallelism), by network structure (model parallelism),
and by layer (pipeline parallelism). As it is easy to misunder-
stand the latter two parallelisms, we follow the catalog used by
the recent Alpa work [64] to categorize existing solutions into
two orthogonal directions, namely, intra-operator and inter-
operator parallelism.

Intra-operator parallelism relies on the fact that an operator
works on tensors with multiple dimensions to partition tensors
along some dimensions and assign the resulting sliced oper-
ators to multiple devices [19], [59]. Data parallelism, as the
simplest intra-operator parallelism, partitions the input tensors,
which makes operators unchanged, and distributes data shards
to GPU devices for training the shared, replicated model [5],
[19], [42], [54], [62]. Unlike them, an inter-operator parallel
training partitions the target DNN model into disjoint stages,
each corresponding to a consecutive set of model layers and
mapped to a separate GPU for its computation [21], [32], [43].
The minibatch training data is processed through stages in a
pipeline manner.

Unfortunately, all the above parallel strategies face the GPU
memory bottleneck for supporting billion-scaling single-server
training. However, we choose inter-operator parallelism as our
starting point for the following reasons. First, compared to the
other two methods, the data parallel training results in the
heaviest memory footprints and cross-GPU communication,
as every GPU replicates the same amount of model data and
periodically exchanges gradients, equal in size to the model
parameters. Thus, data parallelism alone is difficult to meet
the massive memory demands of the rapidly growing model
sizes [34], [44], [46], [54]. Intra-operator parallelism splits
operators into smaller ones, requiring heavy communication to
gather and aggregate partial results to trigger the subsequent
computation, which is sitting on the critical path of training.

In comparison, inter-operator parallel training introduces
the least communication overhead, as for large NLP models,
only activations are transferred between stages, and they are
often small. For instance, concerning the Bert-0.64B model,
only microbatch size × 1.5 MB data are exchanged between
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Fig. 1: The training workflow and timeline diagram of inter-
operator parallel training in PipeDream and DAPPLE. Each
minibatch consists of 6 microbatches. Microbatches 1-6 belong
to the first minibatch, while 7-9 are part of the second
minibatch. Black and white boxes represent the forward and
backward computation pass of each microbatch, respectively.
We also show the evolution of the per-device GPU memory
consumption over time.

two GPUs that host two consecutive stages. Furthermore,
inter-operator parallelism has received increasing attentions
from both industry and academia [21], [44], [50], [61], [63].
Many training systems like PipeDream [43], DAPPLE [21],
GPipe [32], DeepSpeed [50] and Megatron-LM [44] have
already incorporated it. Thus, we focus on enabling fast
billion-scale model training with inter-operator parallelism.

B. Inter-Operator Parallelism

Figure 1 showcases the inter-operator parallel DNN training
workflow. Each of the three GPU devices (a.k.a workers) is
responsible for training a disjoint set of consecutive model
layers. Each minibatch of training data is further divided into
six microbatches to feed into the whole execution pipeline.
Worker 1 starts the forward pass of the first minibatch by
consuming its first microbatch and passes the computation
to Worker 2 to kick off the second stage. Meanwhile, the
second microbatch is being processed by Worker 1. The same
process will be applied to Worker 3. When Worker 3 finishes
the forward pass computation of the first microbatch, the
corresponding backward pass will be immediately started and
flowed back from Worker 3 to Worker 1.

There are two ways to schedule the execution between
adjacent minibatches, namely, asynchronous and synchronous.
The asynchronous mode used in PipeDream [43] allows the
forward pass of the second minibatch starts in parallel with
the backward pass of the first one. For instance, the seventh

Activation Optimizer
states

Parameters
& Gradients

Bert-0.64B 39% 46% 15%
GPT-5.3B 42% 44% 14%

TABLE I: The GPU memory consumption contributed by
different types of model data for various trainable models
(measured in percentage). B stands for billion.

0 1 2 3 4 5 6 7
GPU_Index

0
10
20
30
40

M
em

or
y(

G
B

)

(a) DAPPLE

0 1 2 3 4 5 6 7
GPU_Index

0
10
20
30
40

M
em

or
y(

G
B

)

(b) PipeDream

Occupied Available

Fig. 2: Imbalanced per-device GPU memory consumption
when training Bert (1.67B parameters) in PipeDream and
DAPPLE with the batch sizes set to be 2 and 12, respectively.

microbatch belonging to the second minibatch is executed
by Worker 1 immediately after the backward pass of the
fourth microbatch completes (Figure 1(a)). In contrast, the syn-
chronous mode used in GPipe [32] and DAPPLE [21] imposes
a constraint that the computation of different minibatches is
serialized (see the vertical bold black line in Figure 1(b)).

C. Problems of GPU Memory Consumption

To explore the GPU memory utilization of inter-operator
parallelism, we train two popular DNN models, Bert and GPT,
in PipeDream [13], [43] and DAPPLE [21], two representative
inter-operator training systems. We deploy experiments on an
AWS EC2 p3dn.24xlarge GPU server, which has 8 V100
GPUs (each has 32GB GPU memory), and set the largest
sustainable model sizes. Here, we use the recommended stage
partition strategy to balance the computation time for each
stage within the two systems and assign the stages to GPU-
(0-7) in order. In more detail, the partitioning strategies focus
on balancing per-stage computation.
Largest sustainable model sizes. With the microbatch size of
12, PipeDream is able to support the training of a Bert model
with up to 600 million parameters, beyond which out of GPU
memory errors will surface. When shrinking the microbatch
size to 2, the largest trainable Bert model with PipeDream
is made up of 2 billion parameters. With the same hardware
setup, DAPPLE can train GPT models with a maximum of
5.3B parameters and a microbatch size of 2. The reason for the
sustainable model size gap between PipeDream and DAPPLE
is that the former system using asynchronous scheduling
requires stashing multiple versions of model data. Table I
summarizes the percentage of GPU memory occupied by
different types of model data. Concerning GPT-5.3B, among
all its memory-resident tensors, activation accounts for 42%,
optimizer states for 44%, and parameters and gradients for
14%. The key to train even larger models with preserved
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performance is compacting the memory usage of these model
data while minimizing the associated overhead.
Imbalanced GPU memory consumption. Figure 2 reports
the per-GPU memory footprint of the two training jobs. We
observe an ill-balanced GPU consumption across all cases,
where the GPUs with lower indices that hold earlier stages of
the corresponding pipeline execution use a significantly larger
amount of GPU memory than the rest. In particular, the most
used GPU memory space is up to 7.9 × of the least used one.
When the batch size or model size is slightly increased for
the experiments with Bert variants, both training jobs fail to
run due to the out-of-memory (OOM) errors reported by the
GPUs that suffer high GPU memory pressure.

The imbalanced GPU consumption is an inherent problem
of inter-operator parallelism due to the following reasons.
Activation states are generated by running the forward pass
computation of each microbatch and then kept till being used
by the corresponding backward pass. Therefore, as shown in
Figure 1, the GPUs hosting the computation of the early stages
accumulate more activation states than the rest. For instance,
in the workflows of both PipeDream and DAPPLE, Worker 1
holds three copies of activation states before the backward pass
of the first microbatch starts (white box), while Worker 3 keeps
only a single copy, which can be further released after the
corresponding backward pass completes. Additionally, when
using asynchronous scheduling such as PipeDream, multiple
versions of parameters must be kept to ensure convergence.
The curves at the bottom of each subfigure of Figure 1
show the evolution of per-GPU memory consumption with
a decreasing trend from Worker 1 to 3 all the time.

D. Memory-saving Optimizations and Their Limitations

Here, we iterate a list of state-of-the-art GPU memory-related
optimizations that share the same goal of breaking the GPU
memory wall as ours and discuss their benefits and limitations
when being applied to inter-operator parallel training.
Memory-balance partitioning strategies within inter-
operator parallel training could address the above GPU mem-
ory imbalance. However, we’ve verified that adopting the
memory-balance partitioning strategy is not a good option
as the price paid to break the memory wall is to make the
computation time costs imbalanced across different stages,
which leads to 34% training performance loss, compared to
the computation-balance partitioning ones.
Recomputation trades the computation redundancy for saving
the memory usage of activations, and has been combined
with all parallel training strategies by many mainstream sys-
tems such as Megatron, DeepSpeed, and Alpa [44], [50],
[64]. However, the stand-alone recomputation solution has the
following two major drawbacks. First, it is not applicable
to reduce the memory consumption of the remaining three
types of model data, namely, optimizer states, parameters, and
gradients, which together account for almost another half of
the total GPU memory utilization, e.g., 58-61% in Table I.
Second, re-executing the forward computations would contend

CPU-0 CPU-1
QPI

MEM MEM

GPU-0

GPU-1

GPU-2

GPU-3

PCIe Switch PCIe Switch

GPU-6

GPU-7

GPU-4

GPU-5

PCIe Switch PCIe Switch

25GB/s

16GB/s

50GB/s

Fig. 3: The hardware configurations of a DGX-1 server with
NVLink interconnects.

GPU resources with the backward ones and introduce extra
delay, which can lead to up to 33% longer training time.
GPU-CPU swap leverages the large capacity of CPU memory
or even storage devices like NVMe SSDs to extend the GPU
memory space and is a general solution applicable to all
model data. Nevertheless, it has not been applied in inter-
operator training yet. Furthermore, the stand-alone GPU-CPU
swap results in a significant training throughput loss, due to
the tension between the huge amount of tensors that demand
swapping and the limited PCI-e bandwidth between GPU
and CPU. For instance, when training a Bert model with
640 million parameters via PipeDream, applying GPU-CPU
swap to 39% of the model data in the first stage results in a
67% reduction in training throughput (measured as sentences
processed per second), compared to the ideal counterparts with
sufficient GPU memory supply and no swap.
Zero-Series cover a family of memory optimizations towards
breaking the GPU memory wall for training DNN models with
data parallelism rather than inter-operator parallelism. The first
work, Zero Redundancy Optimizer (ZeRO) [48], eliminates
the data redundancy of data parallelism by partitioning and
distributing parameters, gradients, and optimizer states among
multiple GPUs. The memory space saving comes at the
cost of imposing extra communication overhead for gathering
partitioned model data. ZeRO-Offload [51] further offloads
optimizer states and the associated computation from GPU
to CPU using a CPU-based Adam optimizer implementa-
tion. However, offloading cannot work with the asynchronous
scheduling as each microbatch execution requires transferring
parameters and gradients between GPU and CPU, demanding
higher bandwidth than PCI-e’s capacity. Most recently, ZeRO-
Infinity [49] additionally incorporates GPU-CPU swap and
leverages storage media like NVMe SSDs. It is worth mention-
ing that Zero-Series can significantly increase the trainable,
single-server model size, but they introduce non-negligible
training performance loss, due to the cross-GPU and GPU-
CPU communication overhead.

E. New Hardware Trends and Opportunities

With the rapid hardware development, modern GPU servers
have already incorporated ultra-high-speed links interconnect-
ing GPU devices. In 2016, NVDIA P100 GPU adopts the first
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Fig. 4: The unidirectional aggregation bandwidth of links
from a single GPU perspective w.r.t different data sizes.
PCIe indicates the connection traversing a single PCIe. NV#
indicates the connection traversing the number of NVLinks.

generation NVLink, which offers up to 160 GB/s data transfer
bandwidth (bi-directional), nearly 5× of the bandwidth of
PCIe Gen3x16. Figure-3 illustrates the internals of a DGX-
1 machine, which uses NVLink 2.0 (white lines), which, in
theory, can reach up to 300GB/s bidirectional bandwidth.

To explore the bandwidth of NVLink, we run experiments to
transfer data using different number of links between a GPU
and its neighbors on an AWS EC2 p3dn.24xlarge GPU in-
stance (hardware details listed in Section IV-A). Note that this
EC2 instance is similar to the NVIDIA DGX-1V system [52].
We compare NVLink interconnects between GPUs against
PCIe links between GPU and CPU. As shown in Figure 4,
the aggregated unidirectional bandwidth has been amplified
from 45 to 146 GB/s when increasing the number of NVLinks
from 2 to 6, which is 3.9-12.5× of the PCIe bandwidth
(corresponding to the bandwidth of GPU-CPU swap).

In this paper, we propose a new GPU D2D swap (or short,
D2D swap) to alleviate the GPU memory limitation presented
above. D2D swap offloads tensors from GPUs that host
early stages of inter-operator parallel training with high GPU
memory pressure to peers with spare GPU memory resource
via high-speed NVLink, and swaps in for subsequent uses. Our
D2D swap technique has the following unique benefits. First,
Figure 4 illustrates that swapping between GPUs is signifi-
cantly faster than the GPU-CPU swap, and has the potential to
avoid the significant training throughput loss imposed by GPU-
CPU swap. Second, as opposed to recomputation, which drops
activation states to release memory space and re-executes the
corresponding forward pass before the dropped data is needed,
D2D swap does not consume GPU computation resources and
can be better overlapped with the backward computation.

III. MPRESS INTERNALS

A. Design Rationale

We propose MPress, an efficient inter-operator parallel DNN
training system using heterogeneous memory reduction op-
timizations to address the well-known GPU memory wall
challenge. MPress employs the proposed D2D swap to of-
fload model data from GPUs with high memory consumption
pressure to the light-loaded ones via multiple high-bandwidth
NVLink interconnects. As the GPU resources are limited,
we choose to apply D2D swap only to a small fraction of

model data, whose live intervals (i.e., the time between its
generation/previous usage and the next usage) are too short to
be tolerated by either recomputation or GPU-CPU swap.

The fast speed of D2D swap is crucial to avoid paying
high extra performance loss associated under recomputation
and GPU-CPU swap optimizations, and allows D2D swap to
better overlap with DNN computation. By carefully mapping
pipelined stages to GPU devices, we can aggressively fulfill
the out/in bandwidth demands of each GPU. To overcome
the limited overall swapping space of GPUs, MPress further
employs recomputation and GPU-CPU swap techniques to
reduce the GPU memory consumption.

B. Overview of MPress and its Workflow

Figure 5 gives a high-level view of MPress system architec-
ture, which spans its logic across both static and runtime parts.
The mission of the static part is to generate the memory saving
plan, which determines the memory-resident tensor candidates
for applying memory reduction optimizations under memory
pressure; which optimization to apply; and when to perform
the determined optimization or recover reduced tensors. To
achieve this, in the static part of MPress, a profiler trains a
target DNN model with the trainable model and batch size to
obtain the basic stats ranging from tensor sizes to the latencies
of the forward/backward computation for each tensor (① - ②).
Table III showcases an example of the collected stats. Note that
new models [22] may have dynamic memory consumption.
However, most SOTA models that industry use show static
memory usage [39], [48], [49], [55]. We will adapt MPress to
leverage dynamically evolving memory space in future work.
Then, the planner explores a possible configuration, which
assigns proper memory-saving strategies to various tensors
(③). At this step, planner is driven by a simple cost model,
which compares the time cost of different optimizations to
choose the one with the least performance penalty.

Following that, the generated tentative plan is fed into the
rewriter, which further instruments the input data flow graph
to incorporate these assigned strategies in proper places to
respect the operator dependencies (④). We then employ an
emulator to run a single training iteration according to the
revised data flow graph with the target model size or batch
size, and to collect the amount of saved GPU memory and
incurred overhead. Finally, the feedback will be sent from
emulator to planner to determine if the currently exercised
configuration approximates the optimal one by comparing it
against previous runs (⑤). The interaction among planner,
rewriter and emulator may run throughout a series of iterations
to converge to the final configuration as the input that is passed
through the runtime part. Table IV demonstrates the strategies
produced by MPress Static.

Note that MPress Static runs offline and thus does not
incur runtime overhead. The time cost for the offline analysis
is moderate as emulator only needs to exercise a limited
number of training steps, each of which just runs one iteration.
However, as a comparison, the actual training may require
running millions of iterations towards model convergence [60].
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Fig. 5: MPress training system overview.

The MPress Runtime co-locates with the inter-operator
parallel training framework runtime, and consists of three key
system components, namely, executor, memory manager, and
compaction library. First, the compaction library offers the
efficient implementation of the three supported memory saving
optimizations, where we include our novel D2D swap (details
are in Section III-C), while re-using the built-in recomputation
code from the training systems and implementing GPU-CPU
swap by following the rich literature [31]. The Runtime
workflow is as follows. The executor takes the instrumented
data flow graph from MPress Static as the input (⑥), and
triggers the memory compaction-enabled inter-operator paral-
lel training. The ordinary operators except for memory-saving
ones directly go through the underlying training framework
runtime as usual (⑨). The executor executes the memory
saving operators (i.e., swap-out, drop) to release used GPU
memory and state recovering ones (i.e., swap-in, recompute)
for fulfilling their next usage (⑧). During the execution, the
memory manager takes over the memory allocation/dealloca-
tion by following the executor’s commands (⑦).

C. D2D Swap
As the major challenge of designing our novel D2D swap
technique among GPUs, we have to jointly take into account
of (1) the possible hardware heterogeneity of the total number
of links between swap out/in pairs and the per-pair bandwidth,
and (2) the diversity of the memory swap-out demands and the
spare GPU memory space of a target inter-operator parallel
training job. To this end, we introduce the following two key
techniques for efficient D2D swap optimization.
Data stripping. It is possible for a GPU device to swap
tensors to many other NVLink reachable peers for fast data
transfer. Therefore, we introduce data striping technique,
which partitions a target tensor into several sub-blocks, and
transmit them in parallel through disjoint links. For the sym-
metric NVLink topology used in new DGX-2 architecture and
beyond, where GPUs are fully connected via homogenous
links, we make the sub-blocks equally sized and its total
number be the number of target importer GPU devices.

Unlike this, the older DGX-1 architecture uses an asym-
metric topology, where the bandwidth between GPU pairs
can vary. For example, in Figure 3, GPU0 can transfer data
to GPU3 at a speed of 50GB/s because of the two NVLink
interconnects, which have twice the bandwidth of GPU1. To
realize this difference, we further evolve the data striping

1 #spare mem assignment from the view of a single GPU
2 def assign mem(gpu, dev map):
3 spare amount = MEM CAP − MEM USE[gpu]
4 set nbhs = all NVLink neighbors of gpu in dev map
5 set exporters = overflowed gpus
6 set candidates = nbhs ∩ exporters
7 set plans = all possible ways to distribute mem of

spare amount to candidates
8 return plans

10 def device mapping search():
11 best score = 0
12 best dev map = None
13 set all map = enumeration with no mem constrains
14 for dev map in all map:
15 all plans = []
16 for g in all gpus:
17 if g has spare mem:
18 all plans.add(assign mem(g, dev map))
19 #combining single gpu’s plans
20 concat plans = permutation(all plans)
21 for plan in concat plans:
22 score = ratio of revenue to cost
23 if score > best score:
24 best score = score
25 best dev map = dev map
26 return best dev map

Fig. 6: Device mapping algorithm

technique to incorporate the weighted bandwdiths among
reachable NVLink connections, in which the sizes of such sub-
blocks are proportional to the corresponding link bandwidths.
We also batch tensors to fully use the high bandwidths.

In addition, we manage a metadata table to keep track
of the states of tensors that go through our D2D swap. For
each tensor, we record the following information before the
execution of the swap-out operator, namely, the number of sub-
blocks, the sizes of each sub-block, and the indices of target
GPU devices. This information is used to guide the execution
of the latter swap-in operator and updated when it completes.
Device mapping. Figure 6 illustrates the simple device-stage
mapping algorithm, which properly assigns pipeline stages to
GPU devices so that the light-loaded peers are the neighbors
of GPUs with high memory pressure, and the swap-out/in
bandwidths of the latter GPUs are maximized. It first enumer-
ates all possible device mappings, and then for each mapping,
identifies all possible spare memory allocation schemes from a
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single GPU’s point of view, and combine these schemes to the
global swapping plans (line 14 - 20). Ultimately, we choose the
optimal plan out of all the candidates by evaluating them using
a scoring function (lines 21 - 25). This score function evaluates
the effectiveness and efficiency of the pair of device mapping
and spare GPU memory allocation from light-loaded GPUs to
the ones with high memory pressure. Here, we compute the
score as the reciprocal of the maximal time cost of D2D swap
for a fixed assignment. Obviously, when the score is higher,
the overall performance of D2D swap for offloading model
data from high-loaded GPUs is better. Finally, we identify the
best device mapping plus the spare GPU memory assignment
as the one having the highest score. Note that for symmetric
GPU connections, this algorithm simply skips the above logic,
instead, randomly maps stages to devices and aggressively
uses all NVLinks to its neighbors with spare memory. We
evaluate the performance implications and report the time costs
of adopting optimal device mapping in Section IV-D.

D. Memory Compaction Planning

Exploring the best configuration to combine D2D swap, GPU-
CPU swap, and Recomputation to maximize the GPU memory
saving while minimizing the extra delay imposed on the
pipelined inter-operator parallel DNN training is very chal-
lenging. To address this challenge, we propose approximating
this searching problem using the following key observations.

• Compared to Recomputation, the benefits of the two
swapping methods are (1) they do not consume GPU
computation resources; and (2) they can run in parallel
with the forward and backward computation on GPUs.
When appropriately applied, i.e., the live interval 1 of the
target tensors is longer than the time cost of either of the
two swapping methods, no extra time delay is introduced.

• We should prioritize Recomputation to alleviate the mem-
ory limitations of the latter layers of the target DNN
model. The reasons are two-fold. First, their backward
passes are started firstly in the second half of the pipelined
execution; Second, the inevitably extra recomputation
delay could enlarge the live intervals of the earlier layers,
thus leaving more rooms for applying GPU-CPU swap.

• It is preferable to apply Recomputation to reduce tensors
from consecutive layers. This choice can further reduce
the memory consumption of the inputs of operators ex-
cept the first one, which are the outputs of their preceding
ones in the data-flow graph.

• As the spare GPU memory is scarce and D2D swap
is much faster than GPU-CPU swap, to unleash its full
potential, we should only apply it to performance-critical
cases to minimize the extra delay imposed by both GPU-
CPU swap and Recomputation.

Driven by the above observations and trade-offs, we intro-
duce an approximated search algorithm, which first aggres-

1Live interval of a tensor is the time duration between its generation and
the subsequent usage. For instance, concerning activation tensors, their live
interval is computed by the difference between the timestamps of its backward
and forward passes.

sively assigns GPU-CPU swap and Recomputation optimiza-
tions to proper tensors, and then optimizes the assignment by
gradually replacing some GPU-CPU swap and Recomputation
operators with D2D swap throughout a sequence of tuning
iterations. Specifically, we first perform a live variable anal-
ysis [23] to compute the per tensor live intervals. Then we
construct the initial tentative assignment as follows. We assign
GPU-CPU swap to tensors with extremely long live intervals,
while applying Recomputation to activation tensors when the
imposed extra latency by itself is smaller to GPU-CPU swap 2.
Finally, we assign GPU-CPU swap to the remaining tensors
to meet the target memory-saving goals.

Our algorithm goes through a few iterative steps to gradually
update the memory reduction optimization assignment. At
each step, we use our emulator to run the latest assignment
(only one training iteration is sufficient) to filter out a set of
reduced tensors, whose assigned optimizations introduce the
most extra overhead. For those tensors, we try to use D2D
swap to reduce their memory limitations whenever possible,
e.g., when there is spare GPU memory. We accept the new
assignment if its performance is better than its ancestor. This
algorithm terminates if the subsequent assignment brings non-
visible performance gains over the previous one.

E. Implementation Details

We incorporate the aforementioned design principles into an
open-source training system MPress [2], which has 2k lines
of code in C++ and Python. To demonstrate its generality
for optimizing GPU memory usage in inter-operator parallel
training, we integrate MPress into PipeDream [13] and DAP-
PLE [21], two recent systems using either asynchronous or
synchronous scheduling. The backend engine is PyTorch [10].
We improve PipeDream by upgrading its original PyTorch
from version 1.1 to 1.2, and enabling its NCCL library to use
NVLink to transfer data between stages. Note that MPress
is general and can be applied to other inter-operator training
systems such as GPipe. We will continue to make MPress
work with those systems.
Memory management. Our memory manager is responsible
for allocating and releasing the GPU/CPU memory space for
tensors and monitoring the per-device memory usage. First,
as for GPU memory allocation, the manager directly uses the
native GPU memory allocator in PyTorch. Second, upon the
host memory request, considering that the data transmission
between pinned memory and GPU memory is faster than
that with normal pageable memory, we decide to use pinned
memory for swapping space. To avoid paying high cost for
allocating and freeing pinned memory, we further build a host
pinned memory pool that is not part of the PyTorch runtime.
Memory swapping. For D2D swap, the executor manages
two extra threads for executing swap-in and swap-out tasks,
respectively, which use different CUDA streams created by
calling cudaStreamCreate upon the system bootstrap-
ping. This design allows executor to launch tensor transferring

2The extra time overhead of GPU-CPU swap is computed by subtracting
the live interval of the target tensor from the swapping cost.
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Config. Total per-stage Max per-stage Min

Bert+PipeDream

0.35B 108.8 24.7 3.7
0.64B 227.0 50.6 6.4
1.67B 345.9 78.0 8.8
4.0B 578.70 128.3 16.3
6.2B 1279.1 280.6 35.5

GPT+DAPPLE

5.3B 164.8 28.5 12.7
10.3B 325.0 56.4 24.9
15.4B 486.7 84.5 37.2
20.4B 646.9 112.4 49.4
25.5B 806.2 140.1 61.5

TABLE II: GPU memory demands (in GBs) measured for
different training jobs of models with various parameter scales.
Max and Min represent the most and the least memory
consumption per stage, while total represents the total number
of GPU memory for the whole model. The abbreviation “B”
denotes billion. The microbatch sizes for Bert and GPT are
12 and 2, respectively.

tasks and check their status with DNN computation without
blocking the main thread. Thus, data movement between GPUs
can work asynchronously with DNN computation.

IV. EVALUATION

Our evaluation aims to answer the following questions.
• Will MPress effectively alleviate GPU memory limita-

tion to support large model sizes within inter-operator
parallel training, while delivering better training perfor-
mance than baselines?

• What are the performance implications of the stand-alone
D2D swap, and device mapping and memory compaction
strategies?

• What are the individual contributions of the three mem-
ory reduction optimizations to the overall GPU memory
saving?

A. Experimental Setup

Machine configurations. We conduct experiments on both
DGX-1 and DGX-2 GPU servers to evaluate MPress and
baselines. The DGX-1 server is an AWS EC2 p3dn.24xlarge
instance [7], which has 96 vCPUs, 8 NVIDIA Tesla V100
GPUs (32GB per-device memory, connected by asymmetric
NVLink), and 768 GB CPU memory. We additionally use an
DGX-2 server from another provider, as the quota of this type
of high-end GPU servers is extremely limited on EC2 and our
provisioning requests failed many times. It has 164 vCPUs,
8 NVIDIA Tesla A100 GPUs (40GB per-device memory,
connected by symmetric NVLink), 948 GB CPU memory, and
6TB NVMe SSD. Both run software like Ubuntu 18.04, CUDA
11.7, NCCL 2.8.4, PyTorch 1.2.0, etc.
Models and datasets. We choose two widely-used DNN
models Bert and GPT, both from the natural language pro-
cessing field. We train Bert with the SQuAD v1.1 dataset [12],
and GPT with the Wikipedia dataset [15].

We exercise MPress atop PipeDream using Bert and its
variants with varied model sizes. By following the litera-
ture [1], we make Bert variants deeper and wider by adjusting

the number of encoder layers and the value of hidden sizes.
As shown in Table II, our Bert variants have 0.35 to 6.2
billion parameters. Bert-0.35B represents the smallest Bert
model, with a total GPU memory requirement of 108.80 GB
and a maximum requirement of 24.77 GB per stage. Clearly,
its GPU memory demands can be fulfilled by our tested
GPU server without memory reduction optimizations. Bert-
0.64B is medium-sized with its maximum, and minimum per-
stage GPU memory demands higher and lower than per-GPU
memory capacity, respectively. Additionally, Bert models with
1.67 and 4B parameters denote the large models with all their
per-stage memory consumption higher than per-GPU capacity.
Finally, Bert-6.2B is the extra-large one with its total memory
requirement being 5.0 × of the server GPU memory supply.
We use 12 as the microbatch size, suggested by the repo [11].

Similarly, we use GPT and its variants with adjusted pa-
rameters to exercise MPress atop DAPPLE. As shown in Ta-
ble II, among the five GPT configurations, the smallest model,
GPT-5.3B, is trainable for the original DAPPLE. However,
the remaining four GPT configurations demand a maximum
requirement of 56.4-140.1 GB per-stage GPU memory, which
already exceeds the single GPU’s capacity. We set 2 as the
microbatch size, corresponding to the smallest suggested batch
size in the DAPPLE publication [21].
Baselines and system configurations. For inter-operator par-
allel training over PipeDream, we use the original PipeDream
as the no-memory saving inter-operator training baseline.
We further deploy two systems GPU-CPU Swap and Re-
computation as the memory compaction-enabled baselines by
enabling the memory swapping between GPU and CPU or the
recomputation optimizations within PipeDream. We run two
variants of MPress, where the one with D2D Swap only,
while the other explores all three optimizations.

With regard to MPress based on DAPPLE, we run the
original DAPPLE as the natural baseline with no memory
optimizations. We further deploy DAPPLE with recomputation
enabled. In addition, we run two state-of-the-art training
systems, ZeRO-Offload [51] and ZeRO-Infinity [49], which
can support large model training with data parallelism.

Furthermore, we use the computation-balanced stage par-
titioning strategies for both Bert and GPT, suggested by
PipeDream and DAPPLE. For the recomputation baselines,
we choose the set of tensors to drop by following the lit-
erature [16]. Finally, the MPress variants adopt the device
mapping and memory saving plans generated by the afore-
mentioned algorithms in Section III-C and Section III-D.
Metrics. We measure the total number of samples processed
per second and floating point operations per second (FLOPS)
as the training throughput, the time cost of D2D swap, GPU-
CPU swap, and Recomputation, and the memory reduction
breakdown among the three methods. Similar to other existing
FLOPS calculation tools or methods [44], we measure the
FLOPS of the forward pass of a model and estimate the
FLOPS of the corresponding backward pass as two times that
of the forward pass.
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Fig. 7: The training performance comparison of variable-sized
Bert models with different memory-saving optimizations. Red
crossed marks indicate that the corresponding training jobs
fail to run due to out-of-memory errors on GPUs. The based
inter-operator parallel training system is PipeDream.

B. Performance with MPress atop PipeDream

Figure 7 compare the inter-operator parallel training perfor-
mance measured in TFLOPS 3 of Bert variants with various
sizes across five different system configurations. We analyze
the results via the following categories.
Small size. We begin our analysis with the smallest Bert with
0.35 billion parameters. All five systems successfully train
this model and report identical performance numbers. This is
because the ordinary inter-operator parallel training enabled by
PipeDream can fulfill all its GPU memory demands, thus there
is no need to trigger any memory compaction optimizations.
Medium size. When shifting our attention from Bert-0.35B
to Bert-0.64B, PipeDream experiences out-of-GPU-memory
errors, while the other four systems conduct successful execu-
tions. This is because, within PipeDream, the GPU memory
consumption of stage 0 is 51 GB, higher than the GPU
capacity. Consequently, we have to start applying the memory
reduction optimizations from this model size. Among the
four successful runs, GPU-CPU swap performs the worst.
This is because the limited PCIe bandwidth makes swap
operators slow, which further delays the corresponding DNN
computation. Recomputation outperforms GPU-CPU swap by
143.4% because the extra latency imposed by re-executing
the forward pass of dropped activations is often much lower
than the corresponding GPU-CPU swapping counterparts. In
comparison, the two MPress performs the best with identical
performance. The reasons are two-fold. First, swapping tensors
within GPUs is even faster than recomputation. Second, in this
case, the stand-alone D2D swap is sufficient to alleviate the
memory limitation. Thus MPress decides not to use the other
two optimizations.
Large size. The continuation of increasing the model size to
1.67B leads the stand-alone D2D swap to fail. This is because,
under high memory pressure, the spare GPU memory capacity
cannot accommodate the tensors that would be offloaded from
highly loaded GPUs. Similarly, Recomputation outperforms
GPU-CPU swap by 125.4% but still performs 19.5% worse

3A TFLOPS (a.k.a teraFLOPS) refers to a GPU’s capability to calculate
one trillion (1012) floating-point operations per second.
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Fig. 8: The training performance comparison of variable-sized
GPT models among different memory optimization baselines.
The based inter-operator parallel training system is DAPPLE.

than MPress. In this case, MPress combines all strengths
of the three optimizations so that both GPU-CPU swap and
Recomputation can make more room for unleashing the po-
tentials of D2D swap.

Interestingly, Recomputation fails to support Bert models
with 4B parameters and above. This is as expected as recom-
putation can only save the memory consumed by activations
generated by the forward pass, and fail to handle the remaining
model data including parameters, gradients, etc, which use
significantly more memory resources. In contrast, GPU-CPU
swap is still functional as it can be applied to any kind
of model data with sufficient host memory space. However,
MPress introduces a 1.8 × speedup of training performance,
compared to GPU-CPU swap, thanks to its prioritized adop-
tion of the fastest D2D swap and the faster Recomputation
whenever possible.
Extra-large size. Finally, we explore the performance im-
plications by pushing the model size of Bert to 6.2B. Be-
ing consistent with the results of Bert-4B, only GPU-CPU
swap and MPress survive this training task, while the other
three systems fail to run. Though being able to support the
same extra-large model, compared to GPU-CPU swap, by
carefully choosing the optimal device mapping and exploring
the combination of three optimizations, MPress introduces a
3.1 × speedup of training performance. In addition, MPress
introduces a 2.7 × increase in model size compared to the
state-of-the-art Recomputation.

C. Performance with MPress atop DAPPLE

We train another popular NLP model GPT with varied param-
eters to further stress MPress on both DGX-1 and DGX-2
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GPU servers. Here, we compare MPress with three strong
baselines that demonstrated the application of the state-of-the-
art memory saving techniques: (1) DAPPLE+Recomp which
uses the high performant recomputation implementation; (2)
ZeRO-Offload [51] with optimizer state offloading from GPU
to CPU; and (3) ZeRO-Infinity [49], using the best-performing
GPU-CPU swap, and extending the swapping space further
from CPU memory to even larger NVMe device. Note that
both ZeRO variants are from the DeepSpeed framework [4].We
deploy tests on a high-end GPU server with the identical GPU
setup as the above experiments but with much larger CPU
memory and additional NVMe SSDs. We cannot use the above
Amazon EC2 instance for this set of experiments because
ZeRO-Infinity requires a large amount of CPU memory for
initialization and the additional storage space with high I/O
bandwidth for its tensor swapping.

Figure 8a summarizes the performance comparison with
the DGX-1 GPU server. DAPPLE cannot scale to models
with sizes beyond 5.3B, whose maximal per-GPU memory
usage exceeds 32GB. Unlike this, the recomputation enabled
by DAPPLE successfully runs the training job with up to
10.3B parameters, where it however observes 19.2% per-
formance loss, compared to MPress. In contrast, the two
ZeRO variants and MPress can support all four training jobs
with model sizes ranging from 5.3B to 20.4B. ZeRO-Infinity
outperforms ZeRO-Offload by 20.6-23.8% in terms of GPU
computation efficiency. This is because offloading optimizer
states results in frequent data movement between GPU and
CPU per microbatch basis, and ZeRO-Infinity replaces it with
the carefully designed GPU-CPU swap. However, MPress
delivers constantly sustainable training performance, regard-
less of model sizes, thanks to the use of D2D swap and the
combination of various memory compaction optimizations. In
addition, MPress achieves 37.0-40.8% better performance
than ZeRO-Infinity. This implies that the swapping solution
excluding D2D swap may support very large-scale model
training but at the price of sacrificing the performance speed.
MPress actually can complement their limitations by further
considering the spare GPU memory resources.

As illustrated in Figure 8b, we observe similar trends on the
DGX-2 GPU server as DGX-1, but with the performance of
all system configurations more than doubled, due to the higher
computational density of the A100 GPU on DGX-2 over V100
on DGX-1. In addition, Recomputation can sustain the model
sizes within 15.4B, higher than those achieved on DGX-1,
because of the 40GB per-GPU memory, larger than 32GB of
V100. Both ZeRO variants can scale to very large models with
up to 25.5B parameters as MPress, but observe 30.4-44.8%
and 23.2-70.0% reduction in training performance, compared
to MPress. Interestingly, unlike the DGX-1 results, on larger
models, ZeRO-Infinity performs worse than ZeRO-Offload.
This is because the I/O bandwidth of SSDs of the rented
DGX-2 server is significantly lower than DGX-1. However, it
is impossible to find publicly accessible high-end GPU servers
with scalable GPU computing power and storage capacity.
Note that even with sufficient SSD bandwidth, ZeRO-Infinity
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Fig. 9: Impacts of device mapping and data stripping on
training performance of MPress with two different GPU
topologies, namely, asymmetric DGX-1-V100 and symmetric
DGX-2-A100.The training model is GPT-15.4B, and the mi-
crobatch sizes used is 2.

Model Tensor
name

Size
(MB)

Live
interval Recomp. GPU-CPU

swap
D2D
swap

Bert
t1 216 78 4 42 6
t2 115 16 3 22 3
t3 216 2 4 42 6

GPT
t4 384 214 8 74 9
t5 384 50 8 74 9
t6 1152 12 14 222 27

TABLE III: Time cost (in ms) comparison of three memory
reduction optimizations when being applied to various tensors
within Bert and GPT. Note that the D2D swap time cost
corresponds to the usage of four NVLink interconnects.

shouldn’t significantly outperform ZeRO-Offload, verified by
its original publication [49] and results in Figure 8a.
Result gap between PipeDream and DAPPLE. Interest-
ingly, there are big model size and performance gaps between
the original PipeDream and DAPPLE, as well as the two
MPress variants atop them. We’ve explained the reason for
the model size difference in Section II-C. As for the per-
formance gap, DAPPLE significantly outperforms PipeDream,
since DAPPLE by default enables the low-precision training
feature with FP16; additionally, DAPPLE was developed two
years later than the release of PipeDream and has absorbed
various optimizations from the deep learning community, for
instance, better computation-communication overlapping.

D. Sensitivity Analysis

Here, to understand the strengths of MPress over baselines,
we conduct a sensitivity analysis to explore the impacts of
device mapping, the cost comparison among the three stand-
alone optimizations (i.e., GPU-CPU swap, Recomputation,
D2D swap), and the identified memory compaction plans.
Impacts of optimizations in D2D swap. Figure 9 summarizes
the MPress performance achieved by gradually adding both
device mapping and data stripping optimization, presented
in Section III-C. The results are normalized to the default
setting, where stages are mapped to devices via the DAP-
PLE’s suggestion and D2D swap is enabled but with no data
stripping. For DGX-1, device mapping and data stripping
improve the performance of the default setting by 17.4%
and 33.3%, respectively, as the former optimization enables
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Model Recomputation GPU-CPU swap D2D swap
Applied Stages Saved GPU Mem. Applied Stages Saved GPU Mem. Applied Stages Saved GPU Mem.

Bert-1.67B stage 0-6 121GB (76.6%) N/A 0 (0%) stage 0-3 37GB (23.4%)
Bert-6.2B stage 0-7 972GB (90.6%) stage 0-5 59GB (5.5%) stage 0-4 42GB (3.9%)

GPT-10.3B stage 0-7 156GB (82.5%) stage 0-7 6GB (3.2%) stage 0-3 27GB (14.3%)
GPT-20.4B stage 0-7 294GB (51.2%) stage 0-7 242GB (42.2%) stage 0-3 38GB (6.6%)

TABLE IV: Strategies chosen by MPress for different stages with choices spanning across Recomputation, GPU-CPU swap
and D2D swap, plus their individual contributions to the total memory saving

the swap-in/out pairs to transfer data via reachable NVLink
connections, while the latter optimization further allows to
maximize the data transferring bandwidth. However, unlike
the DGX-1 results, device mapping introduces no optimization
for DGX-2. This is as expected since symmetric, all-to-all
NVLink connections among GPUs make every GPU have the
identical number of NVLink interconnects. Contrary to the
behavior of device mapping, data stripping makes MPress
outperform the default setting by 11.0%. This is a direct
consequence of leveraging aggregated bandwidth of multiple
NVLinks for accelerating model data swap.

We also evaluate the time cost of running the device map-
ping algorithm. First, we composite an extreme case, which
is much more complex than all experiments corresponding to
Figure 7 and Figure 8, to stress our searching algorithm. Even
with the single-threaded implementation, MPress identifies
the optimal mapping within 47 seconds. In addition, for all
cases in our evaluation, the device mapping searching takes
a few seconds to complete. Therefore, we conclude that our
searching algorithm does not incur heavy overhead. If needed,
we can further improve it to be multi-threaded.
Memory compaction cost comparison. Table III reports
the time cost of the three memory reduction optimizations
for sampled, variable-sized tensors within Bert and GPT.
Obviously, the three methods deliver significantly different
performances, which plays a key role in determining their
combination for the final memory-saving plan.

First, among the three tensors of Bert, t1 has the longest live
internal, which can cover the time cost of both GPU-CPU swap
and D2D swap. Therefore, MPress will prioritize the usage of
GPU-CPU swap since its cost can be hidden while D2D swap
can be saved for other tasks with more stringent demands.
For t2, both GPU-CPU swap and Recomputation bring extra
time overhead and would delay the pipelined inter-operator
parallel training, since the former completes in a longer time
than t2’s live interval, while Recomputation brings an extra
forward pass finishing in 3ms. Thus, MPress will choose
D2D swap for this short-live tensor, whose time cost (3 ms)
can be easily hidden. Finally, concerning t3, MPress discards
the GPU-CPU swap due to its slowness, while prioritizing
Recomputation over D2D swap since both methods bring
the same extra overhead (4ms) but Recomputation does not
consume limited spare GPU memory, which perhaps has better
use for other tensors.

Second, the above reasoning can also be transferred to GPT.
Similarly, MPress assigns GPU-CPU swap to t4 thanks to t4’s

long live interval, while prioritizing D2D swap over the other
two methods for t5, thanks to its superior data transferring
performance, which improves that of GPU-CPU swap by 7.6
×. Finally, for t6, Recomputation is chosen as this method
introduces the least extra overhead, compared to the other two.
Strategies chosen by MPress. Table IV shows the optimal
strategies generated by MPress for four inter-operator parallel
training jobs under high GPU memory pressure, namely,
Bert-1.67B, Bert-6.2B, GPT-10.3B, and GPT-20.4B. We also
report the percentage of GPU memory reduction of each
optimization. Among the three methods, the contribution of
GPU-CPU swap to memory reduction is 0 - 42.2% of the
total saved memory. Unlike this, Recomputation contributes
the most, i.e., 51.2 - 90.6%. D2D swap saves 3.9 - 23.4%
of GPU memory space, less than both recomputation and
GPU-CPU swap for most cases, but still plays a key role in
eliminating the extra overhead or GPU computation resource
contention that would be imposed by both GPU-CPU swap
and recomputation.

For Bert-1.67B, there is no GPU-CPU swap due to its
unacceptably long swap-out/in cost. Contrary, D2D swap saves
23.4% GPU memory in total and was applied to transfer early
stages (0-3) to the following stages (4-7). Recomputation saves
GPU memory of stages (0-6) and introduces a 76.6% memory
reduction. The combination of D2D swap and Recomputation
brings the best performance, while D2D swap introduces a
19.5% speedup (Figure 7). The behavior of GPT-20.4B looks
quite different. First, MPress chooses to apply GPU-CPU
swap to transfer 242GB of model data from stages 0-7 to host
memory, resulting in a 42.2% drop in GPU memory. Second,
Recomputation reduces GPU memory by 51.2%. Third, D2D
swap saves in total 38GB of GPU memory, the most across
all the four sampled training jobs.

V. HARDWARE INSIGHTS

Even though GPU HBM provides extremely high bandwidth, it
is challenging to meet the fast-growing model demands in the
near future due to its expensive cost (e.g., the latest GPU has
only 80GB HBM [9]). In comparison, CPU memory is cheaper
and can scale better. Their price and capacity gap is due to
the different manufacturing processes [6]. In fact, the new
Grace-Hopper architecture already supports dedicated CPU-
side memory for each GPU with high bandwidth (NVLink
C2C) [8]. Therefore, MPress demonstrates the potential ben-
efits and example usage of such architecture to address the
memory wall challenge with low hardware cost.
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To understand MPress’ benefits under such new architecture,
we devise a simple analysis which projects its ideal perfor-
mance. We show that even with 96GB (HBM) + 512GB (Grace
CPU memory) per-device memory of Grace-Hopper, training
175B GPT-3 still faces the OOM problem. However, MPress
can address this problem. To completely hide the GPU-CPU
swap cost, we expect the PCI-e bandwidth to exceed 140
GB/s for each GPU, more than double of Grace-Hopper’s
64GB/s. Therefore, the D2D swap technique within MPress
is still valid in this case for either saving 25% of wasted
resources by Recomputation or avoiding paying 13% longer
end-to-end training time introduced by swapping between the
superchip and the PCI-e connected memory. Furthermore, it
takes time to widely adopt new hardware technology. E.g.,
the latest GPU instance on AWS EC2 still uses DGX-2-A100
and its availability is very limited. Thus MPress can partially
complement the limitations of contemporary hardware.

Finally, MPress helps the rethinking of memory archi-
tecture. Considering tensors’ life spans and the cost/capac-
ity/bandwidth trade-offs of memory technologies, it is ben-
eficial to expand the memory hierarchy with more levels,
where the fastest level stores the data immediately required
for computation, while the slower levels store data with longer
life spans. Each level can have different access bandwidths
to further reduce the cost. In this case, MPress’ planning
algorithm III-D can be extended to judiciously assign various
model tensors to proper levels.

VI. RELATED WORK

There are a large body of related work aiming at addressing
the GPU memory limitation of parallel DNN training. First,
lossy data compression approaches that leverage quantization,
sparsification, and mixed precision training can be a good
candidate [17], [18], [24], [26]–[29], [36], [41], [45], but
likely imposing negative impacts on training convergence and
accuracy. Unlike this, MPress compacts the GPU memory
usage and thus does not affect accuracy.

Similarly, ZeRO [48] removes the memory state redundan-
cies across data-parallel processes by partitioning the model
states instead of replicating them. Intra-operator parallelism
(a.k.a model parallelism) splits the model vertically, parti-
tioning the computation and parameters in each layer across
multiple devices, requiring significant communication between
each layer [59]. In contrast, MPress works with inter-operator
parallelism, which supports larger model and batch sizes than
data parallelism and demonstrates better usability than intra-
operator parallelism. ZeRO-Offload [51] offloads optimizer
computation and states from GPU to CPU, and is only
suitable to computation-light optimizers such as Adam. How-
ever, MPress does not impose any constraint over training
frameworks. ZeRO-Infinity [49] further extends the ZeRO-
faimily by additionally leveraging the space of NVMe SSDs
for supporting large models.

Recomputation proposals [16], [25], [33], [58] drop activa-
tion tensors after their last usage in the forward pass or when
the GPU memory usage reaches a thresholds [38], [56] and

later recompute them when needed in the backward pass. They
fail to be applied to models with wider layers that occupy huge
GPU memory or parameters whose recomputation is much
expensive [31]. The more recent recomputation implementa-
tion has been demonstrated by state-of-the-art training systems
such as GPipe [32] and ZeRO-Infinity [49].

Some existing work have already explored the possibility
to swap tensors from GPU to the CPU memory with much
larger capacity [31], [35], [40], [47], [53], [58]. For instance,
TFLMS [40] and vDNN [53] swap out/in only feature maps
according to the topological ordering over computation graph,
while SuperNeurons [58] only considers the data of the
convolution operators. L2L [47] aggressively supports very
deep Transformer networks by keeping only one Transformer
block in GPU memory at each time. Layrub [35] also adopts
GPU-CPU swap to support wider networks within data par-
allel training. More recently, SwapAdvisor [31] explores the
optimal GPU-CPU swap configuration by jointly taking into
account the operator scheduling and memory allocation.
MPress is complementary to all the above memory com-

paction techniques such as swapping, recomputation, and
offloading, and we extend them by making the best usage
of GPU spare memory and the high-speed interconnects in
inter-operator parallel training, and strategically exploring the
chances to further combine all these optimizations together.

VII. CONCLUSION

MPress supports fast billion-scale model training on a single
multi-GPU server. It adopts a novel D2D swap technique,
which utilizes multiple NVLink interconnects to swap tensors
to GPUs with spare memory and whose cost can be poten-
tially hidden. It then employs recomputation and GPU-CPU
swap when possible, to increase the D2D swap chances or
complement the limited GPU swap space. Finally, MPress
balances these three optimizations for better performance and
model/batch size trade-offs. Evaluation with Bert and GPT
demonstrates that MPress can either train larger models or
deliver better training efficiency than baselines.
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