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Abstract—Cross-device Federated Learning (FL) enables train-
ing machine learning (ML) models on private data that is het-
erogeneously distributed over many IoT end devices without vi-
olating privacy requirements. Clients typically vary significantly
in data quality, hardware resources and stability, which results
in challenges such as increased training times, higher resource
costs, sub-par model performance and biased training. Existing
works tend to address each of these challenges in isolation,
but overlook how they might impact each other holistically. We
perform a first of its kind characterization study that empirically
demonstrates how these properties interact with each other to
impact important performance metrics such as model error,
fairness, resource cost and training time. We then propose a
method called HDFL based on our observations, which is the
first framework to our knowledge that comprehensively considers
the multiple aforementioned important challenges of practical
FL systems. We implement HDFL on a real distributed system
and evaluate it on multiple benchmark datasets which show that
HDFL achieves better Pareto frontier compared to both the state-
of-the-practice and state-of-the-art systems with up to 4-10%
better model accuracy, 33% improved good-intent fairness, 63%
lower cost, and 17% faster training time.

Index Terms—federated learning, privacy, deep learning, fair-
ness

I. INTRODUCTION

The prevalence of mobile and internet-of-things (IoT) de-
vices in recent years has led to massive amount of data being
generated every day due to usage of user-end applications.
Such data can be potentially used to train state-of-the-art
machine learning models to address a wide variety of ML
tasks such as keyword spotting [1], image captioning [2],
translation [3] and medical applications [4]. Traditional meth-
ods of training expensive deep learning models involve the
transfer of user data from their low-powered IoT devices to
the high powered computation clusters of the third-parties who
wish to train the model. However, such data are usually user-
owned and may contain private data which they may not be
willing to share with third-parties. Additionally, regulations
such as HIPAA [5], [6] and GDPR [7], [8] limit the access
and transmission of personal data such as healthcare and

financial information in consideration of security and privacy.
Such large amounts of data are, however, required to train
good, generalizable models which might otherwise not be
possible using controlled datasets since they tend to be higher
in number and more realistic [9]. Therefore, this leads us a
demand for using user-generated data for ML training but at
the same time ensuring privacy of the users.

Federated Learning (FL) [10], [11] has been proposed as
distributed training method for deep learning models without
compromising a user’s privacy. Unlike traditional distributed
training where the data is transferred from the user client
devices to the centralized server, the main idea here is to
transfer the user-trained models instead. The FL architecture
consists of a third-party server which contains the global
model that needs to be trained, and all the IoT clients on
whose data we need to train this global model on. This global
model is initially untrained, and sent to selected IoT clients.
The models are trained individually on each device using their
local data only and using the computational resources of the
IoT hardware. This results in separate local models for each
IoT which are then sent to the third-party server. The models
have encryption or noise (or both) applied as added security
and privacy mechanisms when being sent.

Once the individual models arrive at the server, they are
consolidated into a new single global model. This step (from
sending the global model till aggregation) is called a training
round. Training proceeds across multiple rounds and in each
round a subset of IoT clients are randomly selected from all
available clients. Eventually, the global model converges as the
final model. Thus, FL training is considered a privacy preserv-
ing method since data stays localized and is not accessible by
third-parties. This cross-device FL training method is known
to be highly effective in training deep learning models.

As discussed above, in conventional ML training the data
is typically owned by a single party and maintained in a
centralized location. Therefore, both data and computation can
be controllably distributed over a cluster of computing nodes.
This results in more predictability for resource consumption



and the quality of the model. However, since data in FL is
generated and owned by clients and the privacy requirements
prevent accessing or moving the personal data during training,
control of resources and data is not possible. This leads to a
few challenges unique to FL.

One of the most prominent of these problems is called the
data heterogeneity issue. Since usage behavior and environ-
ments differs between users, the data being generated among
them can vary widely. Features of the dataset (also called data
quality) such as class distribution can significantly vary, as
well as the number of total datapoints generated (called data
quantity) for training. This can result in biased local model
training and an overall sub-par models after aggregation [12]–
[14]. Bias in FL models is generally measured by the variance
of accuracies of the global model after being evaluated on
the data of individual client’s test datasets (termed good-intent
fairness [15]). The quantity of datapoints per device also varies
widely, resulting in different amounts of training cost incurred
by each device. Since we are blind to the data distribution and
have no direct control over it, one of the main challenges in
FL is to find indirect methods of adjusting the training process
in order to mitigate these issues.

Another challenge is that the local training times vary
greatly across clients depending on their hardware resources
(known as resource heterogeneity) which can result in strag-
glers and thus longer overall training time due to straggling
clients. We have little to no direct control over this as well.
Furthermore, mobile and IoT devices are not dedicated to
the training tasks. Only when clients meet certain criteria for
device properties such as battery status, idle time, training
time, and network status [16], can they participate in training.
This state can change in the middle of training as well, result-
ing in the phenomenon of client dropouts, where clients stop
participating in the middle of rounds, causing synchronization
delays and biased training [17], [18].

Data heterogeneity, resource heterogeneity, and client
dropouts are all important characteristics of FL and can heavily
impact model error, fairness, cost, and training time of a
model. However, previous works [16], [19]–[22] consider
them separately, resulting in sub-optimal models and long
training time. To fill this gap, we propose HDFL, a holistic
approach that considers the impact of data heterogeneity,
resource heterogeneity, and client dropout on model error,
fairness, cost, and training time when selecting clients to query.
We start by performing a first-of-a-kind characterization study
on the interactions between the data, resource heterogeneity
and dropouts. We first define a set of metrics to quantify
the four most important qualities of a FL system as focused
on in current literature, namely the final model performance,
final model fairness, total training time and total resource
consumption. We then control the data heterogeneity, dropouts
and resource properties of a standard FL system and observe
how they interact among them to influence the metrics.

We observe that there exists trade-offs between the various
metrics depending on the system environment. Namely, we
observe that 1) attempting to reduce training time by reducing

slow client selection results in worse final model performance
and model biasness, 2) client dropouts reduce final model
performance, waste resources and results in worse training
fairness, and 3) reducing training cost also reduces model
performance. Works in current literature only tend to focus
on one aspect or other such as reducing training time or
increasing model accuracy but ignore their tradeoffs such as
less performance or more incurred resource costs.

Based on the our observations, we propose HDFL, which
balances these various metrics to reduce the tradeoffs as much
as possible for a given amount of resource heterogeneity,
data heterogeneity and dropouts in a certain FL system. By
quantifying the impact of these factors on model convergence,
resource cost and training time, HDFL makes judicious client
selection decisions to achieve the most profitable training
results. HDFL formulates the problem as a multi-objective
optimization and considers two key properties when making a
scheduling decision: selection probability and selection mutu-
alism. Both properties are derived by taking into consideration
data heterogeneity, resource heterogeneity, and client dropouts.
Selection probability describes how often a client should be
selected and its quantification is empowered by a training
efficiency assessment approach that employs Underestimation
Index (UEI) [23] as a unified measure to represent model
error, fairness, and cost while preserving the privacy require-
ments. Selection mutualism captures the mutualism among
clients in terms of training time in a specific training round
and aims at minimizing the straggler and client dropout effects
to improve the overall training time.

We implement HDFL on a real distributed cluster where
clients and the aggregation server are deployed on their own
individual hardware. We evaluate our system using three stan-
dard FL benchmarks (FEMNIST, Cifar10, and Shakespeare).
We compare HDFL with the state-of-the-art large-scale FL
systems [16] and the widely used bare-bone FL system [11].
We show that HDFL is capable of automatically deriving the
best possible tradeoff between the various metrics as compared
against the other state-of-the-art solutions which only tend to
focus on one aspect or another. We show this by demonstrating
that HDFL achieves better Pareto frontier across all metrics
and requires little to no tuning. Our holistic approach is
empirically shown to more balanced, and we outperform both
the state-of-the-practice and state-of-the-art systems with up
to 4-10% better model accuracy, 33% improved good-intent
fairness, 63% lower cost, and 17% faster training time.

II. RELATED WORKS

For this section, we discuss the state of current literature for
cross-device federated learning as they focus on final model
performance, fairness, resource cost and time reduction.

A. Model Performance in FL.

In addition to current challenges in ML model training, FL
faces extra hurdles due to data heterogeneity. As pointed out
in [24], the imbalanced distribution of data among the clients
means imbalanced local training which eventually results in



worse overall model performance compared to having the
same dataset in a traditional distributed setting. There have
been much focus on addressing this issue specifically since
it is a fundamental yet unique property of FL. The first line
of works involves works like FedProx [17], FedCL [25], Fed-
Curv [26] and MOCHA [27] which change the fundamental
aggregation formula. The baseline FL [11] uses Federated
Averaging, which simply performs weighted averaging of the
model parameters based on the number of datapoints the
local models were trained on. The newer works change this
aggregation algorithm by adding more complex methods such
as better local minimizers [12] and better loss functions and
optimizers [28]. Another line of works involves changing the
selection mechanisms to choose the best subset of clients that
yield good model performance [19], [29], [30]. Finally, some
other works focus on changing the local training process by
tuning the training hyperparameters such as learning rate, local
epochs and batch size to ensure that local models do not
overfit on biased data [31], [32]. However, none of these works
discuss the impact of their techniques on the other aspects of
FL such as resource cost, consumption and training time, or
consider the impact of dropouts.

B. Fairness in ML.

Fairness of models is an extensively explored concept in
traditional ML [33]–[38] and many works have defined their
own notions of “fairness“. For example, [39] introduces
counterfactual fairness where a decision is considered fair
towards an individual if the decision taken by a model would
be the same if that individual belonged to a different sample
group. This topic was recently explored in FL by [40]. [41]
talks about classification fairness which measures how much a
model is biased during inference towards or against a particular
target class. [34] proposes a criterion for discrimination against
sensitive attributes for protected classes in general supervised
learning. [42] extensively discusses current fairness issues
in ML. While these approaches focus on mitigating bias
for unprivileged groups, e.g., race or gender, our fairness
definition does not consider such protected attributes.

C. Fairness in Federated Learning.

Good-intent fairness was defined as the variance of client
test accuracies of a model in [15]. If a model performs
well on one client’s dataset and bad on another, it indicates
that the model is biased against the features of the worse-
performing client and therefore is not fair. In this paper we
use this fairness definition. [15] also propose a minimax
optimization framework called Agnostic Federated Learning
(AFL) to reduce overfitting on local client data by optimizing
with learning bounds on the clients with the highest losses.
However, AFL does not consider resource usage or the biased
participation of clients which are important practical concerns
in FL. Works like [43] talks about utilizing resources fairly,
but does not take resource heterogeneity or data heterogeneity
into account. [44] proposes q-FFL, which is a method to
reduce biasness in the global model by making the client

accuracies more uniform (i.e., increasing good-intent fairness).
They do this by assigning more weights to the client updates
with higher empirical loss values, thereby ensuring that the
worst client updates can still contribute enough to the global
model and get a more uniform testing accuracy across clients.
For our paper, we use the same definition of fairness and
our objective is the same. However, instead of focusing on
the aggregation algorithm, we focus on the client dropouts
phenomenon of FL (i.e., how to be fair to clients if they do
not consistently contribute to the FL training process). This
paper works under the same assumptions as [15] in that they
assume equal participation of all clients. [45], [46] talks about
fairness not in terms of good-intent fairness but how much
value a client gets from participation. Costs are considered in
terms of monetary compensation, which is orthogonal to our
paper. We focus on the cost in terms of resource efficiency
(total samples used in training) instead.

D. Resource Reduction in Federated Learning.

Most works in FL focus on communication and energy
efficiency [47]–[50], but few have explored policy-driven
schedulers. [49] theoretically analyzes the trade-off between
local update and global parameter aggregation to minimize the
loss function under a given resource budget. [47] uses rein-
forcement learning for optimizing caching, local computation
and communication efficiency. [21] selects clients every round
such that they can complete training within a given time limit,
thereby controlling the amount of resources consumed per
round. [51] focuses on reducing model size using compression
methods and update frequencies resulting in less resources
used overall. [52] proposed a novel aggregation and global
model distribution scheme that reduces time to converge and
reduces communication cost early in the training process. [53]
introduces FedPAQ with the aim to reduce communication
overhead of too many devices trying to communicate with the
central server at the same time. [16] proposes a comprehensive
system to enable large-scale distributed FL frameworks. [54]
focuses on scaling up wireless communication systems for
edge devices.

E. Training Time Reduction in FL

There have also been extensive work towards reducing
training time of FL systems. Works such as TiFL [19] and
HFL [55] attempt to mitigate stragglers by grouping slower
clients together so that no single client slows down the time per
round too much. Some frameworks such as [16], [56] directly
remove slower clients from the training process entirely, while
others [19], [57] reduce their probability of being chosen.
Frameworks like [17], [58], [59] perform partial local training
such that the overall training time per device remains same
across all clients regardless of their hardware and number
of datapoints. However, such drastic changes in the overall
architectures impacts the training process and thus influences
the output of the final model performance, which none of
the works here consider. In contrast, our HDFL takes a more



holistic approach and tries to reduce time with minimal impact
to model performance.

III. CHARACTERIZATION STUDY

In this section, we systematically characterize multiple
variability points of FL, which demonstrates the importance
of a holistic approach.

A. Performance Metrics

The goal for the model owners in FL is to train a highly
accurate and generalizable ML models using other clients’
private data that would otherwise be unavailable. On the other
hand, the incentive for the data owners in FL is to get better
services from model owners by contributing their data to
training under privacy protection. They usually prefer good
user experience (i.e., with as less cost as possible) and fair
reward (i.e., the trained model performs well on their data).
Thus, we identify four important performance metrics when
evaluating FL and define them as below.

1) Model Error: is defined as the test accuracy error on all
datasets, i.e., mean error of the global model on each of the
client’s sampled test data denoted as 1−

∑n
i=0 Ai

n , where Ai is
the accuracy of global model on test data of i and n is the total
number of clients. One point to note here is that in FL, the
test data is derived from the clients too. Generally, it is set to
randomly sampled 10% of the total datapoints per client [60].
Therefore, we use the same setup for our case as well. The
reason for doing so is that in a real-world system, the trained
model must perform well on actual data. Since actual data here
is derived from the IoT clients, we test the global model on
the client’s data as is standard practice. Before training, each
client puts aside this test set from its local dataset and is never
used for training.

2) Training time: is defined as the wall-clock time of
training. We choose wall-clock time instead of training rounds,
as the round time can differ significantly due to data and
resource heterogeneity. In state-of-the-art paper such as [19], it
is measured as total time taken beginning from when the first
round’s clients are selected till the end of the last round. This
does not include the time taken for inference during testing.
We take the same approach and measure the time in seconds.

3) Cost: is used to quantify the total amount of resources
that are used by the IoT devices for local training. The
aggregation expense on the server side is negligible compared
to the forward and backward propagation cost during local
training [16] since the aggregation is a simple average of
the model weights. This cost can be in terms of computation
power, energy or memory with the units FLOPs, Joules and
bytes respectively. It can also be a combination of all of
them together. Different costs are used for different papers
depending on what their focus is. For our case, instead of a
single resource type, we focus on resources in general.

We know from literature that one of the most significant
indicators of resources consumed are the number of data
samples that have been used for training [17], [42], [48]. This
is because given the same model and deployment environment,

the number of datapoints is directly proportional to the total
amount of computation. As such, the number of datapoints
serves as a generalizable and abstract level indicator of the
total resources consumed since we can derive the approximate
of the actual cost after some profiling. Note that even if a client
drops out during training, the used data samples also count into
the cost. We use training samples instead of resource hours
as the resource in FL is highly heterogenous across clients.
It is worth noting that more sophisticated cost metrics can
also be used such as carbon footprint, executed floating point
operations, which we defer to our future work.

4) Fairness: is defined as good-intent fairness [15] that
measures the accuracy variance when the global model is eval-

uated using test datasets of individual clients:
√∑n

i=0(A
i−Ā)2

n−1 ,
where Ai is the accuracy of global model on test data of i, n is
the total clients and Ā is the mean accuracy. This is tied to the
way that model performance is measured in FL as discussed
in Model Error. By testing the global model on a client’s test
dataset, we effectively measure how well the FL training was.
The idea is that if the features of a specific client is learnt well
by the global model, the test accuracy should be high on its
local test dataset.

Ideally, we want our global model to perform well on every
device. However, in practice, we know that the differences in
test accuracies among the clients’ local test datasets can vary
widely. This difference in performance indicates that some
clients may not have contributed to the learning process at all
even though they have spent resources for local training. This
is therefore called a fairness issue since the model is biased
towards some clients’ features over others, which indicates
a non-generalizable model and is therefore undesirable. We
choose this good-intent fairness definition since it is the
standard method of reflecting the bias issues among clients
in FL [15]. The lower the Fairness value, the more fair the
model is.
These metrics quantify the different performance aspects of
FL systems. To understand how these metrics influence each
other, next we perform a set of characterization studies.

B. Tradeoff Between Fairness and Training Time

(a) Model Error over Rounds (b) Training Time

Fig. 1: Tradeoff between fairness and training time. (a) shows
the test error comparison across rounds. LS-FL results in
higher model error for the slower clients (SLOW), leading
to worse fairness than FedAvg. (b) shows the training time
comparison, where LS-FL outperforms FedAvg.



One of the focuses of state-of-the-art large-scale FL systems
such as [16] is on improving the training time. Due to the
highly heterogeneous nature of clients, the training latency
(defined as client’s local training time) varies greatly across
clients. Given the training time of each round is bounded by
the slowest client (i.e., straggler), the straggler effects signif-
icantly impact the overall training time. To address this, the
widely popular [16] (which we name LS-FL for convenience)
suggests selecting 33% more clients but only use the weights
from the first 75% for training the global model and discard
the weights of the slowest 25%. Similar methods are applied
in [21], [61], albeit with variations to the default approach.
This approach helps reduce the straggler impact, but it results
in biased training as slower clients are have less opportunities
to contribute in training in addition to wasting their client-side
resources.

To demonstrate the effects of this policy empirically, we set
up a real distributed FL system. We conduct our experiments
using the FEMNIST image classification dataset, model, and
training hyperparameters from the LEAF [60] framework. We
use a total of 53,000 images for training across 200 clients
and select 10 clients uniform randomly per round during the
training. The dataset of FEMNIST comes pre-sharded such
that it follows a real world data heterogeneity. Specifically,
each client is assigned only the images hand-written by the
same person, thus making each client have unique calligraphic
features in their local datasets. We manually assign a training
latency per client using a normal distribution with a mean of
5 seconds and a deviation of 1.5 seconds. We train this setup
until convergence and plot 4 different test accuracies over
rounds in Figure 1a that demonstrates the impact of dropouts.
For testing, the global model is sent to all participating clients.
Each client has its own reserved test dataset made by sampling
10% of its total available data on which the global model is
tested on, and the results reported back to the server.

Figure 1a demonstrates the tradeoff between fairness and
training time (experimental setup is detailed in Evaluation Sec-
tion). The GLOBAL, FAST, SLOW represents the mean error of
all clients, the fastest 75% clients, and the slowest 25% clients,
respectively, when LS-FL is used. FedAvg represents the mean
error of all clients when state-of-the-practice system Federated
Averaging is used, where no client update is dropped. We
observe about 15% difference in test error between the fastest
75% and slowest 25% clients in LS-FL, indicating a significant
difference in model accuracy between faster and slower clients,
leading to poor fairness. We also observe an overall increased
error for GLOBAL when compared to FedAvg by around 4% at
convergence as well. However, Figure 1b shows a significant
improvement in training time when using LS-FL compared to
FedAvg, clearly revealing the tradeoff between fairness and
training time.

C. Client Dropout Impacts Fairness and Model Error

Next, we study the impact of the client dropout phenomenon
on the overall training process. As pointed out in [17], one
major issue of training on mobile/IoT devices is the availability

(a) Error Distribution (b) Error vs. CDR

Fig. 2: (a) CCDF of clients’ test error evaluated with local
datasets. With client dropout, error is noticeably worse. (b)
Clients’ test error vs. CDR, which are positively corrected.

as clients can dropout even in the middle of training. This can
be due to a variety of reasons such as network interruptions,
hardware malfunctions, not meeting training criteria, etc. This
client dropout phenomenon is non-deterministic since we are
unaware of the client-end usage behavior, environment and
system properties. Therefore, we model this dropout property
as a probability of a client to stop training if selected in a
round. To study its effect, we randomly assign a probability
named Client Dropout Ratio (CDR) to every client with an
exponential distribution with a scale of 0.4, resulting a skewed
CDR distribution across clients. When a client participates in
training, its probability of dropping out equals to its CDR.
We run the same experimental setup as in the previous
section but now use LEAF FEMNIST with the baseline policy
instead of [16] since we are not considering policy-driven
dropouts like in LS-LF here for now. We perform more detailed
experiments in the evaluation section.

We use FedAvg to run two sets of results: with client dropout
(denoted as with CDR) vs. no client dropout (denoted as w/o
CDR) shown in Fig.2a. The CCDF of the error distribution of
with CDR has a significantly longer tail than w/o CDR. The
clients on the tail are those with higher CDR (> 0.7) and they
tend to perform much worse than other clients. This indicates
that dropping out clients from the training process results in the
global model from being unable to train well on them, which
leads to performing very badly on their test datasets. We also
observe that the mean model error in the case of with CDR
is also significantly higher than w/o CDR, indicating that the
loss of training data due to client dropouts adversely effects the
model’s performance. Figure 2b shows the is a strong positive
correlation between the CDR and the resulting global model’s
error on that client’s test dataset. This trend exists since the
clients with lower CDR tend to participate more in the training
process and thus achieve lower test error and vice versa. These
results together clearly show that client dropouts can result in
higher model error and unfairness, an observation that has
widely been ignored by the current state-of-practice and state-
of-art.

D. Tradeoff Between Cost and Model Error

One simple way to increase the overall participation is
to increase the number of clients selected per round. Works
such as [55], [62], [63] attempt to mitigate the performance
degradation due to dropouts by increasing the total partici-



(a) Cost (b) Model Error

Fig. 3: (a) Cost (total number of datapoints trained in 2000
rounds in Millions) vs. number of clients selected in each
round.(b) Mean model error for different numbers of clients
selected per round.

pation of all the devices. We conduct the same experiment
as in Figure 2a with client dropout, but increase the total
number of clients selected per round from 10 to 20 as a simple
measure of increasing the overall participation. We compare
Cost (measured by the total number of datapoints trained)
and Model Error in Figure 3a, showing the cost comparison
among 10 and 20 client devices selected per round for training
over 2,000 rounds. As expected, increasing clients selected
per round yields higher cost and imposes a significant heavier
burden on clients as more resources are consumed. Meanwhile,
it also effectively reduces the model error (see Figure 3b) since
more clients per round result in more successful participation
frequency for dropout-prone clients. From this experiment,
we conclude that increasing participation can benefit model
accuracy, but at the cost of a higher burden on clients, thus
simply increasing clients selected per round is not a good
solution.

IV. METHODOLOGY

In this section, we first formulate the problem and then use
our observations from the characterization study to develop
the HDFL framework.

A. Problem Definition

- Point 1- Changed overall organization by splitting up
the paragraphs into explicit sub-sections. Also added text
for better readability. Our goal is to design an effective client
selection scheduler that optimizes the performance metrics
in FL. The scheduling parameter is defined as the selection
probability of a client in each training round. Given there
are four performance metrics (model error, fairness, cost, and
training time) to consider, we formulate the problem as multi-
objective optimization. Assume we train a global model G
on a set of clients D = [d1, d2, d3, ...dn, ...dN ] according to a
client selection scheduler S defined as the selection probability
of each client in training round i: Si = [si1, s

i
2, s

i
3, ...s

i
n, ...s

i
N ].

Let the evaluation error of G on the data of individual client
in D as A = [a1, a2, a3, ...an, ...aN ]. The goal is to optimize
the model’s mean test error defined as a(S) = 1−mean(A),
good-intent fairness defined as f(S) = var(A), total training
cost c(S) defined as the total number of data points processed
(including dropped out data points), and the training time t(S):

minimize (a(S), f(S), c(S), t(S)). (1)

B. Proposed HDFL Method

In this section, we describe our proposed HDFL framework
in details. We first introduce our method of using Underestima-
tion Index (UEI) to assign values to parties. We then show how
to use UEI to skew the selection probability towards a more
fair training, and finally discuss how intelligently excluding
certain parties from training would reduce the overall training
efficiency.

1) Underestimation Index: Simultaneously optimizing
model error, fairness, cost, and training time in FL is chal-
lenging due to their complex interactions. To solve this multi-
objective problem, we need to first define a measurable metric
that can represent and unify the optimization metrics and has
the following properties: 1) preserve privacy requirements; 2)
can be modeled with scheduling probability. The Underesti-
mation Index (UEI) proposed in [23] has potential to meet
the above requirements. UEI is a metric for measuring the
distance between a model’s prediction results and the actual
labels, which is a good indicator of how well a model has
learned the features of a dataset, and defined as:

UEIn =
1√
2
||
√

P pr
n −

√
P act
n ||2, (2)

where n is the client index number, P act
n is the class distri-

bution of the training dataset, and P pr
n is the predicted class

distribution of global model. UEI values range from 0.0 to
1.0, where higher UEI means more bias against the training
dataset.

A client with a high UEI value indicates that the fea-
tures in the data of this client are not well captured in the
global model, thus the client is “disenfranchised” so far and
more training involvement of this client is need to improve
fairness. Additionally, reducing UEI across all clients means
the features of global data has been well captured and thus
improve model error. The participation of clients with low
UEI benefits less the training progress, thus such participation
may reduce resource efficiency and incur high cost. For clients
with the same UEI , their resource efficiency can be different,
meaning that in order to reduce UEI by the same amount
the number of local datapoints may be different. To reflect the
resource efficiency difference, we introduce a cost normalized
UEI:

CUEIn =
UEIn
cn

. (3)

Next, we introduce how to quantify selection probability
and selection mutualism and combine them in HDFL to solve
the multi-objective optimization problem defined in Eq. 1.

2) Selection Probability: Due to the client dropout effects
in FL, the eventual participation rate of a client, termed PRn,
depends on both the selection probability of a client Sn and
its Client Dropout Ratio CDRn:

PRn = Sn × (1− CDRn). (4)

To design a client selection scheduler that minimizes model
error, fairness, and cost, the selection probability shall be set
so that CUEI is minimized. In other words, client with higher



TABLE I: Training Setup.

Dataset Model Train/Test split Total Clients/
Selected Per Round

Learning Rate
/Batch Size

FEMNIST 2 conv 2 dense 53,839/5,383 179/10 0.004/10
CIFAR10 4 conv 2 dense 50,000/10,000 100/10 0.0005/32

Shakespeare 256 cell lstm 1 dense 115,135/11,513 30/3 0.0003/2

CUEI needs higher selection probability. In addition, clients
with high Client Dropout Ratio also need to be compensated
with higher selection probability so that their eventual partic-
ipation rate can be consistent with their selection probability.
Therefore, we first define the participation rate of client n as
a function of CUEI and then add the Client Dropout Ratio
to compute selection probability. For the function, we choose
a standard exponential function as it produces a proper skew
from CUEI to participation rate:

PRi
n = f(CUEIin) = σ ∗ 1

e−CUEIi
n
, (5)

where i is the round index and n is the client index. σ is
a normalization term that converts the CUEI based metric
into a probability based metric. By adding the Client Dropout
Ratio, we have the selection probability of a client n at round
i as:

Si
n =

{
PRi

n

1−CDRi
n

if CDRi
n < 1.0

PRi
n if CDRi

n = 1.0.
(6)

Because the client selection probability sums to 1
(
∑N

n=1 S
i
n = 1). We can compute σ as:

σ =


1∑N

n=1
1

e
−CUEIin×(1−CDRi

n)

if CDRi
n < 1.0

1∑N
n=1

1

e
−CUEIin

if CDRi
n = 1.0.

(7)

3) Selection Mutualism: To optimize the training time, our
main idea is to minimize the straggler and client dropout
effects. Here we propose the idea of selection mutualism,
which captures the mutualism among the training time of
clients in a specific training round. Let the response latency
of a client ci selected in round r be Li, and the latency of a
global training round as -

Lr = Max
(
L1, L2, L3, L4...L|C|

)
(8)

where C is the total number of clients selected in a round and
Lr is the training latency of round r. Here, we can see the
latency of a global training round is bounded by the maximum
training latency of all clients, i.e., the slowest client. Thus, our
idea is to mitigate this issue by selecting clients with similar
training latencies in a round.

Specifically, clients with similar round training latency are
given higher probability to be selected in the same round to
reduce the straggler effects and the average Client Dropout
Ratio of all clients in a round needs to be smaller than a
user defined threshold. The total time per round is determined
by the slowest client selected. Randomly choosing clients may

Algorithm 1 HDFL Algorithm. wi: the global model for round
i, D: list of all participating clients, R: total of training
rounds, I: metric update frequency, UEI, c, CDR,L: list of
UEI,C,CDR and training time metrics for each client,
CDRmax: minimum average CDR in a round.

1: Aggregator: initialize weight w0.
2: for each round i = 1 to R do
3: if i%I == 0 then
4: SendGlobalModel(wi, D)
5: UEI, c, CDR,L = GetClientMetrics(D)
6: end if
7: S = (Calculate using Eq. 6 and 7 with UEI, c, CDR)
8: d = (randomly select one client from all clients using

S)
9: S′ = (Calculate using Eq. 8 and 9 S,L)

10: s = (randomly select n clients using S′ such that
CDRmax is met)

11: for each client c in s+ d do
12: Client: Wc = LocalSGD(wi, δi)
13: end for
14: wi+1 = 1

nc

∑
c∈s+d Wc

15: end for

group slow and fast clients together, thereby cause the training
time of that round bottlenecked by the slow clients. On the
other hand, if client selection is restricted to only include
devices with similar training time, it can greatly mitigate the
straggler issue. The proposed selection mutualism approach is
more generalizable compared to more strict tier and group-
based systems such as [19] since it removes the requirement
for fixed tiers and adds support to mitigate client dropout
effects to optimize training time.

HDFL employs the above methods to make optimal client
selection scheduling decisions. As the round training time
is bonded by the slowest client (straggler), the key idea
to minimize the straggler effect is to adjust the selection
probability so that clients with similar training latency can be
selected in the same round. Specifically, in a training round,
after selecting the first client, we use its training latency as
the standard of this round, denoted as L. We adjust clients’
selection probability based on the training latency difference
between theirs and L. We formulate the mutualism adjusted
selection probability as:

S′i
n = f(Si

n, Ln, L) = θ ∗ Si
n ∗ e|Ln−L|, (9)

where Ln is the training latency of client n. We use expo-



nential function as an example to reflect the training latency
difference’s impact on selection probability and such function
can be changed to adjust the impact. θ is a normalization
coefficient such that

∑N
i=1 S

′i
n = 1 and can be computed as

θ =
1∑N

n=1 S
i
n ∗ e|Ln−L|

. (10)

To minimize the client dropout effects, the average Client
Dropout Ratio of selected clients needs to be below a threshold
CDRmax to avoid the situation where enough clients are
not present to meet the requirement of minimum participants
( [64], [65]). The total training time t(S) can be computed as:

t(S) =
I∑

i=1

LSi, (11)

where i is the training round index and I is the total number
of rounds. LSi is the training latency of the slowest client
selected in round i, which is impacted by the mutualism based
selection probability adjustment above. The full algorithm of
HDFL is present in Algorithm 1. Here, for each round we
first get the values for the variables UEI , c, CDR, and L if
it is within profiling interval I . Using these values, we sample
clients s such that its participation rate is kept up to a level
given a certain CDR using the above equations. The next
steps proceed as in standard FL.

V. EVALUATION

We evaluate HDFL against the following methods in four
performance metrics: model error, fairness, cost, and training
time against the following popular FL benchmarks -

• The state-of-the-practice FL: Federated Averaging (Fe-
dAvg). This is the standard cross-device FL implementa-
tion in Tensorflow as proposed in [11]. For our experi-
ments, we keep our environment properties (for example,
a client’s CDR) the same for all frameworks regardless of
the policies they implement. In this case, it is the baseline
FL with no extra mechanisms to handle training time, cost
and dropouts.

• The state-of-the-art resource heterogeneity-aware FL
which focuses on reducing training time and enable
scalability of number of clients [16] (we name it LS-
FL for convenience). This framework does not consider
dropouts, resource cost, model fairness and performance.

• The state-of-the-art data heterogeneity-aware FL focuses
on fairness solely called q-FFL [44], and contains no
techniques to handle the other metrics.

• The state-of-the-art in data heterogeneity-aware FL –
FedProx [12] which also focuses solely on convergence
rate and model performance.

We choose FedAvg, LS-FL, q-FFL, and FedProx as baselines
because they are open-sourced and we expect similar perfor-
mance from frameworks such as [19], [53] (not open-sourced).

Benchmarks and Data Heterogeneity. We now evaluate
HDFL on a real distributed cluster against three popular FL
benchmarks. We use the standard Cifar10, and we generate its

(a) FEMNIST (b) Cifar10

(c) Shakespeare (d) FEMNIST

(e) Cifar10 (f) Shakespeare

Fig. 4: (a-c) Comparison of CCDF of clients’ test error.
Demonstrates that HDFLcan consistently have a lower distri-
bution variance of accuracies (fairness) between devices com-
pared to the LS-FL, q-FFL and FedAvg. (d-f) Cost comparison
at the convergence time (CONV) and with constrained training
time (LIM) to 24, 5, and 14 hours for FEMNIST, Cifar10,
and Shakespeare datasets respectively. The time constraints
are set based on the fastest framework to converge. M stands
for millions of datapoints.

data distribution heterogeneity across clients using the class-
wise distribution. We split up the full dataset evenly into
100 parties, where each party has datapoints from at most
5 different classes. This setup is commonly used in state-
of-the-art works such as [19], [29]. We also use FEMNIST
and Shakespeare from the federated learning framework
LEAF [60], which provides a realistic data heterogeneous
distribution between devices and has been considered as the
new standard for recent state-of-the-art FL works. We use their
data distribution provided by default (further details given in
Table I and Section III-B).

Testbed and Resource Heterogeneity. We deploy the
aggregation server exclusively on a 32-CPU node and every
client on separate 2-CPU nodes. We launch the clients on
separate individual hardware (details in Table I). It is worth
noting that our testbed is among the most practical and largest
scale in FL research (to the best of knowledge, only [16], [19]
used similar testbed). We randomly assign training latencies
per client (via a sleep function) using a Gaussian distribution
sampling with a mean of 5 seconds and a standard deviation
of 1.5 seconds following [19] to generate a set of clients with
variable training latencies to reflect resource heterogeneity.
We assign Client Dropout Ratios to each client using an
exponential distribution mean of 0.4, which provides enough
high and low dropout ratio clients to have a noticeable impact



on training.

A. Model Error and Fairness Analysis

We first evaluate how HDFL performs in terms of model
error and fairness metrics without other constraints. Figure 4(a-
c) shows the CCDF of the test errors of clients at convergence
across the different datasets and compared among HDFL and
the state-of-the-arts. The error distribution variance (i.e. the
spread of the accuracies) represents the fairness, with lower
variance being better. The error distribution mean represents
the drop in accuracy of the global model tested on client test
sets. Lower values indicate better model performance. LS-
FL is the worst-performing system due to its larger tail, as
well as distinctly higher median and mean values compared
to the others due to not purposefully discarding clients and
having no mechanism to handle dropouts. q-FFL employs
fairness optimization, thus it performs better than FedAvg.
HDFL performs the best in both mean and variance in dis-
tribution. This can be attributed to its novel policy as it takes
into account the clients’ dropout probability and CUEI when
making participation decisions. Specifically, HDFL promotes
the participation of high dropout ratio clients as well as clients
with data on which the model is under-fitting (clients with high
UEI) to achieve the best model performance and fairness.

(a) FEMNIST (b) FEMNIST

(c) Cifar10 (d) Cifar10

(e) Shakespeare (f) Shakespeare

Fig. 5: Comparison of the training time against model error
and fairness (lower is better).

B. Cost Analysis

Figure 4(d-f) shows the cost comparison measured as the
total number of datapoints used at convergence or within a
time constraint. HDFL has lower cost than others across all
cases. Using CUEI for client selection enables HDFL to
be cost-aware, and as a result, HDFL tends to prioritize the
selection of lower cost clients. FedAvg, q-FFL, and LS-FL are
cost oblivious and thus incurs higher cost.

Fig. 6: Pareto optimality comparison results between HDFL
and others in fairness and model error against training time and
cost (datapoints trained). HDFL demonstrates the best trade-
offs. M stands for millions of datapoints.

C. Training Time Analysis

Figure 5 shows the comparison of training time at conver-
gence against model error and fairness. HDFL consistently
achieves better model error and fairness with less training time
compared to FedAvg and q-FFL in all benchmarks. This is
because HDFL employs the selection mutualism to achieve
more consistent training time within each round to reduce the
straggler effect while FedAvg and q-FFL has no mechanism
to handle stragglers. LS-FL has the shortest training time in
all cases, but at the cost of significantly compromised model
error and fairness. This is expected as LS-FL biasedly drops
the slowest 25% of clients, which benefits the training time
while hurting fairness and accuracy.

D. Pareto Optimality Analysis

Finally, we analyze all the performance metrics together in
a full end-to-end manner by demonstrating the Pareto frontier.
Figure 6 shows the model error and fairness against cost and
training time for the FEMNIST dataset. Across each of the
metric combinations, HDFL outperforms other frameworks by
achieving a better Pareto frontier. LS-FL consistently performs
the worse with model error due to dropping out clients inten-
tionally, which is also detrimental to fairness. While FedAvg
and q-FFL perform better in model error and fairness, they
fail to handle client dropout and result in poor training time
and cost.

VI. CONCLUSION

In this paper, we conduct a first-of-a-kind study on the
tradeoffs between the various metrics of importance in FL
literature. We demonstrate that current popular methods which
aim at optimizing one of these metrics tend to ignore oth-
ers, resulting in compromises. The observations from the
study indicate the need for a framework that can balance



between the various metrics by reducing tradeoffs while op-
timizing one metric or the other. To this end, we propose
HDFL, a novel holistic approach-based system that takes into
consideration resource heterogeneity, data heterogeneity, and
client dropouts to optimize the set of performance metrics
simultaneously. We prototype HDFL in real distributed FL
system and evaluate it using the latest FL benchmarks. The
evaluation results show HDFL outperforms the state-of-the-art
approaches and achieves much better Pareto frontier in every
multi-performance metrics optimization scenarios.
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D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” pp. 1273–1282, 2017.

[12] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” 2020. [Online].
Available: https://proceedings.mlsys.org/book/316.pdf

[13] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, 2019.

[14] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[15] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in International Conference on Machine Learning. PMLR, 2019, pp.
4615–4625.

[16] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan,
T. Van Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards
federated learning at scale: System design,” in Proceedings of Machine
Learning and Systems, A. Talwalkar, V. Smith, and M. Zaharia, Eds.,
vol. 1, 2019, pp. 374–388.

[17] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[18] A. Imteaj, K. Mamun Ahmed, U. Thakker, S. Wang, J. Li, and M. H.
Amini, “Federated learning for resource-constrained iot devices: Panora-
mas and state of the art,” Federated and Transfer Learning, pp. 7–27,
2023.

[19] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, and Y. Cheng, “Tifl: A tier-based federated learning
system,” arXiv preprint arXiv:2001.09249, 2020.

[20] L. Cai, D. Lin, J. Zhang, and S. Yu, “Dynamic sample selection for
federated learning with heterogeneous data in fog computing,” in 2020
IEEE International Conference on Communications, ICC 2020, Dublin,
Ireland, June 7-11, 2020. IEEE, 2020, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ICC40277.2020.9148586

[21] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[22] G. K. Gudur, B. S. Balaji, and S. K. Perepu, “Resource-constrained
federated learning with heterogeneous labels and models,” 3rd Inter-
national Workshop on Artificial Intelligence of Things (AIoT’20), KDD
2020, 2020.

[23] T. Kamishima, S. Akaho, and J. Sakuma, “Fairness-aware learning
through regularization approach,” in 2011 IEEE 11th International
Conference on Data Mining Workshops. IEEE, 2011, pp. 643–650.

[24] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the
convergence of fedavg on non-iid data,” 2020. [Online]. Available:
https://openreview.net/forum?id=HJxNAnVtDS

[25] M. Wang, J. Guo, and W. Jia, “Fedcl: Federated multi-phase curriculum
learning to synchronously correlate user heterogeneity,” arXiv preprint
arXiv:2211.07248, 2022.

[26] N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef,
and I. Zeitak, “Overcoming forgetting in federated learning on non-iid
data,” arXiv preprint arXiv:1910.07796, 2019.

[27] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing systems,
vol. 30, 2017.

[28] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
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