CONNECTION COEFFICIENTS FOR ULTRASPHERICAL
POLYNOMIALS WITH ARGUMENT DOUBLING AND
GENERALIZED BISPECTRALITY

By
MAXIM DEREVYAGIN AND JEFFREY S. GERONIMO

Dedicated to the memory of Richard Askey

Abstract. We start by presenting a generalization of a discrete wave equation
that is satisfied by the entries of the matrix coefficients of the refinement equation
corresponding to the multiresolution analysis of Alpert. The entries are functions
of two discrete variables and they can be expressed in terms of the Legendre
polynomials. Next, we generalize these functions to the case of the ultraspherical
polynomials and show that these new functions obey two generalized eigenvalue
problems in each of the two discrete variables, which constitute a generalized
bispectral problem.

1 Introduction

Let {P,};2, and {O,};2, be two families of orthonormal polynomials whose or-
thogonality measures are du and dv, respectively. Then one can see that

Pi(f) = Z cijO;(1),
=0

where the coefficients c; ; can be found in the following way:

i = / PA)O,(1) dv().

These coefficients are called connection coefficients and their nonnegativity for
some particular cases of the ultraspherical polynomials is useful in the proof of
the positivity of a certain 3F» function, which in turn, based on the work of Gasper
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and Askey and Gasper, played a significant role in the first proof of the Bieberbach
conjecture [1]. Also there has been much work proving the nonnegativity of
integrals of products of orthogonal polynomials times certain functions which was
initiated by Askey in the late 1960’s. These studies have been stimulated by the
fact that some of those integrals have combinatorial interpretations (see [10]).
Another instance that we would like to mention is that in some early work
leading to the theory of bispectral problems, a matrix S;, whose entries are

Q
(SDiy = / Pi0)P() du(r)

for some real a and Q, was considered (for instance, see [8]). The question was
to find the eigenvectors of S| which, since S| is a full matrix, is not an easy
task. However, it was proposed to find a tridiagonal matrix commuting with S|
in order to reduce the original problem to a problem of finding eigenvectors of
the tridiagonal matrix, which is an easier and well-understood problem. It was
shown to be possible to construct such tridiagonal matrices for some families of
orthogonal polynomials and this is one of the fundamental ideas in the theory of
bispectral problems.

The last instance we bring up here is that in [7] the Alpert multiresolution
analysis was studied in detail and important in this study was the integral

1
fij= /0 pi(0p;(2t — Dy,
where p; is the orthonormal Legendre polynomial, i.e.,
pi(t) = k¥ + lower degree terms

with k; > 0 and for any two nonnegative integers k and [ we have

1 0, k#L

| popoar =

-1 1, k=L
These coefficients are entries in the refinement equation associated with this mul-
tiresolution analysis. The fact that the Legendre polynomials are involved in
the above integral allowed the authors in [7] to obtain many types of recurrence
formulas in i and j including a generalized eigenvalue problem in each of the in-
dices. These two equations together give rise to a bispectral generalized eigenvalue
problem.
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We begin by discussing a common property of the coefficients in all the above-
mentioned cases: they satisfy a generalized 2D discrete wave equation. We
observe numerically that a damped oscillatory behavior takes place in the case of
the ultraspherical generalization of the coefficients f; ;. In particular with

1
£ = /0 PP 21 — 1)(r(1 — )" 2dt,

where 1552‘) are the orthonormal ultraspherical polynomials and A > —1/2, we find,
for large i, the asymptotic formula

f(i)_k.cos(n(j+%—%+%))+0 1
iy T \/Eil+l/2 i#+3/2)°

where

o 24, . 1
4 = g \/j!(l)j(l AT A2 D2+ 2),~

which confirms the damped oscillatory behavior. We also derive some related
properties and show that fi(j‘)

.

satisfy a bispectral generalized eigenvalue problem
of the form

Af = (j+i — %) (j+/1 + %)B. b

Af® = (i+i+%)<i+i— %)g, @),

where A;, B; are tridiagonal operators or second order linear difference operators
acting on i and Aj, éj are tridiagonal operators acting on j. Each of the two
above-given relations is a generalized eigenvalue problem and the theory of such
problems is intimately related to biorthogonal rational functions (for instance, see
(91, [11], [16]).

The paper is organized as follows. In Section 2 a vast generalization of the
above integral is shown to give rise to a 2D wave equation and solutions to the
special case of the above integral are plotted to show the oscillations. In Section 3
the Legendre case above is analyzed and various properties of the coefficients f; ;
are derived. One point of this section is to derive the orthogonality property
of these coefficients using that they come from special functions. In Section 4
the Legendre polynomials are replaced by the ultraspherical polynomials and their
scaled weight. Here it is shown that the coefficients fl-(j-) satisfy a wave equation and
also a bispectral generalized eigenvalue problem. Two proofs are given developing
the generalized eigenvalue problem. One is based on the fact that the polynomials
satisfy a differential equation and has the flavor of the proof given in [8] and the
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second follows from the formula for fi(j.) in terms of a , F'| hypergeometric function.
The two proofs emphasize different aspects of the problem that may be useful when
viewing other orthogonal polynomial systems.

2 The 2D discrete wave equation

Let {P,};2, and { O,}52, be two families of orthonormal polynomials with respect
to two probability measures or, equivalently, two families that obey the three-term
recurrence relations

an+1Pn+1(t) + ann(t) + anPn—l(t) = tPn(t)o n=0,1,2,...
and
Cn+lQn+l(t) + ann(t) + CnQn—l(t) = th(I)a n= 0: 1, 2; cees

where the coefficients a, and ¢, are positive and the coefficients b,, and d,, are real.
In particular, the first relations are

a1 P(t) + boPo(t) = tPo(1), c101() +doQo(?) = tQo(1).

Therefore we can set

apgp =Cp = 0
for the coefficients to be defined for n =0, 1,2,.... Since the families are or-
thonormal with respect to probability measures we know that

Py=1, Qop=1,

which are the initial conditions that allow to reconstruct each of the systems from
the corresponding recurrence relation. It should be stressed here that by imposing
these particular initial conditions we implicitly assume that the corresponding
orthogonality measures are probability measures.

In addition, suppose we are given a measure ¢ on R with finite moments. Then,
let us consider the coefficients

@.1) s = [ P(OQat+ oo,

where a # 0 and f are complex numbers. It turns out that these coefficients

constitute a solution of a generalized wave equation on the two-dimensional lattice.
Theorem 2.1 (cf. [10, Theorem 2.1]). We have that

Ci+1 dj - ,3

C:
- i
(2.2) Air1Uis1 j + Dittj + ajui—y j = g i * Uij+ 2 Uij-1

fori,j=0,1,2,....
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Proof. From (2.1) and the three-term recurrence relations we get that

Qir1Uirj + bt j + aiui—

- /IR (@i Pt (1) + biP(0) + 4Py (1) Qy(at + )do(t)

/R tP{(1)Qj(at + B)do(t)

é /R Pi(t)(at+ﬁ)Qj(at+ﬁ)d0'(t)—g /R P(1)Qj(at + f)do(t)

1
. /]R Pit)(cie1 Qjur(at + B) + diQi(at + B) + &0 1 (at + f)do(r)

-
= ﬂMi,j+1 + ﬁ”i,j + ﬁMi,j—l — —Uj
a o o o
and thus (2.2) holds. ]

Remark 2.1. Given an equation of the form (2.2), then due to the Favard
theorem the coefficients will uniquely determine the families { P, },2, and { O},
of orthonormal polynomials. The measure o is responsible for the initial state
when j = 0 and j can be thought of as a discrete time. Namely, for a solution of the
form (2.1) to exist they need to satisfy the initial condition

o= / Pi(1)do(0),
R

which means that given an initial function u; ¢ of the discrete space variable i, o
needs to be found. The latter problem is a generalized moment problem and in this
particular case it is equivalent to a Hamburger moment problem.

It is also worth mentioning here that another type of cross-difference equations
on Z2 was recently discussed in [2] and the construction was based on multiple
orthogonal polynomials. Type I Legendre—Angelesco multiple orthogonal poly-
nomials also arise in the wavelet construction proposed by Alpert [6].

Next, consider a particular case of the above scheme where P, and Q, are
both orthonormal Legendre polynomials p, and so verify the three-term recurrence

relation
(n+1) R n R R
nH+ —1(6) = th(2),
Q@n+ 1)(2n+3)p’”‘() Jan—Dant D" 1) = 1Pa(0)
forn=0,1,2,.... Set o to be the Lebesgue measure on the interval [0, 1]. As a

result, the coefficients (2.1) take the form

1
2.3) fij= /o pi(Op;(2t — 1)dt.
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Note that
2.4) fij=0, j>i=0,1,2,...,

which follows from the fact that the polynomials p;(2¢ — 1) are orthogonal on the
interval [0, 1] with respect to the Lebesgue measure.

Since the coefficients of the three-term recurrence relation for the Legendre
polynomials are explicitly known, the coefficients of equation (2.2) become explicit
as well. The following Corollary can be found in [7].

Corollary 2.2. The function f; ; satisfies

j+1 . J .
o5 VDT et = !
' _ 26+ 2i -
BN T AN Ty TRy A
fori,j=0,1,2,....

Figure 1 presents the MATLAB generated graphical representation of some
behavior of the solution f;; to equation (2.5), which is a generalization of the
discretized wave equation.

037

Figure 1. This picture demonstrates the moving wave. Here, one can see two
graphs of the function f = f(i) = f;; of the discrete space variable i at the two
different discrete times j = 15 and j = 20.

Note that the form (2.1) of solutions of the discrete wave equations is useful for
understanding the behavior of solutions because there are many asymptotic results
for a variety of families of orthogonal polynomials; see, for example, [17].
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3 Some further analysis of the coefficients f; ;

In this section, we will obtain some properties of the coefficients f; ; based on the
intuition and observations developed in [7]. In particular, we will rederive and
expand upon some orthogonality properties of the coefficients f; ;.

We begin with the following statement, which is based on formula (2.3) and
some known properties of the Legendre polynomials.

Theorem 3.1. Let k and | be two nonnegative integers. Then one has

> fuifii

j=0
0 if k and | are of the same
(3.1) ’ parity but not equal;
=11, ifk =1,

(—1)ks K21/ 201 if k and | are of
PG+ DGO’ opposite parity.

Proof. Without loss of generality, we can assume that £ < [. Next observe
that due to (2.4) the left-hand side of formula (3.1) is truncated to

oo k
S fidfii =D fiifigs
j=0 j=0
which can be written as
k k 1 1
S fidii=> / Pr(0)p;(2x — Dydx / PP 2y — Dydy.
0 =0 Jo 0
One can rewrite the expression in the following manner
k 1 1 k
> i = /0 pi(y) ( /O Pex) Y pi2x — Dp;(2y — l)dX) dy.
j=0 j=0

Since the Christoffel-Darboux kernel 2 Z;‘:O Pi(2x — 1)p;(2y — 1) is areproducing
kernel, we get
k 1
S i =2 [ BB

J=0 0

Next recall that one can explicitly compute the quantity

1
/0 BBy
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for any nonnegative integers k and /. If k and [ have the same parity, the symmetry
properties of the Legendre polynomials allow the above integral to be extended to
the full orthonality interval [—1, 1] which gives the first two parts of the Theorem.
The third case of formula (3.1) is a consequence of [3, p. 173, Art. 91, Ex. 2]. [

One can also compute the inner product of vectors f; ; taken the other way.

Theorem 3.2. Let k and | be two nonnegative integers. Then one has

i 0, k1,
32 iklil =
(3.2) gf,kf,l Ua ikt

Proof. Letn be a nonnegative integer. Then we can write

S fifu = Z / pi)P(2x — 1)dx / PPy — D)y,

=0
which can be rewritten as follows

n

n 1 1
S i = / AuC2x = D) < 3 ( / P2y - I)X[O,lj(y)ﬁi()’)d)’)ﬁi(x)) dx.
=0 - -

i=0

Since the polynomials p; form an orthonormal basis in L,([—1, 1], df) we know
that

n

1 t
) ( / A2y = Do (y)p,<y>dy)p,(x> B, pi2x = Do)
i=0

as n — 00. As aresult we arrive at the following relation

Zf ot = / e2x — Do @Pi2x — D o1

1

! 1
- [ prx=vpix=vae=3 [ popioa

which finally gives (3.2). (|

As a consequence we can say a bit more about the asymptotic behavior of the
coefficients f; ;.

Corollary 3.3. Let k be a fixed nonnegative integer number. Then
fi,k —> 0

as i — oo.
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Proof. The statement immediately follows from the fact that the series

o0
2
>
i=0

converges. (]

Remark 3.1. From (3.2) one gets that

> =172
i=0

for any nonnegative j, which means that the energy of the wave represented by
f =f(@) =fi; is conserved over the discrete time j.

Remark 3.2. The factthatf; ; can be represented as a hypergeometric function
allows a more precise asymptotic estimate; see formula (4.23).

4 The case of ultraspherical polynomials

In this section we will carry over our findings from the case of Legendre poly-
nomials to the case of the family of ultraspherical polynomials which include the
Legendre polynomials as a special case.

Recall that for 2 > —1/2 an ultraspherical polynomial p{”(¢) is a polynomial
of degree n that is the orthonormal polynomial with respect to the measure

(1 —)*""2ar.

In an analogous way to f; ;, let us consider the function of the discrete variables i
and j,

1
@D 7= [ P e = e -y 2
0

and notice that

fig =1y,
While this allows us to consider a more general case, the connection to multireso-
lution analysis seems to be lost due to the weight and there is no evident relation to
multiresolution analysis for arbitrary 4 > —1/2. Still, such a deformation of the
coefficients f; ; gives an insight on how all these objects are connected to various
problems some of which were mentioned in the introduction.
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Note that the polynomials 15](.)‘)(2t —1) are orthogonal with respect to the measure

(t(1 = 0yt
and since the orthonormal ultraspherical polynomials satisfy the three-term recur-
rence relation [17]

A A AL
(4.2) @Dy (1) + anpy? (1) = 1P (0),
where a,, = %\ / %, the following corollary of Theorem 2.1 is immediate.

Corollary 4.1. The function fl(j‘) satisfies
Y 2 2 Y Y
(4.3) aj“']fi(,j-i)-l +fi(,j) 4 i(,jll = 2ai+Lfi(+1),j + zaifi(—;,j
fori,j=0,1,2,....

Figure 2 demonstrates how the solution ffj) of the discrete wave equation (4.3)
changes with A when j is fixed.

0.25
02}
0157
01

0.05

-0.05 }
01 F
015}

027

025 L L I L L L |
3 10 18 20 25 30 35 40 45 a0
i

Figure 2. This picture shows the A-evolution of the function f* = fA(j) = fl(j) of
the discrete space variable i when the discrete time j is fixed and j = 15.

It is possible to generalize (3.1) and (3.2) to the case of the ultraspherical
polynomials.

Theorem 4.2. Let k and | be two nonnegative integer numbers. Then one has

o0 1 1 . . .
(4.4) SRR = 3 [ AR G0 =y
=0
forany A > —1/2, and

s b . i/l =x\4—3
@5 S = /O PP = DpP e — et (=)
i=0

1+x

provided that A > 0.
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Proof. As before we can assume that k < [ therefore,
o0
(4) £(2)
ka,j i
(4) (7») ! 4)
= ka /0 P

Jj=0

11

1 k
x ( /0 P Y p@x = D2y — D1 — x»"—%dx) (1 = y))' "2 dy.
=0

Since the Christoffel-Darboux kernel

k
223" pPx — DpP 2y — 1)
=0

is a reproducing kernel in the corresponding L,-space, we get

1
S = = o / PGP — )ty

Jj=0

To prove the second equality, consider the following representation of the finite

sum:

) ) e e
Zf,kf,l =/_1Pk (2x — I)Xlo,lj(x)m
=0

where

J—1/2

=Y / 3@y = Do)

=0 (
If A > O then

L(—11L,0-2Y"2dy) ;) x*12
Pp(x) P (2x — 1)X[0,1](x)m

as n — o0o. Next, since the functional

X2 2y4—1/2
s =) T o,

¢!
is continuous for 4 > 0 we arrive at the following:

00 1 -
D Sih = / P @e— )2 = D ()
T 0

Py 1+x

1
F(g) = /_ A= Do)

which completes the proof.

Py(0)(1 — x*)* "',

T O =y )0 .
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Remark 4.1. The first integral in the above Theorem can be evaluated with
the use of the equations (4.7.30) in [17], namely

1
1 2
Ik,l = ?kkkllk’la

a1 [+ 1)
ki=2 T

1
I = /0 PePF (L — )~ 2dy.

With the use of the formulas alluded to above in [17] we find

where

and

>
16T

= (1) (1/2)u(1/2), T4 + 1)
) (k+ (L + )T Q2L+ 1)
k

3 (—k)j(k+,1)j(,1+1/2)2]-4 : (—l,l+/1,j+%+i,j+%+%. 1)

(1);(1/2);(22 + 1)y Lj+a+1l,j++1

2

J=0

I%k,21+1
_ (_1)k+l(1/2)k(3/2)11“(/1 +DL(A+3)
k+)(l+ 2+ 1) T'_A+2)
S SRR TN S NSV RS WA S NEEES B
2 (D[(1/2);22+2)y ° A+, j+a+3 )

j=0

and

I%k+1,2[+1
e _G/2WB/DILC+ DTG+ 3)
k+A+ 1) (I+A+1)T2A+3)
z":(—k)j(mu DAA+5/2) LI+ A+ 1, j+ e+ 3+ h 4T a
(1;(3/2);27 + 3)y S A+l

=(—

j=0
Note that all of the above hypergeometric functions are balanced. Furthermore,
for 4 = 1/2 one of the terms in the numerator cancels a denoninator term so they
all become balanced 3F,’s and can be summed using the Pfaff-Saalschiitz formula.
The remaining sums in turn reduce to the Legendre case discussed earlier.
At this point we are unable to determine whether for certain values of A the
above sums simplify or if there is any orthogonality as in the Legendre case.
Another interesting problem is the asymptotics of the above sums.
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A formula for the second integral in the above Theorem may be obtained using

equation (4.7.6) (first formula) in [17] and is

1 1—2x\*3
NG A(4) 2)—1 2
2x—1 2x—1 T—
| 0= vpPer— e (1)

k,{ (’1+ 2)k(i+ 2)1

— (1 \kHl
= (="K (k+u)k(l+u)lr(“1/2)
y Zk: ZI: (—h)i(k + 22)(=Du(l + 2/1),1.1"(j +n+2))
= DA+ 1/2(Dn(+ 1/2), T +n+ 34 +1/2)

A—=1/2,j+n+2A
xo2F | . ; —1].
j+n+34+1/2

The next step is to obtain a generalized eigenvalue problem which will be a
1D-relation for the function fl(j), unlike (4.3). Our first approach uses the fact
that the ultraspherical polynomials satisfy second order differential equations and
apparently the approach can be generalized to the case of polynomials satisfying
differential equations such as Krall polynomials, Koornwinder’s generalized Jacobi
polynomials and some Sobolev orthogonal polynomials.

Theorem 4.3. Letj be a fixed nonnegative integer number. Then the function
f=f@ fl()‘) of the discrete variable i satisfies the generalized eigenvalue problem

3 i+22 o
2+ 27 =141+ 2+ )\/(1+ D+ A+ DO+

. 2 . _é i (2)
*2AE+ A 1/4)(l 4 2)\/(1’ 1A= 1520+ -1
_ 1 /. 1
(4.6) =Q+1_5)Q+1+5)

x [2(i+/1— 1/2)\/ 24 ~fi AL

G+ DE+A+ DA +D)

i

. (/{
+2(i+ A+ 1/2)\/( 1+ )i — 1+2/1)(/1+l>f

fori=0,1,2,... and, here, the number (j+ A — %)(j+ A+ %) is the corresponding

generalized eigenvalue.

Remark 4.2. For the case 1 = 1/2, formula (4.6) was obtained in [7].
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Proof. To make all the formulas shorter and, more importantly transparent,
let us introduce the following operators:

. 3 i+24
Ai:z(”“i)\/(u1)(i+,1+1)(,1+i)E+

4.7 _ 3 i
+2(i+d- 5)\/(1'— T+ = 1+200G+D

_ 1 2
=aq;E, +a/E_

and

i+21 5
G+ DGE+1+ DA +0) ©

Bi=4I+2(i+A— 1/2)\/

(4.8) i

(—1+A)E—-1+20)(A+ i)E_

+2(+ A+ 1/2)\/
=41 +blE, + V’E_,

where [ is the identity operator and E,, E_ are the forward and backward shift
operators on i, respectively. With these notations, equation (4.6) can be rewritten

as
(4.9) (i +22) + 2% = VDALY = (G +22) + 22 — 1/4)BfY
or
@.10) i+ 2DALD + (27 — 1/4)A,; — B D = ji+ 2B,
since

[+ 24
) Ai_Bi:_4I+4\/(i+1)(i-l|-i+1)(/1+i)E+

l
B 4\/(i TG+ 200G+

As is known [17], the orthonormal ultraspherical polynomials satisfy the differen-
tial equation

(4.12) % ((t(l — )y %ﬁ;’”(Zt - 1)) +jG + 221 — Y V2P 2 — 1) = 0.
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Thus after two integration by parts we have
JG+20)Bf

d., . .
/ 2= ’*‘/233,-p§">(t))p@>(2t— 1)dt

=_/ ((’(1—0—““1/2)(1 20— ) 0P o= 1)1 =)~ ar

0
1
=” / (a- f2>— — Q4+ i ) BpP (0P} 2t — (1 — )"~ dr
/ (¢~ ”— @1/ ) PP} 2t — D1 — 1Y~
Now
2
-(a- f2>d— — @i+ 1>r£)Biﬁ§“(t>>
= G+ DG+ 1+ 2DbIP 1) + il + 2045 (1) + (i = DG = 1+ 20672, (0.
Since
(i DG+ 1+2202(i+ A F 5) —ii+2202(i+ 2 % 5) +4(2- 1) =0,
it follows that

(GG+20)B; —i(i +2M)A; — (12 — 1/4)A; — Bl))fl(j)
1 2
(413) = —/ ((f - l)d— + (/1 + 1/2)%) ; (l)(t))pf\](l)(zt 1)(t(1 _ t))/l—l/Zdt
+AG+20) + 27 = 1/4) / PP 0p @t — D1 — )=,

From equations (4.2) and (4.8) we find

i+l—1/2 —-3/2
bl-l :4Tl/ai+1 4(1 / )ai+1

and A+1/2 A—3/2
2 L _ AT e
bi=dr e -

The substitution of these relations in (4.13) leads to the following:

—3/2 =32
B (1) _ A (1)
0 =4(1+ == )ampl 0 +4(1 = S5 a0 + 4500

A=3/2N .y o, (A=3/2(+D) e
1 ) () — 8a, G+ DG+24 — P!

=4(1+t+ (1),
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where the recurrence formula, (4.2), has been used to obtain the last equation.
Using the first equation in [17, equation (4.7.28)] gives

PP — s o)

A(x)()_ (l+ii 1)01(

dt
so we find that

f(l)(t) (1 4 A l_+31/2t)15§)‘)(t) _ (A =3/2)(4+1) i )

dr G Dar2i— a1

=40 = 1/2p () + 40 +1) ﬁf”(r)

Thus we have

d d_

(=07 -G +1/2) BP0
d2

— _ 2" _ 2 (/1)

=4(1=") 5 — A+ 1)z (2= 1/4)pP @)
and the result follows. O

Remark 4.3. We can see that equation (4.6) has the form

Jm (JJ”I_E)(JHH )zﬁ(;):

where
A=+ —=1/2)(+1+1/2)A;,

with the operators A; and B; given by (4.7) and (4.8), respectively. The above-given
proof shows that the generalized eigenvalue problem (4.6) is a consequence of the
fact that ultraspherical polynomials are eigenfunctions of a second order differential
operator of a specific form. Difference equations for connection coefficients have
also been investigated in [14] and [20] using differential equations.

There is another way to see the validity of equation (4.6). We first prove the
following statement.

Proposition 4.4. The following representation holds
0, i <j;
@.14)  f9= , o
L [TODCDCL, 2y p (=it 27 1 S
TN\ o+ Gela 2P\ 2e2iet 3 2) 0 B2

Proof. Write

1
(4.15) 15 = kg | P 0p 1= D1 =)',
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where p#) is the monic orthogonal polynomial and

o TO+D o [Did+ D [(ADi(A+ 1D

If we denote the integral in equation (4.15) as I, we find using the representation

p(i)(t)zzi(i+%)i - <—i, i+22 1—z>

@+22,7 '\ 2+l 2
that
1 1
4.17) 0 =iy A ¥ A a) e
(T +240)) (G+24))
with
! —i, i+2 1—1 —j, j+22
1(2)=/ F Lited 171 F ’ . 1 — p)—1/2
021 /1+% — 2 /“_% ;) (( 1)) dt

-y El_)i)k(i * 2000 5~ G+ 200, /1 (1 — i1 peini/2g,
= (e(h+ D2k = (D,G+ D), o
The integral can be evaluated as
Lk+A+HT(n+24+1) A+ I+ 5T+ 1)?
T(k+n+2i+1) Qi+ Dek+24+ D,TQRA+1)
From the Chu—Vandermonde formula the sum on n yields

Zji (DG +20) _ Ge—j+1)
(Dp(k+22+ 1),  (k+24+ 1)
and the sum on kX now becomes

zl: (=D + 2An(k —j+ 1); _ i (=i (i + 2 D) pq(k + 1),
(D22 + Dk + 272 + 1),2F (Dij (22 + Dyj(k+j + 24 + 1)254°

k=j k=0
With the identities

+ Dby .

(s by = L @y = @+ utay

the above sum becomes

i (= )i + 22 i + 1)
(D24 + Dy +j + 224 + 1);2k%

k=0
_ (D221 A (i i+ +22) 1
QA+ 1) +24+ 1) <= (1);(2j + 24+ D) 2k
_ 20 (—i+j, i+j+20 1)
T @AG+2A+1)7 U 2422041 7 2
Combining all this together gives the result. ([l
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The above hypergeometric representation (4.14) for fi(j.) gives a recurrence
relation among them.

Another Proof of Theorem 4.3. To see this use the contiguous relation
(see [1, equation (2.5.15)])

a—1,b+1 1
2b(c — b)(b —a — 1)2F1< : >

)
—(b—a)b+a—1)2c—b—a—1)F, (a’cb; %)

L b—1 1
—2a(b — )b — a+ 1).F, (‘” ’ -_>=o,
C

T2
which, witha=—i+j,b=i+j+2A, and ¢ = 2j + 24 + 1, yields the equation

i+24 )
G+ DG+ 2+ DA+ "W

—(2j+24 — DQj+2A+ DY

i+24— 1)(j+2/1+i+1)(i+1—j)\/

(4.18)
+2i+2A+ DI —j—D(IE+j+21—1)
! (%)
1 o=0.
8 \/(i “ e G = T2+
The latter relation leads to (4.6). ]

A generalized eigenvalue problem can also be found for i fixed. To this end we
need to use the relation

—n, b _(b),,_ n —n, —c—n+1
ZFI( ¢ ’x)‘(c>n( X“Fl( ~b—n+l ’l/x>'

Therefore we find that

—i+j, i+j+24
F :1/2
2 1( 2j+24+1 />
_ (l.+j+2l),'_j
T2 +22+ i

(4.19)

y —itj, —i—j—22
(—2y2F1( / / >

—2i—21+1 ~
Following the steps used to obtain the recurrence formula for j fixed in the second
proof we find that

of 2 +difll +ef P =0,

J—1 J+l ST
where
¢i=—=20+j+22 =D —j+D2j+2A+ DG+ 1+ 1),

o 1y [iUr DG A= DAt D)
dj_—4(z—]—1)(z+1+2,1+1)(]+,1—5)\/ SRy
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and
. . . G+ 2)G+2 =1
ej=—22i+2A+1)(2i+21 — 1)(1+/1+1)\/J(I(,-+g,1— 1)
. _ _ JG+A—=DG+2)
+6(2j+22 — 1)(21+21+1)(1+“1)\/ G+24—1)
Since

(i+j+2/1:|:1)(i—jil)=(i+i+%)(i+i—%) —(j+l¢%)<j+i¢%)

the above recurrence can be recast as the generalized eigenvalue equation
1
A _ (; ] (2)
Ajfl (z+i+§)<z+i ) Bifi7s
where the operator Aj is the second order difference operator

Ai=G+2+1/2)(G+ 1 —1/2)

. j+1 £
(4.20) X (12”(2”2’“3)\/(] DG+ 20GH A+ D
. G+2i—1) -
+(2J+2/1—3)\/j(j+/1)(j+/1_ I)E_)’

and the operator Ej is another second order difference operator given by the formula

i . ~ j+1 E
= (41+(2J+2'l 1)\/(,+,1)(;+21)(/+“1)

(4.21)

. G+21—-1) .
+(2J+2/1+1)\/j(]_+/1)(]_+/1_ I)E_>

the operator / is the identity operator, and E,, £_ are the forward and backward
shift operators on j, respectively. Thus we have just proved the following statement.

Theorem 4.5. Let i be a fixed nonnegative integer number. Then the function
f=fG)= f()‘) of the discrete variable j satisfies the generalized eigenvalue problem

AfD = (i+l+%)(i+/l )B}flm

fori=0,1,2,...andwhere the operatorsAAj andéj are given by (4.20) and (4.21),
respectively. Also, here, (i + A + %)(i + 1 — %) is the corresponding generalized
eigenvalue.
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Remark 4.4. For the case 1 = 1/2, Theorem 4.5 was obtained in [7].

Recall that it is said that a function W(x, y) is a solution of a bispectral problem
if it satisfies the following:

A¥(x, y) = g '¥(x, y),

BY(x, y) =f(x)¥(x, y),
where A, B are some operators, with A acting only on x and B acting only on y,
and f, g are some functions [5]. It is shown in [13] that if A and B are tridiagonal
operators, then the solutions of the corresponding discrete bispectral problem are
related to the Askey—Wilson polynomials.

The problem we are dealing with in this section is the following generalization

of a bispectral problem:

AY(, ) = g(DBY(, ),
CY(@, ) =fODYG, ),

where i, j are discrete variables, the operators A and B are tridiagonal operators

(4.22)

acting on the index i, and C, D are tridiagonal operators acting on the index j.
Note that each equation in (4.22) is a generalized eigenvalue problem and, hence,
the problem (4.22) includes a bispectral problem as a particular case (for instance,
when B and D are the identity operators).

Setting ¥(i,j) = fl(j) we see that Theorems 4.3 and 4.5 tell us that fl(j) is
a solution of a generalized bispectral problem of the form (4.22). It would be
interesting to find a characterization of such generalized bispectral problems as
was done in [13] for discrete bispectral problems.

Using the asymptotic results for the Gauss hypergeometric function from [15]
(see also [19], [12], [18]) one can get asymptotic behavior of the solution fl-(j-) forj
fixed and when i tends to infinity.

Theorem 4.6. For sufficiently large i the following formula holds:

TR
4.23) ﬁfj):kjcos(n(]+2 5+7) 0( 1 )

NI #+3/2
where

| Q24); IQj+21+1)
4.24 ki =3 '
( ) 7T njrl—1 \/]V(i)](;{ + 1)]-;{1—‘(2/1) (4 + %)]

Proof. According to Proposition 4.4 for i > j we have

pos L i+ Di)2A);  (+24); o (=i i+j+24 1
BT\ (M)A + 1), (1+§)j(i—j)!2 : 2j+22+1 *2)°
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The hypergeometric function is of type B in the terminology of [15] and since its
argument is real the relevant formula is (4.7) with saddle points #;; = 1 + i and
t;o = 1 — i, which gives

<—i+j, i+j+24 1>
217

2j+2.+1 72

YHT(2j+24+1) _ . 1
T i (COS(”UJF/I/Z—Z/Z‘F1/4))+0<;)).
Then, since
(A +1)i(24); (i +24); 1 i )
= 1+0(1
\/T i—n “\iran d+rod/n
the result follows. 0

Remark 4.5. Formula (4.23) along with the fact that £’ = 0 for i < j
show that the moving wave behavior of the solution demonstrated in Figure 1 is
also characteristic for the solution fi(j)
A>—1/2.

of the discrete wave equation (4.3) for any

Another useful asymptotic is when i = k¢ and j = k,t, where k| > k; are fixed
and ¢ is large.

Theorem 4.7. For kit and kot integers with ky > ky > 0, and Y22 > 1,

) c(e, ) [ 1+b(e)y ko

Tt "2 (k! (e -~ ia(e))

(4.25) | -
1 +2€ — b(€)\ ki+ka)r+22
< () (1+0(1/0),
where
2 1

(4.26) cle, M) =¢€

V(= e)@e — 1)
€= IZ—T, and b(e) = V2€2 — 1.

Proof. In this case the representation given by equation (4.19) is most conve-
nient. An application of Pfaff’s transformation yields

—i+j, —i—j—24 P —i+j, —i+j+1
F :2) = (=) ,F 2.
2 1< —2i—2.+1 ) (=D 1< —2i—2.+1 "~
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Now the use of transformation T3 in [15] on the hypergeometric function on the
right-hand side of the above equation yields, witha = —i+jand b= —i+j+ 1,

—i+j, —i+j+1
F ;2
2 1( —2i—2)+1 )

Q=1 — ) j—j+1, —i—j—2A+1
A Gl /LN (L A S S 1/2),
A+j+24+ 1)y 2

since the first term in T3 is equal to zero. Thus

il it
4.27) £ = dijoFy (’ jrl—i=j =244 ;1/2),

2

where

oyt lye2in] G+ )G+ DilT(Q2A+))
dij= (=772 \/ JITQ2A +1)

This becomes

2) 1/2
diy g = (=112 <i51_2> (1+0(1/i)
(4.28)

A
— (_1)(k|—k2)l‘+12k2t+2/1—1 (%) (k]t)(l + 0(1/t))
1

The hypergeometric function on the right hand side of equation (4.27) is in the
form to use the type B formulas in [15] and leads to considering the hypergeometric

JF, (€1w+1, —2U)—2),+1’ 1/2>

where €;w is an integer. Equation (4.4) in [15] shows that the saddle points occur

function

at 1*% + 4/ %)2 — 2¢;. If the discriminant is positive both saddles are real and

equation (4.9) in [15] yields

1, —w—21+1
JF, <61w+ , 2u) + ;1/2)

—Dawtl 14 e +b(e 3 — € — b(e)))Vr2
where
(4.29) b(e)) = /(1 +€) —8ey.
With €; = =% and w = (k| + k»)1 the above equations yield (4.25). O

ki+ko
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Remark 4.6. When the discriminant is negative, the two saddle points are
conjugates of each other and so in this case equation (4.7) in [15] is used to obtain
the asymptotics for ,F) (6'”1 P | /2), which then are used to obtain the

asymptotics of fk oot

We finish this section with a couple of statements starting with the recurrence
formulas. Write the recurrence formula in equation (4.6) as

(4.30) aiifl) +b;i }ff’” +ei f =

i+1,j 1j—

and the recurrence formula in j as
o~ 2 2
(4.31) arf Ol + b + e f ) =
withi >j > 0.
We can now prove the following simple statement.

Proposition 4.8. Givena;j, b;j, c;jand A > —1/2, for eachj > 0 the unique
solution of equation (4.30) with initial conditions

f)—hj = 0, fl‘,] = / (i)(t)ijU)(zt 1)(I(1 t))X 1/2dl

is the function
fy=1% = / PP PP @t — D1 — 0y~ dr.

Ifj=0,A> —1/2, and 2 #1/2, then fyo = I((J gives the unique solution f; o = -(l)

If 2 = 1/2, then the initial conditions fy o = I(f/ ) and fio = I(’/ ) are needed to
e o= [/

give fij = i

Proof. Forj> 0, a;; #0 fori > j so the result follows from equation (4.30).
Forj=0and 2 # 1/2, co0 = 0 # ap,0 so that only fp ¢ is needed to compute f; .
The remaining f; ; are computed in the standard fashion from equation (4.30). For
the last case when 1 = 1/2, apo=0=b;0s0fr0 = —foo and f3 9 = ”fl 0. The
remaining f; o are computed in the same way using the fact thata; o #0 for i> 0.0

Similarly, for the recurrence in j we have the following.

Proposition 4.9. Givena;j, b;j, c;jand A > —1/2, for eachi > 0 the unique
solution of equation (4.31) with initial conditions f; j.1 = 0 and f;; = I](j) is

f] IU)

Since ¢;, IA)i,j, and 4, ; are not equal to zero for i > j the result follows from
equation (4.31).
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