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Abstract. We start by presenting a generalization of a discrete wave equation
that is satisfied by the entries of the matrix coefficients of the refinement equation
corresponding to the multiresolution analysis of Alpert. The entries are functions
of two discrete variables and they can be expressed in terms of the Legendre
polynomials. Next, we generalize these functions to the case of the ultraspherical
polynomials and show that these new functions obey two generalized eigenvalue
problems in each of the two discrete variables, which constitute a generalized
bispectral problem.

1 Introduction

Let {Pn}∞n=0 and {Qn}∞n=0 be two families of orthonormal polynomials whose or-
thogonality measures are dµ and dν, respectively. Then one can see that

Pi(t) =
i∑

j=0

ci,jQj(t),

where the coefficients ci,j can be found in the following way:

ci,j =
∫

Pi(t)Qj(t) dν(t).

These coefficients are called connection coefficients and their nonnegativity for
some particular cases of the ultraspherical polynomials is useful in the proof of
the positivity of a certain 3F2 function, which in turn, based on the work of Gasper
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and Askey and Gasper, played a significant role in the first proof of the Bieberbach
conjecture [1]. Also there has been much work proving the nonnegativity of
integrals of products of orthogonal polynomials times certain functions which was
initiated by Askey in the late 1960’s. These studies have been stimulated by the
fact that some of those integrals have combinatorial interpretations (see [10]).

Another instance that we would like to mention is that in some early work
leading to the theory of bispectral problems, a matrix S1, whose entries are

(S1)i,j =
∫ "

a
Pi(t)Pj(t) dµ(t)

for some real a and ", was considered (for instance, see [8]). The question was
to find the eigenvectors of S1 which, since S1 is a full matrix, is not an easy
task. However, it was proposed to find a tridiagonal matrix commuting with S1

in order to reduce the original problem to a problem of finding eigenvectors of
the tridiagonal matrix, which is an easier and well-understood problem. It was
shown to be possible to construct such tridiagonal matrices for some families of
orthogonal polynomials and this is one of the fundamental ideas in the theory of
bispectral problems.

The last instance we bring up here is that in [7] the Alpert multiresolution
analysis was studied in detail and important in this study was the integral

fi,j =
∫ 1

0
p̂i(t)p̂j(2t − 1)dt,

where p̂i is the orthonormal Legendre polynomial, i.e.,

p̂j(t) = kjtj + lower degree terms

with kj > 0 and for any two nonnegative integers k and l we have

∫ 1

−1
p̂k(t)p̂l(t)dt =





0, k #= l;

1, k = l.

These coefficients are entries in the refinement equation associated with this mul-
tiresolution analysis. The fact that the Legendre polynomials are involved in
the above integral allowed the authors in [7] to obtain many types of recurrence
formulas in i and j including a generalized eigenvalue problem in each of the in-
dices. These two equations together give rise to a bispectral generalized eigenvalue
problem.
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We begin by discussing a common property of the coefficients in all the above-
mentioned cases: they satisfy a generalized 2D discrete wave equation. We
observe numerically that a damped oscillatory behavior takes place in the case of
the ultraspherical generalization of the coefficients fi,j. In particular with

f (λ)
i,j =

∫ 1

0
p̂(λ)

i (t)p̂(λ)
j (2t − 1)(t(1 − t))λ−1/2dt,

where p̂(λ)
i are the orthonormal ultraspherical polynomials and λ > −1/2, we find,

for large i, the asymptotic formula

f (λ)
i,j = kj

cos(π(j + λ
2 − i

2 + 1
4 ))√

πiλ+1/2
+ O

( 1
iλ+3/2

)
,

where

kj =
1

2j+1−2λ

√
(2λ)j

j!(λ)j(λ + 1)jλ%(2λ)
%(2j + 2λ + 1)

(
λ +

1
2

)

j

which confirms the damped oscillatory behavior. We also derive some related
properties and show that f (λ)

i,j satisfy a bispectral generalized eigenvalue problem
of the form

Ãif
(λ)
i,j =

(
j + λ − 1

2

)(
j + λ +

1
2

)
Bif

(λ)
i,j ,

Âjf
(λ)
i,j =

(
i + λ +

1
2

)(
i + λ − 1

2

)
B̂jf

(λ)
i,j ,

where Ãi, Bi are tridiagonal operators or second order linear difference operators
acting on i and Âj, B̂j are tridiagonal operators acting on j. Each of the two
above-given relations is a generalized eigenvalue problem and the theory of such
problems is intimately related to biorthogonal rational functions (for instance, see
[9], [11], [16]).

The paper is organized as follows. In Section 2 a vast generalization of the
above integral is shown to give rise to a 2D wave equation and solutions to the
special case of the above integral are plotted to show the oscillations. In Section 3
the Legendre case above is analyzed and various properties of the coefficients fi,j
are derived. One point of this section is to derive the orthogonality property
of these coefficients using that they come from special functions. In Section 4
the Legendre polynomials are replaced by the ultraspherical polynomials and their
scaled weight. Here it is shown that the coefficients f (λ)

i,j satisfy a wave equation and
also a bispectral generalized eigenvalue problem. Two proofs are given developing
the generalized eigenvalue problem. One is based on the fact that the polynomials
satisfy a differential equation and has the flavor of the proof given in [8] and the
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second follows from the formula for f (λ)
i,j in terms of a 2F1 hypergeometric function.

The two proofs emphasize different aspects of the problem that may be usefulwhen
viewing other orthogonal polynomial systems.

2 The 2D discrete wave equation

Let {Pn}∞n=0 and {Qn}∞n=0 be two families of orthonormal polynomials with respect
to two probability measures or, equivalently, two families that obey the three-term
recurrence relations

an+1Pn+1(t) + bnPn(t) + anPn−1(t) = tPn(t), n = 0, 1, 2, . . .

and
cn+1Qn+1(t) + dnQn(t) + cnQn−1(t) = tQn(t), n = 0, 1, 2, . . . ,

where the coefficients an and cn are positive and the coefficients bn and dn are real.
In particular, the first relations are

a1P1(t) + b0P0(t) = tP0(t), c1Q1(t) + d0Q0(t) = tQ0(t).

Therefore we can set
a0 = c0 = 0

for the coefficients to be defined for n = 0, 1, 2, . . . . Since the families are or-
thonormal with respect to probability measures we know that

P0 = 1, Q0 = 1,

which are the initial conditions that allow to reconstruct each of the systems from
the corresponding recurrence relation. It should be stressed here that by imposing
these particular initial conditions we implicitly assume that the corresponding
orthogonality measures are probability measures.

In addition, suppose we are given a measure σ onR with finite moments. Then,
let us consider the coefficients

(2.1) ui,j =
∫

R
Pi(t)Qj(αt + β)dσ(t),

where α #= 0 and β are complex numbers. It turns out that these coefficients
constitute a solution of a generalized wave equation on the two-dimensional lattice.

Theorem 2.1 (cf. [10, Theorem 2.1]). We have that

(2.2) ai+1ui+1,j + biui,j + aiui−1,j =
cj+1

α
ui,j+1 +

dj − β

α
ui,j +

cj

α
ui,j−1

for i, j = 0, 1, 2, . . . .
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Proof. From (2.1) and the three-term recurrence relations we get that

ai+1ui+1,j + biui,j + aiui−1,j

=
∫

R
(ai+1Pi+1(t) + biPi(t) + aiPi−1(t))Qj(αt + β)dσ(t)

=
∫

R
tPi(t)Qj(αt + β)dσ(t)

=
1
α

∫

R
Pi(t)(αt + β)Qj(αt + β)dσ(t) − β

α

∫

R
Pi(t)Qj(αt + β)dσ(t)

=
1
α

∫

R
Pi(t)(cj+1Qj+1(αt + β) + djQj(αt + β) + cjQj−1(αt + β))dσ(t)

− β

α
ui,j

=
cj+1

α
ui,j+1 +

dj

α
ui,j +

cj

α
ui,j−1 − β

α
ui,j

and thus (2.2) holds. !

Remark 2.1. Given an equation of the form (2.2), then due to the Favard
theorem the coefficients will uniquely determine the families {Pn}∞n=0 and {Qn}∞n=0

of orthonormal polynomials. The measure σ is responsible for the initial state
when j = 0 and j can be thought of as a discrete time. Namely, for a solution of the
form (2.1) to exist they need to satisfy the initial condition

ui,0 =
∫

R
Pi(t)dσ(t),

which means that given an initial function ui,0 of the discrete space variable i, σ

needs to be found. The latter problem is a generalized moment problem and in this
particular case it is equivalent to a Hamburger moment problem.

It is also worth mentioning here that another type of cross-difference equations
on Z2

+ was recently discussed in [2] and the construction was based on multiple
orthogonal polynomials. Type I Legendre–Angelesco multiple orthogonal poly-
nomials also arise in the wavelet construction proposed by Alpert [6].

Next, consider a particular case of the above scheme where Pn and Qn are
both orthonormal Legendre polynomials p̂n and so verify the three-term recurrence
relation

(n + 1)√
(2n + 1)(2n + 3)

p̂n+1(t) +
n√

(2n − 1)(2n + 1)
p̂n−1(t) = tp̂n(t),

for n = 0, 1, 2, . . . . Set σ to be the Lebesgue measure on the interval [0, 1]. As a
result, the coefficients (2.1) take the form

(2.3) fi,j =
∫ 1

0
p̂i(t)p̂j(2t − 1)dt.
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Note that

(2.4) fi,j = 0, j > i = 0, 1, 2, . . . ,

which follows from the fact that the polynomials p̂j(2t − 1) are orthogonal on the
interval [0, 1] with respect to the Lebesgue measure.

Since the coefficients of the three-term recurrence relation for the Legendre
polynomials are explicitly known, the coefficients of equation (2.2) become explicit
as well. The following Corollary can be found in [7].

Corollary 2.2. The function fi,j satisfies

j + 1√
(2j + 1)(2j + 3)

fi,j+1 + fi,j +
j√

(2j − 1)(2j + 1)
fi,j−1

=
2(i + 1)√

(2i + 1)(2i + 3)
fi+1,j +

2i√
(2i − 1)(2i + 1)

fi−1,j

(2.5)

for i, j = 0, 1, 2, . . . .

Figure 1 presents the MATLAB generated graphical representation of some
behavior of the solution fi,j to equation (2.5), which is a generalization of the
discretized wave equation.

Figure 1. This picture demonstrates the moving wave. Here, one can see two
graphs of the function f = f (i) = fi,j of the discrete space variable i at the two
different discrete times j = 15 and j = 20.

Note that the form (2.1) of solutions of the discrete wave equations is useful for
understanding the behavior of solutions because there are many asymptotic results
for a variety of families of orthogonal polynomials; see, for example, [17].



CONNECTION COEFFICIENTS FOR ULTRASPHERICAL POLYNOMIALS 7

3 Some further analysis of the coefficients fi,j

In this section, we will obtain some properties of the coefficients fi,j based on the
intuition and observations developed in [7]. In particular, we will rederive and
expand upon some orthogonality properties of the coefficients fi,j.

We begin with the following statement, which is based on formula (2.3) and
some known properties of the Legendre polynomials.

Theorem 3.1. Let k and l be two nonnegative integers. Then one has

(3.1)

∞∑

j=0

fk,jfl,j

=






0, if k and l are of the same
parity but not equal;

1, if k = l;

(−1)
k+l+1

2 k!l!
√

2k+1
√

2l+1
2k+l−1(k−l)(k+l+1)(( k

2 )!)2(( l−1
2 )!)2

, if k and l are of
opposite parity.

Proof. Without loss of generality, we can assume that k ≤ l. Next observe
that due to (2.4) the left-hand side of formula (3.1) is truncated to

∞∑

j=0

fk,jfl,j =
k∑

j=0

fk,jfl,j,

which can be written as

k∑

j=0

fk,jfl,j =
k∑

j=0

∫ 1

0
p̂k(x)p̂j(2x − 1)dx

∫ 1

0
p̂l(y)p̂j(2y − 1)dy.

One can rewrite the expression in the following manner

k∑

j=0

fk,jfl,j =
∫ 1

0
p̂l(y)

(∫ 1

0
p̂k(x)

k∑

j=0

p̂j(2x − 1)p̂j(2y − 1)dx
)

dy.

Since the Christoffel–Darboux kernel 2
∑k

j=0 p̂j(2x − 1)p̂j(2y − 1) is a reproducing
kernel, we get

k∑

j=0

fk,jfl,j = 2
∫ 1

0
p̂k(y)p̂l(y)dy.

Next recall that one can explicitly compute the quantity
∫ 1

0
p̂k(y)p̂l(y)dy
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for any nonnegative integers k and l. If k and l have the same parity, the symmetry
properties of the Legendre polynomials allow the above integral to be extended to
the full orthonality interval [−1, 1] which gives the first two parts of the Theorem.
The third case of formula (3.1) is a consequence of [3, p. 173, Art. 91, Ex. 2]. !

One can also compute the inner product of vectors fi,j taken the other way.

Theorem 3.2. Let k and l be two nonnegative integers. Then one has

(3.2)
∞∑

i=0

fi,kfi,l =





0, k #= l;

1/2, if k = l.

Proof. Let n be a nonnegative integer. Then we can write

n∑

i=0

fi,kfi,l =
n∑

i=0

∫ 1

0
p̂i(x)p̂k(2x − 1)dx

∫ 1

0
p̂i(y)p̂l(2y − 1)dy,

which can be rewritten as follows

n∑

i=0

fi,kfi,l =
∫ 1

−1
p̂k(2x − 1)χ[0,1](x)

( n∑

i=0

(∫ 1

−1
p̂l(2y − 1)χ[0,1](y)p̂i(y)dy

)
p̂i(x)

)
dx.

Since the polynomials p̂i form an orthonormal basis in L2([−1, 1], dt) we know
that

n∑

i=0

(∫ 1

−1
p̂l(2y − 1)χ[0,1](y)p̂i(y)dy

)
p̂i(x)

L2([−1,1],dt)−−−−−−→ p̂l(2x − 1)χ[0,1](x)

as n → ∞. As a result we arrive at the following relation

∞∑

i=0

fi,kfi,l =
∫ 1

−1
p̂k(2x − 1)χ[0,1](x)p̂l(2x − 1)χ[0,1](x)dx

=
∫ 1

0
p̂k(2x − 1)p̂l(2x − 1)dx =

1
2

∫ 1

−1
p̂k(t)p̂l(t)dt,

which finally gives (3.2). !
As a consequence we can say a bit more about the asymptotic behavior of the

coefficients fi,j.

Corollary 3.3. Let k be a fixed nonnegative integer number. Then

fi,k −→ 0

as i → ∞.
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Proof. The statement immediately follows from the fact that the series
∞∑

i=0

f 2
i,k

converges. !

Remark 3.1. From (3.2) one gets that
∞∑

i=0

f 2
i,j = 1/2

for any nonnegative j, which means that the energy of the wave represented by
f = f (i) = fi,j is conserved over the discrete time j.

Remark 3.2. The fact that fi,k can be representedas a hypergeometric function
allows a more precise asymptotic estimate; see formula (4.23).

4 The case of ultraspherical polynomials

In this section we will carry over our findings from the case of Legendre poly-
nomials to the case of the family of ultraspherical polynomials which include the
Legendre polynomials as a special case.

Recall that for λ > −1/2 an ultraspherical polynomial p̂(λ)
n (t) is a polynomial

of degree n that is the orthonormal polynomial with respect to the measure

(1 − t2)λ−1/2dt.

In an analogous way to fi,j, let us consider the function of the discrete variables i
and j,

(4.1) f (λ)
i,j =

∫ 1

0
p̂(λ)

i (t)p̂(λ)
j (2t − 1)(t(1 − t))λ−1/2dt,

and notice that
fi,j = f (1/2)

i,j .

While this allows us to consider a more general case, the connection to multireso-
lution analysis seems to be lost due to the weight and there is no evident relation to
multiresolution analysis for arbitrary λ > −1/2. Still, such a deformation of the
coefficients fi,j gives an insight on how all these objects are connected to various
problems some of which were mentioned in the introduction.
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Note that the polynomials p̂(λ)
j (2t−1) are orthogonalwith respect to the measure

(t(1 − t))λ−1/2dt,

and since the orthonormal ultraspherical polynomials satisfy the three-term recur-
rence relation [17]

(4.2) an+1p̂
(λ)
n+1(t) + anp̂

(λ)
n−1(t) = tp̂(λ)

n (t),

where an = 1
2

√
n(n+2λ−1)

(n+λ−1)(n+λ) , the following corollary of Theorem 2.1 is immediate.

Corollary 4.1. The function f (λ)
i,j satisfies

(4.3) aj+1f
(λ)
i,j+1 + f (λ)

i,j + ajf
(λ)
i,j−1 = 2ai+1f

(λ)
i+1,j + 2aif

(λ)
i−1,j

for i, j = 0, 1, 2, . . . .

Figure 2 demonstrates how the solution f (λ)
i,j of the discrete wave equation (4.3)

changes with λ when j is fixed.

Figure 2. This picture shows the λ-evolution of the function f (λ) = f (λ)(i) = f (λ)
i,j of

the discrete space variable i when the discrete time j is fixed and j = 15.

It is possible to generalize (3.1) and (3.2) to the case of the ultraspherical
polynomials.

Theorem 4.2. Let k and l be two nonnegative integer numbers. Then one has

(4.4)
∞∑

j=0

f (λ)
k,j f (λ)

l,j =
1

22λ

∫ 1

0
p̂(λ)

k (y)p̂(λ)
l (y)(y(1 − y))λ− 1

2 dy

for any λ > −1/2, and

(4.5)
∞∑

i=0

f (λ)
i,k f (λ)

i,l =
∫ 1

0
p̂(λ)

k (2x − 1)p̂(λ)
l (2x − 1)x2λ−1

(1 − x
1 + x

)λ− 1
2
dx

provided that λ > 0.
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Proof. As before we can assume that k ≤ l therefore,
∞∑

j=0

f (λ)
k,j f (λ)

l,j

=
k∑

j=0

f (λ)
k,j f (λ)

l,j =
∫ 1

0
p̂(λ)

l (y)

×
(∫ 1

0
p̂(λ)

k (x)
k∑

j=0

p̂(λ)
j (2x − 1)p̂(λ)

j (2y − 1)(x(1 − x))λ− 1
2 dx
)

(y(1 − y))λ− 1
2 dy.

Since the Christoffel–Darboux kernel

22λ
k∑

j=0

p̂(λ)
j (2x − 1)p̂(λ)

j (2y − 1)

is a reproducing kernel in the corresponding L2-space, we get

∞∑

j=0

f (λ)
k,j f (λ)

l,j =
1

22λ

∫ 1

0
p̂(λ)

k (y)p̂(λ)
l (y)(y(1 − y))λ− 1

2 dy.

To prove the second equality, consider the following representation of the finite
sum:

n∑

i=0

f (λ)
i,k f (λ)

i,l =
∫ 1

−1
p̂(λ)

k (2x − 1)χ[0,1](x)
xλ−1/2

(1 + x)λ−1/2 Pn(x)(1 − x2)λ−1/2dx,

where

Pn(x) =
n∑

i=0

∫ 1

−1

(
(p̂(λ)

l (2y − 1)χ[0,1](y))
yλ−1/2

(1 + y)λ−1/2
p(λ)

i (y)(1 − y2)λ−1/2dy
)
p̂(λ)

i (x).

If λ > 0 then

Pn(x)
L2([−1,1],(1−x2)λ−1/2dx)−−−−−−−−−−−−→ p̂(λ)

l (2x − 1)χ[0,1](x)
xλ−1/2

(1 + x)λ−1/2

as n → ∞. Next, since the functional

F(g) =
∫ 1

−1
p̂(λ)

k (2x − 1)χ[0,1](x)
xλ−1/2

(1 + x)λ−1/2 g(x)(1 − x2)λ−1/2dx,

is continuous for λ > 0 we arrive at the following:

∞∑

i=0

f (λ)
i,k f (λ)

i,l =
∫ 1

0
p̂(λ)

k (2x − 1))p̂(λ)
l (2x − 1)x2λ−1

(1 − x
1 + x

)λ− 1
2
dx

which completes the proof. !
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Remark 4.1. The first integral in the above Theorem can be evaluated with
the use of the equations (4.7.30) in [17], namely

I1
k,l =

1
2λ

kkklI2
k,l,

where

kl = 2l

√
(λ)l(λ + 1)l

l!(2λ)l
,

and

I2
k,l =

∫ 1

0
pλ

k (y)p
λ
i (y)(y(1 − y))λ−1/2dy.

With the use of the formulas alluded to above in [17] we find

I2
2k,2l

= (−1)k+l (1/2)k(1/2)l%(λ + 1
2)

2

(k + λ)k(l + λ)l%(2λ + 1)

×
k∑

j=0

(−k)j(k + λ)j(λ + 1/2)2j

(1)j(1/2)j(2λ + 1)2j
4F3

(
−l, l + λ, j + λ

2 + 1
4 , j + λ

2 + 3
4

1
2 , j + λ + 1, j + λ + 1

2

; 1

)

,

I2
2k,2l+1

= (−1)k+l (1/2)k(3/2)l%(λ + 1
2)%(λ + 3

2)
(k + λ)k(l + λ + 1)l%(2λ + 2)

×
k∑

j=0

(−k)j(k + λ)j(λ + 3/2)2j

(1)j(1/2)j(2λ + 2)2j
4F3

(
−l, l + λ + 1, j + λ

2 + 3
4 , j + λ

2 + 5
4

3
2 , j + λ + 1, j + λ + 3

2

; 1

)

,

and

I2
2k+1,2l+1

= (−1)k+l (3/2)k(3/2)l%(λ + 1
2)%(λ + 5

2)
(k + λ + 1)k(l + λ + 1)l%(2λ + 3)

×
k∑

j=0

(−k)j(k + λ + 1)j(λ + 5/2)2j

(1)j(3/2)j(2λ + 3)2j
4F3

(
−l, l + λ + 1, j + λ

2 + 5
4 , j + λ

2 + 7
4

3
2 , j + λ + 2, j + λ + 3

2

; 1

)

.

Note that all of the above hypergeometric functions are balanced. Furthermore,
for λ = 1/2 one of the terms in the numerator cancels a denoninator term so they
all become balanced 3F2’s and can be summed using the Pfaff–Saalschiitz formula.
The remaining sums in turn reduce to the Legendre case discussed earlier.

At this point we are unable to determine whether for certain values of λ the
above sums simplify or if there is any orthogonality as in the Legendre case.
Another interesting problem is the asymptotics of the above sums.
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A formula for the second integral in the above Theorem may be obtained using
equation (4.7.6) (first formula) in [17] and is

∫ 1

0
p̂(λ)

k (2x − 1)p̂(λ)
l (2x − 1)x2λ−1

(1 − x
1 + x

)λ− 1
2
dx

= (−1)k+lkλ
k k

λ
l

(λ + 1
2)k(λ + 1

2)l
(k + 2λ)k(l + 2λ)l

%(λ + 1/2)

×
k∑

j=0

l∑

n=0

(−k)j(k + 2λ)j(−l)n(l + 2λ)n%(j + n + 2λ)
(1)j(λ + 1/2)j(1)n(λ + 1/2)n%(j + n + 3λ + 1/2)

× 2F1

(
λ − 1/2, j + n + 2λ

j + n + 3λ + 1/2
; −1

)
.

The next step is to obtain a generalized eigenvalue problem which will be a
1D-relation for the function f (λ)

i,j , unlike (4.3). Our first approach uses the fact
that the ultraspherical polynomials satisfy second order differential equations and
apparently the approach can be generalized to the case of polynomials satisfying
differential equations such asKrall polynomials, Koornwinder’s generalized Jacobi
polynomials and some Sobolev orthogonal polynomials.

Theorem 4.3. Let j be a fixed nonnegative integer number. Then the function
f = f (i) = f (λ)

i,j of the discrete variable i satisfies the generalized eigenvalue problem

(4.6)

2((i + λ)2 − 1/4)
(
i + λ +

3
2

)
√

i + 2λ

(i + 1)(i + λ + 1)(λ + i)
f (λ)
i+1,j

+ 2((i + λ)2 − 1/4)
(
i + λ − 3

2

)
√

i
(i − 1 + λ)(i − 1 + 2λ)(λ + i)

f (λ)
i−1,j

=
(
j + λ − 1

2

)(
j + λ +

1
2

)

×
[
2(i + λ − 1/2)

√
i + 2λ

(i + 1)(i + λ + 1)(λ + i)
f (λ)
i+1,j + 4f (λ)

i,j

+ 2(i + λ + 1/2)

√
i

(i − 1 + λ)(i − 1 + 2λ)(λ + i)
f (λ)
i−1,j

]
,

for i = 0, 1, 2, . . . and, here, the number (j + λ − 1
2 )(j + λ + 1

2) is the corresponding
generalized eigenvalue.

Remark 4.2. For the case λ = 1/2, formula (4.6) was obtained in [7].
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Proof. To make all the formulas shorter and, more importantly transparent,
let us introduce the following operators:

(4.7)

Ai = 2
(
i + λ +

3
2

)
√

i + 2λ

(i + 1)(i + λ + 1)(λ + i)
E+

+ 2
(
i + λ − 3

2

)√ i
(i − 1 + λ)(i − 1 + 2λ)(λ + i)

E−

= a1
i E+ + a2

i E−

and

(4.8)

Bi = 4I + 2(i + λ − 1/2)

√
i + 2λ

(i + 1)(i + λ + 1)(λ + i)
E+

+ 2(i + λ + 1/2)

√
i

(i − 1 + λ)(i − 1 + 2λ)(λ + i)
E−

= 4I + b1
i E+ + b2

i E−,

where I is the identity operator and E+, E− are the forward and backward shift
operators on i, respectively. With these notations, equation (4.6) can be rewritten
as

(4.9) (i(i + 2λ) + λ2 − 1/4)Aif
(λ)
i,j = (j(j + 2λ) + λ2 − 1/4)Bif

(λ)
i,j

or

(4.10) i(i + 2λ)Aif
(λ)
i,j + (λ2 − 1/4)(Ai − Bi)f

(λ)
i,j = j(j + 2λ)Bif

(λ)
i,j ,

since

(4.11)

Ai − Bi = −4I + 4

√
i + 2λ

(i + 1)(i + λ + 1)(λ + i)
E+

− 4

√
i

(i − 1 + λ)(i − 1 + 2λ)(λ + i)
E−.

As is known [17], the orthonormal ultraspherical polynomials satisfy the differen-
tial equation

(4.12)
d
dt

(
(t(1 − t))λ+1/2 d

dt
p̂(λ)

j (2t − 1)
)

+ j(j + 2λ)(t(1 − t))λ−1/2p̂(λ)
j (2t − 1) = 0.
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Thus after two integration by parts we have

j(j + 2λ)Bif
(λ)
i,j

= −
∫ 1

0

d
dt

((t(1 − t))λ+1/2 d
dt

Bip̂
(λ)
i (t))p̂(λ)

j (2t − 1)dt

= −
∫ 1

0

((
t(1 − t)

d2

dt2
+(λ+1/2)(1−2t)

d
dt

)
Bip̂

(λ)
i (t)

)
p̂(λ)

j (2t−1)(t(1−t))λ−1/2dt

= −
∫ 1

0

(
(1 − t2)

d2

dt2
− (2λ + 1)t

d
dt

)
Bip̂

(λ)
i (t))p̂λ

j (2t − 1)(t(1 − t))λ−1/2dt

−
∫ 1

0

(
(t − 1)

d2

dt2
+ (λ + 1/2)

d
dt

)
Bip̂

(λ)
i (t))p̂λ

j (2t − 1)(t(1 − t))λ−1/2dt.

Now

−
(
(1 − t2)

d2

dt2
− (2λ + 1)t

d
dt

)
Bip̂

(λ)
i (t))

= (i + 1)(i + 1 + 2λ)b1
i p̂

(λ)
i+1(t) + i(i + 2λ)4p̂(λ)

i (t) + (i − 1)(i − 1 + 2λ)b2
i p̂

(λ)
i−1(t).

Since

(i ± 1)(i ± 1 + 2λ)2
(
i + λ ∓ 1

2

)
− i(i + 2λ)2

(
i + λ ± 3

2

)
∓ 4

(
λ2 − 1

4

)
= 0,

it follows that

(4.13)

(j(j + 2λ)Bi − i(i + 2λ)Ai − (λ2 − 1/4)(Ai − Bi))f
(λ)
i,j

= −
∫ 1

0

(
(t − 1)

d2

dt2
+ (λ + 1/2)

d
dt

)
Bip̂

(λ)
i (t))p̂(λ)

j (2t − 1)(t(1 − t))λ−1/2dt

+ 4(i(i + 2λ) + λ2 − 1/4)
∫ 1

0
p̂(λ)

i (t)p̂(λ)
j (2t − 1)(t(1 − t))λ−1/2dt.

From equations (4.2) and (4.8) we find

b1
i = 4

i + λ − 1/2
i + 1

ai+1 = 4(1 +
λ − 3/2

i + 1
)ai+1

and

b2
i = 4

i + λ + 1/2
i + 2λ − 1

ai = 4(1 − λ − 3/2
i + 2λ − 1

)ai.

The substitution of these relations in (4.13) leads to the following:

Bip̂
(λ)
i (t) = 4

(
1 +

λ − 3/2
i + 1

)
ai+1p̂

(λ)
i+1(t) + 4

(
1 − λ − 3/2

i + 2λ − 1

)
aip̂

(λ)
i−1(t) + 4p̂(λ)

i (t)

= 4
(
1 + t +

λ − 3/2
i + 1

t
)
p̂(λ)

i (t) − 8ai
(λ − 3/2)(λ + i)

(i + 1)(i + 2λ − 1)
p̂(λ)

i−1(t)),
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where the recurrence formula, (4.2), has been used to obtain the last equation.
Using the first equation in [17, equation (4.7.28)] gives

d
dt

p̂(λ)
i−1(t) = 2

(i + λ − 1)ai

i

(
t
d
dt

p̂(λ)
i (t) − ip̂(λ)

i (t)
)

so we find that

d
dt

Bip̂
(λ)
i (t) = 4

d
dt

(
1 + t +

λ − 3/2
i + 1

t
)
p̂(λ)

i (t) − 8ai
(λ − 3/2)(λ + i)

(i + 1)(i + 2λ − 1)
d
dt

p̂(λ)
i−1(t))

= 4(λ − 1/2)p̂(λ)
i (t) + 4(1 + t)

d
dt

p̂(λ)
i (t).

Thus we have
(
(1 − t)

d
dt

− (λ + 1/2)
) d
dt

Bip̂
(λ)
i (t)

= 4
(
(1 − t2)

d2

dt2
− (2λ + 1)t

d
dt

− (λ2 − 1/4)
)
p̂(λ)

i (t)

and the result follows. !

Remark 4.3. We can see that equation (4.6) has the form

Ãif
(λ)
i,j =

(
j + λ − 1

2

)(
j + λ +

1
2

)
Bif

(λ)
i,j ,

where
Ãi = (i + λ − 1/2)(i + λ + 1/2)Ai,

with the operators Ai and Bi given by (4.7) and (4.8), respectively. The above-given
proof shows that the generalized eigenvalue problem (4.6) is a consequence of the
fact that ultraspherical polynomials are eigenfunctions of a second order differential
operator of a specific form. Difference equations for connection coefficients have
also been investigated in [14] and [20] using differential equations.

There is another way to see the validity of equation (4.6). We first prove the
following statement.

Proposition 4.4. The following representation holds

(4.14) f (λ)
i,j =





0, i < j;

1
23j+1

√
i!(λ+1)i(2λ)i(2λ)j
j!(λ)i(λ)j(λ+1)j

(i+2λ)j
(λ+ 1

2 )j(i−j)! 2F1

(
−i+j, i+j+2λ

2j+2λ+1 ; 1
2

)
, i ≥ j.

Proof. Write

(4.15) f (λ)
i,j = ki,j,λ

∫ 1

0
p(λ)

i (t)p(λ)
j (2t − 1)(t(1 − t))λ−1/2dt,
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where p(λ)
n is the monic orthogonal polynomial and

(4.16) ki,j,λ =
%(λ + 1)

%(λ + 1
2)
√

π
2i+j+2λ+1

√
(λ)i(λ + 1)i

i!(2λ)i

√
(λ)j(λ + 1)j

j!(2λ)j
.

If we denote the integral in equation (4.15) as I(1), we find using the representation

p(λ)
i (t) = 2i (λ + 1

2)i
(i + 2λ)i

2F1

(
−i, i + 2λ

λ + 1
2

;
1 − t

2

)

that

(4.17) I(1) = 2i+j(−1)j
(λ + 1

2)i
((i + 2λ)i)

(λ + 1
2)j

((j + 2λ)j)
I(2),

with

I(2) =
∫ 1

0
2F1

(
−i, i + 2λ

λ + 1
2

;
1 − t

2

)

2F1

(
−j, j + 2λ

λ + 1
2

; t

)

(t(1 − t))λ−1/2dt

=
i∑

k=0

(−i)k(i + 2λ)k
(1)k(λ + 1

2)k2
k

j∑

n=0

(−j)n(j + 2λ)n
(1)n(λ + 1

2)n

∫ 1

0
(1 − t)k+λ−1/2tn+λ−1/2dt.

The integral can be evaluated as

%(k + λ + 1
2)%(n + λ + 1

2)
%(k + n + 2λ + 1)

=
(λ + 1

2)k(λ + 1
2)n%(λ + 1

2)
2

(2λ + 1)k(k + 2λ + 1)n%(2λ + 1)
.

From the Chu–Vandermonde formula the sum on n yields
j∑

n=0

(−j)n(j + 2λ)n
(1)n(k + 2λ + 1)n

=
(k − j + 1)j
(k + 2λ + 1)j

,

and the sum on k now becomes
i∑

k=j

(−i)k(i + 2λ)k(k − j + 1)j
(1)k(2λ + 1)k(k + 2λ + 1)j2k =

i−j∑

k=0

(−i)k+j(i + 2λ)k+j(k + 1)j
(1)k+j(2λ + 1)k+j(k + j + 2λ + 1)j2k+j .

With the identities

(k + b)j =
(j + b)k(b)j

(b)k
, (a)k+j = (a + j)k(a)j,

the above sum becomes
i−j∑

k=0

(−i)k+j(i + 2λ)k+j(k + 1)j
(1)k+j(2λ + 1)k+j(k + j + 2λ + 1)j2k+j

=
(−i)j(i + 2λ)j(1)j

(2λ + 1)j(j + 2λ + 1)j

i−j∑

k=0

(−i + j)k(i + j + 2λ)j
(1)j(2j + 2λ + 1)k

1
2k

=
(−i)j(i + 2λ)j(1)j

(2λ + 1)j(j + 2λ + 1)j
2F1

(−i + j, i + j + 2λ

2j + 2λ + 1
;

1
2

)
.

Combining all this together gives the result. !



18 M. DEREVYAGIN, J. GERONIMO,

The above hypergeometric representation (4.14) for f (λ)
i,j gives a recurrence

relation among them.

Another Proof of Theorem 4.3. To see this use the contiguous relation
(see [1, equation (2.5.15)])

2b(c − b)(b − a − 1)2F1

(
a − 1, b + 1

c
;

1
2

)

− (b − a)(b + a − 1)(2c − b − a − 1)2F1

(
a, b
c

;
1
2

)

− 2a(b − c)(b − a + 1)2F1

(
a + 1, b − 1

c
;

1
2

)
= 0,

which, with a = −i + j, b = i + j + 2λ, and c = 2j + 2λ + 1, yields the equation

(4.18)

(2i + 2λ − 1)(j + 2λ + i + 1)(i + 1 − j)

√
i + 2λ

(i + 1)(i + λ + 1)(λ + i)
f (λ)
i+1,j

−(2j + 2λ − 1)(2j + 2λ + 1)f (λ)
i,j

+(2i + 2λ + 1)(i − j − 1)(i + j + 2λ − 1)

×
√

i
(i − 1 + λ)(i − 1 + 2λ)(λ + i)

f (λ)
i−1,j = 0.

The latter relation leads to (4.6). !
A generalized eigenvalue problem can also be found for i fixed. To this end we

need to use the relation

2F1

(−n, b
c

; x
)

=
(b)n
(c)n

(−x)n2F1

(−n, −c − n + 1
−b − n + 1

; 1/x
)

.

Therefore we find that

(4.19)
2F1

(−i + j, i + j + 2λ

2j + 2λ + 1
; 1/2

)

=
(i + j + 2λ)i−j

(2j + 2λ + 1)i−j
(−2)j−i

2F1

(−i + j, −i − j − 2λ

−2i − 2λ + 1
; 2
)

.

Following the steps used to obtain the recurrence formula for j fixed in the second
proof we find that

cjf
(λ)
i,j−1 + djf

(λ)
i,j+1 + ejf

(λ)
i,j = 0,

where

cj = −2(i + j + 2λ − 1)(i − j + 1)(2j + 2λ + 1)(j + λ + 1),

dj = −4(i − j − 1)(i + j + 2λ + 1)
(
j + λ − 1

2

)
√

j(j + 1)(j + λ − 1)(j + λ + 1)
(j + 2λ − 1)(j + 2λ)

,
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and

ej = −2(2i + 2λ + 1)(2i + 2λ − 1)(j + λ + 1)

√
j(j + λ)(j + λ − 1)

(j + 2λ − 1)

+ 6(2j + 2λ − 1)(2j + 2λ + 1)(j + λ + 1)

√
j(j + λ − 1)(j + λ)

(j + 2λ − 1)
.

Since

(i + j + 2λ ∓ 1)(i − j ± 1) =
(
i + λ +

1
2

)(
i + λ − 1

2

)
−
(
j + λ ∓ 1

2

)(
j + λ ∓ 3

2

)

the above recurrence can be recast as the generalized eigenvalue equation

Âjf
(λ)
i,j =

(
i + λ +

1
2

)(
i + λ − 1

2

)
B̂jf

(λ)
i,j ,

where the operator Âj is the second order difference operator

(4.20)

Âj = (j + λ + 1/2)(j + λ − 1/2))

×
(

12I + (2j + 2λ + 3)

√
j + 1

(j + λ)(j + 2λ)(j + λ + 1)
Ê+

+ (2j + 2λ − 3)

√
(j + 2λ − 1)

j(j + λ)(j + λ − 1)
Ê−

)
,

and the operator B̂j is another second order difference operator given by the formula

(4.21)

B̂j =
(

4I + (2j + 2λ − 1)

√
j + 1

(j + λ)(j + 2λ)(j + λ + 1)
Ê+

+ (2j + 2λ + 1)

√
(j + 2λ − 1)

j(j + λ)(j + λ − 1)
Ê−

)
,

the operator I is the identity operator, and Ê+, Ê− are the forward and backward
shift operators on j, respectively. Thus we have just proved the following statement.

Theorem 4.5. Let i be a fixed nonnegative integer number. Then the function
f = f (j) = f (λ)

i,j of the discrete variable j satisfies the generalized eigenvalue problem

Âjf
(λ)
i,j =

(
i + λ +

1
2

)(
i + λ − 1

2

)
B̂jf

(λ)
i,j

for i = 0, 1, 2, . . . and where the operators Âj and B̂j are given by (4.20) and (4.21),
respectively. Also, here, (i + λ + 1

2)(i + λ − 1
2 ) is the corresponding generalized

eigenvalue.
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Remark 4.4. For the case λ = 1/2, Theorem 4.5 was obtained in [7].

Recall that it is said that a function *(x, y) is a solution of a bispectral problem
if it satisfies the following:

A*(x, y) = g(y)*(x, y),

B*(x, y) = f (x)*(x, y),

where A, B are some operators, with A acting only on x and B acting only on y,
and f , g are some functions [5]. It is shown in [13] that if A and B are tridiagonal
operators, then the solutions of the corresponding discrete bispectral problem are
related to the Askey–Wilson polynomials.

The problem we are dealing with in this section is the following generalization
of a bispectral problem:

A*(i, j) = g(j)B*(i, j),

C*(i, j) = f (i)D*(i, j),
(4.22)

where i, j are discrete variables, the operators A and B are tridiagonal operators
acting on the index i, and C, D are tridiagonal operators acting on the index j.
Note that each equation in (4.22) is a generalized eigenvalue problem and, hence,
the problem (4.22) includes a bispectral problem as a particular case (for instance,
when B and D are the identity operators).

Setting *(i, j) = f (λ)
i,j we see that Theorems 4.3 and 4.5 tell us that f (λ)

i,j is
a solution of a generalized bispectral problem of the form (4.22). It would be
interesting to find a characterization of such generalized bispectral problems as
was done in [13] for discrete bispectral problems.

Using the asymptotic results for the Gauss hypergeometric function from [15]
(see also [19], [12], [18]) one can get asymptotic behavior of the solution f (λ)

i,j for j
fixed and when i tends to infinity.

Theorem 4.6. For sufficiently large i the following formula holds:

(4.23) f (λ)
i,j = kj

cos(π(j + λ
2 − i

2 + 1
4 ))√

πiλ+1/2
+ O

( 1
iλ+3/2

)
:

where

(4.24) kj =
1

2j+1−λ

√
(2λ)j

j!(λ)j(λ + 1)jλ%(2λ)
%(2j + 2λ + 1)

(λ + 1
2)j

.

Proof. According to Proposition 4.4 for i ≥ j we have

f (λ)
i,j =

1
23j+1

√
i!(λ + 1)i(2λ)i(2λ)j
j!(λ)i(λ)j(λ + 1)j

(i + 2λ)j
(λ + 1

2)j(i − j)!
2F1

(−i + j, i + j + 2λ

2j + 2λ + 1
;

1
2

)
.
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The hypergeometric function is of type B in the terminology of [15] and since its
argument is real the relevant formula is (4.7) with saddle points ts1 = 1 + i and
ts2 = 1 − i, which gives

2F1

(−i + j, i + j + 2λ

2j + 2λ + 1
;

1
2

)

=
2j+λ%(2j + 2λ + 1)√

πi2j+2λ+1/2

(
cos(π(j + λ/2 − i/2 + 1/4)) + O

(1
i

))
.

Then, since
√

i!(λ + 1)i(2λ)i
(λ)i

(i + 2λ)j
(i − j)!

=

√
1

λ%(2λ)
i(2j+λ)(1 + O(1/i)),

the result follows. !

Remark 4.5. Formula (4.23) along with the fact that f (λ)
i,j = 0 for i < j

show that the moving wave behavior of the solution demonstrated in Figure 1 is
also characteristic for the solution f (λ)

i,j of the discrete wave equation (4.3) for any
λ > −1/2.

Another useful asymptotic is when i = k1t and j = k2t, where k1 > k2 are fixed
and t is large.

Theorem 4.7. For k1t and k2t integers with k1 > k2 > 0, and
√

2k2
k1

> 1,

(4.25)
f (λ)
k1t,k2t =

c(ε,λ)

2k1t+1(k1t)
1
2

( 1 + b̂(ε)

ε − b̂(ε)

)(k1−k2)t

×
(1 + 2ε − b̂(ε)

1 + ε

)(k1+k2)t+2λ
(1 + O(1/t)),

where

(4.26) c(ε,λ) = ελ 1√
π(1 − ε2)(2ε2 − 1)

1
2

,

ε = k2
k1

, and b̂(ε) =
√

2ε2 − 1.

Proof. In this case the representation given by equation (4.19) is most conve-
nient. An application of Pfaff’s transformation yields

2F1

(−i + j, −i − j − 2λ

−2i − 2λ + 1
; 2
)

= (−1)i−j
2F1

(−i + j, −i + j + 1
−2i − 2λ + 1

; 2
)

.
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Now the use of transformation T3 in [15] on the hypergeometric function on the
right-hand side of the above equation yields, with a = −i + j and b = −i + j + 1,

2F1

(−i + j, −i + j + 1
−2i − 2λ + 1

; 2
)

= − 2i+j+2λ−1(i − j)!
(i + j + 2λ + 1)i−j−1

2F1

(
i − j + 1, −i − j − 2λ + 1

2
; 1/2

)
,

since the first term in T3 is equal to zero. Thus

(4.27) f (λ)
i,j = di,j2F1

(
i − j + 1, −i − j − 2λ + 1

2
; 1/2

)
,

where

di,j = (−1)i−j+12j+2λ−1

√
(i + λ)(j + λ)i!%(2λ + j)

j!%(2λ + i)
.

This becomes

(4.28)
dk1t,k2t = (−1)(i−j+12j+2λ−1

(
j2λ

i2λ−2

)1/2

(1 + O(1/i)

= (−1)(k1−k2)t+12k2t+2λ−1
(

k2

k1

)λ

(k1t)(1 + O(1/t)).

The hypergeometric function on the right hand side of equation (4.27) is in the
form to use the type B formulas in [15] and leads to considering the hypergeometric
function

2F1

(
ε1w + 1, −w − 2λ + 1

2
; 1/2

)

where ε1w is an integer. Equation (4.4) in [15] shows that the saddle points occur

at 1+ε1
2 ±

√
( 1+ε1

2 )2 − 2ε1. If the discriminant is positive both saddles are real and
equation (4.9) in [15] yields

2F1

(
ε1w + 1, −w − 2λ + 1

2
; 1/2

)

=
(−1)ε1w+1

w
3
2
√

πε1b(ε1)
(

1 + ε1 + b(ε1)
1 − ε1 − b(ε1)

)ε1w
(3 − ε1 − b(ε1))w+2λ

22w+4λ− 1
2

(1 + O(1/w)),

where

(4.29) b(ε1) =
√

(1 + ε1)2 − 8ε1.

With ε1 = k1−k2
k1+k2

and w = (k1 + k2)t the above equations yield (4.25). !
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Remark 4.6. When the discriminant is negative, the two saddle points are
conjugates of each other and so in this case equation (4.7) in [15] is used to obtain
the asymptotics for 2F1

(
ε1t+1, −t−2λ+1

2 ; 1/2
)
, which then are used to obtain the

asymptotics of f (λ)
k1t,k2t.

We finish this section with a couple of statements starting with the recurrence
formulas. Write the recurrence formula in equation (4.6) as

(4.30) ai,jf
(λ)
i+1,j + bi,jf

(λ)
i,j + ci,jf

(λ)
i−1,j = 0,

and the recurrence formula in j as

(4.31) âi,jf
(λ)
i,j+1 + b̂i,jf

(λ)
i,j + ĉi,jf

(λ)
i,j−1 = 0,

with i ≥ j ≥ 0.
We can now prove the following simple statement.

Proposition 4.8. Given ai,j, bi,j, ci,j and λ > −1/2, for each j > 0 the unique
solution of equation (4.30) with initial conditions

fj−1,j = 0, fj,j =
∫ 1

0
p̂(λ)

j (t)p̂(λ)
j (2t − 1)(t(1 − t))λ−1/2dt

is the function

fi,j = I(λ)
i,j :=

∫ 1

0
p̂(λ)

i (t)p̂(λ)
j (2t − 1)(t(1 − t))λ−1/2dt.

If j = 0, λ > −1/2, and λ #= 1/2, then f0,0 = I(λ)
0,0 gives the unique solution fi,0 = I(λ)

i,0 .
If λ = 1/2, then the initial conditions f0,0 = I(1/2)

0,0 and f1,0 = I(1/2)
1,0 are needed to

give fi,j = I(1/2)
i,j .

Proof. For j > 0, ai,j #= 0 for i ≥ j so the result follows from equation (4.30).
For j = 0 and λ #= 1/2, c0,0 = 0 #= a0,0 so that only f0,0 is needed to compute f1,0.
The remaining fi,j are computed in the standard fashion from equation (4.30). For
the last case when λ = 1/2, a0,0 = 0 = bi,0 so f2,0 = c1,0

a1,0
f0,0 and f3,0 = c2,0

a2,0
f1,0. The

remaining fi,0 are computed in the same way using the fact that ai,0 #= 0 for i > 0.!
Similarly, for the recurrence in j we have the following.

Proposition 4.9. Given ai,j, bi,j, ci,j and λ > −1/2, for each i > 0 the unique
solution of equation (4.31) with initial conditions fj,j+1 = 0 and fj,j = I(λ)

j,j is

fi,j = I(λ)
i,j .

Since ĉi,j, b̂i,j, and âi,j are not equal to zero for i ≥ j the result follows from
equation (4.31).
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