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Combining SNP p-values from GWAS summary data is a promising strategy for
detecting novel genetic factors. Existing statistical methods for the p-value-
based SNP-set testing confront two challenges. First, the statistical power of
different methods depends on unknown patterns of genetic effects that could
drastically vary over different SNP sets. Second, they do not identify which SNPs
primarily contribute to the global association of the whole set. We propose a
new signal-adaptive analysis pipeline to address these challenges using the
omnibus thresholding Fisher's method (oTFisher). The oTFisher remains
robustly powerful over various patterns of genetic effects. Its adaptive
thresholding can be applied to estimate important SNPs contributing to the
overall significance of the given SNP set. We develop efficient calculation
algorithms to control the type | error rate, which accounts for the linkage
disequilibrium among SNPs. Extensive simulations show that the oTFisher has
robustly high power and provides a higher balanced accuracy in screening SNPs
than the traditional Bonferroni and FDR procedures. We applied the oTFisherto
study the genetic association of genes and haplotype blocks of the bone
density-related traits using the summary data of the Genetic Factors for
Osteoporosis Consortium. The oTFisher identified more novel and literature-
reported genetic factors than existing p-value combination methods. Relevant
computation has been implemented into the R package TFisher to support
similar data analysis.

KEYWORDS

GWAS summary statistics, SNP-set analysis, p-value combination, Fisher's method,
global hypothesis test, osteoporosis, bone density, genetic association

1 Introduction

GWAS summary data is an important resource for dissecting the genetics of complex
traits. In contrast to the individual-level genotype and phenotype data, summary data
allows much broader access because of less privacy risk (NIH, 2018). The summary
statistics are often sufficient for typical genetic association studies with the same efficiency
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as individual-level data (Lin and Zeng, 2010a,b). Furthermore, it
is convenient to integrate summary data from different studies,
e.g., through meta-analysis, to cumulate information to increase
the power of detecting genetic factors. Many summary data
analyses have been carried out and resulted in new genetic
findings (Evangelou and loannidis, 2013; Pasaniuc and Price,
2017; Guo and Wu, 2019).

GWAS summary data is often used to test the association
between a trait and sets of SNPs in genes or other genomic
segments. Such SNP-set test can reveal weak genetic effects that
are unidentifiable by individual SNPs (Hoh et al., 2001; Xiong et al.,
2002; Wu et al., 2010; Wu et al., 2014; Sun et al., 2019; Sun and Lin,
2019). Many methods have been developed based on the
combination of SNP statistics (e.g., z-scores) or their p-values.
Combining the p-values has multiple advantages. The p-values are
the direct measure of statistical significance. Combining them does
not concern the problem of signal cancellation in adding SNP
z-scores of opposite directions (Pan, 2009). Furthermore, p-values
are homogeneously Uniform (0, 1) distributed under the null as
long as the statistics are continuous. Therefore, p-values from
statistics of different types or scales can be directly combined.

The SNP-set test is essentially a global hypothesis testing
procedure for detecting the existence of “signals” of genetic
effects. Optimal signal-detection tests depend on the signal
patterns (Donoho and Jin, 2004; Zhang et al, 2020a; Zhang
et al, 2020b; Zhang and Wu, 2022a). For example, Fisher’s
method (Fisher, 1925) is optimal for detecting dense signals (e.g.,
in the sense of Bahadur efficiency (Littell and Folks, 1971, 1973)).
Meanwhile, the minimal p-value test is preferred for detecting sparse
and strong signals (Donoho and Jin, 2004). In GWAS, signal
patterns depend on the fraction of causal SNPs, the strength of
their effects, the linkage disequilibrium (LD) among SNPs, and other
potential factors (e.g., covariates) (Zhang and Wu, 2022a). The
collective signal patterns are often unknown and drastically vary
over different SNP sets. One strategy to address this issue is the
omnibus testing procedure. An excellent approach is the ACAT-O,
which includes three different tests, the ACAT, the SKAT, and the
burden test (Liu et al., 2019). The ACAT is more powerful than
SKAT and burden tests for sparse signals when the fraction of causal
SNPs is small and the LDs are weak. On the contrary, SKAT and
burden tests are more powerful for dense signals. The ACAT-O
becomes robust by adapting to the power of these three tests.
However, SKAT and burden tests are not p-value combination
methods. The SKAT requires the marginal score statistics, which
may not be provided in summary data (Wu et al,, 2011).

We propose an adaptive p-value combination procedure based
on the thresholding Fisher’s method (TFisher) (Zhang et al., 2020b).
The TFisher provides a flexible mechanism for truncating and
weighting SNP p-values in the testing procedure. When signals
are sparse, the TFisher statistic is powerful by including a few
smallest p-values that are most likely associated with signals; when
signals are dense, more p-values can be included to improve power.
Therefore, the corresponding omnibus testing procedure (the
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oTFisher) remains robustly high power for various signal
patterns by automatically adapting to a subset of important
SNPs. Unlike the ACAT-O, which involves different types of test
statistics, the oTFisher restricts to the same family of statistics. The
adaptation is through truncating and weighting SNP p-values, which
provides a vehicle for screening important SNPs. If the SNP-set is
significantly associated, the important SNPs selected by oTFisher are
likely trait relevant. This feature is useful for two reasons. First,
important SNP screening based on the SNP-set test could help to
identify SNPs with weak genetic effects because the SNP-set test has
the potential to detect the totality of genetic effects that single-SNP
analysis cannot. Second, the important SNPs that drive the
association of a SNP set, e.g, a gene, could help reveal genetic
architecture, disease mechanism, and other downstream analyses of
the gene.

The exact distribution of oTFisher is challenging to obtain
when SNP p-values are dependent because of the LD among
SNPs. For controlling the type I error rate, we could rely on a
re-sampling-based strategy to get the empirical p-value of the
oTFisher. this
expensive, especially for moderate to large SNP sets. We

However, strategy is computationally
design an efficient algorithm to calculate the p-value of the
TFisher and the oTFisher. It is a hybrid of the generalization of
Brown’s method (GB) (Brown, 1975) and a more advanced
skewness-kurtosis-ratio matching method (SKRM) (Zhang
and Wu, 2022b; Zhang et al.,, 2022). The GB is fast and
reasonably accurate for larger p-values (>0.01). The SKRM
can significantly improve calculation accuracy for smaller p-
value.

The oTFisher is shown robustly powerful through extensive
simulations. The type I error rate is adequately controlled even at
a stringent significance level. We applied the oTFisher to analyze
the summary data from the Genetic Factors for Osteoporosis
Consortium (GEFOS). The oTFisher systematically identified
more literature disease genes than the current p-value
combination methods. The results contributed more insights
into the genetics of osteoporosis.

2 Materials and methods
2.1 SNP-set testing statistics

Let a set of n SNPs have p-values P;,i =1, . .., n. The TFisher
statistic tests the genetic association between a trait and the SNP
set by combining these p-values while allowing for a general
scheme of truncation and weighting (Zhang et al., 2020b):

n Pi
T, (11,72) = —zZIog<T—2>I(P,- <), (1)

where I () is the indicator function, 7, > 0 is a truncation
parameter that includes p-values equal or smaller than 7; into
the statistic, and 7, > 0 is a weighting parameter for selected p-
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values. When 7; = 7, = 1, the TFisher statistic combines all p-
values, which is the classic Fisher’s combination statistic:
T,(1,1)=-2Y" log(P;). The TFisher family include the
statistic of truncation-product method (TPM) (Zaykin et al,
2002, 2007): Ty (11,1) = =23 log(P)I(P; < 71), ie., a special
case of the TFisher with 7, = 1. Our previous study has shown
that statistical power and computation efficiency can be
improved by weighting the truncated p-values through 7. An
optimality can be reached at 7, = 7, = 7 € (0, 1], which gives the
soft-thresholding statistic:

T (1) = 22 max{—log(%),o}.

An analogous version of the TPM is the rank-truncation product
(RTP) method (Dudbridge and Koeleman, 2003). Let Pqy < -+- <
P,y be the ordered input p-values. The RTP statistic is RTP =
—2Y% log(P ) for some predetermined k. The RTP statistic can
also be written in consistency with the TPM with 7; = P,.
Calculating the p-value of the RTP is more challenging, especially
for SNP p-values are dependent due to the LD.

The TFisher is a flexible framework to maximize the detection of
SNP-set associations over a broad spectrum of signal patterns.
Different signal patterns are in favor of different truncating and
weighting parameters. For example, when association signals are
dense, more SNP p-values should be included in the test statistic by
large 7, and 7, so that the test is closer to Fisher’s method. Dense
signals happen under the polygenic model with a substantial number
of causal SNPs, or when the LD is strong so that many SNPs in LD
with the causal SNPs also show association signals. On the other
hand, if association signals are sparse (i.e., only a small number of
SNP p-values are linked to the causal genetic factor), the smallest SNP
p-values should be included in the statistic by small 7; and 7.

In reality, the signal patterns are often unknown and
substantially differ over traits and loci. Therefore, we rely on the
data-adaptive omnibus testing procedure to automatically select
appropriate parameters. Specifically, we consider a discrete search
domain over {(115, To1), k=1, . . ., K}, where K is the total number of
7 values to search on. Denote P(k) the test p-value of T,, (715 Tax)-
The omnibus statistic is defined as the smallest P(k), which indicates
the maximal association evidence for the whole SNP-set:

oTFisher_minp = kgll,.i.l.,lKP (k). 2)
Moreover, we define a second omnibus test by Cauchy
combination test (CCT) of P(k)’s (Liu and Xie, 2020):

K
oTFisher_cct = % ;; tan ((0.5 — P (k))n). (3)

The summands of oTFisher_cct are the transformation of P(k)’s
by the inverse cumulative distribution function (CDF) of the
standard Cauchy distribution. Because of the heavy tail of
Cauchy distribution, oTFisher_cct is dominated by p-values
closer to 0 or 1. In practice, we truncate P(k) = 1 to be 0.9 so
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that oTFisher_cct is dominated by small p-values and performs
similarly to oTFisher_minp. Note that since P(k) depends on the
LD (see its calculation below), the oTFisher implicitly accounts
for the LD information.

2.2 SNP-screening procedures

We can utilize the oTFisher as a procedure to screen for
important SNPs. The oTFisher procedure has three steps:

1) SNP-set testing: Identify the significantly associated SNP-sets
by their oTFisher p-values <a/g, where « is the adjusted
significance level, g is the number of SNP sets (e.g., genes)
studied simultaneously.

2) Screening: From the t SNPs contained in the significant SNP
sets, get s candidate SNPs with their p-value less than a
threshold p*.

3) Validation: Use an independent data to get new p-values of
the s candidate SNPs. Get s; validated SNPs with their p-
values less than a/s.

A natural choice of the threshold is p* = 7, where 7* = 7+
corresponding to the oTFisher_minp in (2) (i.e, P (k*) is the
minimal P(k)). Meanwhile, P(k) could have similar values over
different k. To be conservative and reduce the false discoveries,
we recommend p* = min{7¥, 0.1} (denoted by oTFisher_r as a
restricted version).

In practice, SNP screening is commonly based on the
Bonferroni procedure or the Benjamini-Hochberg (BH)
procedure:

o Bonferroni procedure: The screened SNPs are those with
their p-values less than p* = a/L, where L is the total
number of SNPs.

» BH procedure: The screened SNPs are those with p-value
less than p* = P ;«), where k* is the largest k such that the
ordered SNP p-values Py < ak/L.

The SNPs screened by Bonferroni and BH are validated in the
same way as the validation stage for the oTFisher.

There are two potential benefits of utilizing the oTFisher
procedure over Bonferroni and FDR procedures. First, as a set-
testing method, the oTFisher can potentially increase the
discovery of weakly associated SNPs. It is because the SNP-set
test can detect the collective existence of weak genetic effects that
are indistinguishable from individual SNPs (Donoho and Jin,
2004; Wu et al., 2014; Jin and Ke, 2016). Therefore, the oTFisher
could better reveal SNPs with weak genetic effects than the
Bonferroni and FDR procedures, which only rely on
individual SNP tests. Second, 7* is influenced by the
proportion of genetic signals (Zhang et al, 2020b). This

information could also contribute to identifying important SNPs.
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2.3 Algorithms for p-value calculation

Following the literature (Brown, 1975; Zhang and Wu,
2022b), we account for the dependence of SNP p-values by
assuming that the vector of their z-score statistics Z =

(Z1,...,Z,)" is approximately normal:

Z~N(u3z), 4)

where the mean vector p corresponds to the association
hypotheses: Hy: g = 0, i.e., no SNPs are associated, and H;: p
+0, i.e., at least one SNP is associated. The correlation matrix X is
assumed to be estimable but otherwise arbitrary. These
assumptions are reasonably satisfied in practice when the
sample size is reasonably large (e.g., by the linear model-based
association tests (Shao, 2010)). As one example, the estimation of
X among the marginal score statistics is given in Section 3.1. For
analyzing GWAS summary data where the individual-level
genotype data are unavailable, £ can often be estimated by the
LD matrix based on reference genome panel data, such as the
1,000 Genome and the UKI10K projects (Hu et al., 2013).
Although most GWAS summary data contains two-sided p-
values, we allow they are one-sided for the completeness of
statistical development:

One —sided : P; = ®(Z;); Two —sided : P; = 20 (|Z;]), (5)

where @ (x) = P(N(0,1) > x) denotes the survival function of
N (0, 1).

2.3.1 p-value calculation for TFisher

At given 1y, 7, and n, the TFisher statistic T, (1}, 1) in Eq. 1
has a point probability mass at 0: py = P(T,(7;,7,) =0) =
P (min;P; > 7;) corresponding to all p-values are truncated.
Define s = -2log (11/75) > 0 when 7, >
(1,/15) < 0 when 7, < 7;. In either case T, (7}, 7,) > s and its

73, and s = —2nlog

distribution is a mixture of point mass at 0 and a continuous
distribution defined in [s, 00). Thatis, T), (11, 72) ~ po - 0 + (1 = po)
. T, where T' denotes an appropriate continuous random
variable.

The exact value of p, is easy to calculate under normality in
Eq. 4. The exact distribution of T' is challenging to obtain. We
propose to use the gamma distribution model to approximate it
for a few reasons. First, the model is consistent with the
distribution of the TFisher under independence, which is a
weighted gamma distribution (Zhang et al,, 2020b). Second,
the
approximate Fisher’s method under dependence (Brown,
1975; Zhang and Wu, 2022b). Third, when the shape
parameter of the gamma distribution is large, it converges to

literature has been wusing gamma distribution to

the normal distribution, which is appropriate for the TFisher
statistic when #n is large (see details below). Overall, gamma
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distribution provides a flexible and straightforward distribution
model, vital for computational speed and accuracy.

Specifically, we approximate the distribution of the TFisher
statistic by

Tn(Tl,Tz)QX’"P()'O‘F (I—Po)'X/, (6)

where X' - b ~T(a, 0), the gamma distribution with shape
parameter a and scale parameter 6. We consider a shift
parameter b so that X' € [b, 00). Let Fr(, x) denote the
CDF of I'(a, 6). The CDF of X is

Fx (X) = P(XSX) = P()I(XZO) + (1 - PO)FF(a,S) (X - b) (7)

Based on (7), the p-value of the TFisher at an observed statistic ¢ is

P(Tu(71,72) > 1) = 1 = Fx (). ®)

We discuss the methods to calculate Fx(f) in the following.

Method 1: The generalized Brown’s method (GB): This
method follows the essential idea of Brown’s method (Brown,
1975) to match the first two moments of T and X. Specifically, we
set the shift parameter b = s so that X' and T' have the same
domain. The parameters a and 0 are determined by matching the
means and the variances of T, (1, 7,) and X. Denote yr = E (T,
(11, 72)) and 0% = Var(T, (11, 72)). We have

(1~ po)ot ~ popr
(1 = po)ot — popz
(1= po) (r —b(1 = po))

(1= po)(ab +b)

Hr = px
{ = (1 - po) (a&® + po (ab +b)*)

2
Ox

Note that the gamma approximation is consistent with the
asymptotic normal distribution of T, (7, 7,) for large n by
the Central Limit Theorem (CLT). Specifically, when n — o0, p,
— 0,50 = pix = af + band 0% = 0% =~ af’. Because ['(a, 0) = N
(ab, af®) for large a, the distribution model in (6) leads to
T, (11, 12)21" (a,0) +b = N(af +b,a0*) = N (ur, 0%). However,
for finite n, the distribution model in Eq. 6 is more accurate for p-
value calculation.

Straightforward calculation gives = 2n7; (1 —log 7, + log
1,). For the variance 0%, we deduce its analytical formula given in
Lemma 1 in Supplementary Material. The formula involves a
summation of infinite terms. However, in practice, a summation
of two or three terms over k would give sufficient accuracy for o2
(Zhang and Wu, 2022b). The proof is based on Mehler’s theorem
(Patel and Read, 1996) and is given in Supplementary Material.

Method 2: Skewness-kurtosis-ratio matching method
(SKRM). Accurate calculation of small p-value highly depends
on the precise approximation of the right tail of the null
distribution. In this method, we do not require the shifting
parameter b = s but treat it as additional freedom to capture
the right-tail information of the TFisher statistic. That is, in
addition to the first two moments, we further match the
skewness-kurtosis ratios of T, (r;, 7,) and X. Engaging
higher-order moments could provide more flexibility in the
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TABLE 1 Type | error control for SNP-set testing by the oTFisher under quantitative and binary traits. SNP-set size n = 100, sample size N = 1,000.

« rare variants

oTFisher_cct oTFisher_minp

common variants

oTFisher_cct oTFisher_minp

GB Hybrid GB Hybrid GB Hybrid GB hybrid

Continuous trait

0.1 0.93 0.94 0.84 0.85 0.89 0.90 0.83 0.83
0.05 0.98 0.99 0.80 0.81 0.95 0.96 0.77 0.77
0.01 1.15 0.9 0.88 0.64 113 0.94 0.84 0.64
0.005 1.27 0.86 1.00 0.57 1.28 0.90 0.97 0.56
0.001 1.80 0.87 1.48 0.56 1.82 0.89 1.50 0.52
0.0005 2.17 0.89 1.84 0.58 2.21 091 1.89 0.53
0.0001 3.69 0.95 3.61 0.70 3.66 1.00 3.65 0.73
0.00005 4.82 1.05 4.99 0.87 4.66 1.08 4.96 0.79
0.00001 9.54 111 11.00 1.06 8.89 1.25 11.33 1.29
Binary trait

0.1 0.93 0.93 0.85 0.85 0.88 0.88 0.82 0.82
0.05 0.97 0.98 0.81 0.81 0.94 0.94 0.76 0.76
0.01 1.10 0.86 0.85 0.60 1.10 0.9 0.82 0.61
0.005 1.22 0.81 0.94 0.53 1.23 0.84 0.93 0.52
0.001 1.71 0.75 1.39 0.48 1.75 0.8 1.44 0.46
0.0005 2.07 0.77 1.75 0.50 2.11 0.81 1.82 0.47
0.0001 3.50 0.87 3.38 0.61 3.52 0.85 3.54 0.63
0.00005 4.59 0.86 4.68 0.67 4.53 0.93 4.82 0.71
0.00001 8.94 1.09 10.32 0.98 8.70 1.16 11.09 1.02

distribution and thus improve the accuracy of p-value
calculation. In particular, matching the skewness-kurtosis
ratios is a cost-efficient method-it captures two higher
moments using only one extra parameter.

Y = E(T' = pp)’lod,
E(T' - yT:)4/0§E, be the skewness and kurtosis of T’, and yx

Specifically,  let and  xkp =

and xy be the skewness and kurtosis of X', respectively. By
matching the ratio between skewness and excess kurtosis

Yo _ _Vx
kp—3 Ky —3
. . 9y.2.y
we can obtain a simple closed form a = 37 Subsequently, by

matching the mean and variance pipv = iy and 0%, = 0%, we have
0= % and b = py. — 02,+/a. After a, 0 and b are determined, the
p-value of the TFisher can be calculated by Eqs 7, 8.

Exact calculation of y7 and kv would be intricate due to the
complexity of the high moments of the summational terms in the
TFisher statistic. We rely on simulation by Eq. 4 to obtain these
values. The number of simulations needed for estimating these
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parameters is much smaller than that required for obtaining a
small empirical p-value directly. Therefore, the SKRM is still
computationally more efficient than getting p-values solely based
on the re-sampling strategy.

Method 3: Hybrid method. To balance computational speed
and accuracy, we recommend a simple two-stage calculation of
TFisher’s p-value. Because the GB is fast and accurate for
controlling the type I error rate at « > 0.01 (see the numerical
results below), the GB is applied in the first stage. If the obtained
p-value is less than 0.01 (the chance is about 1% under the null),
the SKRM method will obtain the final p-value in the second
stage. With a single core of 2.80 GHz AMD EPYC 7543 CPU and
20G memory, the computation times for calculating TFisher’s p-
values for SNP sets of 30/50/100/200 SNPs are about 0.07/0.13/
0.30/0.74 s by the GB method (implemented in R version 4.2.0).
Correspondingly, the expected times by the hybrid method
(assuming 1% chance of engaging the SKRM method that
takes 10° simulations to obtain y; and xp values) are 0.09/
0.15/0.33/0.78 s.
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FIGURE 1

Statistical power for binary traits from common SNPs. Row 1: Fixing the number of causal SNPs m =1, 5, and 10, and varying effect size f on x-
axis. Row 2: Fixing = 0.06, 0.08, and 0.1, and varying m on x-axis. Testing methods: fisher: Fisher's method; soft: soft-thresholding TFisher with 7, =
7, = 0.05; cct: Cauchy combination test; otfisher_minp: oTFisher in Eq. 2; otfisher_cct: oTFisher in Eq. 3; gates: extended Simes procedure.

2.3.2 p-value calculation for oTFisher

For the oTFisher_minp in Eq. 2, we can apply asymptotic
distribution to approximate its p-value by

1-0x(®7 (po),-... 0" (po)), ©)

where p, is the observed statistic of oTFisher_minp, ®g denotes
the CDF of a multivariate normal distribution with mean zero
and correlation matrix R. We obtain R by scaling Q, the
covariance matrix of T, (T T2x), k = 1, ... , K, given by
Lemma 2 in Supplementary Material. That is, R = AQA with
the diagonal matrix A = diag{1/+/Qx, k=1,...,N}L

As for oTFisher_cct in Eq. 3, following the property of the
CCT, its distribution is robust to the correlations as long as T,
(1 T2x)’s are roughly normal distributed. This requirement is
justifiable because T), (714, T2) is in the format of summation so
that it is roughly normal distributed by the CLT when # is
moderately large and 7, is not too small. Denote the observed
statistic by cct,. We directly apply the result by (Liu and Xie,
2020) to its  test by

approximate p-value
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PP (oTFisher_cct > ccto|Hp) = 4 — tan™" (cct,)/m. For the
computation time of obtaining the oTFisher’s p-value, the
dominant part is to get the p-values of the TFisher statistics

Tn (le) T2k)) k = 1’ cee s K.

3 Simulation studies
3.1 Simulation design

Simulations were applied to verify the accuracy of the p-value
calculation, statistical power, and SNP-screening performance of
the oTFisher procedures. The genotype data were generated by
the Cosi2 package (Shlyakhter et al, 2014). Specifically,
1,290 haplotypes were generated according to a coalescent
model based on chromosome 1 of the European population.
Two haplotypes were randomly picked with replacement to form
the genotypes of one diploid individual. In each simulation, we
obtained SNPs of N individuals. Both rare variants (0.05% <
MAF < 5%) and common variants (MAF >5%) were considered.
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Power comparison among the data-adaptive tests. Quantitative traits from rare variants. « = 0.01. Fixing the effect size to be 0.12 (left panel) and
0.14 (right). X-axis: The number of causal SNPs. Testing methods: fisher: Fisher's method; soft: soft-thresholding TFisher with 7; = 7, = 0.05; cct:
Cauchy combination test; otfisher_minp: oTFisher in Eq. 2; otfisher_cct: oTFisher in Eq. 3; gates: extended Simes procedure; ATPM: adaptive TPM;

ARTP: adaptive RTP.

We simulated continuous and binary traits by the regression
and the logit model, respectively:

Yi = GLB + X[y + e, wheree, "N (0,1),

X (10)
logit(P (Y, = 1)) = G+ X{y,

where Y} quantifies the phenotypic trait of the kth subject, k = 1,
..., N, with the sample size N. Gy. = (Gii,...,Gyy) is the
genotype vector of n SNPs, Xy = (X4, . . ., Xx)' is the vector of ]
LB
are the causal genetic effects of the corresponding SNPs. The
SNP-set analysis concerns testing the global hypotheses

controlling covariates. The nonzero elements of = (f,, ..

Hy: B=0versus H;:  #0.

We mimic a balanced case-control study for the binary traits.
That is, a large number of outcomes were generated based on the
probability of the logit model, then we randomly selected subjects
so that the numbers of cases and controls are N/2 each.

Based on the simulated data, we calculate the marginal score
test statistic following literature (McCullagh and Nelder, 1989;
Schaid et al., 2002; Barnett et al., 2017). Specifically, the score of
the ith SNP is M; = Y Gl (Yx = Yr), i=1,..
are the fitted trait values by the maximum likelihood estimation
under H,. It that Hy, M=
(Ml,.,.,Mn)’gN(O, Y), as N — o0o. The covariance matrix
T can be estimated by £ =G'WG - G'WX(X'WX)'X'WG,
where (G, X) is the design matrix corresponding to (10), and

., n, where ?;;

can be shown under

W is a diagonal matrix: W = 6°I for continuous trait (where 6 is
the estimate of the residual variance); W = diag{?k (1-
Yy), k=1,...,N} for binary trait. Each M; is standardized
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to get the marginal score statistic Z; = M;/ ﬁ‘.iigN (0,1)as N —
oo under H,. The correlation matrix of Z = (Z;,...,Z,) is
estimated by DD, where D = diag{\/ﬁl_ii R .,n}. Thus,
the marginal score statistics satisfy the assumption (4)

i=1,..

asymptotically. We used the two-sided SNP p-values in Eq. 5.
For the rare-variant analysis of binary traits, the saddle point
approximation (SPA) was applied to obtain SNP p-values, which
corrects the bias due to the unbalanced distribution of rare
variants” genotype data (Dey et al., 2017).

3.2 Accuracy of p-value calculation

Under the null, quantitative and binary trait values were
generated by setting f = 0 and Z = 1 in Eq. 10. We simulated 10”
oTFisher  statistics ~ with ~ the  adapting  domain
71 =1, =7 € T ={0.001,0.005,0.01,0.05,0.1,0.2,0.5,0.7, 1}.
The simulations included 100 randomly generated genotype data
to mimic various minor allele frequencies and LD structures of
SNPs in various genes. The empirical type I error rate was
obtained by proportionating all calculated p-values smaller
than a given nominal level «. Table 1 lists the ratios of
empirical type I error rates and the nominal « levels under
common and rare variants for quantitative and binary traits. A
ratio around 1 indicates accurate calculation. A more stringent «
is harder to control. The GB method well controls type I error
rate up to a > 0.005, but becomes liberal at smaller «, where the
SKRM method (using 10° simulations to obtain the third and
fourth moments) controls the error much better. Therefore, the
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hybrid method combining the GB and the SKRM balances
accuracy and computational speed. Consistent simulation
results with various n and 7 settings (with starting 7 = 107,
107 or 107 in 7') are given in Supplementary Tables S1-S4 in
Supplementary Material.

3.3 Statistical power

Through simulations, we assessed the statistical power of
the oTFisher tests in comparison with other p-value
combination tests in GWAS summary data analysis: the
GATES (extended Simes procedure, using
GATES?2 function in R library aSPU (Li et al., 2011)), the
CCT (i.e., the ACAT with equal weights), Fisher’s method, the
soft-thresholding TFisher at fixed 7, = 7, = 0.05, the adaptive
TPM (ATPM), and the adaptive RTP (ARTP). The ATPM
follows (1) and (2) with fixed 7, = 1, and adapts over 7, € 7.
The ARTP adapts over 7, € {P()}, where k € n7T (rounding to
the nearest integers) to be consistent with the oTFisher and
the ATPM.

We considered that the causal SNPs were randomly located,
and their effect sizes were given by the nonzero elements of 8 in
Eq. 10. For a fair comparison, we empirically controlled the type I
error rate « to avoid potentially unavailable or inaccurate p-value
calculation for some tests. For example, there are no p-value
calculation methods for the RTP and the ARTP under
dependence. We got the critical value of one statistic by the
upper 100a% percentile of its values generated from
10,000 simulations under the null. The statistical power was
obtained by the percentage surpassing the critical value among
the statistics generated from 1,000 simulations of the alternative.
For the RTP and ARTP, we applied a one-level simulation
algorithm consistent with literature (Yu et al, 2009) except
that we directly simulated the Z-scores for faster computation
instead of permuting the genotype data (details see
Supplementary Material).

Statistical power was systematically studied under various
settings regarding trait type (quantitative or binary), SNP type
(common or rare), the number of causal SNPs m, genetic effect
size 8, SNP-set size n, sample size N, and type I error rate a.
Figure 1 shows the power comparison under binary traits from
common SNPs at & = 0.005 with n = 100 and N = 10,000. A few
interesting observations can be made. First, the GATES and
the CCT have similar performances. They are advantageous
when causal SNPs are sparse (e.g., m < 3) and their effects are
strong. Fisher’s method shows an opposite pattern—it is
preferred if causal SNPs are dense, especially when effects
are weak. These patterns are consistent with literature results
(Zhang and Wu, 2022a). TFisher at fixed 7; = 7, = 0.05 is more
robust over sparse and dense causal SNPs. However, it could
still be less satisfactory (e.g., when m < 3). The oTFisher_cct
and oTFisher_minp are similar; their power is the best in most
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scenarios, showing an overall advantage over unknown
genetic architectures. In comparison with the ATPM and
the ARTP, Figure 2 shows that the oTFisher is uniformly
better than the ATPM. This observation is well-supported by a
theoretical optimality study (Zhang et al., 2020b). The ARTP
and the oTFisher have very similar power. Meanwhile, our p-
value calculation algorithm provides a practical advantage for
applying the oTFisher over the ARTP in computation. These
comparison patterns remain similar for quantitative traits,
rare variants, and different « levels. Comparisons under other
settings are given in Supplementary Figures S1-S13 in
Supplementary Material.

3.4 SNP screening

We studied the performance of SNP-screening procedures
measured by the accuracy of detecting causal SNPs. Because non-
causal SNPs in LD with causal SNPs also show statistical
associations, the study focused on rare-variant analysis with
weak LDs for simplicity. To mimic a gene-based SNP-set
analysis, we simulated L = 1,000 SNPs (with the LD #* < 0.3)
in g = 10 genes of equal size. Two causal genes contained causal
SNPs with random locations. The continuous and binary traits
were obtained using models in Eq. 10 that included all causal SNPs.
We systematically varied the genetic effect 5 and the proportion of
causal SNPs in the two causal genes. The sample size N = 1,000; the
cases and controls were balanced for binary traits.

We considered accuracy by the sensitivity, specificity,
and balanced accuracy (BA, the average of sensitivity and
specificity) based on the true positives (TP, the picked SNPs
that are causal), false positives (FP, the picked SNPs that are
non-causal), true negatives (TN, the unpicked SNPs that are
non-causal), and false negatives (FN, the unpicked SNPs that
are causal). These numbers are determined after defining the
“picked” and “unpicked” SNPs. At the screening stage of the
oTFisher procedure described in Section 2.2, we consider the
s candidate SNPs as being picked from in total  SNPs in the
significant genes; the rest t — s SNPs are unpicked. At the
validation stage, the s; validated SNPs are picked, and the
rest t — s; SNPs in the significant genes are unpicked. The
accuracy measures were averaged over 1,000 simulations.

The oTFisher procedure was compared with Bonferroni and
BH procedures for SNP screening. We further considered an
oracle procedure:

o Oracle procedure: Assume the number of causal SNPs m is
known, the oracle, i.e., the best possible, SNP screening
procedure is to pick SNPs by setting p* = P(,,, the mth
smallest SNP p-value.

Certainly, m is unknown in reality, so this procedure is a
hypothetically optimal procedure serving as an indicative

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1009428

Chen et al. 10.3389/fgene.2022.1009428
Signal proportion 0.05 Signal proportion 0.1 Signal proportion 0.2
= < <
- -sé?;lg - P -
= /e/?f i=-" & . s:%=53 = PR——
)| _B== )| - —o- ) o= 3=
> o o/ 2 > o =% _o-_ - o — g
o *  _g- @ o2~ 8 /ﬁ——’*//: a
£ == o _Zo- o _o” -
3 g—./ﬁ’ g 9]¢ _a==7" g {47 g0
< < o= 2° =T
i) * o o
D < Q o <
8 < | 8 < | 8 < |
s ° —¥— offisher_sig s ° —¥— offisher_sig s ° —¥— offisher_sig
g ~ —o— offisher_r_sig f;? ~ —o— offisher_r_sig g ~ —o— offisher_r_sig
o —e— ora_sig o ]l —e— ora_sig o ]l —e— ora_sig
-0~ bon_sig -0~ bon_sig -0~ bon_sig
o | —~ BH_sig o | —-  BH_sig o | —- BH_sig
o T T T T T T = T T T T T T e T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2
BETA BETA BETA
Signal proportion 0.05 Signal proportion 0.1 Signal proportion 0.2
S < Q
e—
© /'/7:351:3 [ee] /ﬁé! © ]
> o] o= 5=~ > o] =" "o- > o r.—:-:ﬁ—___u
_Z @~ —8- ) e --"
g A g _LEcT g ZZo
Ry v 5o ol R -
coc| ~ S o =227 S o g==-
< » < o= < e=="
el o o
Q < Q< o <
o = - o = - o = -
§° —¥— offisher_val £ ° —¥— otfisher_val 5° —¥— offisher_val
g ~ —o— offisher_r_val g - —o— offisher_r_val g - —©o— offisher_r_val
o —e— ora_val o —e— ora_val S —e— ora_val
-0 bon_val -0 bon_val -0~ bon_val
o | ~0- BH_val o | ~0- BH_val o | ~C- BH_val
© T T T T T T = T T T T T T o T T T T T T
0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2 0.2 0.4 0.6 0.8 1.0 1.2
BETA BETA BETA
FIGURE 3

The balanced accuracy at the SNP screening (row 1) and validation (row 2) stages under the continuous trait model. Code for methods: otfisher:
the oTFisher procedure with threshold p* = t*; otfisher_r, the oTFisher procedure with p* = min{r*, 0.1}; ora, the oracle procedure; bon, Bonferroni
procedure; BH, Benjamini—Hochberg procedure; sig, screening stage; val, validation stage. Signal proportion is the proportion of causal SNPs in the

two causal genes.

accuracy for comparison purposes. The validation process is the
same for all procedures.

Figure 3 compares the BA of the screened SNPs and
in both
validation stages, the oTFisher_r gave a higher BA than

validation of them. Overall, screening and
Bonferroni and the BH, sometimes even the Oracle. In the
screening stage, the oTFisher using p* = 7* had higher
sensitivity but lower specificity. Restricting the threshold to
p* = min{r*, 0.1} significantly increased the specificity. The
validation stage helped further control the type I error. For
comparisons of sensitivity and specificity and results under
more settings, see Supplementary Figures S14-S21 in
Supplementary Material.

4 Real-data analysis

We conducted a comprehensive study of nine GWAS
summary data sets from the GEFOS (Estrada et al.,, 2012;
Zheng et al., 2015; Kemp et al., 2017; Medina-Gomez et al.,
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2017; Medina-Gomez et al., 2018; Trajanoska et al., 2018, 2020;
Morris et al., 2019). A description of these studies and data is
given in Supplementary Material. Using the SNP p-values, we
carried out gene and haplotype-block (haploblock) analyses
for hunting putative genetic factors associated with bone
mineral density (BMD) related traits and fall risk. The
Supplementary Material gives details on our data pre-
processing, including the pipeline to map SNPs to genes
and haploblocks (Gabriel et al., 2002; Chang et al., 2015;
Deng et al, 2016), correlation estimation by reference
genome panel of the 1,000 Genome project (Higham, 2002;
Lin and Zeng, 2010b), and SNP p-value adjustment based on
the LD score regression (Bulik-Sullivan et al., 2015; Lee et al.,
2018). For stable numerical computation without losing much
associative information, SNPs with high LDs are pruned—if a
SNP pair has the LD 7* > 0.9, the variants with a lower MAF
would be removed (following the default setting of PLINK’s
SNP pruning function (Chang et al., 2015)). Furthermore, for
GEFOS2017_TBBMD data, it contains a large number of
genome-wide significant SNPs (p-values < 5E-8). These
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FIGURE 4
Bar chart for top-hit genes by various SNP-set analysis methods. Note: Bonferroni procedure corresponds to zero genes for
GEFOS2017_TBBMD (because genome-wide significant SNPs were removed from the gene-based analysis of this data) and GEFOS2020_FALLS
(because no genome-wide significant SNPs were mapped to genes).

SNPs were removed from our SNP-set analyses for this data.
The purpose is to reduce the false positive rate and study how
many genes and haploblocks could still be detected by SNP-set
analysis. The Q-Q plots for raw SNP p-values are given in
Supplementary Figure S22. The summary statistics on the
features of SNP, genes, and haploblocks are given in

Supplementary Tables S5-S8.
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We extensively searched the literature and obtained

comprehensive lists of 2,179 “literature” genes and 4,802 literature
SNPs reported to be associated with osteoporosis, bone fracture,
and various traits of bone mineral density (BMD). For the
falling risk, we took the 16 genes reported by (Trajanoska et al.,
2020) as literature genes since it is the only large-scale study we
found regarding this trait. The searching strategies and
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The cirFunMap plot of the pathway network is based on 173 top-hit genes from BMD-related studies. Above: The barplot of the enrichment ratio

is defined as the number of top-hit genes in the pathway over the number of total genes in the pathway. Below: The circular network plot. The node
color represents different clusters. The node size represents the levels of p-value: from small to large: (0.01,0.05), [0.001,0.01), (0.0001,0.001), and
(1e-10,0.0001). The edge represents correlations larger than a default threshold of 0.35.

resources are described in Supplementary Material (last update:
15 May 2022).
literature_genes.xls and literature_snps.xlsx, including the

The lists are in supplementary files

gene and SNP information, associated phenotypes, resources,
references, etc. These literature genes and SNPs are enriched
with true disease genetic factors. Therefore, including literature
genes and SNPs among the top hits can evidence the credible
performance of a good data analysis method. At the same time,
top hits that are not among these literature findings but are
functionally relevant to the given trait can be reasonably
considered as putative novel genetic discoveries.
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4.1 Gene-based analysis

We studied the genetic associations between genes and traits
using the SNP sets grouped by genes. Four methods were applied.
First, the Bonferroni procedure represents the single-SNP
method applied in the original GEFOS studies. The top-hit
genes contained significant SNPs with p-values less than
Bonferroni adjusted threshold: 0.05 divided by the total
number of SNPs in all genes. Second, we applied two broadly
applied SNP-set methods using SNP p-values: the ACAT (Liu
et al,, 2019) and the GATES. Third, we applied our proposed
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FIGURE 6
Bar chart for top-hit blocks by various tests. Literature blocks are those mapped to literature genes or containing literature SNPs. Genome-wide
significant SNPs were removed from testing the data of GEFOS2017_TBBMD. There are no detections for ACAT and GATES for the 2017_TBBMD and
2020_FALLS data because they had no haploblock p-values surpassing the significance level defined by 0.05 over the number of blocks.

oTFisher method with the adapting domain 71 =17, =7€¢7 =
{107%,0.001,0.005,0.01,0.05,0.1,0.2, 0.5,0.7, 1}.

The oTFisher_cct and the oTFisher_minp yielded similar
results, so the former is reported below for simplicity. The Q-Q
plots of the gene-based association p-values are given in
Supplementary Figure S24. The top-hit genes are given in
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the supplementary file top_genexlsx. The overlaps of the
top-hit genes and the top-hit literature genes among these
four analysis methods are given in Supplementary Figures
S25-826.

Figure 4 summarizes the numbers of top gene hits, from
which we can make a few interesting observations. First, the
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FIGURE 7
Overlap the screened SNPs in haploblock-based analysis (row 1) and validated SNPs (row 2) based on the oTFisher_r, Bonferroni procedure,
original GEFOS study, and literature. SNP screening is done by GEFOS2012_FN (left column) and GEFOS2012_LS (right column); validation is done by
the UK Biobank data.

Bonferroni procedure systematically led to fewer top hits and
literature genes than the other methods. The result indicates that
SNP-set tests could have higher statistical power than single-SNP
analysis in detecting disease genes. Second, the oTFisher yielded
similar or more gene hits, and most of the hits are literature genes
indicating a reliable discovery and potentially higher statistical
power. In particular, the oTFisher could have the advantage of
detecting polygenic genes that contain relatively dense genetic
signals. For examples, the oTFisher detected significantly more
genes in the studies of GEFOS2017_TBBMD
GEFOS2020_FALLS, where top-hit genes
multiple SNPs  with relatively small p-values (see
Supplementary Tables S9 and S10 for the distribution of SNP
p-values within these top-hit genes). The polygenic genetic

and
often contain
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architecture is possible for complex human diseases, including
the BMD-related traits (Kemp et al., 2017; Morris et al., 2019).

We carried out gene-set enrichment analyses (GSEA) for
the top-hit genes identified by oTFisher. Based on gene
ontology (GO) and KEGG pathways, the analysis was
conducted by KEGG Orthology-Based Annotation System
intelligent version (KOBAS-i) (Bu et al, 2021). The
analysis identified significant GO terms and biological
pathways enriched in the top-hit genes at the corrected
significance level of 0.05. The GEFOS data-specific results
supplementary files
top_GOs_pathways_study-specificxlsx. These GO terms

are summarized in

and biological pathways are often related to the bone and
skeletal system and are consistent with the osteoporosis
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(Guo et 2019).
Furthermore, we considered the BMD as a general trait and

pathways reported in literature al.,
carried out the GSEA by pooling 173 top-hit genes from eight
studies (except for falling risk). Twenty-one significantly
enriched pathways were obtained and clustered into three
networks based on their correlations by the cirFunMap plot
(Buetal, 2021). Figure 5 visualizes the clusters (ranked by the
median p-value of the enriched pathways within each cluster).
The first

12 pathways: Wnt signaling pathway (hsa04310), breast

cluster gives a major network containing

cancer (hsa05224), hepatocellular carcinoma (hsa05225),
pathways in cancer (hsa05200), gastric cancer (hsa05226),

basal cell carcinoma (hsa05217), signaling pathways
regulating  pluripotency of stem cells (hsa04550),
proteoglycans in cancer (hsa05205), hippo signaling

pathway (hsa04390), human papillomavirus infection
(hsa05165), Cushing syndrome (hsa04934), and mTOR
signaling pathway (hsa04150). The top two significant
pathways, the Wnt signaling and breast cancer pathways,
have been reported in literature (Guo et al., 2019). The
large cluster here provides a networking context for them.
The second cluster, containing pancreatic cancer (hsa05212)
and colorectal cancer (hsa05210), is also connected with the
first cluster. The third cluster, containing the prolactin
signaling pathway (hsa04917) and rheumatoid arthritis
(hsa05323), is independent of the rest. Details of the
significant pathways and their clusters for the BMD traits
are given in supplementary files top_pathways_BMDs.xIsx.
The top-hit novel genes included in the enriched GO terms
and pathways are likely disease genes that influence the
corresponding functionalities. In particular, we obtained three
top-hit novel genes in the 21 significantly enriched pathways
obtained by pooling 173 top-hit genes of the BMD traits. Gene
HSPG2 (chrl: 22148724-22263790, oTFisher p-value 1.18E-07)
is included in a significantly enriched pathway of proteoglycans
in cancer (hsa05205, corrected enrichment p-value 0.0047). It
was shown to be associated with segregating developmental
dysplasia of the hip (Basit et al, 2017). Gene MAP3KI2
(chr12: 53874275-53893444, oTFisher p-value 6.49E-09) is
included in the significantly enriched MAPK signaling
pathway (hsa04010, corrected enrichment p-value 0.0048). It
is related to lissencephaly type 3 - metacarpal bone dysplasia
and infantile osteopetrosis with neuroaxonal dysplasia in the
Open Targets Genetics (Ghoussaini et al., 2021). Gene PRKAGI
(chr12: 49396054-49412629, oTFisher p-value 2.22E-06) is
in the significantly enriched Apelin signaling
pathway (hsa04371, corrected enrichment p-value 0.0049). It
is related to bone marrow failure syndrome in the Open

included

Targets Genetics. Novel top-hit genes contained in the
enriched GOs and pathways from GEFOS data-specific results
the supplementary file
novel_genes_in_top_GOs_pathways_study-specific.xlsx. More
discussion of them is given in Supplementary Material,

are summarized in
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including genes connected to relevant traits such as

osteoarthritis, osteosarcoma, and bone metastasis.

4.2 Haplotype block-based analysis

Gene-based analysis has the limitation of a small coverage
of the genome. For a whole-genome association study, we
grouped and analyzed SNPs by haplotype blocks (haploblock
estimation by PLINK (Chang et al., 2015) is detailed in
Supplementary Material). The Q-Q plots and the Manhattan
plots are given in Supplementary Figures S27 and S28 in

Overall,
For

Supplementary Material. genomic inflation is
SNP-set

Figure 6 shows the number of top-hit blocks. Compared

reasonably controlled. varijous methods,
with other methods, the oTFisher generated more top-hit
blocks and novel blocks (ie., top-hit blocks that do not
overlap literature genes or SNPs). More details on the top-
hit blocks and their corresponding SNPs and genes are
summarized in the supplementary file top_haploblocks.xlsx.

The haploblock-based analysis provided complementary
results to the single-SNP analysis and gene-based analysis. As
a SNP-set analysis method, haploblock analysis could detect
additional disease SNPs over single-SNP analysis. For
example, in the study GEFOS2012_FN, the top-hit blocks by
the oTFisher discovered 56 literature SNPs that the single-SNP
analysis failed to detect (since their p-values do not pass the
genome-wide significance level). The haploblock analysis could
also map additional disease genes over the gene-based analysis.
Supplementary Table S11 summarizes the numbers of top-hit
blocks that can map to literature or novel genes. According to the
results, the haploblock analysis found some literature genes that
were not among the top hits of the gene-based analysis. For
example, in the study GEFOS2012_FN, six literature genes were
mapped by top-hit haploblocks but were not discovered by the
gene-based analysis: ATXN7L3, AXINI, CPEDI, FUBP3,
LOC100272217, and SOX6. For all GEFOS studies, we had
27 literature genes and 119 literature SNPs (63 of them are
outside gene regions) detected by haploblock analysis but not by
gene-based analysis. Supplementary Figure S29 lists the numbers
of literature genes and SNPs found by haploblock analysis versus
gene-based analysis. Furthermore, the top-hit blocks (including
single-SNP blocks) contained all GEFOS-reported significant
SNPs, indicating no information lost compared to the original
GEFOS studies.

The top-hit blocks from eight BMD studies contain 286 novel
blocks; 255 of them are outside of genes (detailed information is
given in the supplementary file novel_haploblocks.xlsx). By
epigenetic annotation (Haploreg v3 (Ward and Kellis, 2016)),
58 of the novel blocks (representing 43 non-overlapping loci) co-
locate with strong enhancers of literature genes. Therefore, these
novel blocks are of interest due to their functional connections.
For example, a top-hit block chr2:54643778-54645650 (oTFisher
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p-value 1.67E-16 by GEFOS2012_LS data) contains three SNPs
rs13393949 (p-value 2.12E-06), rs4671215 (p-value 9.36E-08),
and 1s7560205 (p-value 1.72E-05) that locate at a strong
enhancers of gene SPTBNI in cells Huvec (umbilical vein
endothelial cells) and NHEK (epidermal keratinocytes). Gene
SPTBNI is shown associated with heel bone mineral density
(Kemp et al., 2017). The enhancer-located novel blocks are given

in the supplementary file
novel_haploblocks_enhancers_literaturegene.xlsx, and an
extensive discussion of the related SNPs is given in

Supplementary Material.

4.3 Screening SNPs

Real-data analysis results show that the SNPs-screening
procedure by the oTFisher_r could likely yield more disease
SNPs than the Bonferroni procedure. Specifically, we used
GEFOS2012 data sets to collect screened SNPs and validate
them by a large data of osteoporosis from the UK Biobank
(15,133 cases and 426,942 controls at ages of 38-73 years)
(Sudlow et al., 2015). Figure 7 shows the Venn diagrams of the
screened SNPs by the oTFisher r and the Bonferroni
procedures in the haploblock-based analyses, which are also
compared with the SNPs reported in the original GEFOS
studies and the literature SNPs. For consistent comparison,
the validated SNPs were defined by the significance level of
0.05 over the total number of unique SNPs from the screening
step and the literature. As expected, all GEFOS-reported SNPs
were contained by the sets of literature SNPs as well as the
screened SNPs. The oTFisher_r replicated more literature
SNPs than the Bonferroni both before and after the
validation stage. For example, with GEFOS2012_FN data,
all screened SNPs by the Bonferroni were included in the
set of SNPs by the oTFisher_r, while the oTFisher_r screened
30 additional literature SNPs (among which five were
validated). Therefore, the oTFisher_r likely has a higher
chance of finding disease SNPs. Furthermore, over 30% of
the screened SNPs by oTFisher_r were verified. The high
validation percentage (compared to the expected percentage
of no more than 5% under the null) indicates that the set of
screened SNPs by oTFisher_r likely contains enriched disease
SNPs. Consistent results for gene-based analysis are given in
Supplementary Figures S30 and S31 in Supplementary
Material.

5 Discussion

GWAS summary data is a rich resource for hunting genetic
factors associated with the susceptibility of human complex
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diseases. To facilitate analyzing such data, in this paper, we
propose a SNP p-value combination test, the oTFisher, which
has robustly high statistical power through adapting to unknown
patterns of genetic effects. We develop computationally efficient
algorithms to calculate the p-value of the oTFisher, which
account for the LD of the SNPs. One advantage of such p-
value combination test is that they do not assume a special type of
SNP statistics. In principle, the same calculation can be carried
out as long as the correlations among the SNP statistics can be
estimated.

As given in Eq. 2, the oTFisher’s truncating and weighting
scheme for SNP p-values maximizes the significance of the
potential underlying genetic effects (through minimizing the
corresponding TFisher’s p-value). With well-controlled type I
error rate of the oTFisher, this automatic truncating scheme
could serve as a vehicle for screening important SNPs that
contribute to the overall association of the given SNP set.
Results show that this screening procedure could better identify
disease SNPs than the traditional Bonferroni and FDR procedures.
Meanwhile, because the screening procedure is relatively liberal,
validating these screened SNPs using an independent high-quality
data set is critical for controlling false positives. Furthermore, one
should always be cautious about interpreting the screened SNPs in
the sense that statistical association does not necessarily mean
causality. The associated SNPs could be due to LD with causal
SNPs or even confounding effects. Nevertheless, the oTFisher
provides a new way of exploring important SNPs not from
their individual perspective but from the combined effects of
the group as a whole.

We applied the oTFisher to a comprehensive study of
using GEFOS  data.
demonstrating the merit of the new method, we also

osteoporosis-related  traits Besides
generated novel genes and haploblocks that could benefit the
downstream study of osteoporosis genetics. Further biological
validations of these results are desired.

Our GEFOS data analysis focused on gene and haplotype
block-based SNP-grouping strategies for simple biological
the

testing principle, the oTFisher can also be extended to

interpretability. Based on data-adaptive omnibus

other SNP-grouping as well as annotation-weighting
strategies in whole genome sequencing studies, especially
for studying the noncoding regions, following the ideas
proposed in recent literature (Morrison et al, 2017; Li
et al.,, 2020, 2019, 2022).

In general, the quality of GWAS summary data analysis
highly depends on the quality of the input data. For example,
if the SNP p-values were inflated, the subsequent SNP-set testing
results will be inflated. Current inflation correction procedures
could partially address the problem but are still limited. Further
research in this direction is needed. Indeed, high-quality data is

essential; we highly appreciate data-generating studies providing
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high-quality summary data for the sake of both primary and
secondary data analyses.
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