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Abstract: Consider a sequence ofGibbsian line ensembles,whose lowest labeled curves
(i.e., the edge) have tight one-point marginals. Then, given certain technical assumptions
on the nature of the Gibbs property and underlying random walk measure, we prove that
the entire spatial process of the edge is tight. We then apply this black-box theory to
the log-gamma polymer Gibbsian line ensemble, which we construct. The edge of this
line ensemble is the transversal free energy process for the polymer, and our theorem
implies tightness with the ubiquitous KPZ class 2/3 exponent, as well as Brownian
absolute continuity of all the subsequential limits. A key technical innovation which
fuels our general result is the construction of a continuous grand monotone coupling of
Gibbsian line ensembles with respect to their boundary data (entrance and exit values,
and bounding curves). Continuous means that the Gibbs measure varies continuously
with respect to varying the boundary data, grand means that all uncountably many
boundary data measures are coupled to the same probability space, and monotone means
that raising the values of the boundary data likewise raises the associated measure. This
result applies to a general class of Gibbsian line ensembles where the underlying random
walk measure is discrete time, continuous valued and log-convex, and the interaction
Hamiltonian is nearest neighbor and convex.
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1. Introduction and Main Results

Gibbs measures are ubiquitous in statistical mechanics and probability theory. Subject to
given boundary conditions, they are measures, which are proportional to the exponential
of a sum of local energy contributions. Gibbsian line ensembles are a special class of
Gibbs measures, which have received considerable attention in the past two decades
owing, in part, to their occurrence in integrable probability.

A Gibbsian line ensemble can be thought of as a collection of labeled random walks,
whose joint law is reweighed by a Radon–Nikodym derivative, proportional to the expo-
nential of the sum of local interaction energies between consecutively labeled curves.
Local means that the energies only depend on the values of nearby curves both in terms
of the time and label. A simple example of a Gibbsian line ensemble is a collection of
random walks conditioned not to touch or cross each other (e.g. level lines of random
rhombus or domino tilings). In this case the local energy is infinity or zero depending
on whether the touching or crossing occurs or does not. Dyson Brownian motion with
β = 2 is a continuous space and time limit of such ensembles [22].

Besides providing a compact way to describe a large class of measures, the struc-
ture of a Gibbsian line ensemble can be utilized to great benefit when studying their
asymptotic scaling limits. Starting with [5], there has been a fruitful development of
techniques, which leverage the Gibbs property of Gibbsian line ensembles to prove their
tightness under various scalings, given only one-point tightness information about their
top curve—see for instance [3,4,6–9,14,16,19,24–27,42]. In [5], this program was ini-
tiated through the study of N one-dimensional Brownian bridges, conditioned to start at
time −N and end at time N at the origin and not intersect in the time interval (−N , N ).
These measures are called Brownian watermelons and they are closely related to Dyson
Brownian motion with β = 2. The limiting line ensemble, which arises in that case,
is the Airy line ensemble. Among its many distinctions, this line ensemble forms the
foundation of the entire Kardar–Parisi–Zhang (KPZ) fixed point through its role in the
construction of the Airy sheet in [17].

Since [5], a number of other important examples of Gibbsian line ensembles have
arisen. One natural context is in describing the level-lines of two-dimensional interfaces
conditioned to stay positive [8,9]. Another is in models arising in integrable probability
where the Gibbs property is born in the branching structure of the symmetric polyno-
mials, from which integrable models are defined—see for example [3] in the case of
Hall–Littlewood processes.

Our present study is prompted by our interest in the log-gamma polymer [39], which,
through a connection to Whittaker processes [10], can be related to the lowest labeled
curve of a Gibbsian line ensemble (see Sect. 1.2). The structure of the local energy in this
model is considerably more complicated than that of non-touching or crossing random
walks.

The primary aim of our work is to develop a black-box theory (Theorem 1.2), which
proves tightness and Brownian absolute continuity of the lowest labeled curve of a Gibb-
sian line ensemble given tightness of its one-point marginal distribution. We develop
this theory for a general class of line ensembles, in which the underlying random
walk measure has continuous jumps and scales diffusively to Brownian motion, and
in which the interaction energy is such that a key stochastic monotonicity property holds
(Lemma 2.11). The first subsection of this introduction, Sect. 1.1, contains a statement
of our black-box theory (various definitions and terminology are introduced in more
detail in the main text).
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The secondary aim of our work is to apply our black-box theory to the log-gamma
polymer line ensemble, that we construct in Sect. 1.2, and conclude that the polymer
free energy has transversal fluctuation exponent 2/3, as expected by KPZ universality.
In Sect. 1.2 we recall the definition of the log-gamma polymer as well as describe the
nature of the Gibbsian line ensemble, into which it embeds. Combining this with the
one-point tightness, proved recently in [1], we apply our black-box theory and arrive at
the advertised transversal fluctuation behavior, see Theorem 1.10.

1.1. Tightness and Brownian absolute continuity for general Gibbsian line ensembles.
Gibbsian line ensembles have been studiedmostly in the context of interacting Brownian
paths [4,6–9,19,24–27] or in the fully discrete setting where the path’s time and value
are indexed by the integers [3,14,16]. In this paper, wewill be dealing with discrete time,
continuous valued Gibbsian line ensembles—see Fig. 1 for an illustration and Sect. 2.1
for a precise definition. Informally, these are measures on collections of curves L =(
Li
)

i∈�1,K � so that each Li is the linear interpolation of a function from �T0, T1� → R

for some K ≥ 2 and some integer interval �T0, T1� ⊂ Z. Here and throughout the paper,
wewrite �a, b� = {a, a+1, . . . , b} for two integers b ≥ a. The key property, which these
measures enjoy, is a resampling invariance, whichwe refer to as the (partial) (H, H RW )-
Gibbs property. The function H RW is the random walk Hamiltonian, and the function
H is the interaction Hamiltonian. We describe this Gibbs property informally here. For
any k1 ≤ k2 with k1, k2 ∈ �1, K − 1� and any a < b with a, b ∈ �T0 + 1, T1 − 1�,
the law of the curves Lk1 , . . . , Lk2 on the interval �a, b� is a reweighting of random
walk bridges according to a specific Radon–Nikodym derivative. The random walk
bridges have starting and ending values to match the values of Lk1 , . . . , Lk2 at a and b,

respectively, and have jump increments with density proportional to G(x) = e−H RW (x).
The Radon–Nikodym derivative, which reweighs this measure is proportional to

k2∏

i=k1−1

b−1∏

m=a

e−H(Li+1(m+1)−Li (m)). (1.1)

The fact that we assume that k2 ≤ K − 1 means that we are fixing the curve indexed by
K and not resampling it. This is why we use the term partial in describing this Gibbs
property. In this text we will primarily be concerned with the behavior of L1, the lowest
labeled curve. If we restrict our attention to just the few lowest labeled curves, i.e. L1
through L K , of a Gibbsian line ensemble with more curves, the Gibbs property transfers
to the restriction provided that we do not resample the K -th curve. We will generally
drop the term partial and just refer to this as the Gibbs property.

The above definition implies that on a given domain the law of the line ensemble
is determined only by the boundary values of the domain, and independent of what
lies outside. In this sense, this is similar to a spatial version of the Markov property.
Section 2.1 contains a precise definition of the (H, H RW )-Gibbsian line ensembles, that
we have described above.

We can now state our main result on general Gibbsian line ensembles. In words, our
theorem says that the Gibbs property propagates one-point tightness to spatial tightness
of the lowest labeled curve in a sequence of general Gibbsian line ensembles and that all
subsequential limits are absolutely continuouswith respect to a suitably scaled Brownian
bridgemeasure. The diffusive scaling in defining fN (s) in (1.2) is present (and expected),
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T0 T1a b

L1(·)

L2(·)

. . .

LK(·)

Fig. 1. A discrete line ensemble L. We illustrate the Gibbs property. The distribution of lines Li indexed
by i ∈ �2, 3� on the interval �a, b� (corresponding to the portion of lines that are dashed in the picture) is
absolutely continuous with respect to the law of random walk bridges (with law determined by H RW ) joining
Li (a) to Li (b), with Radon–Nikodym derivative proportional to (1.1)

because the underlying random walk measure dictated by H RW is assumed to converge
to Brownian motion under diffusive scaling.

Since our theorem pertains to the lowest labeled curve of a Gibbsian line ensemble,
it is phrased in terms of line ensembles with two curves L1 and L2. This could arise as
the marginal of an ensemble on more curves. Since we are working with the (partial)
Gibbs property, taking this marginal preserves our ability to apply the Gibbs resampling
to the L1 curve.

In the statement of our theorem, we make certain assumptions on H and H RW , that
are given in Definitions 3.1 and 2.15, respectively.Most of these are mild growth bounds
that hold in typical examples. The fundamental assumption that we make on both H
and H RW is convexity. This is key because it implies that our (H, H RW )-Gibbsian line
ensembles enjoy a monotone coupling, whereby shifting the boundary data for the line
ensemble up results in the measure shifting up. This result is shown as Lemma 2.11.

The following definition is useful in stating our main theorem.

Definition 1.1. Assume that H RW satisfies the conditions of Definition 2.15 and H
those of Definition 3.1. Fix α > 0, p ∈ R and T > 0. Suppose we are given a sequence
{TN }∞N=1 with TN ∈ N and that {LN }∞N=1 is a sequence of �1, 2� × �−TN , TN �-indexed
line ensemblesLN = (L N

1 , L N
2 ). We say that the sequence

{
LN
}∞

N=1 is (α, p, T )–good,
if there exists N0 = N0(α, p, T ) > 0, such that for N ≥ N0

• TN > T Nα + 1 and LN satisfies the (H, H RW )-Gibbs property;
• for each s ∈ [−T, T ] the sequence N−α/2

(
L N
1 (�s Nα	) − ps Nα

)
is tight.

(In other words, we have one-point tightness of the top curve under scaling of space
by Nα and fluctuations by Nα/2.)

In words, the above definition states that L N
1 is a sequence of random curves, which

globally have a slope p ∈ R; moreover, when the line of slope p is subtracted from
L N
1 the resulting sequence of random curves scaled horizontally by N−α and vertically



Spatial Tightness at the Edge of Gibbsian Line Ensembles 1313

by N−α/2 has tight one-point marginals over a fixed interval [−T, T ]. The assumption
TN > T Nα + 1 is merely there to ensure that the rescaled lines (and consequently their
marginals) are well-defined on [−T, T ].

It is possible to formulate Definition 1.1 for line ensembles containing more than
two curves; however, if we have such a line ensemble, the nature of the Gibbs property
allows us to restrict it to the top two curves, and then this restricted line ensemble of
two curves will satisfy the same assumptions as above. Since all of our results describe
the behavior of L N

1 , there is no loss in generality in assuming that our line ensemble has
exactly (rather than at least) two curves.

We may now state our main black-box theorem, whose proof is a combination of
Theorems 3.2 and 5.3 in the main text.

Theorem 1.2. Fix α, T > 0 and p ∈ R and let
{
LN = (L N

1 , L N
2 )
}∞

N=1 be an (α, p, T +
3)–good sequence of line ensembles. For N ≥ N0(α, p, T +3) (where N0(α, p, T +3) is
as in Definition 1.1 and exists by our assumption of being (α, p, T +3)–good) let fN (x)

be given by

fN (x) := N−α/2(L N
1 (x Nα) − px Nα

)
(1.2)

Let PN denote the law of fN as a random variable in (C[−T, T ], C), where C is the
Borel σ -algebra coming from the topology of uniform convergence in C[−T, T ]. Then,
the sequence of distributions PN is tight in N. Furthermore, all subsequential limits of
PN are absolutely continuous with respect to the Brownian bridge with variance 2T σ 2

p
( the absolute continuity statement is explained in Definition 5.2 and σp is defined in
terms of H RW in Definition 2.15 and represents the diffusion coefficient of the Brownian
bridge whose domain is [−T, T ], hence the factor of 2T ).

Remark 1.3. With a bit of work, the assumption that
{
LN = (L N

1 , L N
2 )
}∞

N=1 is (α, p, T +
3)-good can be replaced with being (α, p, T +ε)-good for some ε > 0. In words, we can
ensure the tightness and Brownian subsequential limits of the restrictions of our curves
to [−T, T ] starting from a one-point marginal tightness on a slightly bigger interval
[−T − ε, T + ε]. Our choice of ε = 3 is purely cosmetic and made to simplify the
notation and proofs in the main text.

1.1.1. Comparison to previous literature Since there is now a fairly large literature
studying Gibbsian line ensembles and their tightness, we briefly describe how our work
fits into and extends this literature. In particular, the two main innovations of this paper
are that (1) we deal with a very general class of Gibbs properties and (2) we provide a
completely new approach to proving the key stochastic monotonicity (see Lemma 2.11).
Regarding the second point, our new approach allows us to construct a monotone cou-
pling, which compared to previous results is completely explicit, holds in greater gen-
erality and enjoys remarkable topological properties—we elaborate on these statements
in this section as well as in the remarks that follow Lemma 2.11.

Previous work on Gibbsian line ensembles have mainly focused on systems where
the underlying random walk is a Brownian motion [4,6–9,19,24–27]. Recently, there
have been some studies of discrete underlying random walks, which have jumps that are
Bernoulli or geometric [3,14,16]. Tomove to general randomwalks, we utilize a recently
developed bridge extension of the KMT strong coupling [30], which was developed in
[20]. That work was, in fact, developed for application to this present paper and the
related work of [42].
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Wu [42,Chapter 3]workswith a different but related formof our (H, H RW )-Gibbsian
line ensemble, in which the interaction Hamiltonian H depends on the scaling parameter
N (which also indexes a sequence of line ensembles as in Theorem 1.2) and converges in
a suitable N -dependent scale to an exponential function. The main result of [42, Chapter
3] is that if the lowest labeled curve is tight in the same N -dependent scale, in which H
becomes an exponential, then the entire line ensemble is tight in that scaling. Moreover,
Wu [42, Chapter 3] shows that all subsequential limits enjoy the same exponential
Brownian Gibbs property that was introduced in [6] in the context of the KPZ line
ensemble.

In contrast to the work of [42], we deal with general interaction Hamiltonians H ,
which are not scaling with N . Though we presently only prove tightness of the lowest
labeled curve, we expect the entire edge of the line ensemble is similarly tight and that
all subsequential limits enjoy the non-intersecting Brownian Gibbs property introduced
in [5] in the context of the Airy line ensemble.

The other main innovation in our current work is a completely new approach to prov-
ing stochasticmonotonicity (seeLemma2.11). This property is key to the entireGibbsian
line ensemble machinery, since it enables us to reduce various interacting systems of
random walks to estimates about single random walks or interacting random walks with
simpler boundary conditions. Until now, the only approach that people have taken to
proving stochastic monotonicity for Gibbsian line ensembles is through Markov chain
Monte Carlo (MCMC) methods. Specifically, given the boundary data for a Gibbsian
line ensemble, the measure on the curves can be sampled by running a MCMC until it
reaches its stationary state, which is the desired measure. The key to proving the stochas-
tic monotonicity is to show that for a pair of ordered boundary data the MCMC can be
coupled to maintain ordering. In more detail, we start both chains off at their lowest
possible configurations (which should be ordered due to the ordering of the boundary
data) and run them until they reach stationarity. This provides a coupling of the two
measures, which clearly satisfies the right ordering to imply stochastic monotonicity.

The MCMC approach to proving stochastic monotonicity was first implemented in
[5] in the context of non-intersecting Bernoulli random walks (see also [14]) and then
extended to non-intersecting Brownian bridges in [5] via a limit transition. The treatment
in [5] of this limit from discrete to continuous was terse and short on details, though this
issue has been since remedied in [15]. In the case of H -Brownian Gibbs line ensembles
(such as theKPZ line ensemble) [6] implemented a similar scheme (also short on details),
which relied on proving a stochastic monotonicity for Bernoulli randomwalks subject to
a convex interactionHamiltonian and then transferring thatmonotonicity to theBrownian
setting through a diffusive scaling limit.

In the context of the (H, H RW )-Gibbsian line ensembles, which we consider herein,
[42] implemented the MCMC approach. As in the work of [5,6,42] first worked with a
discrete approximation (though no longer Bernoulli random walks since the aim was to
access general continuous jump distributions). In the discrete case the MCMC approach
provides the desired coupling for any two ordered boundary data, and in the proof of [42,
Lemma 3.1.11] it was shown that this monotonicity transfers to the continuous limit. In
the present paper, we introduce a newmethod, which works directly with the distribution
function of the line ensemble. This way there is no need to approximate or pass to limits.

Our construction, which is the content of Lemma 2.11, provides a continuous grand
monotone coupling of Gibbsian line ensembles with respect to their boundary data
(entrance and exit values, and bounding curves). Continuous means that the Gibbs mea-
sure varies continuously with respect to varying the boundary data, grand means that all



Spatial Tightness at the Edge of Gibbsian Line Ensembles 1315

uncountably many boundary data measures are coupled to the same probability space,
and monotone means that raising the values of the boundary data likewise raises the
associated measure. This result applies to a general class of Gibbsian line ensembles
where the underlying random walk measure is discrete time, continuous valued and
log-convex, and the interaction Hamiltonian is nearest neighbor and convex.

One advantage of our continuous grand monotone coupling is that, unlike previous
works that showed that two line ensembles with fixed boundary data (that are ordered)
can be monotonically coupled, our result shows that all line ensembles with all pos-
sible boundary data can be simultaneously monotonically coupled. One might be able
to improve the MCMC argument in the discrete setting to prove a similar statement;
however, there is some delicacy in showing that the convergence of the discrete approx-
imations to the limit happens simultaneously for all boundary data, since the latter form
an uncountable set.

An additional advantage of our continuous grand monotone coupling is that it is
completely explicit, and the space, onwhich the line ensembles are coupled, is a standard
Borel space (in fact it is nothing but the unit cube (0, 1)n of appropriate dimension, with
the Borel σ -algebra and Lebesgue measure). The explicit realization of the coupling
probability space as a topological space allows one to probe the topological properties
of the coupling. In this direction we establish, as part of Lemma 2.10, the continuity
of the map that takes as input the boundary data and an elementary outcome in our
probability space (i.e. a point in (0, 1)n) and gives as output a line ensemble evaluated
at this outcome. While we do not use this statement in our proofs, we hope that such a
statement can find future applications. The general point here is that our construction
makes it possible to extract topological information regarding our line ensemble and its
dependence on the boundary data, which was previously unattainable via the MCMC
coupling techniques.

Our continuous grand monotone coupling result presently only holds for one curve,
which suffices for the purposes of the present paper. It would be interesting to see an
extension of our construction to arbitrary number of curves although presently it does
not seem to be straightforward.

1.1.2. Natural extensions We close out our discussion on general Gibbsian line ensem-
bles by identifying a few natural extensions to our results and methods that we believe
merit further investigation.

This paper focuses on the lowest labeled curve of general (H, H RW )-Gibbsian line
ensembles. This is because our application (see Sect. 1.2) only requires such control.
However, it would be natural to extend our tightness result to the entire edge of the line
ensemble and, moreover, to show that all subsequential limits enjoy the non-intersecting
Brownian Gibbs property. The reason for the non-intersecting Gibbs property is because
the curves should separate in the Nα-scale and by our assumption that H(x) goes to
infinity as x does, we should see a limiting hard-wall potential emerge. Lemma 2.11,
our monotone coupling result, is restricted to only deal with the lowest labeled curve
though we expect that a more general coupling for arbitrarily many curves should be
provable via an extension of our new method.

Our (H, H RW )-Gibbsian line ensembles are not themost general for which one could
hope to prove tightness results. For instance, the underlying random walk Hamiltonian
H RW could be inhomogeneous, varying within the line ensemble. The Radon–Nikodym
derivative in (1.1) could also involve a more general type of local interaction than just
between pairs Li (m) and Li+1(m + 1). Alternatively, one could release the condition on
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convexity of either H RW or H . All of these variations arise in some form when consid-
ering the Gibbsian line ensemble associated to the stochastic vertex models introduced
in [11]. We believe it is worth further study to determine how stochastic monotonicity is
affected by these variations and to classify the general hypotheses, under which it holds.
In the case of a non-convex interaction Hamiltonian, it is already known from [3] that
the stochastic monotonicity can be lost. However, [3] showed that a weaker version of
that property still holds and is sufficient to prove tightness of the lowest labeled curved
of the Hall–Littlewood Gibbsian line ensemble considered therein.

1.2. Application to the log-gamma polymer. Themain motivation behind our black-box
(Theorem 1.2) is its application to the log-gamma polymer [39]. We start this section
by introducing the model. The connection between the log-gamma polymer and an
(H, H RW )-Gibbsian line ensembles is recorded as Corollary 1.4. This is a corollary of
Proposition 6.4, which is stated and proved in Sect. 6, and follows with some work from
the results of [10]. We then state a one-point tightness (actually limit theorem) result
that is proved in our companion paper [1]. We close out this section by combining the
line ensemble interpretation with the one-point tightness (using Theorem 1.2) to show
transversal tightness of the log-gamma polymer free energy with the ubiquitous 2/3
KPZ universality class exponent. We also briefly mention some other applications of the
Gibbs property.

1.2.1. The log-gamma polymer Recall that a random variable X is said to have the
inverse-gammadistributionwith parameter θ > 0 if its density againstLebesguemeasure
is given by

fθ (x) = 1{x > 0}�(θ)−1x−θ−1 exp(−x−1).

Fixing θ > 0, we let d = (
di, j : i ≥ 1, j ≥ 1

)
denote the semi-infinite random matrix

of i.i.d. entries di, j that are inverse-gamma distributed with the same θ parameter. A
directed lattice path is an up-right path on Z

2, which makes unit steps in the positive
coordinate directions (see Fig. 2). Given n, N ≥ 1, we let�n,N denote the set of directed
paths π in Z

2 from (1, 1) to (n, N ). Given a directed path π , we define its weight w(π)

to be the product of all di, j where (i, j) are vertices contained in the path π :

w(π) =
∏

(i, j)∈π

di, j (1.3)

From this we define the partition function Zn,N to be the sum over all weights

Zn,N =
∑

π∈�n,N

w(π). (1.4)

The logarithm of the partition function is called the free energy.

1.2.2. Embedding the log-gamma polymer in a line ensemble In Sect. 6.2 we prove that
the log-gamma polymer can be embedded as the lowest labeled curve in a discrete line
ensemble, that satisfies the (H, H RW )-Gibbs property, where

H RW (x) = θx + e−x + log�(θ) and H(x) = ex , (1.5)
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(1, 1)

(n,N)

di,j

Fig. 2. A directed lattice path π ∈ �n,N in the log-gamma polymer model

with θ > 0 as in the definition of the log-gamma polymer model. This result, stated
as Proposition 6.4, implies that the other lines in this log-gamma line ensemble have
meaning in terms of polymer partition functions for multiple paths in the log-gamma
environment. Similar results have appeared in [42, Section 3.4] and [28] as well. For this
introduction, we will simply record a corollary of Proposition 6.4 as needed to apply
our black-box tightness result.

Corollary 1.4. Let H, H RW be as in (1.5). Fix K , N ∈ N with N ≥ K ≥ 2 and Let
T0, T1 ∈ N be such that T0 < T1 and T0 ≥ K . Then, we can construct a probability
space with measure P that supports a �1, K � × �T0, T1�-indexed line ensemble L =
(L1, . . . , L K ) such that:

(1) The P-distribution of (L1(n) : n ∈ �T0, T1�) is the same as that of (log Zn,N : n ∈
�T0, T1�);

(2) L satisfies the (H, H RW )-Gibbs property.

Proof. This follows immediately from Proposition 6.4 by identifying the notation
zN ,1(n) used there with Zn,N defined this introduction. 
�
Remark 1.5. The strict-weak polymer model [13,34] also enjoys a relationship to a sim-
ilar (H, H RW )-Gibbsian line ensemble. We expect that all of the results, which are
proved in our present work for the log-gamma polymer, can be likewise proved for the
strict-weak polymer. The only technical input, which would need to be developed, are
analogous asymptotic results to those proved for the log-gamma polymer in [1] (see
Sect. 1.2.3 for the precise results).

1.2.3. Asymptotic fluctuations of the log-gamma polymer free energy For each N , Corol-
lary 1.4 provides an embedding of the log-gamma polymer free energy log Zn,N , as a
process in n, as the top curve of a (H, H RW )-Gibbsian line ensemble. We are interested
in the large N and n limit of this process. In order to apply our black-box theory (The-
orem 1.2), we need information about the one-point fluctuations of log Zn,N . This is
accomplished in [1]. We first recall the necessary notation and then recall the relevant
result proved therein.
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Definition 1.6. Let 
(x) denote the digamma function, defined by


(z) = �′(z)
�(z)

= −γE +
∞∑

n=0

[
1

n + 1
− 1

n + z

]
, (1.6)

with γE denoting the Euler constant. Define the function

gθ (z) =
∑∞

n=0
1

(n+θ−z)2
∑∞

n=0
1

(n+z)2
= 
 ′(θ − z)


 ′(z)
, (1.7)

and observe that it is a smooth, strictly increasing bijection from (0, θ) to (0,∞). The
inverse function g−1

θ : (0,∞) → (0, θ) is also a strictly increasing smooth bijection.
For x ∈ (0,∞), define the function

hθ (x) = x · 
(g−1
θ (x)) + 
(θ − g−1

θ (x)), (1.8)

which is easily seen to be a smooth function on (0,∞). Finally, for x ∈ (0,∞), define
the function

dθ (x) =
[ ∞∑

n=0

x
(
n + g−1

θ (x)
)3 +

∞∑

n=0

1
(
n + θ − g−1

θ (x)
)3

]1/3
. (1.9)

We now consider log Zn,N for n and N going to infinity with a ratio which is approx-
imately r ∈ (0,∞). We recall one of the main results of [1] which shows that as N and n
tend to∞ the one-point marginals of a properly centered and scaled version of log Zn,N

tend to the GUE Tracy-Widom distribution [40]. For n, N ≥ 1 define the rescaled free
energy

F(n, N ) := log Zn,N + Nhθ (n/N )

N 1/3dθ (n/N )
. (1.10)

Proposition 1.7 [1, Theorem 1.2]. Let θ, r > 0 be given. Assume that n and N go to
infinity in such a way that the sequence n/N converges to r . Then, for all y ∈ R,

lim
N→∞ P

(F(n, N ) ≤ y
) = FGU E (y).

Remark 1.8. We mention here that [1, Theorem 1.2] was formulated with F(n, N )

defined by

log Zn,N + nhθ (N/n)

n1/3dθ (N/n)
;

however, this is readily seen to agree with (1.10) once we utilize the fact that g−1
θ (1/x) =

θ − g−1
θ (x).

In light of Proposition 1.7, we are lead to define a centered and scaled spatial process
f LG
N (·) for the free energy.
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Definition 1.9. Fix any T > 0, θ > 0 and r ∈ (0,∞). Suppose that N is sufficiently
large so that r N ≥ 2+ T N 2/3. For each x ∈ [−T − N−2/3, T + N−2/3] such that x N 2/3

is an integer, we define n = �r N	 + x N 2/3 and

f LG
N (x) = N−1/3

(
log Zn,N + hθ (r)N + h′

θ (r)x N 2/3
)
, (1.11)

and then extend f LG
N to all points x ∈ [−T, T ], by linear interpolation. The above

construction provides a random continuous curve in the space (C[−T, T ], C)—the space
of continuous functions on [−T, T ] with the uniform topology and Borel σ -algebra C
(see e.g. Chapter 7 in [2])—and we denote its law by PN .

We now combine the (H, H RW )-Gibbs property for the log-gamma line ensemble,
constructed in Corollary 1.4, with the convergence in Proposition 1.7. These provide the
input to apply Theorem 1.2 and lead to the following transversal tightness and Brownian
absolute continuity result for the log-gamma polymer free energy, which is proved in
Sect. 6.3.

Theorem 1.10. Fix any T, θ, r > 0. Then, the laws PN of f LG
N

([−T, T ]) (see Defini-
tion 1.9) form a tight sequence in N. Moreover, any subsequential limit P∞ is absolutely
continuous with respect to the Brownian bridge with variance 2T 
 ′(g−1

θ (r)) (see Def-
inition 5.2).

Remark 1.11. There are other KPZ class models whose spatial processes can be embed-
ded into Gibbsian line ensembles. For some of these models, similar tightness and
Brownian absolute continuity results (like Theorem 1.10) have been demonstrated. In
particular, there are similar results for: Brownian LPP [5], the O’Connell–Yor polymer
model and KPZ equation [6], and the asymmetric simple exclusion process and stochas-
tic six vertex model [3]. For the integrable models of last passage percolation (which are
related to discrete Gibbsian line ensembles with Bernoulli, geometric and exponential
jump distributions) [16] addresses the question of tightness assuming finite dimensional
convergence to the Airy line ensemble. In the case when the Gibbsian line ensembles
have the structure of avoiding Bernoulli random walkers, [14] proves tightness of the
full line ensembles assuming one-point tightness of its lowest indexed curve. For the
log-gamma polymer, the recent work [42] applies the Gibbs property to the weak-noise
scaled free energy. This means that the parameter θ , which controls the inverse-gamma
distributions is tuned to go to infinity in a suitable manner as the dimensions of the
polymer N and n go to infinity. In terms of the line ensemble, this means that the Gibbs
property is changing with N and in the limit becomes the exponential Brownian Gibbs
property that was introduced in [6] in the context of the KPZ line ensemble.

Remark 1.12. Theorem 1.10 states that when we view log Zn,N as spatial processes in
n, then as N tends to infinity this sequence of processes (properly shifted) forms a tight
sequence of non-trivial random continuous curves under a transversal scaling by N 2/3

and fluctuation scaling by N 1/3. This demonstrates that the ubiquitous KPZ exponents
hold for this model. The transversal 2/3 exponent was previously demonstrated (in terms
of non-trivial fluctuations of the polymer measure) for the log-gamma polymer with
stationary boundary conditions in [39]. The information (e.g. tightness and Brownian
absolute continuity), contained in Theorem 1.10, is of a rather different nature than the
results proved in [39].

By KPZ universality, one expects that the sequence f LG
N in Theorem 1.10 is not only

tight but in fact convergent to some affine transformation of the Airy2 process (shifted
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by a parabola). In the remainder of this section we formulate a precise conjecture (Con-
jecture 1.14) that details this convergence. The statement of Conjecture 1.14 involves
certain constants which we will introduce presently. After we state the conjecture we
explain how our choice of constants supports its validity using the results of this paper.

Let us denote by Aθ (r) = 
 ′(g−1
θ (r)) the diffusion coefficient appearing in Theo-

rem 1.10. Notice that the function dθ defined in (1.9) can be expressed in terms of Aθ (r)

and h′′
θ (r) as

dθ (r) =
(

Aθ (r)2

2h′′
θ (r)

)1/3

. (1.12)

One can deduce the latter by noticing that h′(r) = 
(g−1
θ (r)) and gθ (r) = 
 ′(θ −

r)/
 ′(r).

It is convenient to define another function

κθ (r) =
(
2Aθ (r)

h′′
θ (r)2

)1/3

, (1.13)

so that we have the relations

Aθ (r)κθ (r)

2dθ (r)2
= h′′

θ (r)κθ (r)2

2dθ (r)
= 1. (1.14)

Definition 1.13. Fix any θ, r > 0. Let T̃N = �N 2/3 log N	, AN = κθ (r)−1T̃N N−2/3

and suppose that N is sufficiently large, so that r N ≥ T̃N +2. For each x ∈ [−AN , AN ],
such that κθ (r)x N 2/3 is an integer, we define n = �r N	 + κθ (r)x N 2/3 and

f̃ LG
N (x) = 2−1/2dθ (r)−1N−1/3

(
log Zn,N + hθ (r)N + h′

θ (r)κθ (r)x N 2/3
)
, (1.15)

and then extend f̃ LG
N to R by:

• Linear interpolation on the interval [−AN , AN ];
• Constant extension outside the interval [−AN , AN ], i.e. we put f̃ LG

N (x) =
f̃ LG
N (AN ) when x ≥ AN and f̃ LG

N (x) = f̃ LG
N (−AN ) when x ≤ −AN .

In thisway, f̃ LG
N becomes a randomvariable taking value in the spaceC(R)of continuous

functions on R with the topology of uniform convergence over compacts and Borel σ -
algebra C.

In words, the conjecture below states that if f̃ LG
N are as in Definition 1.13, then

they converge (as random variables in (C(R), C)) to a suitably scaled and parabolically
shifted version of the Airy2 process from [36]. We mention that the Airy2 process is a
random continuous process in C(R), and the extension we performed in Definition 1.13
was to embed f̃ LG

N (initially defined at a restricted set of lattice sites) into C(R). The
precise definition of T̃N and the extension outside [−AN , AN ] is not important since we
are dealing with the topology of uniform convergence over compacts. In particular, all
that matters is that the sequence of intervals [−AN , AN ] increases to R.

Conjecture 1.14. Fix any θ, r > 0 and let f̃ LG
N be as in Definition 1.13. Then, as

N → ∞ the random functions f̃ LG
N converge weakly in (C(R), C) to LAir y

1 (x) =
2−1/2(A(x) − x2), where A is the Airy2 process from [36].
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Herewe give some credence to the conjecture by appealing to ourGibbsian line ensemble
interpretation of the log-gamma polymer and the results of this paper.

Firstly, we observe that by definition we have f̃ LG
N (x) = 2−1/2dθ (r)−1 f LG

N (κθ x)

and so by Theorem 1.10 we know that f̃ LG
N form a tight sequence of random curves in

C(R). Aswementioned a few times before, the free energy log Z N ,n can be embedded as
the lowest labeled curve in a discrete line ensemble that satisfies the (H, H RW )-Gibbs
property. The results of the present paper show that the lowest indexed curve of this
ensemble is tight; however, one expects that the full line ensemble is tight and more-
over that all subsequential limits satisfy the non-intersecting Brownian Gibbs property
introduced in [5]. The latter Gibbs property is the natural limit of the (H, H RW )-Gibbs
property we deal with, and roughly states that the local structure of paths is that of
non-intersecting Brownian bridges with a fixed diffusion parameter. If we assume that
the latter tightness statement for the full log-gamma line ensemble is true, then Propo-
sition 1.7 and Theorem 1.10 would imply that any subsequential limit of f̃ LG

N can be
realized as the lowest indexed curve of a line ensemble L = {Li }∞i=1 such that:

(1) L satisfies the non-intersectingBrownianGibbs property of [5] (where theBrow-
nian bridges have diffusion parameter 1);

(2) The random variables L1 and LAir y
1 have the same one-point marginal distribu-

tion.

The first property can be deduced from the fact that the diffusion coefficient becomes
κθ (r)

2dθ (r)2
times the diffusion coefficient in Theorem 1.10 (in view of the relation f̃ LG

N (x) =
2−1/2dθ (r)−1 f LG

N (κθ x)), which equals to 1 by (1.14). The second property can be
deduced from Proposition 1.7 and the fact that for each x ∈ R the random variableA(x)

has the Tracy-Widom distribution.
If one replaces condition (2) above with the stronger condition that

(2′) the random variables L1 and LAir y
1 have the same finite dimensional distribution,

then [15] showed that L is equal to the parabolic Airy line ensemble LAir y =
{LAir y

i }∞i=1 of [5]. It seems plausible that conditions (1) and (2) uniquely pinpointLAir y ;
however, this has not been proved so far. If true the latter statement together with the
(also unproved) tightness and Brownian Gibbs structure of all subsequential limits of the
log-gamma line ensemble would establish Conjecture 1.14 and its natural generalization
to the full line ensemble. It may also be possible that Conjecture 1.14 can be approached
by the method announced recently in [41].

Characterizing the Airy line ensemble by conditions of the form (1) and (2) dates
back to [5, Conjecture 3.2], which suggested yet another characterization by condition
(1) above and the condition that

(2′′) L is extremal, shift-invariant and E[L1(0)] = E[LAir y
1 (0)].

We refer the interested reader to [5, Conjecture 3.2], [12, Conjecture 1.7] and [15,
Conjecture 1.4] for further discussion of the latter conjecture and definition of the terms
“extremal” and “shift-invariant”.

Overall, the above discussion suggests that the scaling we have performed in Con-
jecture 1.14 ensures the correct diffusion parameter and one-point marginal of the limit,
which gives some credence to its validity.
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Outline. Section 2 contains a number of foundational definitions and results about
(H, H RW )-Gibbsian line ensembles. Section2.1 provides a detaileddefinitionof discrete
(H, H RW )-Gibbsian line ensembles (Definition 2.5). Section 2.2 contains the statement
and proof of our continuous grand monotone coupling result (Lemma 2.11). Finally,
Sect. 2.3 contains additional technical assumptions (see Definition 2.15) that we make
on the random walk Hamiltonian H RW to be able to strongly couple it to a Brownian
bridge. A number of the highly technical (and at times, measure theoretic) proofs from
Sect. 2 are deferred to Sect. 7.

Section 3 contains a restatement and proof of the first part (tightness) of Theorem 1.2
(see Theorem 3.2 therein). In the course of that proof we utilize Lemmas 3.7, 3.8 and 3.9.
These three key lemmas are proved in 4. Section 5 contains a restatement and proof of
the second part (Brownian absolute continuity) of Theorem 1.2 (see Theorem 5.3).

Section 6 finally pivots back to the log-gamma polymer. Section 6.1 recalls some of
the results in [10], namely a Markov chain formulation for the image of the log-gamma
polymer weight matrix under the geometric RSK correspondence. In Sect. 6.2, we prove
that this Markov chain has the structure of a (H, H RW )-Gibbsian line ensemble. In
particular, the polymer free energy arises as the lowest labeled curve. The complete
proof of Theorem 1.10 is given in Sect. 6.3.

2. Gibbsian Line Ensembles

In this section, we introduce the notion of a discrete (H, H RW )-Gibbsian line ensemble
and establish some of its properties.

2.1. Discrete (H, H RW )-Gibbsian line ensembles. In this section, we introduce the
notion of a discrete line ensemble and the (H, H RW )-Gibbs property. Our discussion
will parallel that of [42, Section 3.1], which in turn goes back to [6, Section 2.1] and [3,
Section 3.1].

Definition 2.1. For a finite set J ⊂ Z
2 we let Y (J ) denote the space of functions

f : J → R with the Borel σ -algebra D coming from the natural identification of
Y (J ) with R

|J |. We think of an element of Y (J ) as a |J |-dimensional vector, whose
coordinates are indexed by J . In particular, if f ( j) = x j ∈ R for j ∈ J , we will denote
this vector by (x j : j ∈ J ).

If a, b ∈ Z satisfy a < b, we let �a, b� denote the set {a, a + 1, . . . , b}. We will use this
�·, ·� notation in general in this paper.

Definition 2.2. Let k1, k2, T0, T1 ∈ Z with k1 ≤ k2, T0 < T1 and denote 
 = �k1, k2�.
A 
 × �T0, T1�-indexed discrete line ensemble L is a random variable, defined on a
probability space (�,B, P), taking values in Y (
 × �T0, T1�) as in Definition 2.1, such
that L is a (B,D)-measurable function.

The way we think of a 
 × �T0, T1�-indexed discrete line ensemble L is as a random
(k2−k1+1)×(T1−T0+1)matrix, whose rows are indexed by
 and whose columns are
indexed by �T0, T1�. For i ∈ 
 we let Li (ω) denote the i-th row of this random matrix,
and then Li is a Y (�T0, T1�)-valued random variable on (�,B, P). Conversely, if we are
given k2 − k1 + 1 random Y (�T0, T1�)-valued random variables Lk1 , . . . , Lk2 , defined
on the same probability space, then we can define a 
 × �T0, T1�-indexed discrete line
ensemble L through L(ω)(i, j) = Li (ω)( j). Consequently, a 
 × �T0, T1�-indexed
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discrete line ensemble L is equivalent to having k2 − k1 + 1 random Y (�T0, T1�)-valued
random variables Lk1 , . . . , Lk2 on the same probability space and depending on the
context we will switch between these two formulations. For i ∈ 
 and j ∈ �T0, T1�, we
denote by Li ( j) : � → R the function Li ( j)(ω) = Li (ω)( j) and observe that the latter
are real random variables on (�,B, P). If A ⊂ 
 × �T0, T1� we write L|A : � → Y (A)

to denote the function L|A(ω)(a) = L(ω)(a) for a ∈ A. If �a, b� ⊂ �T0, T1� and i ∈ 
,
we denote the random vector (Li (a), . . . , Li (b)) ∈ Y (�a, b�) by Li �a, b�.

Observe that one can view an indexed set of real numbers L( j) for j ∈ �T0, T1�
as a continuous curve by linearly interpolating the points ( j, L( j))—see Fig. 1 for an
illustration of such an interpolation for a discrete line ensemble. This allows us to define
(L(ω))(i, s) for non-integer s ∈ [T0, T1] by linear interpolation and to view discrete line
ensembles as line ensembles in the sense of [5]. Specifically, by linear interpolation we
can extend Li (ω) to a continuous curve on [T0, T1] and in this way we can view it as a
random variable on (�,B, P) taking values in (C[T0, T1], C)—the space of continuous
functions on [T0, T1]with the uniform topology andBorelσ -algebraC (see e.g. Chapter 7
in [2]).Wewill denote this randomcontinuous curve by Li [T0, T1].Wewill often slightly
abuse notation and suppress the ω from the above notation as one does for usual random
variables, writing for example {Li ( j) ∈ A} in place of either {ω ∈ � : Li ( j)(ω) ∈ A}
or {ω ∈ � : Li (ω)( j) ∈ A} (notice that these sets are the same and in general the
definitions are consistent so that the suppression of ω does not lead to any ambiguity).

Definition 2.3. Let H RW : R → R be a continuous function and G(x) = e−H RW (x).
We assume that G(x) is bounded and

∫
R

G(x)dx = 1. Let Y1, Y2, . . . be i.i.d. random
variables with density G(·) and let Sx

n = x + Y1 + · · · + Yn denote the random walk with
jumps Ym started from x . We denote by Gx

n(·) the density of Sx
n and note that

Gx
n(y) = G0

n(y − x)

=
∫

R

· · ·
∫

R

G(y1) · · · G(yn−1) · G(y − x − y1 − · · · − yn−1)dy1 · · · dyn−1.

(2.1)

Given x, y ∈ R and a, b ∈ Z with a < b, we let S(x, y; a, b) = {Sm(x, y; a, b)}b
m=a

denote the process with the law of {Sx
m}b−a

m=0, conditioned so that Sx
b−a = y. We call this

process an H RW random walk bridge between the points (a, x) and (b, y). Explicitly,
viewing S(x, y; a, b) as a random vector taking values in Y (�a, b�), we have that its
distribution is given by the density

G(ya, . . . , yb; x, y; a, b) = δx (ya) · δy(yb) ·∏b
m=a+1 G(ym − ym−1)

Gx
b−a(y)

, (2.2)

where we recall that δz is the Dirac delta measure at z. As before, we can also view
S(x, y; a, b) as a random continuous curve between the points (a, x) and (b, y) once
we linearly interpolate the points (m, Sm(x, y; a, b)) for m ∈ �a, b�.

Definition 2.4. Let H RW be as inDefinition 2.3. Fix k1 ≤ k2,a < bwith k1, k2, a, b ∈ Z

and two vectors 
x, 
y ∈ R
k2−k1+1. A �k1, k2� × �a, b�-indexed discrete line ensemble

Lk1 , . . . , Lk2 is called a free H RW bridge line ensemble with entrance data 
x and exit

data 
y if its lawP
k1,k2,a,b,
x,
y
H RW is that of k2−k1+1 independent H RW randomwalk bridges

indexed by �k1, k2� with the i-th bridge Lk1+i−1 being between the points (a, xi ) and
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(b, yi ) for i ∈ �1, k2 − k1 + 1�, see (2.2). We write E
k1,k2,a,b,
x,
y
H RW for the expectation with

respect to this measure. When the parameters k1, k2, a, b, 
x, 
y are clear from context
we will drop them from the notation and simply write PH RW and EH RW . Observe that
the measure remains unchanged upon replacing (k1, k2) with (k1 + m, k2 + m) for some
m ∈ Z, except for a reindexing of the Li ’s.

An interaction Hamiltonian H is defined to be any continuous function H :
[−∞,∞) → [0,∞) such that H(−∞) = 0. Suppose we are given an interaction
Hamiltonian H and two functions f : �a, b� → R ∪ {∞} and g : �a, b� → R ∪ {−∞}.
We define the �k1, k2� × �a, b�-indexed (H, H RW ) line ensemble with entrance data 
x
and exit data 
y and boundary data ( f, g) to be the law P

k1,k2,a,b,
x,
y, f,g
H,H RW on Lk1, . . . , Lk2 :

�a, b� → R given in terms of the following Radon–Nikodym derivative (with respect

to the free H RW bridge line ensemble P
k1,k2,a,b,
x,
y
H RW ):

dP
k1,k2,a,b,
x,
y, f,g
H,H RW

dP
k1,k2,a,b,
x,
y
H RW

(Lk1 , . . . , Lk2) = W k1,k2,a,b, f,g
H (Lk1 , . . . , Lk2)

Zk1,k2,a,b,
x,
y, f,g
H,H RW

. (2.3)

Here, we call Lk1−1 = f and Lk2+1 = g and define the Boltzmann weight

W k1,k2,a,b, f,g
H (Lk1, . . . , Lk2) := exp

⎛

⎝−
k2∑

i=k1−1

b−1∑

m=a

H(Li+1(m + 1) − Li (m))

⎞

⎠ ,

(2.4)

and the normalizing constant

Zk1,k2,a,b,
x,
y, f,g
H,H RW := E

k1,k2,a,b,
x,
y
H RW

[
W k1,k2,a,b, f,g

H (Lk1 , . . . , Lk2)
]
, (2.5)

where we recall that on the right side in (2.5) the vectors Lk1 , . . . , Lk2 are distributed

according to the measure P
k1,k2,a,b,
x,
y
H RW . Notice that, by our assumption on f and g, we

have that the argument of H in (2.4) is always in [−∞,∞) and so W k1,k2,a,b, f,g
H ∈ (0, 1]

almost surely, which implies that Zk1,k2,a,b,
x,
y, f,g
H,H RW ∈ (0, 1] and we can indeed divide

by this quantity in (2.3). We write the expectation with respect to P
k1,k2,a,b,
x,
y, f,g
H,H RW as

E
k1,k2,a,b,
x,
y, f,g
H,H RW .

The key definition of this section is the following (partial) (H, H RW )-Gibbs property.
The term (partial) means that we do not allow resampling of highest labeled curve L K .
The full Gibbs property would allow for resampling that without changing the overall
measure. This partial Gibbs property is nice because it is preserved under restricting
curves labeled by 1, . . . , K to curves labeled by 1, . . . K ′ for K ′ < K . Since we will
be entirely making use of this partial Gibbs property, we will drop the term (partial)
throughout the paper, besides in the below definition.

Definition 2.5. Let H RW and H be as inDefinition 2.4. Fix K ≥ 1, two integers T0 < T1
and set 
 = �1, K �. Suppose that P is the probability distribution of a 
 × �T0, T1�-
indexed discrete line ensembles L = (L1, . . . , L K ) and adopt the convention that L0 =
∞. We say that P satisfies the (partial) (H, H RW )-Gibbs property if the following
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holds. Fix any k1, k2 ∈ �1, K − 1� with k1 ≤ k2 and a, b ∈ �T0, T1� with a < b and set
k = �k1, k2�. Then, we have the following distributional equality

Law
(
L|k×�a,b� conditional on L|
×�T0,T1�\k×�a+1,b−1�

)
= P

k1,k2,a,b,
x,
y, f,g
H,H RW .

Here, we have set f = Lk1−1, g = Lk2+1, 
x = (Lk1(a), . . . Lk2(a)) and 
y =
(Lk1(b), . . . Lk2(b)).

Let us elaborate on what the above statement means. A 
 × �T0, T1�-indexed line
ensemble L enjoys the (H, H RW )-Gibbs property if and only if for any k = �k1, k2� ⊂
�1, K − 1� and �a, b� ⊂ �T0, T1� and any bounded Borel-measurable function F from
Y (k × �a, b�) (here Y is as in Definition 2.1) to R, we have P-almost surely

E

[
F
(
L|k×�a,b�

)∣∣Fext (k × �a + 1, b − 1�)
]

= E
k1,k2,a,b,
x,
y, f,g
H,H RW

[
F(L̃)

]
, (2.6)

where 
x, 
y, f and g are defined in the previous paragraph and the σ -algebra Fext is
defined as

Fext (k × �a + 1, b − 1�) := σ
(
Li (s) : (i, s) ∈ 
 × �T0, T1�\k × �a + 1, b − 1�

)
.

(2.7)

On the right side of (2.6), the variable L̃ has law P
k1,k2,a,b,
x,
y, f,g
H,H RW .

Remark 2.6. It is worth mentioning that the right side of (2.6) is measurable with respect
to Fext (k × �a + 1, b − 1�) and thus equation (2.6) makes sense. Indeed, we will show
in Lemma 7.2 that for any bounded measurable function F on Y (�k1, k2� × �a, b�) we

have that E
k1,k2,a,b,
x,
y, f,g
H,H RW

[
F(L̃)

]
is a measurable function of (
x, 
y, f, g) ∈ Y (VL) ×

Y (VR) × Y (VT ) × Y (VB), where VL = �k1, k2� × {a}, VR = �k1, k2� × {b}, VT =
{k1 − 1} × �a, b� and VB = {k2 + 1} × �a, b� (the L , R, T and B stand for left, right,
top and bottom, respectively). In particular, the right side of (2.6) is measurable with
respect to σ(Li ( j) : (i, j) ∈ VL ∪ VR ∪ VT ∪ VB) ⊂ Fext (k × �a + 1, b − 1�).

Remark 2.7. From Definition 2.5, it is clear that for K ′ ≤ K and �a, b� ⊂ �T0, T1� we
have that the induced law on Li ( j) for (i, j) ∈ �1, K ′�× �a, b� from P also satisfies the
(H, H RW )-Gibbs property, as an �1, K ′�×�a, b�-indexed line ensemble.Also, if K = 1,
then the conditions in Definition 2.5 are void, meaning that any {1} × �T0, T1�-indexed
line ensemble satisfies the (H, H RW )-Gibbs property.

In the remainder of this section, we present two foundational results, whose proofs
are postponed to Sect. 7.1. Lemma 2.8 provides another formulation of the (H, H RW )-
Gibbs property, and Lemma 2.10 shows that the (H, H RW )-Gibbs property survives
weak limits.

Lemma 2.8. Let H RW and H be as in Definition 2.4. Fix K ≥ 2, two integers
T0 < T1 and set 
 = �1, K �. Define sets A = �1, K − 1� × �T0 + 1, T1 − 1� and
B = 
 × �T0, T1�\A. Suppose that P is a probability distribution on a 
 × �T0, T1�-
indexed discrete line ensemble L = (L1, . . . , L K ). Then, the following two statements
are equivalent:

(1) P satisfies the (H, H RW )-Gibbs property;
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(2) For any bounded continuous functions fi, j on R with (i, j) ∈ �1, K � × �T0, T1�, we
have

E

[ K∏

i=1

T1∏

j=T0

fi, j (Li ( j))

]

= E

[ ∏

(i, j)∈B

fi, j (Li ( j)) · E
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

[ ∏

(i, j)∈A

fi, j (L̃i ( j))

]]
,

(2.8)

where 
x = (L1(T0), . . . , L K−1(T0)), 
y = (L1(T1), . . . , L K−1(T1)) and L̃ =
(L̃1, . . . , L̃ K−1) is distributed according to P

1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW .

Moreover, if 
z ∈ [−∞,∞)T1−T0+1 and 
x, 
y ∈ R
K−1, then P

1,K−1,T0,T1,
x,
y,∞,
z
H,H RW from

Definition 2.4 satisfies the (H, H RW )-Gibbs property in the sense that (2.6) holds for
all 1 ≤ k1 ≤ k2 ≤ K − 1, T0 ≤ a < b ≤ T1 and bounded Borel-measurable F on
Y (�k1, k2� × �a, b�).

Remark 2.9. Lemma 2.8 provides a sufficient condition for a line ensemble to satisfy the
(H, H RW )-Gibbs property, which is easier to verify in practice. In addition, it shows
that for any deterministic vectors 
x, 
y ∈ R

K−1 and 
z ∈ [−∞,∞)T1−T0+1 the distri-
bution P

1,K−1,T0,T1,
x,
y,∞,
z
H,H RW satisfies the (H, H RW )-Gibbs property. The latter fact for


z ∈ Y ({K }×�T0, T1�) (i.e. when all the entries of 
z are finite) follows from (2.8), and the
content of the second part of the lemma is that one can replace some (or all) of the entries
of 
z by −∞, while still retaining the Gibbs property. Finally, the lemma shows a certain
self-consistency of Definition 2.5, that we explain here. If a 
 × �T0, T1�-indexed line
ensemble L satisfies (2.6) with k1 = 1, k2 = K − 1, a = T0 and b = T1, then it satisfies
(2.8) and so, by Lemma 2.8, we conclude that (2.6) holds for any choice of k1, k2, a, b.
In plain words, satisfying the conditional distribution equality of (2.6) for a rectangular
box K × �a, b� implies that it holds for all rectangular sub-boxes, and this consistency
of the definition means that to prove that a line ensemble satisfies the (H, H RW )-Gibbs
property it suffices to check it for the largest box, which is essentially the first statement
of Lemma 2.8.

Wemention that it is quite possible that the first part of Lemma 2.8 follows from some
general formalism of Markov random fields; however, we could not find a close enough
statement in the literature, especially formulated in terms of pairings with bounded
continuous functions.

Lemma 2.10. Let H and H RW be as in Definition 2.4. Fix K ≥ 2, two integers T0 < T1
and set 
 = �1, K �. Suppose that Pn is a sequence of probability distributions on

 × �T0, T1�-indexed discrete line ensembles, such that for each n we have that Pn
satisfies the (H, H RW )-Gibbs property. If Pn converges weakly to a measure P, then P

also satisfies the (H, H RW )-Gibbs property.

Let us explain the significance of Lemma 2.10 for this paper. In Sect. 6, we will demon-
strate a way to interpret the log-gamma polymer as a (H, H RW )-Gibbsian line ensemble
L for a certain choice of H RW and H . This will be done by taking a limit of a sequence
of line ensembles Ln that weakly converges to L as n → ∞. It will be easy to check
that each of the Ln satisfies the (H, H RW )-Gibbs property and then Lemma 2.10 will
imply that so does the limit L.
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2.2. Continuous grand monotone coupling lemma. Thegoal of this section is to establish
a continuous grandmonotone coupling lemma for Y (�T0, T1�)-valued random variables,

whose laws are given by P
1,1,T0,T1,x,y,∞,
z
H,H RW as in Definition 2.4. This result is given as

Lemma 2.11 and is one of the main results we prove about line ensembles, satisfying
the (H, H RW )-Gibbs property.

The laws P
1,1,T0,T1,x,y,∞,
z
H,H RW arise as the marginal L1 of a �1, k� × �T0, T1� -indexed

line ensemble L, that satisfies the (H, H RW )-Gibbs property with 
z = L2�T0, T1�,
given in terms of the second labeled curve L2. In order to simplify our notation, we
write P

T0,T1,x,y,
z
H,H RW in place of P

1,1,T0,T1,x,y,∞,
z
H,H RW . We will also denote W 1,1,T0,T1,∞,
z

H (�) by

WH (T0, T1, �, 
z) and Z1,1,T0,T1,x,y,∞,
z
H,H RW by Z H,H RW (T0, T1, x, y, 
z). The random vector,

whose law is P
T0,T1,x,y,
z
H,H RW , will typically be denoted by � and as in Sect. 2.1 we can

think of it as a random continuous curve in (C[T0, T1], C) by linearly interpolating the
points (i, �(i)) for i = T0, . . . , T1 (see the discussion after Definition 2.2). We refer to
P

T0,T1,a,b,
z
H,H RW -distributed random curves � as (H, H RW )-curves.
The main result of this section is the following continuous grand monotone coupling.

Lemma 2.11. Let T ∈ N satisfy T ≥ 2 and assume that H, H RW are as in Definition 2.4.
Then, the following statements hold.

(I) (Grand coupling) There exists a probability space (�T ,FT , P
T ) that supports ran-

dom vectors �T,x,y,
z ∈ R
T for all x, y ∈ R and 
z ∈ [−∞,∞)T , such that under P

T

the random vector �T,x,y,
z has law P
1,T,x,y,
z
H,H RW as in the beginning of this section.

(II) (Monotone coupling) Moreover, if we further suppose that H and H RW are convex
and H is weakly increasing, then for any fixed x, y, x ′, y′ ∈ R with x ≤ x ′, and
y ≤ y′, and 
z, 
z ′ ∈ [−∞,∞)T with zi ≤ z′

i for i = 1, . . . , T , we have P
T -almost

surely that �T,x,y,
z(i) ≤ �T,x ′,y′,
z ′
(i) for i = 1, . . . , T .

(III) (Continuous coupling) If T ≥ 3, the probability space (�T ,FT , P
T ) in part I can be

taken to be (0, 1)T −2 with the Borel σ -algebra and Lebesgue measure. If T = 2, then
(�T ,FT , P

T ) can be taken to be the space with a single point ω0, discrete σ -algebra
and the measure that assigns unit mass to the point ω0.

Furthermore, the construction in part I can be made so that the map �T : R × �T ×
R × [−∞,∞)T → R

T × [−∞,∞)T , defined by

�T (x, ω, y, 
z) = (�T,x,y,
z(ω), 
z)
is a homeomorphism between the spaces R×�T ×R×[−∞,∞)T and R

T ×[−∞,∞)T .
In the last statement, �T = (0, 1)T −2 and we endow it with the subspace topology from
R

T −2 (and discrete topology if T = 2) and the space R × �T × R × [−∞,∞)T has
the product topology.

Remark 2.12. We observe that when 
z = (−∞)T , then P
1,T,x,y,
z
H,H RW is precisely P

1,T,x,y
H RW —

the law of a H RW random walk bridge between the points (1, x) and (T, y). In this
case, Lemma 2.11 generalizes the main theorem in [21] (in the case where the Pólya
frequency function is positive on R). We appreciate an anonymous referee for pointing
this out to us.

Remark 2.13. Let us briefly explain the main idea behind the proof of Lemma 2.11. We
will construct the probability spaces (�T ,FT , P

T ) and the random variables �T,x,y,
z
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by induction on T , with base case T = 2 being trivial. Assuming the construction
for T = k and going to T = k + 1, we will construct �k+1,x,y,
z by first construct-
ing a probability space that supports the random variables �k+1,x,y,
z(k), whose law is
the marginal of �k+1,x,y,
z in the k-th coordinate. These random variables will be built
from the inverse conditional CDFs (depending on k + 1, x, y, 
z), applied to the same
uniform random variable. A consequence of Lemma 2.14, which we prove below, is
that the variables �k+1,x,y,
z(k) will be stochastically monotone in the variables (x, y, 
z).
Once we have the marginal laws �k+1,x,y,
z(k) constructed, we construct the rest of the
entries �k+1,x,y,
z(·) by appealing to our available by induction hypothesis construction of
�k,x,y,
z . The construction of (�T ,FT , P

T ) and �k+1,x,y,
z with the desired laws does not
rely on the convexity of H and H RW . The convexity of H and H RW is used in proving
that the coupling is monotone, and at its core is Lemma 2.14, which as mentioned above
allows us to monotonically couple the marginal laws �k+1,x,y,
z(k), whose densities are
the functions hc,
z

k appearing in that lemma.

Before we go to the proof of Lemma 2.11 we establish the following preliminary
result, which is central for the proof.

Lemma 2.14. Assume that H RW and H are as in Definition 2.4, are convex, and that
H is weakly increasing. Given c, y ∈ R, n ∈ N with n ≥ 2 and 
z ∈ [−∞,∞)n+1, we
define

hc,
z
n (y) =

∫

Rn−1

n∏

i=1

G(xi − xi−1)e
−H(zi+1−xi )dx1 · · · dxn−1, (2.9)

where x0 = c, xn = y. We also set hc
1(y) = G(y − c)e−H(z2−y) if n = 1.

Suppose that a, b, c, d, s, t ∈ R with a ≤ c, b ≤ d, s ≤ t and 
u, 
v ∈ [−∞,∞)n+1

with ui ≤ vi for i = 1, . . . , n. Then, we have

∫ s
−∞ ha,
u

n (x)G(b − x)dx
∫ s
−∞ hc,
v

n (x)G(d − x)dx
≥
∫ t
−∞ ha,
u

n (x)G(b − x)dx
∫ t
−∞ hc,
v

n (x)G(d − x)dx
. (2.10)

In particular, we have

∫ s
−∞ ha,
u

n (x)G(b − x)dx
∫∞
−∞ ha,
u

n (x)G(b − x)dx
≥
∫ s
−∞ hc,
v

n (x)G(d − x)dx
∫∞
−∞ hc,
v

n (x)G(d − x)dx
. (2.11)

Proof. Observefirst that all the integrals arewell-definedbyour assumptionon H, H RW .
Also it is clear that we can obtain (2.11) from (2.10) upon taking the limit as t → ∞.
We thus focus on establishing (2.10).

Note that if F is convex, α ≤ β and � ≥ 0, then

F(α + �) − F(α) ≤ F(β + �) − F(β), (2.12)

which can be deduced from [37, Theorem 24.1 and Corollary 24.2.1]. In particular, using
that H RW is convex we deduce from (2.12) that for α, β, γ, δ ∈ R, α ≤ β and γ ≤ δ

we have

G(δ − β)G(γ − α) ≥ G(δ − α)G(γ − β), (2.13)
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and using the convexity of H , and the fact that it is weakly increasing, we see for
α, β ∈ R, γ, δ ∈ [−∞,∞) with α ≤ β and γ ≤ δ

e−H(δ−β)e−H(γ−α) ≥ e−H(δ−α)e−H(γ−β). (2.14)

Define the function A(y; a, b, 
z) := log
( ∫ y

−∞ ha,
z
n (x)G(b − x)dx

)
and notice that,

for fixed a, b, 
z, the latter function is differentiable in y and its derivative is given by

d A(y; a, b, 
z)
dy

= ha,
z
n (y)G(b − y)

∫ y
−∞ ha,
z

n (x)G(b − x)dx
.

Upon taking logarithms on both sides of (2.10), we see that our goal is to show that

A(s; a, b, 
u) − A(s; c, d, 
v) ≥ A(t; a, b, 
u) − A(t; c, d, 
v),

and so it suffices to show that ∂y
[
A(y; a, b, 
u) − A(y; c, d, 
v)

] ≤ 0 or, equivalently,

ha,
u
n (y)G(b − y)

∫ y
−∞ ha,
u

n (x)G(b − x)dx
≤ hc,
v

n (y)G(d − y)
∫ y
−∞ hc,
v

n (x)G(d − x)dx

for all y ∈ R. Cross-multiplying the above, we see that it suffices to show that for all
x, y ∈ R with x ≤ y we have

hc,
v
n (x)G(d − x)ha,
u

n (y)G(b − y) ≤ ha,
u
n (x)G(b − x)hc,
v

n (y)G(d − y).

In view of (2.13), applied to α = x, β = y, γ = b, δ = d (recall that d ≥ b by
assumption), the last inequality would hold if for x ≥ y we have

hc,
v
n (x)ha,
u

n (y) ≤ ha,
u
n (x)hc,
v

n (y). (2.15)

We proceed to prove (2.15) by induction on n ≥ 1. When n = 1, (2.15) is equivalent
to

G(x − c)e−H(v2−x)G(y − a)e−H(u2−y) ≤ G(x − a)e−H(u2−x)G(y − c)e−H(v2−y),

which holds from (2.13), applied to α = x, β = y, γ = a, δ = c (recall that a ≤ c by
assumption), and (2.14), applied to α = x, β = y, γ = u2, δ = v2 (recall that u2 ≤ v2
by assumption).

Suppose that we now know (2.15) for n = k and we wish to show it for n = k + 1.
Using (2.9), we can rewrite (2.15) for n = k + 1 as
∫

R

hc,
vk+1
k (xk)G(x − xk)e

−H(vk+2−x)dxk ·
∫

R

ha,
uk+1
k (yk)G(y − yk)e

−H(uk+2−y)dyk

≤
∫

R

ha,
uk+1
k (xk)G(x − xk)e

−H(uk+2−x)dxk ·
∫

R

hc,
vk+1
k (yk)G(y − yk)e

−H(vk+2−y)dyk ,

where 
vk+1 = (v1, . . . , vk+1) and 
uk+1 = (u1, . . . , uk+1). Applying (2.14) with α =
x, β = y, γ = uk+2, δ = vk+2, we see that the above inequality would hold if we can
show

∫∫

R2
hc,
vk+1

k (xk)G(x − xk)h
a,
uk+1
k (yk)G(y − yk)dxkdyk

≤
∫∫

R2
ha,
uk+1

k (xk)G(x − xk)h
c,
vk+1
k (yk)G(y − yk)dxkdyk .



1330 G. Barraquand, I. Corwin, E. Dimitrov

Splitting the above integrals over {xk < yk} and {yk < xk} and swapping the xk, yk
labels over the region {yk < xk}, we see that (2.15) for n = k + 1 would follow if we
can show

∫∫

xk<yk

(
hc,
vk+1

k (xk)G(x − xk)h
a,
uk+1
k (yk)G(y − yk)

+ hc,
vk+1
k (yk)G(x − yk)h

a,
uk+1
k (xk)G(y − xk)

)
dxkdyk

≤
∫∫

xk<yk

(
ha,
uk+1

k (xk)G(x − xk)h
c,
vk+1
k (yk)G(y − yk)

+ ha,
uk+1
k (yk)G(x − yk)h

c,
vk+1
k (xk)G(y − xk)

)
dxkdyk . (2.16)

In order to prove (2.16), it suffices to show that the integrand on the left-hand side is
pointwise dominated by that on the right-hand side. This is equivalent to proving that if
xk < yk we have

AB XY + C DZ W ≤ C DXY + AB Z W, or equivalently (AB − C D)(XY − Z W ) ≤ 0, where

A = hc,
vk+1
k (xk), B = ha,
uk+1

k (yk), X = G(x − xk), Y = G(y − yk),

C = hc,
vk+1
k (yk), D = ha,
uk+1

k (xk), Z = G(x − yk), W = G(y − xk).

We observe that

XY − Z W ≥ 0 ⇐⇒ G(x − xk)G(y − yk) ≥ G(x − yk)G(y − xk),

and the latter holds from (2.13), applied to α = xk, β = yk, γ = x, δ = y (recall that
x ≤ y and xk ≤ yk by assumption). In addition, we have by the induction hypothesis
(2.15) for n = k

AB = hc,
vk+1
k (xk)h

a,
uk+1
k (yk) ≤ hc,
vk+1

k (yk)h
a,
uk+1
k (xk) = C D.

The last two inequalities give AB ≤ C D and XY ≥ Z W so that (AB − C D)(XY −
Z W ) ≤ 0 or, equivalently, AB XY + C DZ W ≤ C DXY + AB Z W . This proves (2.16),
and so (2.15) holds for n = k + 1. This concludes the induction step and we conclude
(2.15) for all n ∈ N, which completes the proof of the lemma. 
�
Proof of Lemma 2.11. In Remark 2.13 we gave an outline of the main ideas of the proof
of the lemma and here we present the details. For clarity, we split the proof into several
steps. In the first step, we explain our construction of the probability space (�T ,FT , P

T )

and the random vectors �T,x,y,
z ∈ R
T for all x, y ∈ R and 
z ∈ [−∞,∞)T on this space.

In the second step, we make two claims about the function �T in the statement of the
lemma and assuming the validity of these claims prove the parts I and II of the lemma.
The two claims are proved in Steps 3 and 4, and in Step 5 we conclude the proof of part
III of the lemma.
Step 1 In this step, we explain how to construct the probability space (�T ,FT , P

T ) and
the random vectors �T,x,y,
z ∈ R

T by induction on T ≥ 2. If T = 2 we take �T to be a
set with one point ω0,FT to be the discrete σ -algebra, and P

T to be the unit mass at ω0.
The random vectors �T,x,y,
z are then defined by �T,x,y,
z = (x, y) and clearly satisfy the
conditions of the lemma.

Suppose we have constructed our desired space for T = k ≥ 2. We now explain how
the construction goes for T = k + 1.
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Notice that a P
1,T,x,y,
z
H,H RW -distributed random vector has density h(y1, . . . , yT ; x, y, 
z),

given by

δx (y1) · δy(yT ) ·∏T −1
i=2 G(yi − yi−1)e−H(zi+1−yi )G(yT − yT −1)

∫
RT −2

∏T −1
i=2 G(yi − yi−1)e−H(zi+1−yi )G(yT − yT −1)dy2 · · · dyT −1

, (2.17)

where y1 = x and yT = y in the denominator. Define for ξ1, ξ2 ∈ R and 
z ∈ R
T the

function

F
z,k
ξ1,ξ2

(s) :=
∫ s
−∞ hξ1,
z

k (r)G(ξ2 − r)dr
∫∞
−∞ hξ1,
z

k (r)G(ξ2 − r)dr
, (2.18)

where hξ1,
z
k is as in (2.9). Then, F
z,k

ξ1,ξ2
(s) is precisely themarginal cumulative distribution

function of yk under h(y1, . . . , yT ; x, y, 
z) with y1 = ξ1 and yT = ξ2.
We now construct a probability space as follows. Let

(
(0, 1),B((0, 1)), λ

)
be the

space (0, 1) with the Borel σ -algebra and usual Lebesgue measure. This space supports
the uniform random variable Uk−1(r) = r . We take the product space of the proba-
bility spaces (�k,Fk, P

k) (we have this by the induction hypothesis) and the space(
(0, 1),B((0, 1)), λ

)
. This will be our space (�k+1,Fk+1, P

k+1). We next show how to
construct �k+1,x,y,
z with the desired properties.

Given x, y ∈ R, we construct �k+1,x,y,
z as follows:
(1) set �k+1,x,y,
z(k + 1) = y;
(2) set �k+1,x,y,
z(k) = [

F
z,k
x,y
]−1

(Uk−1) =: Yk ;
(3) set �k+1,x,y,
z(i) = �k,x,Yk ,
zk (i) for i = 1, . . . , k − 1, where �k,x,y,
zk are the

random variables on (�k,Fk, P
k), that have been constructed by induction

hypothesis and 
zk = (z1, . . . , zk).

Notice that by assumption we know that F
z,k
x,y is strictly increasing and defines a bijection

between (0, 1) and R. In particular,
[
F
z,k

a,b

]−1
(Uk−1) is well-defined. This concludes the

construction when T = k + 1 and the general construction now proceeds by induction
on k.

Step 2 In this step we show that the construction of Step 1 satisfies parts I and II of the
lemma. From our construction in Step 1, it is clear that (�T ,FT , P

T ) is nothing but
(0, 1)T −2 with the Borel σ -algebra and Lebesgue measure (with the convention we had
in the statement of the lemma for T = 2). We make the following two claims about the
function �T from the statement of the lemma. We claim that

The function �T is a bijection between R × �T × R × [−∞, ∞)T and R
T × [−∞, ∞)T

(2.19)

and if [�T ]−1 denotes its inverse function then for any sequence ( 
wn, 
zn) converging to
( 
w∞, 
z∞) in R

T × [−∞,∞)T we have that

lim
n→∞[�T ]−1( 
wn, 
zn) = [�T ]−1( 
w∞, 
z∞). (2.20)

The claims in (2.19) and (2.20) will be proved in Steps 3 and 4 below. Here, we assume
their validity and conclude the proof of the first part of the lemma.
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Notice that if we fix 
z ∈ [−∞,∞)T , then by (2.19) and (2.20) we know that the function
[�T ]−1( 
w, 
z) defines a continuous bijection between R

T and R × (0, 1)T −2 × R as a
function of 
w. By the Invariance of domain theorem [33, Theorem 36.5] we see that �T

is also continuous and, hence, by restriction for fixed x, y ∈ R, we have that �T,x,y,
z(ω)

is a continuous function of ω. In particular, all the vector-valued functions �T,x,y,
z we
defined in Step 1 are random vectors.

We next check that �T,x,y,
z(ω) has the law P
1,T,x,y,
z
H,H RW as in the beginning of this

section. We establish this by induction on T ≥ 2, with base case T = 2 being
trivially true. Assuming the result for T = k and going to T = k + 1, we note
that what we have done in our construction from Step 1 is set �k+1,x,y,
z(k + 1) = y
and sampled �k+1,x,y,
z(k) from the marginal law of yk under h(y1, . . . , yk+1; x, y, 
z).
Subsequently, we sampled a conditionally on �k+1,x,y,
z(k) independent random vec-
tor (�k+1,x,y,
z(1), . . . , �k+1,x,y,
z(k − 1)) whose law is the same as the marginal law of
(y1, . . . , yk−1) under h(y1, . . . , yk+1; a, b, 
z) conditioned on yk . All of this implies that
�k+1,x,y,
z indeed has law P

1,k+1,x,y,
z
H,H RW , and so the result holds for T = k + 1 and by

induction for all T ≥ 2. The last three paragraphs establish part I of the lemma.
In the remainder of this step, we prove part II of the lemma. As before, we argue by

induction on T ≥ 2, with base case T = 2 being trivially true. Assuming the result for
T = k, we verify the monotonicity when T = k + 1.

Suppose that x, y, x ′, y′ ∈ R with x ≤ x ′ and y ≤ y′ and 
z, 
z ′ ∈ [−∞,∞)k+1 with
zi ≤ z′

i for i = 1, . . . , k+1 are given.Wewant to show that �k+1,x,y,
z(i) ≤ �k+1,x ′,y′,
z ′
(i)

for i = 1, . . . , k + 1. We know that �k+1,x,y,
z(k + 1) = y ≤ y′ = �k+1,x ′,y′,
z ′
(k + 1) by

construction. In addition, by (2.11) (here we use our assumption that H and H RW are
convex and H is weakly increasing) we know that

F
z,k
x,y(s) ≤ F
z ′,k

x ′,y′(s),

which implies that

Yk := �k+1,x,y,
z(k) = [
F
z,k

x,y

]−1
(Uk−1) ≤ [

F
z ′,k
x ′,y′

]−1
(Uk−1) = �k+1,x ′ y′,
z ′

(k) =: Y ′
k .

Finally, we have by the induction hypothesis and our construction that

�k+1,x,y,
z(i) = �k,x,Yk ,
zk (i) ≤ �k,x ′,Y ′
k ,
z ′

k (i) = �k+1,x ′,y′,
z ′
(i)

for i = 1, . . . , k − 1, where 
zk = (z1, . . . , zk) and 
z ′
k = (z′

1, . . . , z′
k). This proves that

the random vectors �T,x,y,
z satisfy themonotonicity conditions in part II when T = k+1,
and the general result now follows by induction.

Step 3 In this step, we prove (2.19). We define functions 
T : R
T × [−∞,∞)T →

R × (0, 1)T −2 × R × [−∞,∞)T , with (0, 1)0 denoting the set containing the single
point ω0, by induction on T ≥ 2 as follows. If T = 2, then the map is given by


T ( 
w, 
z) = (w1, ω0, w2, 
z),
where 
w = (w1, . . . , wT ). Assuming that we have defined
k , we define
k+1 for k ≥ 2
through


k+1( 
w, 
z) = (
k( 
wk, 
zk)|k−1, F
z,k
w1,wk+1

(wk), wk+1, 
z),
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where F
z,k
ξ1,ξ2

is as in (2.18), 
wk = (w1, . . . , wk), 
zk = (z1, . . . , zk) and 
k( 
wk, 
zk)|k−1

denotes the image of ( 
wk, 
zk) under the (inductively constructed) 
k projected to the
first k − 1 coordinates. This gives the definition of 
k+1 and the general construction
proceeds by induction on k.

We claim that for all T ≥ 2 the function 
T is a left and right inverse to the function
�T . If true, the latter will clearly imply (2.19).

When T = 2, the latter is trivial, since the maps are basically the identity map,
except that 
2 inserts the coordinate ω0 between w1 and w2 in the vector ( 
w, 
z), while
�2 removes it. Suppose we know the result when T = k ≥ 2 and wish to show it for
T = k + 1. We want to show that

�k+1
(

k+1( 
w, 
z)

)
= ( 
w, 
z) and 
k+1

(
�k+1(w1, 
u, wk+1, 
z)

)
= (w1, 
u, wk+1, 
z), (2.21)

for all 
w ∈ R
k+1, 
z ∈ [−∞,∞)k+1 and 
u ∈ (0, 1)k−1.

Using the inductive definition of 
k+1, we see that to show the first equality in (2.21)
it suffices to show that

�k+1
(
(
k( 
wk, 
zk)|k−1, F
z,k

w1,wk+1
(wk), wk+1, 
z)

)
= ( 
w, 
z),

where 
wk and 
zk are as above. Using the inductive definition of �k+1 and the fact that

[F
z,k
w1,wk+1

]−1(F
z,k
w1,wk+1

(wk)) = wk,

we see that the latter is equivalent to
(
�k(
k( 
wk, 
zk)|k−1, wk, 
zk)|k−1, wk, wk+1, 
z

)
= ( 
w, 
z),

where �k(·)|k−1 denotes the projection to the first k −1 coordinates. Since by induction
hypothesis we know that

�k(
k( 
wk, 
zk)|k−1, wk, 
zk)|k−1 = �k(
k( 
wk, 
zk))|k−1 = (w1, . . . , wk−1),

we see that the left side of (2.21) is satisfied for k + 1 and the general result now follows
by induction.

Similarly, using the inductive definition of �k+1, we see that to show the second
equality in (2.21) it suffices to show that


k+1
(
�k(w1, 
uk−2, [F
z,k

w1,wk+1
]−1(uk−1), 
zk)|k−1, [F
z,k

w1,wk+1
]−1(uk−1), wk+1, 
z)

)

= (w1, 
u, wk+1, 
z),
where �k(·)|k−1 is as above, 
u = (u1, . . . , uk−1) and


uk−2 =
{

(u1, . . . , uk−2) if k ≥ 3 and
ω0 if k = 2.

Using the inductive definition of 
k+1 and the fact that

F
z,k
w1,wk+1

(
[F
z,k

w1,wk+1
]−1(uk−1)

)
= uk−1,
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we see that it suffices to show
(

k

(
�k(w1, 
uk−2, [F
z,k

w1,wk+1
]−1(uk−1), 
zk)

)
|k−1, uk−1, wk+1, 
z

)
= (w1, 
u, wk+1, 
z),

where 
k(·)|k−1 is as above. Since by induction hypothesis we know that


k
(
�k(w1, 
uk−2, [F
z,k

w1,wk+1
]−1(uk−1), 
zk)

)
|k−1 = (w1, 
uk−2),

we see that the right side of (2.21) is satisfied for k +1 and the general result now follows
by induction.

Step 4 In this step, we prove (2.20). In view of our work in Step 3, we know that [�T ]−1

is nothing but the function 
T we constructed in that step. Thus, we want to prove that

lim
n→∞ 
T ( 
wn, 
zn) = 
T ( 
w∞, 
z∞), (2.22)

provided that ( 
wn, 
zn) → ( 
w∞, 
z∞) in R
T × [−∞,∞)T .

As usual, we prove (2.22) by induction on T ≥ 2, with base case T = 2 being
trivially true by the definition of 
T . Assuming the result for T = k, we show that it
holds when T = k +1. Using the inductive definition of
k+1, we see that to show (2.22)
it suffices to prove that

lim
n→∞(
k( 
wn

k , 
zn
k )|k−1, F
zn ,k

wn
1 ,wn

k+1
(wn

k ), wn
k+1, 
zn)

= (
k( 
w∞
k , 
z∞

k )|k−1, F
z∞,k
w∞
1 ,w∞

k+1
(w∞

k ), w∞
k+1, 
z∞),

where we recall that 
k(·)|k−1 is the projection to the first k − 1 coordinates. Our
assumption that ( 
wn, 
zn) → ( 
w∞, 
z∞) and our induction hypothesis reduce the validity
of the last statement to

lim
n→∞ F
zn ,k

wn
1 ,wn

k+1
(wn

k ) = F
z∞,k
w∞
1 ,w∞

k+1
(w∞

k ), (2.23)

which by the definition of F
z
ξ1,ξ2

in (2.18) is equivalent to

lim
n→∞

∫ wn
k−∞ h

wn
1 ,
zn

k (r)G(wn
k+1 − r)dr

∫∞
−∞ h

wn
1 ,
zn

k (r)G(wn
k+1 − r)dr

=
∫ w∞

k−∞ h
w∞
1 ,
z∞

k (r)G(w∞
k+1 − r)dr

∫∞
−∞ h

w∞
1 ,
z∞

k (r)G(w∞
k+1 − r)dr

. (2.24)

We show that the numerators and denominators on the left side of (2.24) converge to the
numerator and the denominator on the right side, respectively. As the proofs are very
similar, we only prove this statement for the numerators, which using the definition of
hc,
z

n in (2.9) boils down to

lim
n→∞

∫ wn
k

−∞

∫

Rk−1

k+1∏

i=1

G(xi − xi−1)

k∏

i=1

e−H(zn
i+1−xi )dx1 · · · dxk

=
∫ w∞

k

−∞

∫

Rk−1

k+1∏

i=1

G(xi − xi−1)

k∏

i=1

e−H(z∞
i+1−xi )dx1 · · · dxk,
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where on the left x0 = wn
1 and xk+1 = wn

k+1, while on the right x0 = w∞
1 and xk+1 =

wk+1∞ . Applying the change of variables yn
i = xi + wn

k in the top line above, and y∞
i =

xi + w∞
k in the second, we see that it suffices to prove

lim
n→∞

∫ 0

−∞

∫

Rk−1

k+1∏

i=1

G(yn
i − yn

i−1)

k∏

i=1

e−H(zn
i+1−yn

i +wn
k )dyn

1 · · · dyn
k

=
∫ 0

−∞

∫

Rk−1

k+1∏

i=1

G(y∞
i − y∞

i−1)

k∏

i=1

e−H(z∞
i+1−y∞

i +w∞
k )dy∞

1 · · · dy∞
k , (2.25)

where yn
0 = wn

1 + wn
k and yn

k+1 = wn
k+1 + wn

k for n ∈ N ∪ {∞}.
Notice that by the continuity of G and H we know that the integrands on the top line

of (2.25) converge pointwise to the integrand on the bottom. The fact that the integrals
also converge then follows from the Generalized dominated convergence theorem (see
[38, Theorem 4.17]) with dominating functions

fn(y1, . . . , yk) =
k+1∏

i=1

G(yi − yi−1), where y0 = wn
1 + wn

k and yk+1 = wn
k+1 + wn

k .

Let us elaborate on the last argument briefly. Since H ≥ 0 by assumption, we know that
fn dominate the integrands on the top line of (2.25). Furthermore, by the continuity of
G we conclude that fn converge pointwise to f∞, which has the same form as fn with
y0 = w∞

1 +w∞
k and yk+1 = w∞

k+1 +w∞
k . To conclude the application of the Generalized

dominated convergence theorem, we need to show

lim
n→∞

∫ 0

−∞

∫

Rk−1

k+1∏

i=1

G(yn
i − yn

i−1)dyn
1 · · · dyn

k =
∫ 0

−∞

∫

Rk−1

k+1∏

i=1

G(y∞
i − y∞

i−1)dy∞
1 · · · dy∞

k .

Changing variables ỹi = yn
i − yn

i−1 for i = 1, . . . , k, we see that the latter is equivalent
to

lim
n→∞

∫

Rk

k∏

i=1

G(ỹi ) · G

(

wn
k+1 −

k∑

i=1

ỹi − wn
1

)

· 1
{

wn
1 +

k∑

i=1

ỹi ≤ 0

}

d ỹ1 · · · d ỹk

=
∫

Rk

k∏

i=1

G(ỹi ) · G

(

w∞
k+1 −

k∑

i=1

ỹi − w∞
1

)

· 1
{

w∞
1 +

k∑

i=1

ỹi ≤ 0

}

d ỹ1 · · · d ỹk .

The last equation is now a consequence of the dominated convergence theorem (see [38,
Theorem 4.16]) with dominating function ‖G‖∞ · ∏k

i=1 G(ỹi ) (note that the latter is
integrable on R

k as G is bounded and integrable on R). We thus conclude that the Gen-
eralized dominated convergence theorem is applicable and implies (2.25). This proves
that the numerators in (2.24) converge and one can analogously show the same holds
for the denominators, which concludes the proof of (2.22) when T = k + 1. The general
result now follows by induction.

Step 5 In this step, we prove part III of the lemma.We already observed in Step 2 that our
construction gives for T ≥ 3 that (�T ,FT , P

T ) is (0, 1)T −2 with the Borel σ -algebra
and Lebesgue measure, and when T = 2 it is the trivial probability space with a single
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point. Furthermore, we showed in Step 3 that �T is a bijection and in Step 4 that its
inverse 
T is continuous. Thus, we only need to prove that �T is itself continuous. As
usual, we establish this statement by induction on T ≥ 2, with base case T = 2 being
trivially true by the definition of �T . Assuming the result for T = k, we now prove it
for T = k + 1, which boils down to establishing

lim
n→∞ �k+1(wn

1 , 
un, wn
k+1, 
zn) = �k+1(w∞

1 , 
u∞, w∞
k+1, 
z∞), (2.26)

provided that limn→∞(wn
1 , 
un, wn

k+1, 
zn) = (w∞
1 , 
u∞, w∞

k+1, 
z∞) in R × (0, 1)T −2 ×
R × [−∞,∞)T .

lim
n→∞

(
�k(wn

1 , 
un
k−2, [F
zn ,k

wn
1 ,wn

k+1
]−1(un

k−1), 
zn
k )|k−1, [F
zn ,k

wn
1 ,wn

k+1
]−1(un

k−1), w
n
k+1, 
zn)

)

=
(
�k(w∞

1 , 
u∞
k−2, [F
z∞,k

w∞
1 ,w∞

k+1
]−1(u∞

k−1), 
z∞
k )|k−1, [F
z∞,k

w∞
1 ,w∞

k+1
]−1(u∞

k−1), w
∞
k+1, 
z∞)

)
.

Our assumption that (wn
1 , 
un, wn

k+1, 
zn) → (w∞
1 , 
u∞, w∞

k+1, 
z∞) and our induction
hypothesis reduce the validity of the last statement to

lim
n→∞ An = A∞,where An = [F
zn ,k

wn
1 ,wn

k+1
]−1(un

k−1) for n ∈ N ∪ {∞}. (2.27)

We now show that An is a bounded sequence and all its subsequential limits are
equal to A∞, which proves (2.27). Suppose first that Anm converges to ∞ along some

subsequence nm . Then, by monotonicity of the function F
zn ,k
wn
1 ,wn

k+1
we know that for any

a ∈ R

u∞
k−1 = lim

m→∞ unm
k−1 = lim

m→∞ F
znm ,k
w

nm
1 ,w

nm
k+1

(Anm ) ≥ lim sup
m→∞

F
znm ,k
w

nm
1 ,w

nm
k+1

(a) = F
z∞,k
w∞
1 ,w∞

k+1
(a),

where in the last equality we used (2.23). Letting a → ∞ above, we see u∞
k−1 ≥ 1,

which is a contradiction as u∞
k−1 ∈ (0, 1).

Analogously, if Anm converges to −∞ along some subsequence nm then we have for
any a ∈ R

u∞
k−1 = lim

m→∞ unm
k−1 = lim

m→∞ F
znm ,k
w

nm
1 ,w

nm
k+1

(Anm ) ≤ lim inf
m→∞ F
znm ,k

w
nm
1 ,w

nm
k+1

(a) = F
z∞,k
w∞
1 ,w∞

k+1
(a),

where in the last equality we used (2.23). Letting a → −∞, we see u∞
k−1 ≤ 0, which is

a contradiction as u∞
k−1 ∈ (0, 1).

Finally, suppose that Anm converges to B∞ along some subsequence nm . Then,

u∞
k−1 = lim

m→∞ unm
k−1 = lim

m→∞ F
znm ,k
w

nm
1 ,w

nm
k+1

(Anm ) = F
z∞,k
w∞
1 ,w∞

k+1
(B∞),

where in the last equality we used (2.23). Applying [F
z∞,k
w∞
1 ,w∞

k+1
]−1 to both sides, we see

that A∞ = B∞, as desired. This shows that all subsequential limits of An are equal to
A∞, which together with the boundedness of the sequence proves (2.27) and thus (2.26)
holds. The general result now follows by induction. 
�
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2.3. Properties of H RW -random walk bridges. A special case of the measures
P

T0,T1,x,y,
z
H,H RW we considered in Sect. 2.2 is when 
z = (−∞)T1−T0 . In this case, our assump-

tion that H(−∞) = 0 implies that PT0,T1,x,y,
z
H,H RW becomes the law of a H RW -random walk

bridge between the points (T0, x) and (T1, y), see (2.2). We denote such measures by
P

T0,T1,x,y
H RW and write E

T0,T1,x,y
H RW for their expectation. In this section, we derive several

results about the measures P
T0,T1,x,y
H RW , that rely on a strong coupling between random

walk bridges and Brownian bridges from [20]—recalled here as Proposition 2.17. The
advantage of this strong coupling is that it allows us to estimate the probabilities of
various events under P

T0,T1,x,y
H RW by comparing them to ones involving a Brownian bridge,

for which exact computations are easier. In order to apply Proposition 2.17, we need to
make several assumptions on the function H RW , summarized in the following definition.

Definition 2.15. We make the following five assumptions on H RW .

Assumption 1. We assume that H RW : R → R is a continuous convex function and
G(x) = e−H RW (x). We assume that G(x) is bounded and

∫
R

G(x)dx = 1.
If X is a random variable with density g, we denote

MX (t) := E
[
et X ], φX (t) := E

[
eit X ], �(t) := log MX (t), D� := {x : �(x) < ∞}.

(2.28)

Assumption 2. We assume that Dλ contains an open neighborhood of 0.
It is easy to see thatD� is a connected set and, hence, an interval.We denote (A�, B�)

the interior of D�, where A� < 0 and B� > 0 by Assumption 2. We write MX (u) for
all u ∈ D = {u ∈ C : A� < Re(u) < B�} to mean the (unique) analytic extension of
MX (x) to D, afforded by [20, Lemma 2.1].

Assumption 3. We assume that the function �(·) is lower semi-continuous on R.
Under Assumptions 1,2 and 3 for a given p ∈ R the quantity �′′((�′)−1(p)) is

well-defined—see [20, Section 2.1]. For brevity, we write σ 2
p := �′′((�′)−1(p)).

Assumption 4. We assume that for every B� > t > s > A� there exist constants
K (s, t) > 0 and p(s, t) > 0, such that |MX (z)| ≤ K (s,t)

(1+|Im(z)|)p(s,t) , provided s ≤ Re(z) ≤
t .

Assumption 5. We suppose that there are constants D, d > 0, such that at least one of
the following statements holds

1. G(x) ≤ De−dx2 for all x ≥ 0 or 2.G(x) ≤ De−dx2 for all x ≤ 0. (2.29)

Remark 2.16. As mentioned before, our goal is to use a strong coupling result for ran-
dom walk bridges from [20], which is a certain analogue of the classical KMT-coupling
result from [30,31]. Assumption 1 (except for the convexity part) is essentially ensur-
ing that the random walk underlying the random walk bridge has a single interval of
support. This allows one to condition on its endpoints and make sure that the corre-
sponding bridge law in (2.2) is well-defined. The convexity assumption on H RW is
made so that we can apply our monotone coupling Lemma 2.11. Assumptions 2 and 4
are also somewhat natural as they were also needed in K MT ’s original work [30,31].
Assumptions 3 and 5 are a bit more technical and we refer to [20, Section 2.3] for a
more detailed discussion of their significance. We also mention that any convex H RW

such that lim inf |x |→∞ x−2H RW (x) > 0 satisfies the assumptions in Definition 2.15.
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If Wt denotes a standard one-dimensional Brownian motion and σ > 0, then the
process

Bσ
t = σ(Wt − tW1), 0 ≤ t ≤ 1,

is called a Brownian bridge (conditioned on B0 = 0, B1 = 0) with variance σ 2. With
the above notation we state the strong coupling result we use.

Proposition 2.17. Suppose H RW satisfies the assumptions of Definition 2.15. Let p ∈ R

and σ 2
p be as in that definition. There exist constants 0 < C, a, α̃ < ∞ (depending on p

and H RW ), such that for every positive integer T , there is a probability space on which
are defined a Brownian bridge Bσ with variance σ 2 = σ 2

p and a family of random curves

�(T,z) on [0, T ], which is parameterized by z ∈ R, such that �(T,z) has law P
0,T,0,z
H RW and

E
[
ea�(T,z)] ≤ Ceα̃(log T )2e|z−pT |2/T , where �(T, z) = sup

0≤t≤T

∣∣
√

T Bσ
t/T +

t

T
z − �(T,z)(t)

∣∣.

(2.30)

Here we recall that �(T,z)(s) was defined for non-integer s by linear interpolation.

Proof. This result is a special case of [20, Theorem 2.3]. Indeed, Assumptions 1–5 in
Definition 2.15 imply Assumptions C1-C5 in [20, Section 2.1]. In addition, Assumption
C6 in [20, Section 2.1] is satisfied in view of [20, Lemma 7.2] and the fact that H RW is
convex. 
�
Remark 2.18. We mention that Proposition 2.17 in particular shows that a sequence of
random walk bridges, with well-behaved endpoints, converge uniformly to Brownian
bridges, but it also shows that this convergence happens very fast. For many of our
argumentswe do not really require such a rapid rate of convergence, and in fact evenweak
convergence suffices. However, we could not find a general statement about convergence
of generic random walks bridges to Brownian bridges that readily applies to a general
class of H RW . This is why we opted to rely on Proposition 2.17, and many of the
arguments in the paper are catered towards applying this proposition. We believe that
one can significantly relax the assumptions on H RW in Definition 2.15 and still be able
to prove the main results of the paper; however, we leave this outside of the scope of the
present paper.

In the lemmas belowwe considermeasuresP
T0,T1,x,y
H RW , with H RW satisfying the above

assumptions. The random variable, whose law is P
T0,T1,x,y
H RW , will usually be denoted by

�. We recall that this is a Y (�T0, T1�)-valued random variable and for i ∈ �T0, T1� we
denote its i-th entry by �(i). As explained in Sect. 2.1, we also think of � as a random
continuous curve on [T0, T1], formed by linearly interpolating the points (i, �(i)) for
i ∈ �T0, T1�.

Below,we list several lemmas,whose proofs are postponed until Sect. 7.2.Weprovide
a brief informal explanation of what each result says after it is stated. After we state all
the lemmas we explain the underlying theme behind their proofs.

Lemma 2.19. Let � have distribution P
0,T,x,y
H RW , with H RW satisfying the assumptions

in Definition 2.15. Let M1, M2 ∈ R and p ∈ R be given. Then, we can find W0 =
W0(p, M2 − M1) ∈ N, such that for T ≥ W0, x ≥ M1T 1/2, y ≥ pT + M2T 1/2 and
s ∈ [0, T ] we have

P
0,T,x,y
H RW

(
�(s) ≥ T − s

T
· M1T 1/2 +

s

T
· (pT + M2T 1/2)− T 1/4

)
≥ 1

3
. (2.31)
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Remark 2.20. If M1, M2 = 0, then Lemma 2.19 states that if a random walk bridge � is
started from (0, x) and terminates at (T, y), which are above the straight line of slope p,
then at any given time s ∈ [0, T ] the probability that �(s) goes a modest distance below
the straight line of slope p is upper bounded by 2/3.

Lemma 2.21. Let � have distribution P
0,T,0,y
H RW , with H RW satisfying the assumptions in

Definition 2.15. Let M > 0, p ∈ R and ε > 0 be given. Then, we can find W1 =
W1(M, p, ε) ∈ N and A = A(M, p, ε) > 0, such that for T ≥ W1, y ≥ pT − MT 1/2

we have

P
0,T,0,y
H RW

(
inf

s∈[0,T ]
(
�(s) − ps

) ≤ −AT 1/2
)

≤ ε. (2.32)

Remark 2.22. Roughly, Lemma 2.21 states that if a randomwalk bridge � is started from
(0, 0) and terminates at (T, y) with (T, y) not significantly lower than the straight line
of slope p, then the event that � goes significantly below the straight line of slope p is
very unlikely.

Lemma 2.23. Let � have distribution P
0,T,x,y
H RW , with H RW satisfying the assumptions

in Definition 2.15. Let M1, M2 > 0 and p ∈ R be given. Then, we can find W2 =
W2(M1, M2, p) ∈ N, such that for T ≥ W2, x ≥ −M1T 1/2, y ≥ pT − M1T 1/2 and
ρ ∈ {−1, 0, 1} we have

P
0,T,x,y
H RW

(
�(�T/2	 + ρ) ≥ M2T 1/2 + pT

2
− T 1/4

)
≥ (1/2)(1 − �v(M1 + M2)),

(2.33)

where �v is the cumulative distribution function of a Gaussian random variable with
mean 0 and variance v = σ 2

p/4.

Remark 2.24. Lemma 2.23 states that if a random walk bridge � is started from (0, x)

and terminates at (T, y), with these points not significantly lower than the straight line
of slope p, then its mid-point would lie well above the straight line of slope p, at least
with some quantifiably tiny probability.

Lemma 2.25. Let � have distribution P
0,T,x,y
H RW with H RW satisfying the assumptions in

Definition 2.15. Let p ∈ R be given. Then we can find W3 = W3(p) ∈ N such that for
T ≥ W3, x ≥ T 1/2, y ≥ pT + T 1/2

P
0,T,x,y
H RW

(
inf

s∈[0,T ]
(
�(s) − ps

)
+ T 1/4 ≥ 0

)
≥ 1

2

(

1 − exp

(
−2

σ 2
p

))

. (2.34)

Remark 2.26. Lemma 2.25 states that if a random walk bridge � is started from (0, x)

and terminates at (T, y) with (0, x) and (T, y) well above the line of slope p then at
least with some positive probability � will not fall significantly below the line of slope
p.

We need the following definition for our next result. For a function f ∈ C[a, b] we
define its modulus of continuity by

w( f, δ) = sup
x,y∈[a,b]
|x−y|≤δ

| f (x) − f (y)|. (2.35)
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Lemma 2.27. Let � have distribution P
0,T,0,y
H RW , with H RW satisfying the assumptions in

Definition 2.15. Let M > 0 and p ∈ R be given. For each positive ε and η, there exist
a δ > 0 and W4 = W4(M, p, ε, η) ∈ N, such that for T ≥ W4 and |y − pT | ≤ MT 1/2

we have

P
0,T,0,y
H RW

(
w
(

f �, δ
) ≥ ε

)
≤ η, (2.36)

where f �(u) = T −1/2
(
�(uT ) − puT

)
for u ∈ [0, 1].

Remark 2.28. Lemma 2.27 states that if � is a random walk bridge that is started from
(0, 0) and terminates at (T, y), with y close to pT (i.e. with well-behaved endpoints),
then the modulus of continuity of � is also well-behaved with high probability.

The above five lemmas are proved in a similar fashion. For the first four lemmas, one
observes that the event, whose probability is being estimated, is monotone in �. This
allows, by Lemma 2.11, to replace x, y in the statements of the lemmas with the extreme
values of the ranges specified in each. Once the choice of x and y is fixed, one can use
our strong coupling result of � and a Brownian bridge to reduce each of the lemmas to
an analogous one with � replaced by a Brownian bridge with some prescribed variance.
The latter statements are then easily confirmed as one has exact formulas for all of the
probabilities in the above lemmas whenever � is replaced by a Brownian bridge.

We end this section with the following result for (H, H RW )-random curves. Its proof
will also be provided in Sect. 7.2.

Lemma 2.29. Let H be as in Definition 2.4 and suppose it is convex, weakly increasing

and limx→∞ H(x) = ∞. For such a choice of H, we let � have law P
0,2T,x,y,
z
H,H RW as

in Sect. 2.2, where H RW satisfies the assumptions in Definition 2.15. Let M, ε > 0
and p ∈ R be given. Then, we can find a constant W5 = W5(M, p, ε) ∈ N so that
the following holds. If T ≥ W5, 
z ∈ [−∞,∞)2T+1 with zT+1 ≥ pT + 2MT 1/2 and
x, y ∈ R with x ≥ −MT 1/2 and y ≥ −MT 1/2 + 2pT , then we have

P
0,2T,x,y,
z
H,H RW

(
�(T ) ≤ pT + MT 1/2) ≤ ε. (2.37)

Remark 2.30. What Lemma 2.29 states is that if (T, zT+1) is well-above the straight
segment of slope p, then (T, �(T )) is also well-above the straight segment of slope p
with very high probability.

It is not too surprising that if 
z is high then � is also forced to be high, because the
definition of P

0,2T,x,y,
z
H,H RW exponentially penalizes �’s that go below 
z. What is somewhat

surprising is that it is enough for only zT+1 (a single entry of 
z) to be high to force �(T )

to become high with it. The reason it works out this way is that we are performing a
type of diffusive scaling to the curve � and zT+1 is high in the order T 1/2 of this scaling.
While the curves are living on order T 1/2 the interaction Hamiltonian H is not scaled
with T at all. In particular, as T becomes large the H interaction on a T 1/2 scale starts
to look like the indicator function that � lies above 
z. This, in particular, makes the proof
of Lemma 2.29 very easy compared to its analogue [6, Proposiition 7.6] in the context
of the KPZ line ensemble, where the interaction Hamiltonian is also influenced by the
diffuse scaling.
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3. Tightness of Simple (H, HRW )-Gibbsian Line Ensembles

We call a {1, 2} × �T0, T1�-indexed line ensemble simple (i.e., a simple line ensemble
has only two curves, indexed by 1 and 2). In this section, we describe a general frame-
work, that can be used to prove tightness for the top curve of a sequence of simple
line ensembles, that satisfy the (H, H RW )-Gibbs property. We start by summarizing our
assumptions on H in the following definition.

Definition 3.1. We let H : [−∞,∞) → [0,∞) be continuous, weakly increasing, and
convex. We assume that limx→∞ H(x) = ∞, and limx→∞ x2H(−x) = 0.

In this section, we also require from Definition 1.1 the notion of an (α, p, T )-good
sequence. The main technical result of this section is as follows.

Theorem 3.2. Fix α, r > 0, and p ∈ R, and let
{
LN = (L N

1 , L N
2 )
}∞

N=1 be a sequence of
(random) simple �1, 2�× �−TN , TN �-indexed line ensembles that is (α, p, r + 3)–good.
For N ≥ N0(α, p, r + 3) (where N0(α, p, r + 3) is afforded by Definition 1.1, owing to
our assumption of being (α, p, r + 3)–good), let fN (s) be given by

fN (s) = N−α/2(L N
1 (s Nα) − ps Nα

)
,

whenever s Nα is an integer. For all other values in s ∈ [−r, r ], we define fN by linear
interpolation. Let PN denote the law of fN as a random variable in (C[−r, r ], C). Then,
the sequence of distributions PN is tight.

Remark 3.3. Roughly, Theorem 3.2 states that if a process can be viewed as the top curve
of a (H, H RW )-Gibbsian discrete line ensemble and under some shift and diffusive
scaling the process’s one-point marginals are tight, then under the same shift and scaling
the trajectory of the process is tight in the space of continuous curves.

The goal of this section is to prove Theorem 3.2 and for the remainder we assume
that
{
LN = (L N

1 , L N
2 )
}∞

N=1 is an (α, p, r + 3)–good sequence of simple line ensembles,

(3.1)

defined on a probability space with measure P. The main technical result we will require
is contained in Proposition 3.4 below, and its proof is the content of Sect. 3.1. The proof
of Theorem 3.2 is given in Sect. 3.2 and relies on Proposition 3.4, and Lemma 2.27.

3.1. Bounds on Z H,H RW . The main result in this section is presented as Proposition 3.4
below. In it, and the lemmas after it, we assume that (3.1) holds. In other words, for fixed
α, r > 0 and p ∈ R, we have that

{
(L N

1 , L N
2 )
}∞

N=1 is an N -indexed (α, p, r + 3)–good
sequence of line ensembles. We will also adopt the notation

t±1 = �±(r + 1)Nα	, t±2 = �±(r + 2)Nα	, and t±3 = �±(r + 3)Nα	. (3.2)

The assumption that (L N
1 , L N

2 ) is (α, p, r + 3)-good implies that there exists a function
R0 : (0,∞) → (0,∞), such that for any ε > 0 we have

sup
N≥N0(α,p,r+3)

P

(
max

i∈{1,2,3}, j∈{+,−} N−α/2
∣∣
∣L N

1 (t j
i ) − pt j

i

∣∣
∣ ≥ R0(ε)

)
< ε. (3.3)
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Proposition 3.4. For any ε > 0 and any (α, p, r + 3)-good sequence of simple line
ensembles

{
(L N

1 , L N
2 )
}∞

N=1 there exist δ > 0 and N1 (depending on ε as well as
H, H RW , α, p, r, N0, and the function R0 in (3.3)), such that for all N ≥ N1 we have

P

(
Z H,H RW

(
t−1 , t+1 , L N

1 (t−1 ), L N
1 (t+1 ), L2�t−1 , t+1 �

)
< δ

)
< ε,

where Z H,H RW is the normalizing constant in (2.5) (we recall that this alternative nota-
tion for Z H,H RW was introduced in Sect. 2.2).

Remark 3.5. In Lemma 7.2, we show that Z H,H RW

(
T0, T1, x, y, 
z) is a continuous func-

tion of (x, y, 
z) ∈ R×R×Y (�T0, T1�) bounded above by 1 and below by 0. In particular,
the event in Proposition 3.4 is measurable and its probability well-defined.

Remark 3.6. The inequality in Proposition 3.4 implies that the Radon–Nikodym deriva-
tive of L N

1 with respect to a suitable H RW random walk bridge is lower bounded. This
will ultimately allow us to show that the sequence fN is tight by comparing it with a
sequence of random walk bridges, for which tightness is easier to establish.

The general strategy we use to prove Proposition 3.4 is inspired by the proof of
Proposition 6.5 in [6]. We begin by stating three key lemmas that will be required.
Their proofs are postponed to Sect. 4. All constants in the statements below will depend
implicitly on α, r , p, N0, H , H RW , and the function R0 from (3.3), which are fixed
throughout. We will not list this dependence explicitly.

Lemma 3.7 controls the deviation of the curve L N
1 (s) from the line ps in the scale

Nα/2.

Lemma 3.7. For each ε > 0 there exist R1 = R1(ε) > 0 and N2 = N2(ε), such that
for N ≥ N2

P

(
sup

s∈[−t−3 ,t+3 ]

∣∣L N
1 (s) − ps

∣∣ ≥ R1Nα/2
)

< ε.

Lemma 3.8 controls the upper deviation of the curve L N
2 (s) from the line ps in the

scale Nα/2.

Lemma 3.8. For each ε > 0 there exist R2 = R2(ε) > 0 and N3 = N3(ε), such that
for N ≥ N3

P

(
sup

s∈[t−2 ,t+2 ]

(
L N
2 (s) − ps

) ≥ R2Nα/2
)

< ε.

Lemma 3.9 states that if one is given a bottom bounding curve �bot ∈ Y (�t−2 , t+2 �)

which is not too high and if x, y ∈ R are not too low, then underP
t−2 ,t+2 ,x,y,�bot

H,H RW the random

variable Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot�t−1 , t+1 �

)
is tiny with very small probability.

Lemma 3.9. Fix M1, M2 > 0, �bot ∈ Y (�t−2 , t+2 �), and x, y ∈ R, such that

(1) sups∈[t−2 ,t+2 ]
(
�bot (s) − ps

) ≤ M2(t+2 − t−2 )1/2,

(2) x ≥ pt−2 − M1(t+2 − t−2 )1/2,

(3) y ≥ pt+2 − M1(t+2 − t−2 )1/2.
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Define the constants g and h (depending on M1, M2) via

g = 1

4

(

1 − exp

(
−2

σ 2
p

))

and h = (1/18) ·
(
1 − �v

(
10(2 + r)2(M1 + M2 + 10)

))
,

where σp is specified in terms of H RW as in Definition 2.28, and �v is the cumulative
distribution function of a Gaussian random variable with mean zero and variance v =
σ 2

p/4.
Then, there exists N4 = N4(M1, M2) ∈ N, such that for any ε̃ > 0 and N ≥ N4 we

have

P
t−2 ,t+2 ,x,y,�bot

H,H RW

(
Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot�t−1 , t+1 �

) ≤ ghε̃
)

≤ ε̃, (3.4)

where �bot�t−1 , t+1 � is the vector in Y (�t−1 , t+1 �), whose coordinates match those of �bot

on �t−1 , t+1 �.

In the remainder, we prove Proposition 3.4, assuming the validity of Lemmas 3.7, 3.8
and 3.9. The arguments we present are similar to those used in the proof of Proposition
6.5 in [6].

Proof of Proposition 3.4. Let ε > 0 be given. Define the event

EN =
⋂

ς∈{±}

{
L N
1 (tς2 ) − ptς2 ≥ −M1(t

+
2 − t−2 )1/2

}

∩
{

sup
s∈[t−2 ,t+2 ]

(
L N
2 (s) − ps

) ≤ M2(t
+
2 − t−2 )1/2

}
,

where M1 and M2 are sufficiently large so that for all large N we have P(Ec
N ) < ε/2.

The existence of such M1 and M2 is assured from Lemmas 3.7 and 3.8.
Let δ = (ε/2) · gh, where g, h are as in Lemma 3.9 for the values M1, M2 as above

and r as in the statement of the proposition. We denote

V =
{

Z H,H RW

(
t−1 , t+1 , L N

1 (t−1 ), L N
1 (t+1 ), L N

2 �t−1 , t+1 �
)

< δ
}

and make the following deduction

P
(
V ∩ EN

) = E

[
E

[
1EN · 1V

∣∣∣Fext
({1} × �t−2 + 1, t+2 − 1�

)]]

= E

[
1EN · E

[
1{Z H,H RW

(
t−1 , t+1 , L N

1 (t−1 ), L N
1 (t+1 ), L N

2 �t−1 , t+1 �
)

< δ}
∣∣∣Fext

({1} × �t−2 + 1, t+2 − 1�
)]]

= E

[
1EN · E

t−2 ,t+2 ,L N
1 (t−2 ),L N

1 (t+2 ),L2
N �t−2 ,t+2 �

H,H RW

[
1{Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), L N

2 �t−1 , t+1 �
)

< δ}
]]

≤ E
[
1EN · ε/2

] ≤ ε/2.
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The first equality follows from the tower property for conditional expectations. The
second equality uses the fact that 1EN is Fext

({1} × �t−2 + 1, t+2 − 1�-measurable
and can thus be taken outside of the conditional expectation as well as the defini-
tion of V . The third equality uses the (H, H RW )-Gibbs property (2.6), applied to
F(�) = 1{Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), L N

2 �t−1 , t+1 �
)

< δ}. The inequality on the third
line uses Lemma 3.9 with ε̃ = ε/2 as well as the fact that on the event Ec

N the random
variables L N

1 (t−2 ), L N
1 (t+2 ) and L N

2 �t−2 , t+2 � (that play the roles of x, y and �bot ) satisfy
the inequalities

L N
1 (t−2 ) ≥ pt−2 − M1(t

+
2 − t−2 )1/2, L N

1 (t+2 ) ≥ pt+2 − M1(t
+
2 − t−2 )1/2,

sup
s∈[t−2 ,t+2 ]

(
L N
2 (s) − ps

) ≤ M2(t
+
2 − t−2 )1/2.

The last inequality is trivial.
Combining the above inequality with P(Ec

N ) < ε/2, we see that for all large N we
have

P (V ) = P(V ∩ EN ) + P(V ∩ Ec
N ) ≤ ε/2 + P(Ec

N ) < ε,

which completes the proof. 
�

3.2. Proof of Theorem 3.2. For clarity, we split the proof of Theorem 3.2 into three steps.
In Step 1, we reduce the statement of the theorem to establishing a certain estimate on the
modulus of continuity of the curves L N

1 . In Step 2, we show that it is enough to establish
these estimates under the additional assumption that (L N

1 , L N
2 ) are well-behaved (in

particular, well-behaved implies that Z H,H RW

(
t−1 , t+1 , L N

1 (t−1 ), L N
1 (t+1 ), L N

2 �t−1 , t+1 �
)
is

lower bounded and it is here that we use Proposition 3.4). The fact that the Z H,H RW is
lower bounded is exploited in Step 3 to effectively reduce the estimates on the modulus
of continuity of L N

1 to those of a H RW random walk bridge. The latter estimates are
then derived by appealing to Lemma 2.27.

Step 1 Recall from (2.35) that the modulus of continuity of f ∈ C([−r, r ]) is defined
by

w( f, δ) = sup
x,y∈[−r,r ]
|x−y|≤δ

| f (x) − f (y)|.

As an immediate generalization of [2, Theorem 7.3], in order to prove the theorem, it
suffices for us to show that the sequence of random variables fN (0) is tight and that for
each positive ε and η there exist δ′ > 0 and N ′ ∈ N, such that for N ≥ N ′ we have

P
(
w( fN , δ′) ≥ ε

) ≤ η, (3.5)

where w( f, δ) is as in (2.35) for a = −r, b = r .
The tightness of fN (0) is immediate from our assumption that

{
(L N

1 , L N
2 )
}∞

N=1 is
an (α, p, r + 3)–good sequence (it is true by the second condition in Definition 1.1 for
s = 0). Consequently, we are left with verifying (3.5).
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Suppose ε, η > 0 are given and also recall t±1 from (3.2). We claim that we can find
δ > 0, such that for all N sufficiently large we have

P

(
sup

x,y∈[t−1 ,t+1 ]
|x−y|≤δ(t+1 −t−1 )

∣∣L N
1 (x) − L N

1 (y) − p(x − y)
∣∣ ≥ ε(t+1 − t−1 )1/2

2(2r + 2)1/2

)
≤ η. (3.6)

Here, as usual, we are treating L N
1 as the continuous curve, which linearly interpolates

between its values on integers. Setting δ′ = δ, we see that (3.6) implies (3.5).

Step 2 In Step 1, we reduced the proof of the theorem to establishing (3.6). This step
sets up notation needed in the subsequent step in order to prove (3.6).

From Lemma 3.7 we can find M1 > 0 sufficiently large so that for all large N we
have

P(E1) ≥ 1 − η/4, where E1 =
{
max

(∣
∣L N

1 (t−1 ) − pt−1
∣
∣,
∣
∣L N

1 (t+1 ) − pt+1
∣
∣
)

≤ M1Nα/2
}
.

In addition, by Proposition 3.4 we can find δ1 > 0, such that for all sufficiently large N
we have

P(E2) ≥ 1 − η/4, where E2 =
{

Z H,H RW (t−1 , t+1 , L N
1 (t−1 ), L N

1 (t+1 ), L N
2 �t−1 , t+1 �) > δ1

}
.

For δ > 0 and any continuous curve � on [t−1 , t+1 ], we define
V (δ, �) = sup

x,y∈[t−1 ,t+1 ]
|x−y|≤δ(t+1 −t−1 )

|�(x) − �(y) − p(x − y)| .

We assert that we can find δ > 0, such that for all large N we have

P

(
V (δ, L N

1 [t−1 , t+1 ]) ≥ A
} ∩ E1 ∩ E2

)
≤ η/2, where A = ε(t+1 − t−1 )1/2

2(2r + 2)1/2
. (3.7)

In the above, L N
1 [t−1 , t+1 ] denotes the restriction of L N

1 to the interval [t−1 , t+1 ].
Let us assume the validity of (3.7) and deduce (3.6). We have

P

(
V (δ, L N

1 [t−1 , t+1 ]) ≥ A
)

≤ P

({
V (δ, L N

1 [t−1 , t+1 ]) ≥ A
} ∩ E1 ∩ E2

)
+ η/2 < η

where we used that P(Ec
1) ≤ η/4 and P(Ec

2) ≤ η/4. Identifying P
(
V (δ, L N

1 [t−1 , t+1 ]) ≥
A
)
with the left-hand side of (3.6), we see that the last inequality implies (3.6).

Step 3. In this step, we establish (3.7). Let us write Fδ = {V (δ, L N
1 [t−1 , t+1 ]) ≥ A

}
.

Using the (H, H RW )-Gibbs property (see (2.6)), we know that

P

({
V (δ, L N

1 [t−1 , t+1 ]) ≥ A
} ∩ E1 ∩ E2

)

= E
[
E
[
1Fδ1E11E2

∣∣Fext ({1} × �t−1 + 1, t+1− 1�)
]]

= E
[
1E11E2E

[
1Fδ

∣∣Fext ({1} × �t−1 + 1, t+1− 1�)
]]

= E
[
1E1 · 1E2 · EH,H RW [1{V (δ, �) ≥ A}]] , (3.8)
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where we have written EH,H RW to stand for E
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 ),L N

2 �t−1 ,t+1 �

H,H RW to ease the
notation (recall that this notation forEH,H RW was introduced in Sect. 2.2) and the random
variable with respect to which we are taking the expectation in EH,H RW is denoted by
�. In addition, from (2.3) we have

EH,H RW [1{V (δ, �) ≥ A}] = E
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 )

H RW [WH (�) · 1{V (δ, �) ≥ A}]
Z H,H RW (t−1 , t+1 , L N

1 (t−1 ), L N
1 (t+1 ), L N

2 �t−1 , t+1 �)
, (3.9)

where we have written WH (�) in place of WH (t−1 , t+1 , �, L N
2 �t−1 , t+1 �) to ease the

notation. We next use the fact that WH ∈ [0, 1] and Z H,H RW (t−1 , t+1 , L N
1 (t−1 ),

L N
1 (t+1 ), L N

2 �t−1 , t+1 �) > δ1 on E2 by definition to conclude that

1E11E2 · EH,H RW [WH (�) · 1{V (δ, �) ≥ A}] ≤ 1E11E2 · P
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 )

H RW (V (δ, �) ≥ A)

δ1
.

(3.10)

We now observe that

P
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 )

H RW (V (δ, �) ≥ A) = P
0,t+1 −t−1 ,0,L N

1 (t+1 )−L N
1 (t−1 )

H RW

(
w( f �, δ) ≥ ε

2(2r + 2)1/2

)
,

(3.11)

where on the right side � isP
0,t+1 −t−1 ,0,L N

1 (t+1 )−L N
1 (t−1 )

H RW -distributed, andwe used the notation

f � from Lemma 2.27. In deriving the above equation, we used the definition of A, as
well as the fact that if two random cruves �1 and �2 are distributed according to P

t1,t2,x,y
H RW

and P
0,t2−t1,0,y−x
H RW , then they have the same distribution except for a re-indexing and a

vertical shift by x—hence their modulus of continuity has the same distribution. Notice
that on the event E1 we have that

|L N
1 (t+1 ) − L N

1 (t−1 ) − p(t+1 − t−1 )| ≤ 2M1Nα/2 ≤ 2M1(t
+
1 − t−1 )1/2.

The latter and Lemma 2.27 (applied to η = δ1(η/2), ε = ε
2(2r+2)1/2

, M = 2M1, p as in

the statement of the theorem, and T = t+1 − t−1 ) together imply that we can find δ > 0
sufficiently small, such that for all large enough N we have

1E1 · P
0,t+1 −t−1 ,0,L N

1 (t+1 )−L N
1 (t−1 )

H RW

(
w( f �, δ) ≥ ε

2(2r + 2)1/2

)
≤ 1E1 · δ1η/2. (3.12)

Combining (3.10), (3.11), (3.12), we see that

1E1 · 1E2 · EH,H RW [1{V (δ, �) ≥ A}] ≤ 1E1 · 1E2 · η/2,

which together with (3.8) implies (3.7). This suffices for the proof.
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4. Proof of Three Key Lemmas

Here, we prove the three key lemmas from Sect. 3.1. The arguments we use below
heavily depend on the results from Sect. 2, and use the key notation and definitions
from Sect. 3 (e.g. Definition 1.1 of an (α, p, r)–good line ensemble, assumption (3.1)
on
{
(L N

1 , L N
2 )
}∞

N=1, and the notation t±1 , t±2 and t±3 in equation (3.2)). In the proofs
below there are various constants that depend on

α, p, r, N0, H, H RW and R0 as in (3.3), (4.1)

which are as in Sect. 3.

4.1. Proof of Lemma 3.7. We split the proof into two parts. In the first, we show that we
can find R′

1 > 0, such that for all large N

P

(
sup

s∈[t−3 ,t+3 ]

(
L N
1 (s) − ps

) ≥ R′
1Nα/2

)
< ε/2, (4.2)

and in the second, we show we can find R′′
1 > 0, such that for all large N

P

(
inf

s∈[t−3 ,t+3 ]
(
L N
1 (s) − ps

) ≤ −R′′
1 Nα/2

)
< ε/2. (4.3)

Clearly the statement of the lemma follows from (4.2) and (4.3)with R1 = max(R′
1, R′′

1 ).

Proof of (4.2). We will prove that we can find R′
1 sufficiently large, so that for all large

N

P

(
sup

s∈[0,t+3 ]

(
L N
1 (s) − ps

) ≥ R′
1Nα/2

)
< ε/4 and

P

(
sup

s∈[t−3 ,0]

(
L N
1 (s) − ps

) ≥ R′
1Nα/2

)
< ε/4, (4.4)

which clearly implies (4.2). Since the proofs of the above two statements are completely
analogous, we only focus on proving the first inequality in (4.4).

Define the N -indexed events (as indicated below, we will generally drop the super-
script N on these events to ease the notation)

E(M) = E N (M) :=
{∣∣L N

1 (t−3 ) − pt−3
∣∣ > M Nα/2

}
,

F(M) = F N (M) :=
{

L N
1 (t−1 ) > pt−1 + M Nα/2

}
,

G(M) = G N (M) :=
{

sup
s∈[0,t+3 ]

(
L N
1 (s) − ps

)
> (4r + 17)(M + 1)Nα/2

}
.

We claim that we can find M sufficiently large, such that for all large N

P
(
G(M)

)
< ε/4, (4.5)

which, if true, would imply (4.4) with R′
1 = (4r + 17)(M + 1). In what remains, we

prove (4.5). For the sake of clarity, we split the proof into two steps. In the first step,
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we specify the choice of M, N2, such that if N ≥ N2 then (4.5) holds. The way we
deduce (4.5) is by writing G(M) as a finite disjoint union of events, namely we split the
event over the first index n such that L N

1 (n) − pn > (4r + 17)(M + 1)Nα/2 and then
we look at the line ensemble on the interval [t−3 , n]. For such an ensemble, we know
that its starting point is well-behaved and its terminal point is high. This allows us to
conclude that an intermediate point, namely L N

1 (t−1 ) − pt−1 , is also quite at least 1/3
of the time whenever L N

1 (n) − pn is high—for this we use (4.9), which is proved in
Step 2 by essentially appealing to Lemma 2.19. Now, (4.9) is formulated in terms of a
free H RW random walk bridge, while the curve L N

1 interacts with the second curve of
the ensemble, which pushes it even higher. Thus (4.9) through stochastic monotonicity,
Lemma 2.11, allows us to show that the estimate in (4.9) for a free H RW random walk
bridge extends to L N

1 , and this is carefully explained in (4.11). Overall, equation (4.11)
shows that on the event G(M) ∩ Ec(M) it is quite likely that F(M) occurs. But since
F(M) and E(M) are both unlikely, once we pick M large enough, this would imply that
G(M) is quite unlikely.

Step 1 In this step, we specify the choice of M and N2 and prove (4.5) for this M and
N ≥ N2, modulo a certain statement given in (4.9), whose proof is postponed until the
next step.

We pick M > 0 sufficiently large, so that for every N ≥ N0 (as in (4.1)) we have

P
(
E(M)

)
< ε/8 and P

(
F(M)

)
< ε/24. (4.6)

Observe that such a choice is possible by (3.3). This fixes our choice of M . Next we pick
N2 ∈ N sufficiently large, depending on M and the constants in (4.1), so that N2 ≥ N0
and for N ≥ N2 the following inequalities all hold

t−1 − t−3 ≥ Nα, t+3 − t−3 ≤ (2r + 8)Nα, (2r + 8)1/4Nα/4

≤ Nα/2, N ≥ W0(p, 2
√
2r + 8(M + 1)), (4.7)

where W0 is as in Lemma 2.19. With this, our choice of M and N2 is fixed.
Now, suppose that x, y ∈ R and s ∈ �0, t+3 � are chosen so as to satisfy the inequalities

|x − pt−3 | ≤ M Nα/2 and y − ps > (4r + 17)(M + 1)Nα/2. (4.8)

Then, recalling the measure P
T0,T1,x,y
H RW on a curve � (introduced at the beginning of

Sect. 2.2), we claim the following inequality for all N ≥ N2

P
t−3 ,s,x,y

H RW

(
�(t−1 ) ≥ pt−1 + M Nα/2

)
≥ 1

3
. (4.9)

We prove (4.9) below in Step 2. For now we assume its validity and conclude the proof
of (4.5).

For n ∈ �0, t+3 � define the events

Wn(M) = {
L N
1 (n) − pn > (4r + 17)(M + 1)Nα/2} and

Gn(M) = Wn(M) ∩ ( ∩t+3
m=n+1 W c

m(M)
)
.

Notice that G(M) = ⋃t+3
n=0 Gn(M) is the disjoint union of the events Gn(M), and on

the event G(M), the n for which Gn(M) occurs, is precisely the maximal value of s
under which the inequality L N

1 (s) − ps > (4r + 17)(M + 1)Nα/2 holds.
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Since
{
(L N

1 , L N
2 )
}∞

N=1 is a sequence of (α, p, r + 3)–good line ensembles, we may
make use of the (H, H RW )-Gibbs property. Let Fn = Fext

({1} × �t−3 + 1, n − 1�) be
the external σ -algebra (generated by the second curve L N

2 and the first curve L N
1 (s) for

s /∈ �t−3 + 1, n − 1�), as defined in (2.7). Introduce the shorthand

EH,H RW ,n = E
t−3 ,n,L N

1 (t−3 ),L N
1 (n),L N

2 �t−3 ,n�

H,H RW and EH RW ,n = E
t−3 ,n,L N

1 (t−3 ),L N
1 (n)

H RW . (4.10)

With this, we may make the key deduction that

P
(
G(M) ∩ F(M) ∩ Ec(M)

)

=
t+3∑

n=0

E

[
1Gn(M) · 1Ec(M) · 1F(M)

]

=
t+3∑

n=0

E

[
E
[
1Gn(M) · 1Ec(M)1{L N

1 (t−1 ) > pt−1 + M Nα/2}|Fn
]]

=
t+3∑

n=0

E

[
1Gn(M) · 1Ec(M) · EH,H RW ,n

[
1{�(t−1 ) > pt−1 + M Nα/2}]

]

≥
t+3∑

n=0

E

[
1Gn(M) · 1Ec(M) · EH RW ,n

[
1{�(t−1 ) > pt−1 + M Nα/2}]

]

≥
t+3∑

n=0

E

[
1Gn(M) · 1Ec(M) · 1

3

]
= 1

3
· P
(
G(M) ∩ Ec(M)

)
, (4.11)

In the above equation we have that the first and last equality follow from the fact that
G(M) is a disjoint union of the events Gn(M). The second equality follows from the
tower property for conditional expectation and the definition of F(M). In the third
equality, we use that 1Gn(M) and 1Ec(M) are Fn measurable and so can be taken out
of the conditional expectation, and then we apply the (H, H RW )-Gibbs property (2.6)
to the function F(�) = 1{�(t−1 ) > pt−1 + M Nα/2}. The inequality on the third line

uses Lemma 2.11 with x = x ′ = L N
1 (t−3 ), y = y′ = L N

1 (n), 
z = (−∞)n−t−3 +1 and

z′ = L N

2 �t−3 , n�. The inequality on the fourth line uses (4.9) and the fact that on the event
Gn(M)∩Ec(M)wehave that L N

1 (n) and L N
1 (t−3 ) (whichplay the roles of y and x in (4.9))

satisfy the inequalities L N
1 (n) ≥ (4r +17)(M +1)Nα/2 and |L N

1 (t−3 )− pt−3 | ≤ M Nα/2.

From (4.11) we see that

P
(
G(M) ∩ Ec(M)

) ≤ 3P
(
G(M) ∩ F(M) ∩ Ec(M)

) ≤ 3 · P
(
F(M)

)

Using this, we finally conclude that

P(G(M)) = P
(
G(M) ∩ E(M)

)
+ P

(
G(M) ∩ Ec(M)

) ≤ P
(
E(M)

)
+ 3 · P

(
F(M)

)
< ε/4,

where in the last inequality we used (4.6). The last equation implies (4.5).
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Step 2 In this step, we prove (4.9). Using (4.8), we see that

y − x ≥ p(s − t−3 ) + (4r + 16)(M + 1)Nα/2 ≥ p(s − t−3 ) + 2
√
2r + 8(M + 1)(s − t−3 )1/2,

where the last inequality used that (s − t−3 ) ≤ (t+3 − t−3 ) ≤ Nα(2r + 8) -see (4.7). Using
this and applying Lemma 2.19 for

M1 = 0, M2 = 2
√
2r + 8(M + 1), T = s − t−3 , s = t−1 − t−3

and p as in (4.1), together with the fact that Nα ≥ W0(p, M2) by assumption in (4.7),
we see that

P
0,s−t−3 ,0,y−x

H RW

(
�(t−1 − t−3 ) ≥ t−1 − t−3

s − t−3

(
p(s − t−3 )

+2
√
2r + 8(M + 1)(s − t−3 )1/2

)− (s − t−3 )1/4
)

≥ 1

3
,

which upon simplification and the shift-invariance of the measure implies

P
t−3 ,s,x,y

H RW

(
�(t−1 ) − x ≥ p(t−1 − t−3 ) + 2

√
2r + 8(M + 1)

t−1 − t−3
(s − t−3 )1/2

− (s − t−3 )1/4
)

≥ 1

3
.

Since by assumption (4.8) we have x ≥ pt−3 − M Nα/2, the last inequality implies

P
t−3 ,s,x,y

H RW

(
�(t−1 ) ≥ pt−1 − M Nα/2 + 2

√
2r + 8(M + 1)

t−1 − t−3
(s − t−3 )1/2

− (s − t−3 )1/4
)

≥ 1

3
.

(4.12)

We now observe that the inequalities in (4.7) imply

2
√
2r + 8(M + 1)

t−1 − t−3
(s − t−3 )1/2

− (s − t−3 )1/4 ≥ 2
√
2r + 8(M + 1)Nα

(2r + 8)1/2Nα/2

−(2r + 8)1/4Nα/4 ≥ 2M Nα/2.

The latter and (4.12) imply (4.9), which concludes the proof of the second step.

Proof of (4.3) This proof follows a similar scheme as that of (4.2). Define the N -indexed
events (and then drop the N superscript below)

E−(M) = E N− (M) =
{∣∣L N

1 (t−3 ) − pt−3
∣∣ > M Nα/2

}
,

E+(M) = E N
+ (M) =

{∣∣L N
1 (t+3 ) − pt+3

∣∣ > M Nα/2
}
,

G(C) = G N (C) =
{

inf
s∈[t−3 ,t+3 ]

(
L N
1 (s) − ps

)
< −C Nα/2

}
.

To prove (4.3) it suffices to show that there exists C sufficiently large so that for all large
N

P
(
G(C)

)
< ε/2. (4.13)
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Clearly, (4.3) follows immediately from this by setting R′′
1 = C . In what remains, we

prove (4.13). As before, we split the proof into two steps for clarity. In Step 1, we specify
the choice of C, N2, such that (4.13) holds for N ≥ N2. The way we deduce (4.13) is by
noting that the events E±(M) are unlikely if we pick M sufficiently large. This means
that it is very likely that the endpoints L N

1 (t±3 ) are well-behaved. We know that a free
H RW random walk bridge is unlikely to dip too low if its endpoints are well-behaved—
this appears as (4.18) below and it is proved in Step 2, by appealing to Lemma 2.21. Since
L N
1 interacts with the second curve of the ensemble, which pushes it even higher, we

see that (4.18) through stochastic monotonicity, Lemma 2.11, allows us to show that on
Ec
+(M)∩ Ec−(M), it is unlikely that L N

1 dips low (i.e. G(C) occurs), and this is carefully
explained in (4.19). Overall, equation (4.19) shows that on the event Ec

+(M) ∩ Ec−(M)

it is quite likely that G(C) occurs. Since E±(M) are unlikely, we conclude that G(C)

is unlikely.

Step 1 In this step we specify C and N2, and prove (4.13) for this choice of C, M and
N ≥ N2, modulo a certain statement given in (4.18), whose proof is postponed until the
next step.

We pick M sufficiently large, so that for every N ≥ N0 (as in (4.1) we have

P
(
E+(M) ∪ E−(M)

)
< ε/4. (4.14)

Observe that such a choice is possible by (3.3). This fixes our choice of M . We next pick
C sufficiently large, so that

C − M ≥ A(M, p, ε/4)(2r + 8)1/2, (4.15)

where A is as in Lemma 2.21 and p is as in (4.1). This fixes our choice of C . Next
we pick N2 ∈ N sufficiently large, depending on M and the constants in (4.1), so that
N2 ≥ N0 and for N ≥ N2 the following inequalities all hold

t+3 − t−3 ≥ 4Nα, t+3 − t−3 ≤ (2r + 8)Nα, Nα ≥ W1(p, M, ε/4), (4.16)

where W1 is as in Lemma 2.21 and p is as in (4.1). With this, our choice of C, M and
N2 is fixed.

Now, suppose that x, y ∈ R satisfy the inequalities

|x − pt−3 | ≤ M Nα/2 and |y − pt+3 | ≤ M Nα/2. (4.17)

We claim that

P
t−3 ,t+3 ,x,y

H RW

(
inf

s∈[t−3 ,t+3 ]
(
�(s) − ps

)
< −C Nα/2

)
≤ ε/4. (4.18)

We prove (4.18) below in Step 2. For now we assume its validity and conclude the proof
of (4.13).

We proceed much in the same way as in (4.11), using the (H, H RW )-Gibbs property.
Using the notation Fn , EH,H RW ,n and EH RW ,n , defined in (4.10), and the paragraph
before it with n = t+3 , we find that

P
(
G(C) ∩ Ec

+(M) ∩ Ec−(M)
)

= E

[
E

[
1Ec−(M) · 1Ec

+(M) · 1G(C)|Ft+3

]]
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= E

[
1Ec−(M) · 1Ec

+(M) · E

[
1
{

inf
s∈[t−3 ,t+3 ]

(
L N
1 (s) − ps

)
< −C Nα/2}|Ft+3

]]

= E

[
1Ec−(M) · 1Ec

+(M) · EH,H RW ,t+3

[
1
{

inf
s∈[t−3 ,t+3 ]

(
�(s) − ps

)
< −C Nα/2}]

]

≤ E

[
1Ec−(M) · 1Ec

+(M) · EH RW ,t+3

[
1
{

inf
s∈[t−3 ,t+3 ]

(
�(s) − ps

)
< −C Nα/2}]

]

≤ E

[
1Ec−(M) · 1Ec

+(M) · ε

4

]
≤ ε

4
. (4.19)

The first equality follows from the tower property for conditional expectations. The
second equality uses the fact that 1Ec±(M) are Ft+3

-measurable and so can be taken out of
the conditional expectation, as well as the definition of G(C). The third equality uses the
(H, H RW )-Gibbs property (2.6), applied to the function F(�) = 1

{
infs∈[t−3 ,t+3 ]

(
�(s) −

ps
)

< −C Nα/2
}
. The inequality on the fourth line uses Lemma 2.11 with x = x ′ =

L N
1 (t−3 ), y = y′ = L N

1 (t+3 ), 
z = (−∞)t+3 −t−3 +1, and 
z′ = L N
2 �t−3 , t+3 �. The inequality on

the fourth line uses (4.18), and the fact that on the event Ec−(M) ∩ Ec
+(M) we have that

L N
1 (t−3 ), and L N

1 (t+3 ) (which play the roles of x and y in (4.18)) satisfy the inequalities∣∣L N
1 (t±3 ) − pt±3

∣∣ ≤ M Nα/2). The last inequality is trivial.
From (4.19) and (4.14) we see that

P
(
G(C)

) = P
(
G(C) ∩ Ec

+(M) ∩ Ec−(M)
)
+ P

(
G(C) ∩ (E+(M) ∪ E−(M)

))

≤ P
(
G(C) ∩ Ec

+(M) ∩ Ec−(M)
)
+ P

(
E+(M) ∪ E−(M)

)
< ε/2,

which completes the proof of (4.13).

Step 2 To show (4.18), first note that by the shift invariance of the measure we have

P
t−3 ,t+3 ,x,y

H RW

(
inf

s∈[t−3 ,t+3 ]
(
�(s) − ps

)
< −C Nα/2

)

= P
0,t+3 −t−3 ,0,y−x

H RW

(
inf

s∈[0,t+3 −t−3 ]
(
x + �(s) − p(s + t−3 )

)
< −C Nα/2

)

≤ P
0,t+3 −t−3 ,0,y−x

H RW

(
inf

s∈[0,t+3 −t−3 ]
(
�(s) − ps

) ≤ −(C − M)Nα/2
)
,

(4.20)

where in the last inequality we used that x ≥ pt−3 − M Nα/2.
The inequalities (4.17) imply that y − x ≥ 2p(t+3 − t−3 ) − 2M Nα/2 ≥ 2p(t+3 −

t−3 ) − M(t+3 − t−3 )1/2, where the last inequality used (4.16). Using this, and applying
Lemma 2.21 for T = t+3 − t−3 , ε = ε/4, M as our choice in Step 1 above and p as in
(4.1), together with the fact that Nα ≥ W1(M, p, ε/4) by assumption in (4.16), we see
that

P
0,t+3 −t−3 ,0,y−x

H RW

(
inf

s∈[0,t+3 −t−3 ]
(
�(s) − ps

) ≤ −A(M, p, ε/4)(t+3 − t−3 )1/2
)

≤ ε/4.

Notice that by our choice ofC in (4.15) we have that (C −M)Nα/2 ≥ A(M, p, ε/4)[2r+
8]1/2Nα/2 ≥ A(M, p, ε/4)(t+3 − t−3 )1/2, where we also used (4.16). This shows that the
last inequality implies

P
0,t+3 −t−3 ,0,y−x

H RW

(
inf

s∈[0,t+3 −t−3 ]
(
�(s) − ps

) ≤ −(C − M)Nα/2
)

≤ ε/4,
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which together with (4.20) yields (4.18), as claimed.

4.2. Proof of Lemma 3.8. Let ε > 0 be given, and put n = �Nα	 − 2. We first specify
our choice of N3 as in the statement of the lemma. We assume that N ′

3 is sufficiently
large, so that 2n > Nα for N ≥ N ′

3. We then let N2(ε/2) and R1(ε/2) be as in the
statement of Lemma 3.7. With this choice, we know that if N ≥ max(N2, N ′

3), then

P

⎛

⎝ sup
s∈[t−3 ,t+3 ]

∣∣∣L N
1 (s) − ps

∣∣∣ > 2R1n1/2

⎞

⎠ < ε/2.

We let N3 be sufficiently large, so that all of the following inequalities hold for N ≥ N3

N ≥ N0 as in (4.1), N ≥ N ′
3, N ≥ N2, n ≥ W5(2R1, p, ε/2), (4.21)

where W5(2R1, p, ε/2) is as in Lemma 2.29. This fixes our choice of N3.
Define the events

E =
⎧
⎨

⎩
sup

s∈[t−3 ,t+3 ]

∣∣
∣L N

1 (s) − ps
∣∣
∣ > 2R1n1/2

⎫
⎬

⎭
, G =

⎧
⎨

⎩
sup

s∈[t−2 ,t+2 ]

[
L N
2 (s) − ps

]
≥ 4R1n1/2

⎫
⎬

⎭

Wm = {L N
2 (m) − pm ≥ 4R1n1/2} and Gv = Wv ∩

t+2⋂

m=v+1

W c
m for v ∈ �t−2 , t+2 �.

We claim that for all N ≥ N3 we have

P(G) < ε, (4.22)

which implies the lemma with R2 = 4R1. In the remainder we establish (4.22).
By Lemma 2.29, applied to M = 2R1, ε = ε/2 and p as in (4.1), we know that

for any N ≥ N3, 
z ∈ [−∞,∞)2n+1 with zn+1 ≥ pn + 4R1n1/2 and x, y ∈ R with
x ≥ −2R1n1/2 and y ≥ −2R1n1/2 + 2pn

P
0,2n,x,y,
z
H,H RW

(
�(n) ≤ pn + 2R1n1/2

)
≤ ε/2,

which by the shift-invariance of the measure implies that for each m ∈ N, zm+1 ≥
pn+4R1n1/2, x, y ∈ Rwith x − p(m −n) ≥ −2R1n1/2, and y − p(m+n) ≥ −2R1n1/2

we have

P
m−n,m+n,x,y,
z
H,H RW

(
�(m) ≤ pm + 2R1n1/2

)
≤ ε/2. (4.23)

Here we used (4.21), which ensures that n ≥ W5(2R1, p, ε/2) as in Lemma 2.29.
For every m ∈ �t−2 − 1, t+2 − 1�, we define

Fm = {
∣
∣
∣L N

1 (m − n) − p(m − n)

∣
∣
∣ ≤ 2R1n1/2} ∩ {

∣
∣
∣L N

1 (m + n) − p(m + n)

∣
∣
∣ ≤ 2R1n1/2} and

Hm = {
∣∣
∣L N

1 (m) − pm
∣∣
∣ ≤ 2R1n1/2},



1354 G. Barraquand, I. Corwin, E. Dimitrov

and observe that Ec ⊂ Fm ∩ Hm . We also letFm
ext = Fext ({1}× �m −n +1, m +n −1�)

as in (2.7). We now make the following deduction

P (Fm ∩ Gm+1 ∩ Hm) = E
[
E
[
1Gm+1 · 1Fm · 1Hm |Fm

ext

]]

= E

[
1Gm+1 · 1Fm · E

[
1{
∣∣∣L N

1 (m) − pm
∣∣∣ ≤ 2R1n1/2}|Fm

ext

]]

= E

[
1Gm+1 · 1Fm · EH,H RW

[
1{|�(m) − pm| ≤ 2R1n1/2}

]]

≤ E
[
1Gm+1 · 1Fm · (ε/2)

] = (ε/2) · P(Fm ∩ Gm+1),

where EH,H RW stands for E
m−n,m+n,L N

1 (m−n),L N
1 (m+n),L2

N �m−n,m+n�

H,H RW . The first equality
follows from the tower property for conditional expectations. The second equality uses
the fact that 1Gm+1 and 1Fm are Fm

ext - measurable and can thus be taken out of the
conditional expectation, as well as the definition of Hm . The third equality uses the
(H, H RW )-Gibbs property (2.6) applied to F(�) = 1{|�(m) − pm| ≤ 2R1n1/2}. The
inequality on the third line uses (4.23) and the fact that on the event Gm+1 ∩ Fm we
have that the random variables L N

2 (m + 1), L N
1 (m − n), L N

1 (m + n) (which play the
roles of zm+1, x, y in (4.23) ) satisfy the inequalities L N

2 (m + 1) ≥ pn + 4R1n1/2,
L N
1 (m − n) − p(m − n) ≥ −2R1n1/2 and L N

1 (m + n) − p(m + n) ≥ −2R1n1/2. The
last equality is trivial. The above inequality and the fact that Ec ⊂ Fm ∩ Hm imply

P
(
Ec ∩ Gm+1

) ≤ P (Fm ∩ Gm+1 ∩ Hm) ≤ (ε/2) · P (Gm+1 ∩ Fm) ≤ (ε/2) · P (Gm+1) .

Taking the sum over m in �t−2 − 1, t+2 − 1�, and using that G = ∪t+2
m=t−2

Gm is a disjoint

union, we get

P
(
Ec ∩ G

) ≤ (ε/2) · P (G) ≤ ε/2.

On the other hand,

P (E ∩ G) ≤ P (E) < ε/2,

by our choice of R1. The above two inequalities imply (4.22).

4.3. Proof of Lemma 3.9. For clarity, we split the proof into four steps. In the first step
we use the idea of size-biasing and reduce the proof of the lemma to establishing a
certain lower bound, see (4.24)—this is the easy part of the proof. Establishing the lower
bound in (4.24) is done in Steps 2, 3 and 4 and we describe our approach within those
steps.

Step 1We claim that we can find N4 ∈ N, such that if N ≥ N4 and 
z ∈ [−∞,∞)t+2 −t−2 +1

we have

P
t−2 ,t+2 ,x,y,
z
H,H RW

(
Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot�t−1 , t+1 �

) ≥ g
)

≥ h, (4.24)

where in the above equation the randomvariable overwhichwe are taking the expectation
is denoted by � and g, h are as in the statement of the lemma. We prove (4.24) in the
steps below. Here we assume its validity and conclude the proof of the lemma.
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Let �bot be as in the statement of the lemma and �̃bot ∈ [−∞,∞)t+2 −t−2 +1 be such
that �̃bot (i) = �bot (i) for i �∈ �t−1 +1, t+1 � and �̃bot (i) = −∞ if i ∈ �t−1 +1, t+1 �. Let L be

a Y (�t−2 , t+2 �)-valued random variable, whose law is given by PL := P
t−2 ,t+2 ,x,y,�bot

H,H RW and

L̃ be a Y (�t−2 , t+2 �)-valued random variable whose law is given by PL̃ := P
t−2 ,t+2 ,x,y,�̃bot

H,H RW .
Define further PL ′ and PL̃ ′ as the projection of PL and PL̃ , respectively, to the coor-

dinates �t−2 , t−1 � ∪ �t+1 , t+2 �. It follows from (2.3) that the Radon–Nikodym derivative
between these two restricted measures is given on Y (�t−2 , t−1 �∪ �t+1 , t+2 �)-valued random
variables B by

dPL ′

dPL̃ ′
(B) = (Z ′)−1Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �), (4.25)

where Z ′ = EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �)

]
. Let us briefly explain

why (4.25) holds.
Let us set S = �t−2 , t−1 � ∪ �t+1 , t+2 �, and fix a Borel set F0 ⊆ Y (S). To prove (4.25)

we only need

PL ′(B ∈ F0) = EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �) · 1{B ∈ F0}

]

EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �)

] .

(4.26)

Using that L ′ is the projection of L to the set S and (2.3), we have

PL ′(B ∈ F0) = PL(�|S ∈ F0) =
E

t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�bot

H (�) · 1{�|S ∈ F0}
]

E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�bot

H (�)

] .

Also, using that L̃ ′ is the projection of L̃ to the set S, Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot

m�t−1 , t+1 �) is a (deterministic) bounded measurable function of
(
B(t−1 ),B(t+1 )

)
(see

Remark 3.5) and (2.3), we get

EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot �t−1 , t+1 �) · 1{B ∈ F0}

]

EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot �t−1 , t+1 �)

]

=
E

t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�̃bot

H (�) · Z H,H RW (t−1 , t+1 , �(t−1 ), �(t+1 ), �bot �t−1 , t+1 �) · 1{�|S ∈ F0}
]

E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�̃bot

H (�) · Z H,H RW (t−1 , t+1 , �(t−1 ), �(t+1 ), �bot �t−1 , t+1 �)

] .

The last two equations show that to prove (4.26) it suffices to show that for any Borel
set F1 ⊆ Y (S)

E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�bot

H (�) · 1{�|S ∈ F1}
]

= E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�̃bot

H (�) · Z H,H RW (t−1 , t+1 , �(t−1 ), �(t+1 ), �bot �t−1 , t+1 �) · 1{�|S ∈ F1}
]

(4.27)
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Using (2.4), the definition of �̃bot and that P
t−2 ,t+2 ,x,y

H RW satisfies the (H, H RW )-Gibbs prop-
erty with H ≡ 0 (as follows from Lemma 2.8), we have

E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�bot

H (�) · 1{�|S ∈ F1}
]

= E
t−2 ,t+2 ,x,y

H RW

[
E

t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−2 ,t+2 ,∞,�bot

H (�) · 1{�|S ∈ F1}
∣∣
∣Fext ({1} × �t−1 + 1, t+1 − 1�)

]]

= E
t−2 ,t+2 ,x,y

H RW

[
1{�|S ∈ F1} · W

1,1,t−2 ,t+2 ,∞,�̃bot

H (�)

· E
t−2 ,t+2 ,x,y

H RW

[
W

1,1,t−1 ,t+1 ,∞,�bot �t−1 ,t+1 �

H (��t−1 , t+1 �)
∣∣
∣Fext ({1} × �t−1 + 1, t+1 − 1�)

] ]

= E
t−2 ,t+2 ,x,y

H RW

[
1{�|S ∈ F1} · W

1,1,t−2 ,t+2 ,∞,�̃bot

H (�) · E
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

[
W

1,1,t−1 ,t+1 ,∞,�bot �t−1 ,t+1 �

H (�̃)

]]
,

where � is P
t−2 ,t+2 ,x,y

H RW -distributed and �̃ is P
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW -distributed. The last equality
proves (4.27), once we use that from Definition 2.5 we have

Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot �t−1 , t+1 �

) = E
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

[
WH (t−1 , t+1 , �̃, �bot �t−1 , t+1 �)

]
,

(4.28)

where �̃ is P
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW -distributed. Overall, we conclude that (4.25) holds.
Now that we have (4.25) we turn back to the proof of the lemma. Observe that the law

of
(
B(t−1 ),B(t+1 )

)
under PL̃ ′ is the same as the law of (L̃(t−1 ), L̃(t+1 )) under PL̃ (this is

because PL̃ ′ is the projection of PL̃ to a set containing t±1 ). The latter and (4.24) together
imply

Z ′ = EL̃ ′
[
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �)

]

= EL̃

[
Z H,H RW (t−1 , t+1 , L̃(t−1 ), L̃(t+1 ), �bot�t−1 , t+1 �)

]
≥ gh.

Let us denote the set E = {
Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot�t−1 , t+1 �) ≤ ghε̃)

}
.

Then, we have

PL ′ (E) = EL ′ [1E ] = EL̃ ′

[
1E · Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ), �bot �t−1 , t+1 �)

Z ′

]

≤ ghε̃

gh
= ε̃,

where in the secondequalityweused (4.25). Finally, since Z H,H RW (t−1 , t+1 ,B(t−1 ),B(t+1 ),

�bot�t−1 , t+1 �) is a bounded measurable function of
(
B(t−1 ),B(t+1 )

)
whose law under PL ′

is the same as that of (L(t−1 ), L(t+1 )) under PL , we see that the above implies (3.4),
concluding the proof of the lemma.

Step 2 Define F = {
min

(
�(t−1 ) − pt−1 , �(t+1 ) − pt+1

) ≥ (M2 + 2)(t+1 − t−1 )1/2
}
. We

claim that for all N sufficiently large and 
z ∈ [−∞,∞)t+2 −t−2 +1 we have

P
t−2 ,t+2 ,x,y,
z
H,H RW (F) ≥ (1/18) ·

(
1 − �v

(
10(2 + r)2(M1 + M2 + 10)

))
. (4.29)

Establishing the validity of (4.29) will be done in the third and fourth steps below, and
in what follows we assume it is true and finish the proof of (4.24).
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Fig. 3. Overview of the arguments in Step 2: We want to prove that on the event F we have a lower bound

on Z H,H RW := Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t−1 ), �bot �t−1 , t+1 �

)
. As explained in (4.28), the random variable

Z H,H RW is just the average of the weights WH (�̃) := WH (t−1 , t+1 , �̃, �bot �t−1 , t+1 �) over a free H RW bridge �̃.

Consequently, to show that Z H,H RW is lower-bounded it suffices to find a big subset�′, such that the weights
WH (�̃) on�′ are lower-bounded. Let A(s) and B(s) denote the lines ps+(M2 +1)(t

+
1 − t−1 )1/2−(t+1 − t−1 )1/4

and ps + M2(t
+
1 − t−1 )1/2, drawn in grey and black respectively above. Then �′ denotes the event that curve �̃

lies above A(s) on [t−1 , t+1 ]. On the event F we have that �(t±1 ) are at least a distance (t+1 −t−1 )1/2+(t+1 −t−1 )1/4

above the points A(t±1 ), respectively. Since the endpoints of the bridges are well above those of A(s), this

means that some positive fraction of these bridges will stay above A(s) on the entire interval [t−1 , t+1 ]; i.e.
P

t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

(
�′) is lower bounded. This is what we mean by�′ being big and the exact relation is given

in (4.31). To see that WH (�̃) on �′ is lower bounded, we notice that on �′ the bridges �̃ are well-above B(s),
which dominates �bot by assumption. This means that �̃ is well above �bot and for such paths WH (�̃) is lower
bounded. The exact relation is given in (4.32)

We assert that if N4 is sufficiently large and N ≥ N4, we have

F ⊂
{

Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot�t−1 , t+1 �

)
>

1

4

(

1 − exp

(
−2

σ 2
p

))}

. (4.30)

Observe that (4.30) and (4.29) prove (4.24) and so it suffices to verify (4.30). The details
are presented below (see also Fig. 3).

Denote

�′ =
{
�̃(s) − ps ≥ (M2 + 1)(t+1 − t−1 )1/2 − (t+1 − t−1 )1/4 for s ∈ �t−1 , t+1 �

}
.

It follows from Lemma 2.25 applied to T = (t+1 − t−1 ), x = �(t−1 )−(M2 +1)(t+1 − t−1 )1/2

and y = �(t+1 )− (M2 +1)(t+1 − t−1 )1/2 that if N4 is sufficiently large, so that for N ≥ N4,
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we have t+1 − t−1 ≥ W3(p) as in Lemma 2.25, then

1F · P
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

(
�′) ≥ 1F · 1

2

(

1 − exp

(
−2

σ 2
p

))

. (4.31)

In deriving the above equation we also used the shift-invariance of P
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW , as
well as the definitions of �′ and F .

Since (t+1 − t−1 ) ≥ Nα , we know that for N4 sufficiently large (depending on r, α)
and N ≥ N4 we have on �′ for all s ∈ �t−1 , t+1 � that

�̃(s) − ps ≥ (M2 + 1/2)(t+1 − t−1 )1/2 ≥ �bot (s) − ps + (1/2)(t+1 − t−1 )1/2,

where the last inequality holds true by our assumption on �bot . The conclusion is that
on �′, we have for s ∈ �t−1 , t+1 � that �̃(s) − �bot (s) ≥ m, where m = (1/2)Nα/2. Using
that H is weakly increasing and limx→∞ x2H(−x) = 0, we have that on the event �′
the following holds

WH (t−1 , t+1 , �̃, �bot �t−1 , t+1 �) ≥ e−(t+1 −t−1 )H(−m) ≥ e−H(−Nα/2/2)·(2r+4)Nα ≥ 1

2
, (4.32)

where the last inequality holds for all large enough N4 (depending on r, α and H ) and
N ≥ N4. Combining (4.28), (4.31) and (4.32), we conclude that if N4 is sufficiently
large and N ≥ N4, then on the event F we have

Z H,H RW

(
t−1 , t+1 , �(t−1 ), �(t+1 ), �bot�t−1 , t+1 �

) ≥ E
t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

[
1�′ · WH (t−1 , t+1 , �̃, �bot�t−1 , t+1 �)

]

≥ 1

2
· P

t−1 ,t+1 ,�(t−1 ),�(t+1 )

H RW

(
�′) ≥ 1

4

(

1 − exp

(
−2

σ 2
p

))

,

which establishes (4.30).
Step 3 In this step, we prove (4.29). We refer the reader to Fig. 4 for an overview of the
main ideas in this and the next step and a graphical representation of the notation we
use.

Let K1 = 8(2 + r)2(M1 + M2 + 10) and define the events

E =
{
�(0) ≥ (K1/2 − 1)(t+2 − t−2 )1/2

}
,

E1 =
{
�(t−1 ) − pt−1 ≥ (M2 + 2)(t+1 − t−1 )1/2

}
, E2 =

{
�(t+1 ) − pt+1 ≥ (M2 + 2)(t+1 − t−1 )1/2

}
.

We assert that if x ≥ pt−2 − M1(t+2 − t−2 )1/2, y ≥ pt+2 − M1(t+2 − t−2 )1/2, z ≥ (K1/2−
1)(t+2 − t−2 )1/2

P
t−2 ,t+2 ,x,y

H RW (E) ≥ (1/2) · [1 − �v(M1 + K1)],
P

t−2 ,0,x,z

H RW (E1) ≥ 1/3, P
0,t+2 ,z,y

H RW (E2) ≥ 1/3.
(4.33)

Wewill prove (4.33) in Step 4 below. Here we assume its validity and conclude the proof
of (4.29).
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Fig. 4. Overview of the arguments in Steps 3 and 4: Let B(s) denote the line ps + M2(t
+
1 − t−1 )1/2, drawn

in black above. We have that F denotes the event that � is at least a distance 2(t+1 − t−1 )1/2 above the line

B(s) at the points t±1 and we want to find a lower bound on P
t−2 ,t+2 ,x,y,
z
H,H RW (F). Using Lemma 2.11, it suffices to

lower bound P
t−2 ,t+2 ,x,y

H RW (F ∩ E) where E = {�(0) ≥ B(0)+ (K1/2− 1)(t+2 − t−2 )1/2} for some suitably large
K1, depending on M1, M2, r—this reduction is made in (4.34). One utilizes the fact that conditional on �(0)
the events that {�(t±1 ) ≥ B(t±1 ) + 2(t+1 − t−1 )1/2} become independent and themselves lower bounded. The
lower bound for the latter events is a consequence of the fact that x, y are not too low while on E the variable
�(0) is very high, which makes �(t±1 ) also high with at least probability 1/3 as follows from an application

of Lemma 2.19. The conditioning described in this paragraph is rephrased in terms of the (H, H RW )-Gibbs
property in (4.35). The necessary lower bound of the event that �(0) is much higher than B(0) is the first line
in (4.33). The necessary statement required to establish that �(t±1 ) are high at least with probability 1/3 if �(0)
is very high is the second line in (4.33). The proof of (4.33) is the content of Step 4 and essentially follows
from Lemmas 2.23 and 2.19

In view of Lemma 2.11, we see that to prove (4.29) it suffices to show that for all
large N

P
t−2 ,t+2 ,x,y

H RW (E1 ∩ E2) ≥ (1/18)[1 − �v(M1 + K1)]. (4.34)

From Lemma 2.8 we know that P
t−2 ,t+2 ,x,y

H RW satisfies the (H, H RW )-Gibbs property

(here we use the second part of the lemma with 
z = (−∞)t+2 −t−2 ). Let F+
ext =

Fext
({1} × �1, t+2 − 1�

)
and F−

ext = Fext
({1} × �t−2 + 1,−1�

)
be as in (2.7). Then,

we have the following sequence of statements

P
t−2 ,t+2 ,x,y

H RW (E1 ∩ E2 ∩ E) = E
[
E
[
E
[
1E · 1E1 · 1E2 |F−

ext

] |F+
ext

]]

= E
[
1E · E

[
1E2 · E

[
1E1 |F−

ext

] |F+
ext

]] = E
[
1E · E

[
1E2 · E

− [1E1

] |F+
ext

]]

= E
[
1E · E

− [1E1

] · E
[
1E2 |F+

ext

]] = E
[
1E · E

− [1E1

] · E
+ [1E2

]]

≥ E [1E · (1/3) · (1/3)] ≥ (1/18) · [1 − �v(M1 + K1)],
(4.35)

where we have written E in place of E
t−2 ,t+2 ,x,y

H RW , E
− in place of E

x,�(0),t−2 ,0

H RW and E
+ in

place of E
�(0),y,0,t+2
H RW to ease the notation.
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Let us explain (4.35) briefly. The first equality follows from the tower property for
conditional expectations. The second equality follows from the fact that 1E ismeasurable
with respect to both F+

ext and F−
ext , while 1E2 is measurable with respect to F−

ext , and so
these functions can be taken outside of the conditional expectations. The first equality
in the second line follows from an application of the (H, H RW )-Gibbs property (2.6) to
the function F(�) = 1

{
�(t−1 ) − pt−1 ≥ (M2 + 2)(t+1 − t−1 )1/2

}
. We next observe that

E
− [1E1

]
is a deterministic measurable function of �(0) (see also Lemma 7.2) and so

in particular it is F+
ext measurable. This allows us to move E

− [1E1

]
outside of the

conditional expectation, which explains the second equality on the second line of (4.35).
The first equality on the third line follows from an application of the (H, H RW )-Gibbs
property (2.6) to the function F(�) = 1

{
�(t+1 ) − pt+1 ≥ (M2 + 2)(t+1 − t−1 )1/2

}
. Next,

we lower boundE
− [1E1

] ·E+
[
1E2

]
by (1/3) · (1/3) in view of the second line of (4.33),

since on E we know that �(0) (which plays the role of z in (4.33)) is lower bounded
by (K1/2 − 1)(t+2 − t−2 )1/2. This explains the inequality on the third line of (4.35).
Finally, the inequality on the fourth line of (4.35) follows from the first line in (4.33).
This justifies equation (4.35). Also, it is clear that (4.35) implies (4.34).

Step 4 In this final step, we establish (4.33). By Lemma 2.23, applied to T = t+2 − t−2 ,
M1 as above, M2 = K1 as above, p as in (4.1), we have for all sufficiently large
N , so that t+2 − t−2 ≥ W2(M1, K1, p) as in Lemma 2.23, x̃ ≥ −M1(t+2 − t−2 )1/2,
ỹ ≥ p(t+2 − t−2 ) − M1(t+2 − t−2 )1/2 and ρ ∈ {−1, 0, 1} that

P
0,T,x̃,ỹ
H RW

(
�(�T/2	 + ρ) ≥ K1T 1/2 + pT

2
− T 1/4

)
≥ (1/2)(1 − �v(M1 + K1)).

By assumption we have that x ≥ pt−2 − M1(t+2 − t−2 )1/2 and y ≥ pt+2 − M1(t+2 − t−2 )1/2.
This means that x̃ = x − pt−2 ≥ −M1(t+2 − t−2 )1/2 and ỹ = y − pt−2 ≥ p(t+2 − t−2 ) −
M1(t+2 − t−2 )1/2, which imply from the translation invariance of P

0,T,x̃,ỹ
H RW and the above

inequality that

P
t−2 ,t+2 ,x,y

H RW

(
�(0) ≥ (K1/2 − 1)(t+2 − t−2 )1/2

)
≥ (1/2) · [1 − �v(M1 + K1)].

This proves the first line in (4.33).
From Lemma 2.19, applied to T = −t−2 , M1 = M̃1 := (−2 − 2M1) and M2 =

M̃2 := (K1/2 − 1), we know that for x̃ ≥ pt−2 + M̃1|t−2 |1/2, z̃ ≥ M̃2|t−2 |1/2 and N
sufficiently large so that −t−2 ≥ W2(M̃2 − M̃1, p) we have for any s ∈ �0, T � that

P
0,T,x̃,z̃
H RW

(
�(s) ≥ T − s

T
· M̃1T 1/2 +

s

T
· (pT + M̃2T 1/2)− T 1/4

)
≥ 1

3
.

The latter and the translation invariance of P
0,T,x̃,ỹ
H RW shows that if x ≥ pt−2 − M1(t+2 −

t−2 )1/2 and z ≥ M̃2(t+2 − t−2 )1/2 then for any s ∈ �0,−t−2 � we have

P
t−2 ,0,x,z

H RW

(

�(s + t−2 ) − pt−2 ≥ −t−2 − s

−t−2
· M̃1|t−2 |1/2 + s

−t−2
· [p(−t−2 ) + M̃2|t−2 |1/2] − |t−2 |1/4

)

≥ 1/3.
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Setting s = −t−2 + t−1 above, we conclude that if x ≥ pt−2 − M1(t+2 − t−2 )1/2 and
z ≥ M̃2(t+2 − t−2 )1/2

P
t−2 ,0,x,z

H RW

(

�(t−1 ) − pt−1 ≥ −t−1
−t−2

· M̃1|t−2 |1/2 + −t−2 + t−1
−t−2

· M̃2|t−2 |1/2 − |t−2 |1/4
)

≥ 1/3.

In particular, from our definition of M̃1 and M̃2 we conclude that for x ≥ pt−2 − M1(t+2 −
t−2 )1/2 and z ≥ (K1/2 − 1)(t+2 − t−2 )1/2 we have

P
t−2 ,0,x,z

H RW

(
�(t−1 ) − pt−1 ≥ (M2 + 2)(t+1 − t−1 )1/2

)
≥ 1/3.

Similar arguments show that if y ≥ pt+2 −M1(t+2 −t−2 )1/2 and z ≥ (K1/2−1)(t+2 −t−2 )1/2,
we have

P
0,t+2 ,z,y

H RW

(
�(s1) − ps1 ≥ (M2 + 2)(t+1 − t−1 )1/2

)
≥ 1/3.

The last two equations now imply the second line in (4.33), which concludes its proof.

5. Absolute Continuity with Respect to Brownian Bridges

In Theorem 3.2 we showed that under suitable shifts and scalings (α, p, r + 3)–good
sequences give rise to tight sequences of continuous random curves. In this section,
we aim to obtain some qualitative information about their subsequential limits and we
show that any subsequential limit is absolutely continuous with respect to a Brownian
bridgewith appropriate variance. In particular, this demonstrates that we have non-trivial
limits and do not kill fluctuations with our rescaling. In Sect. 5.1, we introduce some
useful notation and present the main result of the section—Theorem 5.3. The proof of
Theorem 5.3 is given in Sect. 5.2, and relies on Proposition 3.4, and the strong coupling
afforded by Proposition 2.17.

5.1. Formulation of result and applications. We introduce some relevant notation and
define what it means to be absolutely continuous with respect to a Brownian bridge.

Definition 5.1. Let X = C([0, 1]) and Y = C([−r, r ]) be the spaces of continuous
functions on [0, 1] and [−r, r ] respectively with the uniform topology. Denote by dX
and dY the metrics on the two spaces, and by B(X), and B(Y ) their Borel σ -algebras.
Given z1, z2 ∈ R, we define Fz1,z2 : X → Y and Gz1,z2 : Y → X by

[Fz1,z2(g)](x) = z1 + g
( x + r

2r

)
+

x + r

2r
(z2 − z1)

[Gz1,z2(h)](ξ) = h (2rξ − r) − z1 − (z2 − z1)ξ, (5.1)

for x ∈ [−r, r ] and ξ ∈ [0, 1].
One observes that Fz1,z2 and Gz1,z2 are bijective homomorphisms between X and Y

that aremutual inverses. Inwords, Fz1,z2 gives a general affineway to stretch a continuous
function on [−r, r ] to one on [0, 1], and Gz1,z2 is its inverse.

Let X0 = { f ∈ X : f (0) = f (1) = 0}, with the subspace topology, and define
G : Y → X through G(h) = Gh(−r),h(r)(h). Let us make some observations.



1362 G. Barraquand, I. Corwin, E. Dimitrov

(1) G is a continuous function. Indeed, from the triangle inequality we have
dX
(
Gh1(−r),h1(r)(h1), Gh2(−r),h2(r)(h2)

) ≤ 2dY (h1, h2).

(2) If L is a random variable in (Y,B(Y )) then G(L) is a random variable in (X,B(X)),
which belongs to X0 with probability 1. The measurability of G(L) follows from the
continuity of G, everything else is clearly true.

The function G above gives a way to affinely map a general curve on [−r, r ] (where
our usual variables lie) to X0 (where a Brownian bridge resides) so that an honest
comparison between the two can be made. Recall from Sect. 2.3 that Bσ stands for the
Brownian bridge on [0, 1], with variance σ 2—this is a random variable in (X,B(X)),
which belongs to X0 with probability 1.

With the above notation we make the following definition.

Definition 5.2. Let L be a random variable in (Y,B(Y )) with law PL . We say that L is
absolutely continuous with respect to a Brownian bridge with variance σ 2 if for any
K ∈ B(X) we have

P(Bσ ∈ K ) = 0 �⇒ PL(G(L) ∈ K ) = 0.

The main result of this section is as follows.

Theorem 5.3. Under the same assumptions and notation as in Theorem 3.2 let P∞ be
any subsequential limit of PN . If f∞ has law P∞, then it is absolutely continuous with
respect to a Brownian bridge with variance 2rσ 2

p in the sense of Definition 5.2, where

σ 2
p is as in Definition 2.15.

5.2. Proof of Theorem 5.3. In this section, we give the proof of Theorem 5.3, which for
clarity is split into four steps. Before we go into the main argument we introduce some
useful notation and give an outline of our main ideas.

Throughout we assumewe have the same notation as in the statement of Theorem 3.2,
as well as the notation from Sect. 5.1 above. Since P∞ is a subsequential limit of PN , we
know that we can find a strictly increasing sequence N j , such that PN j weakly converge
to P∞. By Skorohod’s embedding theorem (see e.g. [29, Theorem 3.30]) we can find a
probability space (�1,F1, P

1), on which are defined random variables f̃N j and f̃∞ that

take values in (Y,B(Y )), such that the laws of f̃N j and f̃∞ are PN j and P∞, respectively,

and such that dY

(
f̃N j (ω

1), f̃∞(ω1)
)

→ 0 as j → ∞ for each ω1 ∈ �1.

We consider a probability space (�2,F2, P
2), on which we have defined the original

(α, p, r + 3)–good sequence
{
LN = (L N

1 , L N
2 )
}∞

N=1 and so

fN (s) = N−α/2(L N
1 (s Nα) − ps Nα), for s ∈ [−r, r ]

has law PN for each N ≥ N0 as in Definition 1.1. Let us briefly explain the difference
between P

1 and P
2 and why we need both. The space (�1,F1, P

1) carries the random
variables f̃N j of law PN j and what is crucial is that the latter converge almost surely to

f̃∞, whose law is P∞. The space (�2,F2, P
2) carries the entire discrete line ensembles

LN = (L N
1 , L N

2 ) (and not just the top curve), which is needed to apply the (H, H RW )-
Gibbs property.

At this time we give a brief outline of the steps in our proof. In the first step, we fix
K ∈ B(X) such that P(B

√
2rσp ∈ K ) = 0 and find an open set O , which contains K ,
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and such that B
√
2rσp is extremely unlikely to belong to O . Our goal is then to show

that G( f̃∞) is also unlikely to belong to O , the exact statement is given in (5.5) below.
Using that O is open and that f̃N j converge to f̃∞ almost surely, we can reduce our

goal to showing that it is unlikely that G( f̃N j ) belongs to O and f̃N j is at least a
small distance away from the complement of G−1(O) for large j . Our gain from the
almost sure convergence is that we have bounded ourselves away from G−1(O)c, and
by performing small perturbations we do not leave G−1(O). As the laws of f̃N j and
fN j are the same we can switch from (�1,F1, P

1) to (�2,F2, P
2), reducing the goal

to showing that it is unlikely that G( fN ) belongs to O and fN is at least a small distance
away from G−1(O)c for large N . The exact statement is given in (5.6) and the reduction
happens in Step 2. The benefit of this switch is that we can use the (H, H RW )-Gibbs
property from Sect. 2.1 in (�2,F2, P

2) as the latter carries an entire line ensemble.
In Step 3 we apply the (H, H RW )-Gibbs property and reduce the proof to showing

that it is unlikely that a certain rescaled H RW -random walk bridge with well-behaved
end-points is in G−1(O), and is at least a small distance away from G−1(O)c for large
N . The exact statement is given in (5.7). In Step 4, we prove (5.7) by approximating
the rescaled H RW -random walk bridge by a Brownian bridge using Proposition 2.17.
Since we are bounded a small distance from G−1(O)c, the error in the approximation
asymptotically does not matter and we are left with showing that a Brownian bridge is
unlikely to be in G−1(O), which is true by the way O is defined.

We now turn to the proof of the theorem.

Step 1 Suppose that K ∈ B(X) is given, such that P(B
√
2rσp ∈ K ) = 0. We wish to

show that

P
1
(

G( f̃∞) ∈ K
)

= 0. (5.2)

Let ε ∈ (0, 1) be given, and note that by Proposition 3.4 and Lemma 3.7, we can find
δ ∈ (0, 1), M > 0 and N1 ≥ N0 (here N0 is as in Definition 1.1), such that for all
N ≥ N1 we have

P
2 (E(δ, M, N )) < ε, where E(δ, M, N ) =

{
max

j∈{+,−}

∣
∣∣L N

1 (t j
1 ) − pt j

1

∣
∣∣ ≥ M Nα/2

}

∪
{

Z H,H RW (t−1 , t+1 , L N
1 (t−1 ), L N

1 (t+1 ), L N
2 �t−1 , t+1 �) < δ

}
, (5.3)

wherewe recall from (3.2) that t±1 = �±(r+1)Nα	.We observe that sinceC([−r, r ]) is a
metric spacewe have by [35, Theorem II.2.1] that themeasure of B

√
2rσp is outer-regular.

In particular, we can find an open set O such that K ⊂ O and

P(B
√
2rσp ∈ O) < εδ/2. (5.4)

The set O will not be constructed explicitly and we will not require other properties
from it other than it is open and contains K . We will show that

P
1
(

G( f̃∞) ∈ O
)

≤ 2ε. (5.5)

Notice that the above implies that P
1
(

G( f̃∞) ∈ K
)

≤ 2ε and, hence, we have reduced

the proof of the theorem to establishing (5.5).
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Step 2 Our goal in this step is to reduce (5.5) to a statement involving finite indexed
curves.

We first observe that G−1(O) is open since G is continuous (see Sect. 5.1) and so

P
1
(

G( f̃∞) ∈ O
)

= P
1
(

f̃∞ ∈ G−1(O)
)

≤ lim sup
j→∞

P
1
({

f̃N j ∈ G−1(O)
}
∩
{
dY ( f̃N j , G−1(O)c) > ρ j

})
,

whereρ j is any sequence that converges to 0 as j → ∞. Thefirst equality is by definition.
The second one follows from the fact that f̃N j converge to f̃∞ in the uniform topology

P
1-almost surely and that G−1(O) is open. To be more specific, we take ρ j = N−α/8

j
for the sequel.

Since fN has law PN for each N ≥ N1, we observe that to get (5.5) it suffices to
show that

lim sup
N→∞

P
2
({

fN ∈ G−1(O)
}

∩
{

dY ( fN , G−1(O)c) > N−α/8
})

≤ 2ε. (5.6)

Step 3 For N ≥ N1 as in Step 1 and � ∈ C([t−1 , t+1 ]) we define hN (·; �) ∈ C([−r, r ])
through

hN (s; �) = N−α/2(�(s Nα) − ps Nα).

In this notation we have that hN (L N
1 [t−1 , t+1 ]) has the same distribution as fN . Recall

that L N
1 [t−1 , t+1 ] is the restriction of the continuous interpretation of L N

1 to the interval
[t−1 , t+1 ] as in Sect. 2.1.

We now claim that we can find N2 ∈ N sufficiently large, so that N2 ≥ N1, and if
N ≥ N2 and x, y ∈ R satisfy max(|x − pt−1 |, |y − pt+1 |) ≤ M Nα/2, then

E
t−1 ,t+1 ,x,y

H RW [gN (hN (�))] ≤ δε, where gN (h)

= 1
{

h ∈ G−1(O)
}

· 1
{

dY (h, G−1(O)c) > N−α/8
}

(5.7)

and on the left � is a P
t−1 ,t+1 ,x,y

H RW -distrubuted random curve. We will prove (5.7) in the next
step. Here we assume its validity and conclude the proof of (5.6).

By the (H, H RW )-Gibbs property we can deduce the following statements for N ≥
N2

P
2
(

E(δ, M, N )c ∩
{

fN ∈ G−1(O)
}

∩
{

dY ( fN , G−1(O)c) > N−α/8
})

= EP2

[
1E(δ,M,N )c · gN (hN (L N

1 [t−1 , t+1 ]))
]

= EP2

[
EP2

[
1E(δ,M,N )c · gN (hN (L N

1 [t−1 , t+1 ]))|Fext

]]

= EP2

[
1E(δ,M,N )c · E

t−1 ,t+1 ,L N
1 (t−1 ),L N

1 (t+1 ),L N
2 �t−1 ,t+1 �

H,H RW [gN (hN (�))]

]

= EP2

⎡

⎣1E(δ,M,N )c · E
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 )

H RW

[
gN (hN (�)) · WH (t−1 , t+1 , �, L N

2 �t−1 , t+1 �)
]

Z H,H RW (t−1 , t+1 , L N
1 (t−1 ), L N

1 (t+1 ), L N
2 �t−1 , t+1 �)

⎤

⎦
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≤ EP2

⎡

⎣1E(δ,M,N )c · E
t−1 ,t+1 ,L N

1 (t−1 ),L N
1 (t+1 )

H RW [gN (hN (�))]

δ

⎤

⎦

≤ EP2

[
1E(δ,M,N )c · δε

δ

]
≤ ε, (5.8)

where we have written Fext in place of Fext ({1} × �t−1 + 1, t+1 − 1�) as in (2.7) to
ease the notation. The first equality in (5.8) follows from the definition of hN , gN
and the distributional equality of fN and hN (L N

1 [t−1 , t+1 ]). The second equality is a
consequence of the tower property for conditional expectations. In the third equality, we
use that 1Ec(δ,M,N ) is Fext -measurable and can thus be taken outside of the conditional
expectation, in addition we applied the (H, H RW )-Gibbs property (2.6) to the function
F(�) = gN (hN (�)). In the fourth equality, we used (2.3). The inequality on the fourth
line follows from the fact that 0 ≤ WH ≤ 1 and Z H,H RW ≥ δ on E(δ, M, N )c. In the first
inequality on the fifth line, we used (5.7) and the fact that on E(δ, M, N )c the random
variables L N

1 (t−1 ), L N
1 (t+1 ) (which play the role of x, y in (5.7)) satisfy the inequalities

|L N
1 (t−1 ) − pt−1 | ≤ M Nα/2 and |L N

1 (t+1 ) − pt+1 | ≤ M Nα/2.

The last inequality is trivial.
Combining (5.8) with the fact that for N ≥ N2 we have from (5.3) that

P
2 (E(δ, M, N )) < ε, we conclude that for N ≥ N2 we have

P
2
({

fN ∈ G−1(O)
}

∩
{

dY ( fN , G−1(O)c) > N−α/8
})

≤
P
2
(

E(δ, M, N )c ∩
{

fN ∈ G−1(O)
}

∩
{

dY ( fN , G−1(O)c) > N−α/8
})

+P
2 (E(δ, M, N )) < 2ε,

which certainly implies (5.6).

Step 4 In this step we establish (5.7). From Proposition 2.17 we know that we can find
constants 0 < C, a, α̃ < ∞ (depending on p and H RW ) and a probability space with
measure P on which are defined a Brownian bridge Bσp with variance σ 2

p and a family
of random curves �z on [0, T ], which is parameterized by z ∈ R, such that �z has law
P
0,T,0,z
H RW and

EP

[
ea�(T,z)]≤Ceα̃(log T )2e|z−pT |2/T , where �(T, z)= sup

0≤t≤T

∣∣
√

T B
σp
t/T +

t

T
z−�z(t)

∣∣.

If x, y ∈ R and T = t+1 − t−1 , we observe that if �y−x has law P
0,T,0,y−x
H RW , then the

random curve �x,y in C([t−1 , t+1 ]) defined by

�x,y(t) = x + �y−x (t − t−1 )

has law P
t−1 ,t+1 ,x,y

H RW . The latter implies that

EP

[
ea�(T,x,y)

] ≤ Ceα̃(log T )2e|y−x−pT |2/T , where

�(T, x, y) = sup
t−1 ≤t≤t+1

∣
∣
∣∣
√

T B
σp

t−t−1 /T
+ (t − t−1 /T )(y − x) − �x,y(t) + x

∣
∣
∣∣ , and T = t+1 − t−1 . (5.9)
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Let us denote for t ∈ [t−1 , t+1 ]
B̃x,y(t) = √

T B
σp

t−t−1 /T
+ (t − t−1 /T )(y − x) + x,

and observe that the latter is a random variable in C([t−1 , t+1 ]). We further observe that

dY (hN (B̃x,y), hN (�x,y)) ≤ N−α/2 · �(T, x, y). (5.10)

From the above equations, we conclude that

E
t−1 ,t+1 ,x,y

H RW [gN (hN (�))] = EP

[
gN (hN (�x,y))

] =
P

({
hN (�x,y) ∈ G−1(O)

}
∩
{

dY (hN (�x,y), G−1(O)c) > N−α/8
})

≤
P

({
hN (B̃x,y) ∈ G−1(O)

})
+ P

(
dY (hN (B̃x,y), hN (�x,y)) > (1/2)N−α/8

)
≤

P

(
hN (B̃x,y) ∈ G−1(O)

)
+ P

(
�(T, x, y) > (1/2)N 3α/8

)
.

(5.11)

Wenownotice by (5.9) andChebyshev’s inequality that ifmax(|x−pt−1 |, |y−pt+1 |) ≤
M Nα/2, then

P

(
�(T, x, y) > (1/2)N 3α/8

)
≤ Ce−(1/2)N3α/8 · eα̃(log T )2e4M2Nα/T ≤ δε/2,

(5.12)

where the latter inequality holds provided that N2 is sufficiently large and N ≥ N2. Here
we also used that T ≥ Nα by definition.

Next, observe that

if h̃(x) = ah(x) + bx + c for a, b, c ∈ R then G(h̃) = a · G(h). (5.13)

The latter observation shows that

P

(
hN (B̃x,y) ∈ G−1(O)

)
= P

( √
T

Nα/2 · BN ∈ G−1(O)

)

, (5.14)

where for t ∈ [−r, r ] we have BN (t) = B
σp

t Nα−t−1 /T
. From basic properties of Brownian

bridges we know that if B is a standard Brownian bridge on [0, 1] that is independent
of BN , then the process

B̃N (t) = BN (−r) ·
(

r − t

2r

)
+ BN (r) ·

(
t + r

2r

)
+

√
2rσp Nα/2

√
T

B

(
t + r

2r

)
,

defined on [−r, r ] has the same distribution as BN (t). Combining the latter with (5.13)
and (5.14), we conclude that

P

(
hN (B̃x,y) ∈ G−1(O)

)
= P

(√
2rσp · B ∈ O

)
≤ εδ/2, (5.15)

where in the last inequality we used that
√
2rσp · B has the same law as B

√
2rσp and

(5.4). Combining (5.15) and (5.12) with (5.11), we conclude (5.7) and thus the proof of
the theorem.
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6. The log-gamma Polymer as a Line Ensemble

In Sect. 6.1 we present a certain Markov chain formulation of the log-gamma poly-
mer, which is a consequence of the geometric RSK correspondence, following [10]. In
Sect. 6.2, we use the Markov chain formulation to prove that the log-gamma polymer
has a Gibbsian line ensemble structure of the type discussed in Sect. 2. In Sect. 6.3, we
prove Theorem 1.10 by appealing to Theorems 3.2 and 5.3.

6.1. Markovian dynamics. Recall that a continuous random variable X is said have the
inverse-gamma distribution with parameter θ > 0 if its density is given by

fθ (x) = 1{x > 0} · �(θ)−1 · x−θ−1 · exp(−x−1). (6.1)

Let us fix N ∈ N and θ > 0. We let d = (
di, j : i ≥ 1, 1 ≤ j ≤ N

)
denote

the semi-infinite random matrix such that di, j are i.i.d. random variables with den-
sity fθ as in (6.1). In addition, for n ≥ 1 we denote by d[1,n] the n × N
matrix

(
di, j : 1 ≤ i ≤ n, 1 ≤ j ≤ N

)
. A directed lattice path is a sequence of vertices

(x1, y1), . . . , (xk, yk) ∈ Z
2, such that x1 ≤ x2 ≤ · · · ≤ xk , y1 ≤ y2 ≤ · · · ≤ yk and(

xi − xi−1
)
+
(
yi − yi−1

) = 1 for i = 2, . . . , k. In words, a directed lattice path is
an up-right path on Z

2, which makes unit steps in the coordinate directions. A collec-
tion of paths π = (π1, . . . , π�) is said to be non-intersecting if the paths π1, . . . , π�

are pairwise vertex-disjoint. For 1 ≤ � ≤ k ≤ N , we let ��
n,k denote the set of �-

tuples π = (π1, . . . , π�) of non-intersecting directed lattice paths in Z
2, such that for

1 ≤ r ≤ �, πr is a lattice path from (1, r) to (n, k + r − �).
Given an �-tuple π = (π1, . . . , π�), we define its weight to be

w(π) =
�∏

r=1

∏

(i, j)∈πr

di, j . (6.2)

For 1 ≤ � ≤ k ≤ N , we define

τk,�(n) =
∑

π∈��
n,k

w(π). (6.3)

Note that if 0 ≤ n < � ≤ k ≤ N , then ��
n,k = ∅ and so, as by convention, we set

τk,�(n) = 0. If � = k then ��
n,k consists of a unique element, and, in fact, we have

τk,�(n) = δk,� · τk,n(n) for 0 ≤ n < � ≤ k ≤ N ,

where δk,� is the Kronecker delta.
Given τk,�(n), we define the array z(n) = {zk,�(n) : 1 ≤ k ≤ N and 1 ≤ � ≤

min(k, n)} through the equations

zk,1(n)zk,2(n) · · · zk,�(n) = τk,�(n). (6.4)

We next proceed to define a certain Markovian dynamics on triangular arrays of positive
reals, which will be ultimately related to the random variables zk,�(n) in (6.4).

Let us introduce some notation. For each k ∈ N, we let Yk = (0,∞)k and

Tk = Y1 × · · · × Yk = {(z[1], . . . , z[k]) : z[r ] ∈ Yr for 1 ≤ r ≤ k}.
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For each r ∈ {1, . . . , k}, we have that z[r ] = (zr,1, . . . , zr,r ) ∈ Yr , and also we can
naturally identify Tk with (0,∞)k(k+1)/2, where the coordinates are labeled by zi, j for
1 ≤ i ≤ j ≤ k. In particular, we can view (Tk,B) as a measurable space, where B is
the usual Borel σ -algebra of (0,∞)k(k+1)/2. If 1 ≤ k ≤ N and z ∈ TN , we define

z[1,k] = (zt,s)1≤s≤t≤k ∈ Tk .

Let us fix N ∈ N. The measurable space (TN ,B) is the state space of our Markov
chain, whose transition kernel we define next. Define the kernel P1

θ : Y1 → Y1 through

P1
θ (y, d ỹ) = 1

�(θ)

(
y

ỹ

)θ

· exp
(

− y

ỹ

)
d ỹ

ỹ
. (6.5)

In words, the above kernel encodes the transition from y to ỹ = d · y, where d is an
independent random variable with density fθ . In particular, P1

θ is indeed a stochastic
transition kernel. For k ≥ 2 we let Lk

θ : Yk−1 × Yk × Yk−1 → Yk be defined through

∫

(0,∞)k
h(ỹ)Lk

θ ((x, y, x̃), d ỹ) =
∫

(0,∞)

d ỹ1
ỹ1

1

�(θ)
·
(

y1 + x̃1
ỹ1

)θ

exp

(
− y1 + x̃1

ỹ1

)

×h

(

ỹ1,

{
y�−1 x̃�−1

x�−1
· y� + x̃�

y�−1 + x̃�−1

}

2≤�≤k−1
,

yk yk−1 x̃k−1

xk−1(yk−1 + x̃k−1)

)

, (6.6)

where h(·) is a bounded continuous function. In other words, the kernel Lk
θ encodes the

transition from the vector (x, y, x̃) ∈ Yk−1 × Yk × Yk−1 to the random vector ỹ ∈ Yk ,
given by

ỹ1 = d · (y1 + x̃1),

ỹ� = y�−1 · x̃�−1

x�−1
· y� + x̃�

y�−1 + x̃�−1
for 2 ≤ � ≤ k − 1,

ỹk = yk · yk−1

xk−1(yk−1 + x̃k−1)
,

(6.7)

where d is an independent random variable with density fθ . In particular, Lk
θ is indeed a

stochastic transition kernel. We define the following transition kernels �N
θ : TN → TN

by induction on N ≥ 1. For N = 1 we let �1
θ = P1

θ as in (6.5), and for N ≥ 2 we let

�N
θ (z, dz̃) = �N−1

θ

(
z[1,N−1], dz̃[1,N−1]) L N

θ

((
z[N−1], z[N ], z̃[N−1]) , dz̃[N ]) .

(6.8)

We write {z(n)}n≥0 to denote the Markov chain on (TN ,B), whose transition kernel is
�N

θ .
As it turns out, if the chain {z(n)}n≥0 is started from certain initial conditions z(0),

then the process y(n) = φ(z(n)), with φ(z) = z[N ], will be Markovian in its own
filtration. Let us elaborate this point further. We define a positive kernel P N

θ on YN
through

P N
θ (y, d ỹ) =

N−1∏

i=1

exp

(
− ỹi+1

yi

) N∏

j=1

(
1

�(θ)

(
y j

ỹ j

)θ

· exp
(

− y j

ỹ j

)
d ỹ j

ỹ j

)

. (6.9)
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In addition, we define a positive (intertwining) kernel from YN to TN by

K N
θ (y, dz) =

∏

1≤�≤k<N

exp

(
− zk,�

zk+1,�
− zk+1,�+1

zk,�

)
dzk,�

zk,�

N∏

�=1

δy�
(dzN ,�), (6.10)

where δy(dzi, j ) denotes the Dirac delta measure at y. Furthermore, we define

P̄ N
θ (y, d ỹ) = wN

θ (ỹ)

wN
θ (y)

P N
θ (y, d ỹ), K̄ N

θ (y, dz) = K N
θ (y, dz)

wN
θ (y)

, with wN
θ (y) =

∫

TN

K N
θ (y, dz).

(6.11)

As explained in [10, Section 3.1], the renormalization in (6.11) ismade so that the kernels
P̄ N

θ and K̄ N
θ become stochastic. The following is the main algebraic result of [10] (see

Proposition 3.4 and Corollary 3.6 in that paper with θi = θ and θ̂i = 0 for i ∈ N).

Proposition 6.1. For any θ > 0 and N ∈ N, we have the following intertwining relation

P̄ N
θ K N

θ = K̄ N
θ �N

θ . (6.12)

The intertwining relation (6.12), through a certain general formalism forMarkov chains,
is essentially sufficient to prove the following statement.

Theorem 6.2 [10, Theorem 3.7]. Let θ > 0 and N ∈ N. Let y(0) be a random or
deterministic initial state in YN and let {z(n)}n≥0 be the Markov chain, whose initial
state z(0) has the distribution K̄ N

θ (y(0), ·) and whose transition kernel is �N
θ . Then the

sequence of random variables y(n) = φ(z(n)), n ≥ 0 is a Markov chain with respect to
its own filtration with state space YN , initial state y(0), and transition kernel P̄ N

θ .

We conclude this section by relating the Markov chain {z(n)}n≥0, we just defined, to
the variables zk,� in (6.4) in the following statement, which is [10, Proposition 5.3] for
θi = θ and θ̂i = 0 for i ∈ N.

Proposition 6.3. Let θ > 0 and N ∈ N. For each M ∈ N, we define

y0,M =
(
exp

(
−M · N − �

2

))

1≤�≤N
.

We also let PM denote the probability distribution of the Markov chain {z(n)}n≥0, whose
initial state z(0) has the distribution K̄ N

θ (y0,M , ·), and whose transition kernel is �N
θ .

Let n ∈ N be given and denote by P∅ the probability distribution of z(s) = {zk,�(s) :
1 ≤ k ≤ N and 1 ≤ � ≤ min(k, s)} for s = 1, . . . , n as in (6.4). If f is a bounded
continuous function of the (0,∞)-valued coordinates {zk,�(s) : 1 ≤ s ≤ n, 1 ≤ k ≤
N , 1 ≤ � ≤ min(k, s)}, then we have

lim
M→∞ EPM [ f (z(1), . . . , z(n))] = E∅ [ f (z(1), . . . , z(n))] . (6.13)
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6.2. The log-gamma polymer as a line ensemble. In this section, we prove that the
log-gamma polymer can be understood as a discrete line ensemble that satisfies the
(H, H RW )-Gibbs property, where

Gθ (x) = e−H RW (x), H RW (x) = θx + e−x + log�(θ) and H(x) = ex , (6.14)

with θ > 0 as in the definition of the polymer model in Sect. 6.1.
In this section, we prove the following result.

Proposition 6.4. Let H, H RW be as in (6.14). Fix K , N ∈ N with N ≥ K ≥ 2. Let
T0, T1 ∈ N be such that T0 < T1 and T0 ≥ K . Then, we can construct a probability
space P that supports a �1, K � × �T0, T1�-indexed line ensemble L = (L1, . . . , L K ),
such that:

(1) The P-distribution of (Li ( j) : (i, j) ∈ �1, K � × �T0, T1�) is the same as that of
(log(zN ,i ( j)) : (i, j) ∈ �1, K � × �T0, T1�) as in (6.4);

(2) L satisfies the (H, H RW )-Gibbs property.

Remark 6.5. We mention that the embedding of log(zN ,i ) as the lowest-indexed curve
of an (H, H RW )-Gibbsian line ensemble is a special feature of the log-gamma polymer
model. A similar property is known to hold for other integrable polymer models such as
the strict-weak polymer model, mentioned in Remark 1.5. For general directed polymer
models such an embedding is not known.

Remark 6.6. We mention that analogues of Proposition 6.4 can be found in [42, Section
3.4] and [28]. As the statements and notations from those papers are a bit different than
here, we provide the fairly short proof of this result for the sake of completeness.

Proof. We split the proof into two steps, for clarity.

Step 1 We assume the same notation as in Theorem 6.2 and Proposition 6.3. From
these results we know that for each M ∈ N there exists a probability space with
measure PM that supports a Markov chain z(n), n ≥ 0, whose initial state z(0) has

the distribution K
N
θ (y0,M , ·), and whose transition kernel is �N

θ . Moreover, the pro-
cess y(n) = φ(z(n)), n ≥ 0 is a Markov chain with respect to its own filtration

with state space YN , initial state y(0) = y0,M , and transition kernel P
N
θ . We write

y(n) = (y1(n), . . . , yN (n)).
Let us define (L M

i ( j) : i = 1, . . . , N , j ≥ 0) through L M
i ( j) = log

(
yi ( j)

)
. By

a simple change of variables, using (6.9), (6.10) and (6.11), we see that the sequence
L M ( j), j ≥ 0 of R

N -valued random variables (the i-th coordinate of L M ( j) is L M
i ( j))

is also Markov in its own filtration and its transition kernel is

P̂ N
θ (z, dz̃) = wN

θ (ez̃)

wN
θ (ez)

·
N−1∏

i=1

exp (−H(z̃i+1 − zi )) ·
N∏

j=1

Gθ (z j − z̃ j )dz̃ j , (6.15)

where for z ∈ R
N we write ez = (ez1 , . . . , ezN ).

We claim that for each M ≥ 1 and T1 ∈ N as in the statement of the proposition, we
have that the line ensemble (L M

i ( j) : (i, j) ∈ �1, N�× �0, T1�) satisfies the (H, H RW )-
Gibbs property. We prove this claim the next step. For now we assume its validity and
conclude the proof of the proposition.

Since (L M
i ( j) : (i, j) ∈ �1, N� × �0, T1�) satisfies the (H, H RW )-Gibbs property

we know that (L M
i ( j) : (i, j) ∈ �1, K � × �T0, T1�) satisfies the (H, H RW )-Gibbs
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property as a �1, K � × �T0, T1�-indexed line ensemble (cf. Remark 2.7). Furthermore,
by Proposition 6.3 we know that

(
L M

i ( j) : (i, j) ∈ �1, K �× �T0, T1�
)
weakly converge

to
(
log(zN ,i ( j)) : (i, j) ∈ �1, K � × �T0, T1�

)
(here we used that T0 ≥ K ). Since(

L M
i ( j) : (i, j) ∈ �1, K � × �T0, T1�

)
each satisfy the (H, H RW )-Gibbs property, we

conclude the same is true for log(zN ,i ( j)) : (i, j) ∈ �1, K �× �T0, T1�
)
by Lemma 2.10.

This concludes the proof, modulo verifying the claimed (H, H RW )-Gibbs property,
which is done in the next step.

Step 2 To prove that
(
L M

i ( j) : (i, j) ∈ �1, N� × �0, T1�
)
satisfies the (H, H RW )-Gibbs

property, we appeal to Lemma 2.8 and we use the same notation as in that lemma. To
simplify the expressions below we drop M , which is fixed in this step, from the notation.
Let fi, j for (i, j) ∈ �1, N� × �0, T1� be bounded continuous functions on R. In view of
Lemma 2.8 it suffices to show

E

[ N∏

i=1

T1∏

j=0

fi, j (Li ( j))
]

= E

[ ∏

(i, j)∈B

fi, j (Li ( j)) · E
1,N−1,0,T1,
x,
y,∞,L N

H,H RW

[ ∏

(i, j)∈A

fi, j (Li ( j))
]]

,

(6.16)

Using the transition probability in (6.15), we obtain that

EP

[ N∏

i=1

T1∏

j=0

fi, j (Li ( j))
]

=
N∏

i=1

fi,0(z
0
i ) ·

∫

R
N T1

N∏

i=1

T1∏

j=1

fi, j (z
j
i )

N−1∏

i=1

T1∏

j=1

e−H(z j
i+1−z j−1

i )

·
N∏

i=1

T1∏

j=1

Gθ (z
j
i − z j−1

i ) · wN
θ (ezT1

)

wN
θ (ez0)

N∏

i=1

T1∏

j=1

dz j
i , (6.17)

where z0i = log[y0,M
i ] = −M · N−i

2 .
On the other hand, we have by definition that the right-hand side of (6.16) equals

N∏

i=1

fi,0(z
0
i ) ·

∫

R
N T1

∫

R
(N−1)(T1−1)

N∏

i=1

fi,T1 (z
T1
i ) ·

T1−1∏

j=1

fN , j (z
j
N )

N−1∏

i=1

T1∏

j=1

e−H(z j
i+1−z j−1

i )

·
N∏

i=1

T1∏

j=1

Gθ (z
j
i − z j−1

i ) · wN
θ (ezT1

)

wN
θ (ez0 )

N−1∏

i=1

T1−1∏

j=1

fi, j (z̃
j
i ) ·

N−1∏

i=1

T1∏

j=1

e−H(z̃ j
i+1−z̃ j−1

i )

·
N−1∏

i=1

T1∏

j=1

Gθ (z̃
j
i − z̃ j−1

i ) ·
N−1∏

i=1

1

G
z0N
T1

(zT1
i )

· 1

Z1,N−1,z0,zT1 ,∞,zN
H

·
N−1∏

i=1

T1−1∏

j=1

dz̃ j
i

N∏

i=1

T1∏

j=1

dz j
i ,

(6.18)

where zN stands for the vector (z0N , . . . , zT1
N ), z̃0i = z0i for i = 1, . . . , N , z̃T1

i = zT1
i for

i = 1, . . . , N , z̃i
N = zi

N for i = 1, . . . , T1, and

Z1,N−1,z0,zT1 ,∞,zN
H =

∫

R
(N−1)(T1−1)

N−1∏

i=1

T1∏

j=1

e−H(z j
i+1−z j−1

i )

·
N−1∏

i=1

T1∏

j=1

Gθ (z̃
j
i − z̃ j−1

i ) ·
N−1∏

i=1

1

G
z0N
T1

(zT1
i )

N−1∏

i=1

T1−1∏

j=1

dz j
i .
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In the above, we have also used that Gx
n(y) is as in (2.1) for G = Gθ . We remark that

the integration over z̃ corresponds to the expectation E
1,N−1,0,T1,
x,
y,∞,L N

H,H RW on the right
side of (6.16), while the integration over z corresponds to the outer expectation on the
right side of (6.16).

We may now integrate in (6.18) over the variables z j
i with (i, j) ∈ �1, N − 1� ×

�1, T1 − 1� and cancel the resulting factor with

N−1∏

i=1

1

G
z0N
T1

(zT1
i )

· 1

Z1,N−1,z0,zT1 ,∞,zN
H

.

The resulting expression will then equal (6.17) upon relabeling z j
i to z̃ j

i for (i, j) ∈
�1, N − 1� × �1, T1 − 1�. This proves (6.16) and, hence, the proposition. 
�

6.3. Spatial tightness of the log-gamma polymer. In this section,we proveTheorem1.10
by appealing to Theorem 1.2. In what follows, we fix θ > 0 and let H RW , H be as
in (6.14). We will use much of the notation of Sect. 1.2 (e.g. dθ , hθ ,F(n, N ),). For
convenience, we denote

M = �r N + (T + 3)N 2/3 + 2	.
Fix some K ≥ 2. For each N ≥ K , Corollary 1.4 provides us with a �1, K � ×

�K , M�-indexed line ensemble, which we will denote L̃N , whose lowest labeled curve(
L̃ N
1 (n) : n ∈ �K , M�

)
has the same law as

(
log zN ,1(n) : n ∈ �K , M�

)
in the notation

from Sect. 6.1 or, equivalently,
(
log Zn,N : n ∈ �K , M�

)
in the notation of Sect. 1.2.

Moreover, this line ensemble enjoys the (H, H RW )-Gibbs property with H and H RW

given in (1.5).
Let TN = �(T + 3)N 2/3 + 2	 and assume that N0 ≥ 2 is sufficiently large, so that

M − 2TN − 2 ≥ K for all N ≥ N0. Such a choice of N0 is possible by our assumption
that r > 0, and depends only on T and r . Provided N ≥ N0 as above, we define the
�1, 2� × �−TN , TN �-indexed line ensemble LN by setting

L N
i (x) = L̃ N

i (x + �r N	) + Nhθ (r) for i = 1, 2 and x ∈ �−TN , TN �,

where L̃N is as above. The condition that N ≥ N0 ensures that the argument in L̃ N
i stays

in �K , M�, so that LN is well-defined.
We claim that the sequence of line ensembles LN defined just now is (α, p, T + 3)-

good in the sense of Definition 1.1 with α = 2/3 and p = −h′
θ (r). Assuming this for the

moment, we see that if fN (x) is as in Theorem 1.2 then fN (x) = f LG
N (x)with f LG

N as in
the statement of Theorem 1.10. Consequently, by Theorem 1.2 we see that the sequence
of random functions f LG

N is a tight sequence of (C[−T, T ], C)-valued random variables,
and also that any subsequential limit P∞ of the laws of f LG

N is absolutely continuous
with respect to a Brownian bridge with variance 2T σ 2

p in the sense of Definition 5.2,
where σ 2

p is as in Definition 2.15. Consequently, to conclude the proof of Theorem 1.10
it remains to show

1. the sequence of line ensembles LN is (2/3,−h′
θ (r), T + 3)-good in the sense of

Definition 1.1;
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2. σ 2
p = 
 ′(g−1

θ (r)).

Note that by the definition of N0 and TN above we know that TN > T Nα + 1 for
N ≥ N0. Furthermore, since L̃N satisfies the (H, H RW )-Gibbs property, the same can
be deduced for LN , as the latter was obtained from the former by a horizontal shift
(by �r N	) and a vertical shift (by hθ (r)N ) followed by a projection to the coordinates
�1, 2�× �−TN , TN � and all of these operations preserve the (H, H RW )-Gibbs property.
This establishes the first condition of Definition 1.1. To see why the second condition
holds, let us fix s ∈ [−T, T ] and note that for n = �r N	 + �s N 2/3	, and F(n, N ) as in
(1.10) we have

f LG
N (�s N 2/3	) − dθ (n/N )F(n, N ) = N 2/3(hθ (n/N ) − hθ (r)) + h′

θ (r)N−1/3�s N 2/3	 = O(1)

where the last equality follows from basic Taylor expansion and the constant in the big
O notation depends on θ, T and r . From Proposition 1.7 we know that F(n, N ) is tight
(in fact it converges to the Tracy–Widom distribution) and since dθ (n/N ) converges
to dθ (r) we conclude that f LG

N (�s N 2/3	) is also tight. Thus, the second condition of
Definition 1.1 is also satisfied.

Since H(x) = ex wehave that H is convex,weakly increasing and limx→∞ x2H(−x)

= 0, which shows that H satisfies the conditions in Definition 3.1. What remains is to
show that H RW = θx + e−x + log�(θ) satisfies the five assumptions in Definition 2.15.
For Assumption 1, H RW (x) is immediately seen to be continuous and convex, and
G(x) = e−H RW (x) is bounded and integrates to 1. For Assumption 2, the moment gen-
erating function is evaluated to be M(t) = �(θ − t)/�(θ) provided that t < θ . Thus,
the cumulant generating function�(t) = log M(t) = log�(θ − t)− log�(θ) is defined
on a domain D� = (−∞, θ) and Assumption 2 is verified. From the exact formula,
Assumption 3 follows immediately. Assumption 4 follows from the fact that for any
−∞ < a < b < θ , there exists constants c, C > 0 such that for all z withRe(z) ∈ (a, b),∣∣�(z)

∣∣ ≤ Ce−c|z|. Assumption 5—namely, the second bound in (2.29)—follows from
the double exponential decay of G(x) for negative x . The above two paragraphs verify
all the conditions of Definition 1.1.

To see why σ 2
p = 
 ′(g−1

θ (r)), note that from Definition 2.15 we have σ 2
p :=

�′′((�′)−1(p)). From the explicit formula for � we may compute �′(t) = −
(θ − t)
and �′′(t) = 
 ′(θ − t). Using that h′

θ (r) = 
(g−1(r)) = −p, we see that

(�′)−1(p) = (�′)−1(−h′
θ (r)) = θ − g−1

θ (r),

and so σ 2
p = �′′((�′)−1(p)) = 
 ′(g−1(r)) as desired. This concludes the proof of the

theorem.
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7. Appendix: Proof of Results from Section 2

In this section, we give the proof of various results from Sect. 2, and we will use much
of the same notation as in that section.

7.1. Proof of Lemmas 2.8 and 2.10. We begin by giving an analogue of Definition 2.1,
and proving a useful auxiliary result.

Definition 7.1. For a finite set J ⊂ Z
2, we let Y +(J ) denote the space of functions

f : J → (−∞,∞]with the Borel σ -algebraD+, coming from the natural identification
of Y (J ) with (−∞,∞]|J |. Similarly, we let Y −(J ) denote the space of functions f :
J → [−∞,∞) with the Borel σ -algebra D− coming from the natural identification of
Y −(J ) with [−∞,∞)|J |. We think of an element of Y ±(J ) as a |J |-dimensional vector
whose coordinates are indexed by J .

Lemma 7.2. Let H and H RW be as in Definition 2.4. Suppose that a, b, k1, k2 ∈ Z with
a < b and k1 ≤ k2. In addition, suppose that h : Y (�k1, k2�×�a, b�) → R is a bounded
Borel-measurable function (recall that Y (J ) was defined in Definition 2.1). Let VL =
�k1, k2�×{a}, VR = �k1, k2�×{b}, VT = {k1 −1}× �a, b� and VB = {k2 +1}× �a, b�,
and define the set

S = {
(
x, 
y, 
u, 
v) ∈ Y (VL) × Y (VR) × Y +(VT ) × Y −(VB)

}
,

where we endow S with the product topology and corresponding Borel σ -algebra. Then,
the function Gh : S → R, given by

Gh(
x, 
y, 
u, 
v) = E
a,b,
x,
y,
u,
v
H,H RW [h(L)] , (7.1)

is bounded and measurable. Moreover, if h is also continuous, then so is Gh. In the above
equations the random variable over which we are taking the expectation is denoted by
L.

Proof. Let us briefly explain the main ides behind the proof. It is clear that |Gh | is
bounded by ‖h‖∞, which implies its boundedness. In equation (7.2) below, we express
Gh as a ratio of two functions, with a strictly positive denominator. These functions
themselves are integrals over a suitable Euclidean space of functions that are jointly
measurable in the variables (
x, 
y, 
u, 
v) and the variables, over which we are integrating.
We then deduce the measurability of Gh from the measurability of the numerator and
denominator in (7.2), which in turn is a direct consequence of Fubini’s theorem. The
continuity of Gh , when h is continuous, is obtained by showing that the integrals in the
numerator and denominator in (7.2) are continuous in (
x, 
y, 
u, 
v). As these functions
are integrals of functions that are already continuous in (
x, 
y, 
u, 
v), their continuity
follows from being able to exchange the order of integration and a limit in the arguments
(
x, 
y, 
u, 
v). The latter is then a consequence of the Generalized dominated convergence
theorem (see [38, Theorem 4.17]). We now turn to the details.
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We denote B = �k1, k2� × �a, b�, and A = �k1, k2� × �a + 1, b − 1�. By definition

of P
a,b,
x,
y,
u,
v
H,H RW (see (2.1), (2.2) and (2.3) ), we know that

Gh(
x, 
y, 
u, 
v) = Fh(
x, 
y, 
u, 
v)

F1(
x, 
y, 
u, 
v)
. (7.2)

In the above equation, 1 stands for the constant function that is equal to 1, and

Fh(
x, 
y, 
u, 
v) =
∫

Y (A)

h(xi, j : (i, j) ∈ B) · P
(
x, 
y; xi, j : (i, j) ∈ A

)

∏k2
i=k1

G
xi,a
b−a(yi,b)

× Q
(
x, 
y, 
u, 
v; xi, j : (i, j) ∈ A

)∏

(i, j)∈A

dxi, j ,

(7.3)

where

Q
(
x, 
y, 
u, 
v; xi, j : (i, j) ∈ A

) = exp

⎛

⎝−
k2∑

i=k1−1

b−1∑

m=a

H(xi+1,m+1 − xi,m)

⎞

⎠ ,

P
(
x, 
y; xi, j : (i, j) ∈ A

) =
k2∏

i=k1

b∏

m=a+1

G(xi,m − xi,m−1), (7.4)

and also xk1−1, j = uk1−1, j , xk2+1, j = vk2+1, j for j ∈ �a, b�, and xi,b = yi,b for
i ∈ �k1, k2�. If b = a + 1 the function Fh takes the form

Fh(
x, 
y, 
u, 
v) = h(xi, j : (i, j) ∈ B) · exp
⎛

⎝−
k2∑

i=k1

H(xi+1,b − xi,a)

⎞

⎠ . (7.5)

We mention here that our assumption that 
u ∈ Y +(VT ) and 
v ∈ Y −(VB) ensures that
the arguments in H are all well-defined (i.e. we do not have ∞ − ∞), and moreover
they lie in [−∞,∞). In particular, all the functions above are well-defined and finite.

Since H ≥ 0, we see that

Q
(
x, 
y, 
u, 
v; xi, j : (i, j)∈ A

) ≤ 1 and
∫

Y (A)

P
(
x, 
y; xi, j : (i, j) ∈ A

)

∏k2
i=k1

Gxi
b−a(yi )

∏

(i, j)∈A

dxi, j = 1,

and so |Fh | ≤ ‖h‖∞. By Fubini’s theorem we conclude Fh is measurable. This implies
the measurability of Gh , which is the ratio of two measurable functions with a strictly
positive denominator.

What remains is to show Gh is continuous if h is continuous and bounded, which we
assume in the sequel. Since Gh is the ratio of two functions, we see that it suffices to
prove that Fh(
x, 
y, 
u, 
v) is continuous if h is bounded and continuous.

Fix some point (
x∞, 
y∞, 
u∞, 
v∞) ∈ Y (VL) × Y (VR) × Y +(VT ) × Y −(VB), and
suppose that we are given any sequence (
xn, 
yn, 
un, 
vn) ∈ Y (VL)× Y (VR)× Y +(VT )×
Y −(VB), which converges to (
x∞, 
y∞, 
u∞, 
v∞). Then, we wish to establish that

lim
n→∞ Fh(
xn, 
yn, 
un, 
vn) = Fh(
x∞, 
y∞, 
u∞, 
v∞). (7.6)
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We know that for d ≥ 1, f ∈ L1(Rd) and g ∈ L∞(Rd) we have that

U (x) :=
∫

Rd
f (y)g(x − y)dy

is bounded and continuous, see e.g. [23, Proposition 2.39]. The latter implies, in view
of (2.1), that G

xi,a
b−a(yi,b) are positive and continuous functions of 
x and 
y. In particular,

we see that to prove (7.6) it suffices to show that

lim
n→∞

∫

Y (A)

Q
(
xn, 
yn, 
un, 
vn; A

)
P
(
xn, 
yn; A

)
h
(
xi, j : (i, j) ∈ A

) ∏

(i, j)∈A

dxi, j

=
∫

Y (A)

Q
(
x∞, 
y∞, 
u∞, 
v∞; A

)
P
(
x∞, 
y∞; A

)
h
(
xi, j : (i, j) ∈ A

)∏

(i, j)∈A

dxi, j ,

(7.7)

where P, Q are as in (7.4) (we have replaced xi, j : (i, j) ∈ A with A above to ease the
notation).

By continuity of H andG, we know that the integrand in the top line of (7.7) converges
pointwise to the integrand in the second line. The fact that the integrals also converge
then follows from the Generalized dominated convergence theorem (see [38, Theorem
4.17]) with dominating functions

Gn
(
xi, j : (i, j) ∈ A

) = ‖h‖∞ · M K−1 ·
K−1∏

i=1

T1∏

m=T0+1

G
(
xn

i,m − xn
i,m−1

)
, where M = ‖G‖∞,

where xn
i, j = xi, j if (i, j) ∈ A, xn

i, j equals the (i, j)-th coordinate of 
xn if (i, j) ∈ VL

and xn
i, j equals the (i, j)-th coordinate of 
yn if (i, j) ∈ VR . 
�

We next prove Lemma 2.8.

Proof of Lemma 2.8. Throughout the proof, we write EH,H RW in place of

E
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW to ease the notation. For clarity we split the proof into

several steps. In the first step, we show that (1) �⇒ (2), which is the easy part of the
lemma. In Step 2, we reduce the proof of the lemma to establishing a certain equality
of expectations of products of indicator functions—this is (7.10). In Step 3, we derive a
useful identity from (2.8), which in Steps 4 and 5 allows us to express the two sides of
(7.10) as integrals, and show they are equal. In Step 6, we prove the second part of the
lemma, which essentially follows from the work in Steps 2–5.

Step 1 In this step, we show that (1) �⇒ (2). Let us fix any bounded continuous
function f on Y (A) (here Y is as in Definition 2.1)and letH denote the set of bounded
Borel functions h on Y (B), which satisfy

E

[
h
(
L|B

) · f
(
L̃|A

)] = E

[
h
(
L|B

) · EH,H RW

[
f
(
L̃|A

)]]
. (7.8)

We recall that L|B was introduced in Sect. 2.1, and denoted the restriction of the vector
to the coordinates indexed by the set B.

Using (2.6) with k1 = 1, k2 = K − 1, a = T0, b = T1, F = f and the defining
properties of conditional expectations we know that

1 ∈ H and for any numbers ai, j ∈ R the function h(xi, j : (i, j) ∈ B)
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=
∏

(i, j)∈B

1{xi, j ≤ ai, j } ∈ H.

By the Monotone class theorem (see e.g. [18, Theorem 5.2.2]), we see H contains all
bounded Borel functions, which in particular proves (2.8).

Step 2 In the next steps we show that (2) �⇒ (1), which is the hard part of the proof.
Let us fix 1 ≤ k1 < k2 ≤ K − 1 and T0 ≤ a < b ≤ T1. We set D = �k1, k2� × �a, b�
and C = �k1, k2� × �a + 1, b − 1�. Also, for an arbitrary set J ⊂ 
 × �T0, T1�, we put
FJ = σ(Li (s) : (i, s) ∈ J ). Then, wewant to show that if F : Y (�k1, k2�×�a, b�) → R

is a bounded Borel-measurable function, then P-almost surely

E

[
F
(
L|D

)∣∣FA∪B\C

]
= E

k1,k2,a,b,
u,
v,Lk1−1�a,b�,Lk2+1�a,b�

H,H RW

[
F(L′)

]
,

with the convention that L0 = ∞ if k1 = 1. In the above, the D-indexed discrete line

ensembleL′ =(L ′
k1

, . . . , L ′
k2

) is distributed according toP
k1,k2,a,b,
u,
v,Lk1−1�a,b�,Lk2+1�a,b�

H,H RW ,

where 
u = (Lk1(a), . . . , Lk2(a)), 
v = (Lk1(b), . . . , Lk2(b)). We will write P
′
H,H RW for

this measure and E
′
H,H RW for the corresponding expectation. From the defining proper-

ties of conditional expectation, we see that it suffices to prove that for R ∈ FA∪B\C we
have

E

[
1R · F

(
L|D

)] = E

[
1R · E

′
H,H RW

[
F(L′)

]]
. (7.9)

We claim that if we fix ai, j ∈ R for (i, j) ∈ A ∪ B\C and bi, j ∈ R for (i, j) ∈ D,
then

E

⎡

⎣
∏

(i, j)∈A∪B\C

1{Li ( j) ≤ ai, j } ·
∏

(i, j)∈D

1{Li ( j) ≤ bi, j }
⎤

⎦

= E

⎡

⎣
∏

(i, j)∈A∪B\C

1{Li ( j) ≤ ai, j } · E
′
H,H RW

⎡

⎣
∏

(i, j)∈D

1{L ′
i ( j) ≤ bi, j }

⎤

⎦

⎤

⎦ . (7.10)

Note that (7.10) implies (7.9) after a straightforward application of the Monotone class
theorem, and the π − λ theorem (see e.g. [18, Theorem 2.1.6]). Thus we only need to
show (7.10), which we do in the steps below.

Step 3 In this and the next two steps, we establish (7.10). The goal in this step is to
derive a useful identity using (2.8)—this is (7.11) below.

Fix ci, j ∈ R for (i, j) ∈ A ∪ B and define

f̂
(
xi, j : (i, j) ∈ A

) =
∏

(i, j)∈A

1{xi, j ≤ ci, j }, ĝ
(
xi, j : (i, j) ∈ B

) =
∏

(i, j)∈B

1{xi, j ≤ ci, j }.

Observe that f̂ (resp. ĝ) is a bounded measurable function on Y (A) (resp. Y (B)). Using
(2.8), approximating f̂ and ĝ by bounded continuous functions, and taking a limit yields

E

[
f̂
(
L|A

)
ĝ
(
L|B

)] = E

[
ĝ
(
L|B

) · EH,H RW

[
f̂
(
L̃|A

)]]
.
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From the last equation and the definition of EH,H RW , we get

E

[
ĝ
(
L|B

) · EH,H RW

[
f̂
(
L̃|A

)]] = E

[
f̂
(
L|A

)
ĝ
(
L|B

)]

=
∫

Y (B)

∫

Y (A)

K−1∏

i=1

∏T1
m=T0+1

G(xi,m − xi,m−1)

G
xi,T0
T1−T0

(xi,T1 )

exp
(
−∑K−1

i=1
∑T1−1

m=T0
H(xi+1,m+1 − xi,m)

)

Z1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

×
∏

(i, j)∈A

1{xi, j ≤ ci, j }
∏

(i, j)∈A

dxi, j ×
∏

(i, j)∈B

1{xi, j ≤ ci, j }μB(dxi, j : (i, j) ∈ B), (7.11)

whereμB the push-forward measure of P on Y (B) obtained by the projectionL → L|B .

Step 4 In this step we find an integral representation of the second line of (7.10), by
utilizing (7.11). If we take the limit ci, j → ∞ for (i, j) ∈ C in (7.11), and apply the
monotone convergence theorem we conclude

P
({Li ( j) ≤ ci, j : (i, j) ∈ A ∪ B\C}) =

∫

Y (B)

∫

Y (A)

K−1∏

i=1

∏T1
m=T0+1

G(xi,m − xi,m−1)

G
xi,T0
T1−T0

(xi,T1)

×
exp

(
−∑K−1

i=1
∑T1−1

m=T0
H(xi+1,m+1 − xi,m)

)

Z
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

×
∏

(i, j)∈A∪B\C

1{xi, j ≤ ci, j }
∏

(i, j)∈A

dxi, j · μB(dxi, j : (i, j) ∈ B).

The above formula gives us an expression for the joint cumulative distribution of
L|A∪B\C . In particular, say by the Monotone class theorem, we conclude that for any
bounded Borel-measurable G0 on Y (A ∪ B\C) we have

E
[
G0
(
L|A∪B\C

)] =
∫

Y (B)

∫

Y (A)

G0(xi, j : (i, j) ∈ A ∪ B\C)

K−1∏

i=1

∏T1
m=T0+1

G(xi,m − xi,m−1)

G
xi,T0
T1−T0

(xi,T1)
×

exp
(
−∑K−1

i=1
∑T1−1

m=T0
H(xi+1,m+1 − xi,m)

)

Z
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

×
∏

(i, j)∈A

dxi, j · μB(dxi, j : (i, j) ∈ B). (7.12)

Let us define the function G1 on Y (A ∪ B\C) by

G1(xi, j : (i, j) ∈ A ∪ B\C)

= E
k1,k2,a,b,
u,
v,
t, 
w
H,H RW

⎡

⎣
∏

(i, j)∈D

1{L ′
i ( j) ≤ bi, j }

⎤

⎦
∏

(i, j)∈A∪B\C

1{xi, j ≤ ai, j },

where ai, j ∈ R for (i, j) ∈ A∪B\C , bi, j ∈ R for (i, j) ∈ D, 
u = (xk1,a, . . . , xk2,a), 
v =
(xk1,b, . . . , xk2,b), 
t = (xk1−1,a, . . . , xk1−1,b) if k1 ≥ 2 and 
t = (∞)b−a+1 if k1 = 1, and


w = (xk2+1,a, . . . , xk2+1,b). Also, L
′ = (L ′

k1
, . . . , L ′

k2
) is P

k1,k2,a,b,
u,
v,
t, 
w
H,H RW -distributed.

From Lemma 7.2 we know that G1 is bounded and measurable on Y (A ∪ B\C). From
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(7.12), applied to G0 = G1 and the definition of EH,H RW , we conclude that the second
line of (7.10) is equal to

∫

Y (B)

∫

Y (A)

∫

Y (C)

exp
(
−∑k2

i=k1−1

∑b−1
m=a H(yi+1,m+1 − yi,m)

)

Z
k1,k2,a,b,
u,
v,Lk1−1�a,b�,Lk2+1�a,b�

H,H RW

k2∏

i=k1

∏b
m=a+1 G(yi,m − yi,m−1)

G
xi,a
b−a(xi,b)

exp
(
−∑K−1

i=1
∑T1−1

m=T0
H(xi+1,m+1 − xi,m)

)

Z1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

K−1∏

i=1

∏T1
m=T0+1

G(xi,m − xi,m−1)

G
xi,T0
T1−T0

(xi,T1 )

∏

(i, j)∈D

1{yi, j ≤ bi, j }
∏

(i, j)∈A∪B\C

1{xi, j ≤ ai, j }
∏

(i, j)∈C

dyi, j

∏

(i, j)∈A

dxi, j · μB(dxi, j : (i, j) ∈ B),

(7.13)

where we use the convention that yi, j = xi, j if (i, j) �∈ C and x0, j = ∞,

u = (xk1,a, . . . , xk2,a), 
v = (xk1,b, . . . , xk2,b), Lk�a, b� = (xk,a, . . . xk,b) if k ≥
1 and Lk�a, b� = (∞)b−a+1 if k = 0. Also, 
x = (x1,T0 , . . . , xK−1,T0), 
y =
(x1,T1 , . . . , xK−1,T1). This is our desired form of the second line of (7.10).

Step 5 If we apply (7.11) for ci, j = ai, j if (i, j) ∈ A ∪ B\D, ci, j = bi, j for (i, j) ∈ C
and ci, j = min(ai, j , bi, j ) for (i, j) ∈ D\C , we can rewrite the first line of (7.10) as

∫

Y (B)

∫

Y (A)

K−1∏

i=1

∏T1
m=T0+1

G(xi,m − xi,m−1)

G
xi,T0
T1−T0

(xi,T1)

exp
(
−∑K−1

i=1
∑T1−1

m=T0
H(xi+1,m+1 − xi,m)

)

Z
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW

×
∏

(i, j)∈D

1{xi, j ≤ bi, j }
∏

(i, j)∈A∪B\C

1{xi, j ≤ ai, j }
∏

(i, j)∈A

dxi, j · μB(dxi, j : (i, j) ∈ B).

(7.14)

where 
x = (x1,T0 , . . . , xK−1,T0), 
y = (x1,T1 , . . . , xK−1,T1) and L K �T0, T1� =
(xK ,T0 , . . . , xK ,T1). In deriving the above, we also used that 1{x ≤ min(a, b)} = 1{x ≤
a} · 1{x ≤ b}.

What remains to prove (7.10) is to show that the expressions in (7.14) and (7.13) are
equal. We start by performing the integration in (7.13) over xi, j with (i, j) ∈ C . This
gives

∫

Y (B)

∫

Y (A\C)

∫

Y (C)

exp
(
−∑k2

i=k1−1

∑b−1
m=a H(yi+1,m+1 − yi,m)

)

Z
k1,k2,a,b,
u,
v,Lk1−1�a,b�,Lk2+1�a,b�

H,H RW

k2∏

i=k1

∏b
m=a+1 G(yi,m − yi,m−1)

G
xi,a
b−a(xi,b)

K−1∏

i=1

1

G
xi,T0
T1−T0

(xi,T1)
·
∏

(i, j)∈W1

G(xi, j − xi, j−1)

∏k2
i=k1

G
xi,a
b−a(xi,b) · Z

k1,k2,a,b,
u,
v,Lk1−1�a,b�,Lk2+1�a,b�

H,H RW

Z
1,K−1,T0,T1,
x,
y,∞,L K �T0,T1�
H,H RW
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exp
(

−
∑

(i, j)∈W2

H(xi+1, j+1 − xi, j )
) ∏

(i, j)∈D

1{yi, j ≤ bi, j }
∏

(i, j)∈A∪B\C

1{xi, j ≤ ai, j }
∏

(i, j)∈C

dyi, j

∏

(i, j)∈A\C

dxi, j · μB(dxi, j : (i, j) ∈ B).

where W1 = �1, K − 1� × �T0 + 1, T1�\�k1, k2� × �a + 1, b�, and W2 = �1, K − 1� ×
�T0, T1 − 1�\�k1 − 1, k2� × �a, b − 1�. Upon relabeling yi, j with xi, j for (i, j) ∈ C in
the last expression and performing a bit of cancellations, we recognize (7.14).

Step 6 In this step we prove the second part of the lemma. If 
z ∈ (−∞,∞)T1−T0+1, we
see that P

1,K−1,T0,T1,
x,
y,∞,
z
H,H RW clearly satisfies (2.8) and so P

1,K−1,T0,T1,
x,
y,∞,
z
H,H RW satisfies

the (H, H RW )-Gibbs property from the first part of the lemma. The point of the second
part of the lemma, is that the result still holds if 
z ∈ [−∞,∞)T1−T0+1, i.e. some of the
entries of 
z are −∞. The latter can be deduced, for example by noting directly from
the definition of P

1,K−1,T0,T1,
x,
y,∞,
z
H,H RW that (7.11) holds. Then one can verbatim repeat the

work in Steps 4 and 5, replacing everywhere μB by a delta function at the deterministic
boundary formed by 
x, 
y, 
z, to get (7.10). Once (7.10) is known the Monotone class
theorem and the π −λ theorem give (7.9), establishing that P1,K−1,T0,T1,
x,
y,∞,
z

H,H RW satisfies

the (H, H RW )-Gibbs property. 
�
We end this section by proving Lemma 2.10.

Proof of Lemma 2.10. Let A, B, Y (A) and Y (B) be as in Lemma 2.8 and Definition 2.1.
Suppose that f, h are defined by

f
(
xi, j : (i, j) ∈ A

) :=
∏

(i, j)∈A

fi, j (xi, j ), and h
(
xi, j : (i, j) ∈ B

) :=
∏

(i, j)∈B

fi, j (xi, j ),

where fi, j are bounded, continuous real functions. From Lemma 2.8 we know that

EPn

[
h
(
Li ( j) : (i, j) ∈ B

) · f
(
Li ( j) : (i, j) ∈ A

)] =

EPn

[
h
(
Li ( j) : (i, j) ∈ B

) · G f (
x, 
y, (∞)T1−T0+1, L K �T0, T1�)

]
,

where 
x = (L1(T0), . . . L K−1(T0)), 
y = (L1(T1), . . . L K−1(T1)), and G f is as in
Lemma 7.2.

From Lemma 7.2 we know that G f is a bounded, continuous function. Consequently,
we can take the limit as n → ∞ above and using the weak convergence of Pn to P

conclude that

EP

[
h
(
Li ( j) : (i, j) ∈ B

) · f
(
Li ( j) : (i, j) ∈ A

)] =

EP

[
h
(
Li ( j) : (i, j) ∈ B

) · G f (
x, 
y, (∞)T1−T0+1, L K �T0, T1�)

]
,

which in view of Lemma 2.8 concludes the proof of this lemma. 
�
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7.2. Proof of the lemmas in Section 2.3 . In what follows, we prove the lemmas in
Sect. 2.3. Before we begin, we note the following immediate consequence of Proposi-
tion 2.17 and Chebyshev’s inequality

P

(
�(T, z) > T 1/4

)
≤ Ceα̃(log T )2e(z−pT )2/T e−aT 1/4

, (7.15)

which will be used several times in the proofs below.

Proof of Lemma 2.19. In view of Lemma 2.11 with 
z = (−∞)n , we know that

P
0,T,c,d
H RW

(
�(s) ≥ T − s

T
· M1T 1/2 +

s

T
· (pT + M2T 1/2)− T 1/4

)

≥ P
0,T,x,y
H RW

(
�(s) ≥ T − s

T
· M1T 1/2 +

s

T
· (pT + M2T 1/2)− T 1/4

)
,

whenever c ≥ x and d ≥ y and so it suffices to prove the lemma when x = M1T 1/2 and
y = pT + M2T 1/2, which we assume in the sequel. Suppose we have the same coupling
as in Proposition 2.17 and let P denote the probability measure on the space afforded by
that proposition. Then, the left side of (2.31) equals

P

(
x + �(T,y−x)(s) ≥ T − s

T
· M1T 1/2 +

s

T
· (pT + M2T 1/2)− T 1/4

)

≥ P

(
T 1/2Bσ

s/T ≥ 0 and �(T, y − x) ≤ T 1/4
)

≥ 1/2 − P
(
�(T, y − x) > T 1/4).

To get the first expression from (2.31) we used the fact that �(s) and x +�(T,y−x)(s) have
the same law. The first inequality follows from the coupling to a Brownian bridge, and
the last inequality uses that P(Bv

s/T ≥ 0) = 1/2 for every v > 0 and s ∈ [0, T ]. From
(7.15) we have

P

(
�(T, y − x) > T 1/4

)
≤ Ceα̃(log T )2e(M2−M1)

2
e−aT 1/4

,

which is at most 1/6 if we take W0 sufficiently large and T ≥ W0, which implies
(2.31). 
�
Proof of Lemma 2.21. Fix ε > 0. In view of Lemma 2.11 with 
z = (−∞)n , we know
that whenever z2 ≥ z1

P
0,T,0,z2
H RW

(
min

s∈[0,T ]
(
�(s) − ps

) ≤ −AT 1/2
)

≤ P
0,T,0,z1
H RW

(
min

s∈[0,T ]
(
�(s) − ps

) ≤ −AT 1/2
)

≤ P
0,T,0,z1
H RW

(
min

s∈[0,T ]
(
�(s) − s

T
(pT − MT 1/2)

) ≤ (M − A)T 1/2
)
,

and so it suffices to prove that the latter probability with z1 = pT − MT 1/2 is less than ε.
Supposewehave the same coupling as inProposition 2.17 and letPdenote the probability
measure on the space afforded by that proposition. Below we set z = pT − MT 1/2.
Then, we have

P
0,T,0,z
H RW

(
min

s∈[0,T ]
(
�(s) − s

T
(pT − MT 1/2)

) ≤ (M − A)T 1/2
)

= P

(
min

s∈[0,T ]
(
�(T,z)(s) − s

T
(pT − MT 1/2)

) ≤ (M − A)T 1/2
)
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≤ P

(
min

s∈[0,T ] T 1/2Bσ
s/T ≤ (M − A − 1)T 1/2

)
+ P

(
�(T, z) > T 1/2).

Using (7.15), we can make the second probability smaller than ε/2 by choosing W1
large. By basic properties of Brownian bridges, we know that the first probability (for
A ≥ M + 1) is given by

P

(
min

s∈[0,1] B1
s ≤ −σ−1(M − A − 1)

)
= P

(
max

s∈[0,1] B1
s ≥ σ−1(M − A − 1)

)
= e−2σ−2(M−A−1)2 ,

where the last equality can be found in [32, Chapter 4, (3.40)]. Thus by making A
sufficiently large we can make the above less than ε/2. 
�
Proof of Lemma 2.23. In view of Lemma 2.11 it suffices to prove the lemma when
z1 = −M1T 1/2, and z2 = pT − M1T 1/2. Set �z = z2 − z1, tρ = �T/2	+ρ

T , and observe
that

P
0,N ,z1,z2
H RW

(
�(T · tρ) ≥ M2T 1/2 + pT

2
− T 1/4

)

= P
0,T,0,�z
H RW

(
�(T · tρ) ≥ M2T 1/2 + pT

2
− z1 − T 1/4

)
.

Supposewehave the same coupling as inProposition 2.17 and letPdenote the probability
measure on the space afforded by that proposition. Then, we have

P
0,T,0,�z
H RW

(
�(T tρ) ≥ M2T 1/2 + pT

2
− z1 − T 1/4

)

= P

(
�(T,�z)(T tρ) ≥ M2T 1/2 + pT

2
− z1 − T 1/4

)

= P

(
�(T,�z)(T tρ) ≥ (2M1 + M2)T 1/2 + �z

2
− T 1/4

)

≥ P

(
Bσ

tρ ≥ M2 + 2M1

2
and �(T,�z) ≤ T 1/4

)
.

Since Bσ
tρ has the distribution of a normal random variable with mean 0 and variance

vρ = σ 2
ptρ(1 − tρ), and �v is decreasing on R>0 we conclude that the last expression

is bounded from below by

1 − �vρ (M1 + M2) − P
(
�(T, z) > T 1/4) ≥ 1 − �vρ (M1 + M2) − Ceα̃(log T )2e−aT 1/4

.

In the last inequality we used (7.15). The above is at least (1/2)
(
1 − �v(M1 + M2)

)
if

W2 is taken sufficiently large and T ≥ W2. 
�
Proof of Lemma 2.25. In view of Lemma 2.11 it suffices to prove the lemma when
z1 = T 1/2 and z2 = pT + T 1/2. Set �z = z2 − z1, and observe that

P
0,T,z1,z2
H RW

(
min

s∈[0,T ]
(
�(s) − ps

)
+ T 1/4 ≥ 0

)
= P

0,T,0,�z
H RW

(
min

s∈[0,T ]
(
�(s) − ps

)
+ T 1/4 ≥ −z1

)
.

Supposewehave the same coupling as inProposition 2.17 and letPdenote the probability
measure on the space afforded by that proposition. Then, we have

P
0,T,0,�z
H RW

(
min

s∈[0,T ]
(
�(s) − ps

)
+ T 1/4 ≥ −z1

)
= P

(
min

s∈[0,T ]
(
�(T,�z)(s) − ps

) ≥ −T 1/4 − z1
)
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= P

(
min

s∈[0,T ]
(
�(T,�z)(s) − s

T
�z
) ≥ −T 1/4 − T 1/2

)
≥ P

(
min

s∈[0,1] Bσ
s ≥ −1 and �(T,�z) ≤ T 1/4

)
.

We can lower-bound the above expression by

P

(
min

s∈[0,1] Bσ
s ≥ −1

)
− P

(
�(T,�z) > T 1/4).

By basic properties of Brownian bridges, we know that

P

(
min

s∈[0,1] Bσ
s ≥ −1

)
= P

(
min

s∈[0,1] B1
s ≥ −σ−1

)
= P

(
max

s∈[0,1] B1
s ≤ σ−1

)
= 1 − e−2σ−2

,

where the last equality can be found, for example, in [32, Chapter 4, (3.40)]. Also by
(7.15)

P
(
�(T,�z) > T 1/4) ≤ Ceα̃(log T )2e1e−aT 1/4

,

and the latter is at most (1/2)(1− e−2σ−2
) if W3 is taken sufficiently large and N ≥ W3.

Combining the above estimates, we conclude (2.34). 
�
Proof of Lemma 2.27. The strategy is to use the strong coupling between � and a Brow-
nian bridge afforded by Proposition 2.17. This will allow us to argue that with high
probability the modulus of continuity of f � is close to that of a Brownian bridge, and
since the latter is continuous a.s., this will lead to the desired statement of the lemma.
We now turn to providing the necessary details.

Let ε, η > 0 be given and fix δ ∈ (0, 1), which will be determined later. Suppose we
have the same coupling as in Proposition 2.17 and let P denote the probability measure
on the space afforded by that proposition. Then, we have

P
0,T,0,z
H RW

(
w
(

f �, δ
) ≥ ε

)
= P

(
w
(

f �(T,z)
, δ
) ≥ ε

)
. (7.16)

By definition, we have

w
(

f �(N ,z)
, δ
) = T −1/2 sup

x,y∈[0,1]
|x−y|≤δ

∣∣∣�(T,z)(xT ) − pxT − �(T,z)(yT ) + pyT
∣∣∣.

From Proposition 2.17 and the above, we conclude that

w
(

f �(T,z)
, δ
) ≤ T −1/2 sup

x,y∈[0,1]
|x−y|≤δ

∣∣∣T 1/2Bσ
x − T 1/2Bσ

y + (z − pT )(x − y)

∣∣∣

+2T −1/2�(T, z). (7.17)

From (7.16), (7.17), the triangle inequality and the assumption |z − pT | ≤ MT 1/2, we
see that

P
0,T,0,z
H RW

(
w
(

f �, δ
) ≥ ε

)
≤ P

(
w
(
Bσ , δ

)
+ δM + 2T −1/2�(T, z) ≥ ε

)
. (7.18)

If (I ) = P

(
w
(
Bσ , δ

) ≥ ε/3
)
, (I I ) = P

(
δM ≥ ε/3

)
and (I I I ) = P

(
2T −1/2�(T, z) ≥

ε/3
)
we have

P

(
w
(
Bσ , δ

)
+ δM + 2T −1/2�(T, z) ≥ ε

)
≤ (I ) + (I I ) + (I I I ).



1384 G. Barraquand, I. Corwin, E. Dimitrov

By (7.15), we have

P
(
�(T, z) > T 1/4) ≤ Ceα̃(log T )2eM2

e−aT 1/4
.

Consequently, ifwe pickW4 sufficiently large and T ≥ W4, we can ensure that 2T −1/4 <

ε/3 and Ceα̃(log T )2eM2
e−aT 1/4

< η/3, which would imply (I I I ) ≤ η/3.
Since Bσ is a.s. continuous, we know that w(Bσ , δ) goes to 0 as δ goes to 0, hence

we can find δ0 sufficiently small so that if δ < δ0, we have (I ) < η/3. Finally, if
δM < ε/3 then (I I ) = 0.Combining all the above estimateswith (7.18),we see that for δ
sufficiently small, W4 sufficiently large and T ≥ W4, we haveP

0,T,0,z
H RW

(
w
(

f �, δ
) ≥ ε

) ≤
(2/3)η < η, as desired. 
�
Proof of Lemma 2.29. Let ε, M > 0 and p ∈ R be given. Notice that if � ≤ �̃ (meaning
�(i) ≤ �̃(i) for i ∈ �0, 2T �), then 1{�(T ) ≤ pT + MT 1/2} ≥ 1{�̃(T ) ≤ pT + MT 1/2},
which means in view of Lemma 2.11 that it suffices to prove (2.37) when x = −MT 1/2,
y = −MT 1/2 + 2pT and zT+1 = pT + 2MT 1/2 and zi = −∞ for all i �= T + 1, which
we assume in the sequel.

One can rewrite (2.37) as

E
0,2T,x,y
H RW

[
1
{
�(T ) ≤ pT + MT 1/2}e−H(pT+2MT 1/2−�(T ))

]

≤ εE
0,2T,x,y
H RW

[
e−H(pT+2MT 1/2−�(T ))

]
. (7.19)

Using that H is monotonically increasing, we see that

E
0,2T,x,y
H RW

[
1
{
�(T ) ≤ pT + MT 1/2} · e−H(pT+2MT 1/2−�(T ))

]
≤ e−H(MT 1/2).

And so it suffices to show that

ε−1 ≤ E
0,2T,x,y
H RW

[
eH(MT 1/2)−H(pT+2MT 1/2−�(T ))

]
. (7.20)

Suppose we have the same coupling as in Proposition 2.17 and let P denote the
probability measure on the space afforded by that proposition. Setting z = 2pT , we
have

E
0,2T,x,y
H RW

[
eH(MT 1/2)−H(pT+2MT 1/2−�(T ))

]
= EP

[
eH(MT 1/2)−H(pT+3MT 1/2−�(2T,z)(T ))

]

≥ eH(MT 1/2)
EP

[
e−H(pT+3MT 1/2−�(2T,z)(T ))1

{√
2T Bσ

1/2 ≥ (3M + 1)T 1/2} · 1{�(2T, z) ≤ T 1/2}
]

≥ eH(MT 1/2)−H(0) · EP

[
1
{√

2T Bσ
1/2 ≥ (3M + 1)T 1/2} · 1{�(2T, z) ≤ T 1/2}

]
,

where in the last inequality we used that H is weakly increasing. Note that the factor
3MT 1/2 is introduced above because �(T ) and �(2T,z)(T ) − MT 1/2 are equal in law by
the formulation of �(2T,z) in Proposition 2.17. We now observe that

EP

[
1
{√

2T Bσ
1/2 ≥ (3M + 1)T 1/2} · 1{�(2T, z) ≤ T 1/2}

]

≥ (
1 − �v(3M + 1)

)− P
(
�(2T, z) > T 1/2),
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where�v is the cumulative distribution function of amean0 variancev = σ 2
p/2Gaussian

variable. Consequently, by (7.15), we know that we can choose W5 sufficiently large so
that if T ≥ W5

(
1 − �v(3M + 1)

)− P
(
�(2T, z) > T 1/2) ≥ (1/2)

(
1 − �v(3M + 1)

)
.

Combining all of the above inequalities, we conclude that if T ≥ W5 then

E
0,2T,x,y
H RW

[
eH(MT 1/2)−H(pT+2MT 1/2−�(T ))

]

≥ eH(MT 1/2)−H(0) · (1/2) · (1 − �v(3M + 1)
)
.

Finally, by possibly making W5 bigger we see that the above implies (7.20) as we can
make eH(MT 1/2)−H(0) arbitrarily large in view of our assumption that limx→∞ H(x) =
∞. 
�
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