
BRIEF REPORT MATHEMATICS OPEN ACCESS

Slope classicality in higher Coleman theory via highest

weight vectors in completed cohomology
Sean Howea,1

Edited by Kenneth Ribet, University of California, Berkeley, CA; received May 12, 2022; accepted August 2, 2022

We give a proof of the slope classicality theorem in classical and
higher Coleman theory for modular curves of arbitrary level
using the completed cohomology classes attached to overcon-
vergent modular forms. The latter give an embedding of the
quotient of overconvergent modular forms by classical modular
forms, which is the obstruction space for classicality in either co-
homological degree, into a unitary representation ofGL2(Qp).
The Up operator becomes a double coset, and unitarity yields
slope vanishing.

p-adic and overconvergent modular forms | completed cohomology |

higher Coleman theory | classicality and control theorems

Fix a sufficiently small compact open subgroupK p ≤GL2(A
(p)
f )

and let Cp be the completion of an algebraic closure of Qp .
Let X1(p

n)/Cp be the smooth compactification of the modular
curve parameterizing elliptic curves with a point of exact order
pn and level K p structure. Everywhere below, we view X1(p

n)
as an adic space over Cp . The closed canonical ordinary locus
X1(p

n)e is the topological closure of the locus of rank one points
parameterizing elliptic curves of ordinary reduction equipped
with a point generating the canonical subgroup of level pn . We
write X1(p

n)w = X1(p
n)\X1(p

n)e for its open complement
(the subscripts e and w refer to the trivial and nontrivial elements
of the Weyl group for GL2).

Writing ω for the modular sheaf, the space H 0(X1(p
n)e ,ω

k )
is naturally identified with the direct sum of spaces of overconver-
gent modular forms of weights κ such that κ= z kχ where χ is a
character of (Z/pnZ)×. From the perspective of the higher Cole-
man theory of Boxer and Pilloni (1, 2), it is natural to also consider
the compactly supported cohomology H 1

c (X1(p
n)w ,ω

k ). These
groups are related by the exact sequence of compactly supported
topological sheaf cohomology

[1]

arising from the following exact sequence of sheaves on the topo-
logical space X1(p

n) obtained via push–pull of ωk along the in-
clusions j :X1(p

n)w ↪→X1(p
n) and i : X1(p

n)e ↪→X1(p
n):

0→ j!j
−1ωk → ωk → i∗i

−1ωk → 0.

As in refs. 1 and 2 (see also section 2.2 below), there is an
operator Up on each of these spaces induced by a cohomological
correspondence and extending a classical double-coset Hecke
operator Up on H •(X1(p

n),ωk ) (up to matching choices of the
normalization). For any s ∈ R and Cp vector space V equipped
with an action of a linear operator Up , we can pass to the part
V<s of slope less than s , defined to be the span of all generalized
eigenspaces of Up for eigenvalues λ with |λ|> p−s .

Theorem 1. For t ∈ Z\{0}, Eq. 1 induces isomorphisms

H 0(X1(p
n),ω1+t)<|t| = H 0(X1(p

n)e ,ω
1+t)<|t| and

H 1
c (X1(p

n)w ,ω
1+t)<|t| = H 1(X1(p

n),ω1+t)<|t|.

In cohomological degree zero, this is a result of Coleman
(3, 4). In degree one, this is a result of Boxer and Pilloni
(1, 2) (who also reprove Coleman’s result).* We give a short
proof using the connection between overconvergent modular
forms and the completed cohomology of modular curves estab-
lished in refs. 5 and 6.This provides a perspective on a fundamen-
tal result in the p-adic theory of automorphic forms:We recall that
Coleman’s proof (in the degree zero case) is based on an analysis
of the de Rham cohomology of modular curves and a clever
dimension counting, while the proof of Boxer and Pilloni is based
on slope estimates established via an analysis of cohomological
correspondences and integral structures on coherent cohomology.
Our proof, by contrast, proceeds by embedding the defect to
classicality in completed cohomology so that the necessary slope
estimates are a trivial consequence of unitarity, itself a trivial
consequence of the construction of completed cohomology from
integral singular cohomology (see Remark 1 for the origins of
this approach in Emerton’s classicality for Jacquet modules). This
depends on strong nondegeneracy results of refs. 5 or 6, but
the actual construction of the cohomology classes is completely
explicit, so that our proof of Theorem 1 reduces to elementary
matrix computations.

1. Proof of Theorem 1

Theorem 1 is an immediate consequence of Lemma 1 below, itself
an immediate consequence of the results of refs. 5 or 6.

Let X be the infinite-level (compactified) modular curve of
prime-to-p-level K p . It admits an action of GL2(Qp) and,
by Scholze’s primitive comparison (see ref. 6, corollary 4.4.3),
H 1(X ,OX ) is identified with the Cp-completed cohomology
of the tower of modular curves of prime-to-p-level K p . We
need only that it is a Banach space with a unitary action of
GL2(Qp), which follows because the unit ball, that is, the image

of H 1(X ,O+
X ), is preserved by GL2(Qp).
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*In ref. 1 and the introduction of ref. 2, this result is stated at level Γ0(p) using the smaller

group of cohomology with support in X0(p)
ord
w . It is immediate from the results of loco

citato that this smaller space has the same finite slope part, and arbitrary level is treated in

ref. 2, theorem 5.12.2.
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Lemma 1. Let Up denote the Hecke operator of refs. 1 and 2
(the normalization depends on the weight; see section 2), and let
N ≤GL2 be the group of upper triangular unipotent matrices. For
t �= 0, the cup products of ref. 5 give an embedding

H 0(X1(p
n)e ,ω

1+t)/H 0(X1(p
n),ω1+t) ↪→H 1(X ,OX )N (Zp)

matching Up with the double coset p
|t|·[N (Zp)diag(p, 1)N (Zp)].

Proof of Theorem 1, assuming Lemma 1: Consider

p|t| · [N (Zp)diag(p, 1)N (Zp)] = p|t|

p−1
∑

i=0

[

p i
0 1

]

acting on H 1(X ,OX )N (Zp). Because the action of GL2(Qp) is

unitary, it has operator norm ≤ 1/p|t|, so the slope < |t | part
vanishes in H 1(X ,OX )N (Zp). If we write

Qt := H 0(X1(p
n)e ,ω

1+t)/H 0(X1(p
n),ω1+t),

then, combining the above with Lemma 1, we find that, for t �= 0,

Q
<|t|
t = 0. To obtain Theorem 1, we split Eq. 1 for k = 1 + t

into two short exact sequences,

0→H 0(X1(p
n),ω1+t)→H 0(X1(p

n)e ,ω
1+t)→Qt → 0 and

0→Qt →H 1
c (X1(p

n)w ,ω
1+t)→H 1(X1(p

n),ω1+t)→ 0.

Taking the slope < |t | part yields the isomorphisms—for the
first sequence this is immediate, since this functor is always left
exact, and, for the second sequence, right exactness follows from
compactness of the Up operator on overconvergent forms. �

Remark 1. As recalled in Remark 3 below, for t > 0, the em-
bedding of Lemma 1 arises from a highest weight vector in the
irreducible submodule of a Vermamodule with algebraic quotient.
The argument is then essentially the same as Emerton’s proof of
the classicality theorem for locally analytic Jacquet modules (ref. 7,
theorem 4.4.5).

It thus remains only to prove Lemma 1. This is essentially
immediate from the results of refs. 5 or 6, once the GL2(Qp)
actions are matched up. This matching is actually a bit subtle,
as there are multiple possible conventions for the Hodge–Tate
period map and the equivariant structure on the modular sheaf.
Any set of choices gives the sameGL2(Qp)-actionmodulo inverse
transpose and some determinants, so, often, the precise choices
are irrelevant. Here, however, we must follow a power of p
coming from the action of diag(p, 1), so it is crucial to screw
our heads on exactly right on this point. In the next section, we
fix normalizations, then prove Lemma 1.

2. Normalizations and Proof of Lemma 1

2.1. Choices. Wefix the action ofGL2(Qp) onX so that, over the

noncompactified infinite-level curve Y , GL2(Qp) = Aut(Q2
p)

acts by composition with the trivialization of the Tate module of
the universal elliptic curve; that is, we use the action on the homo-
logical normalization of the moduli problem. This differs by an
inverse transpose from the cohomological normalization, where
the action is on the trivialization of the first étale cohomology of
the universal elliptic curve.

We take the Hodge–Tate period map πHT :X → P1 so that
πHT|Y is the classifying map for the Hodge–Tate line inside of

the first étale cohomology of the universal elliptic curve. Thus,
over Y , we have a GL2(Qp)-equivariant commuting diagram,

Here e1 and e2 are the universal basis for the Tate module
Vp(E ) = Tp(E )[1/p], x and y are the standard basis for
H 0(P1,OP1(1)) so that homogeneous coordinates are [x : y ],
and E∨ denotes the dual of the universal elliptic curve. Of
course, there is a canonical isomorphism E∨ ∼= E inducing
ωE∨

∼= ωE ; however, this isomorphism does not respect the
natural GL2(Qp)-equivariant structures! Equivariantly,

ωE∨ = ωE ⊗ | det |−1,

where, here, | det | comes from the action of isogenies on
H 1(E , ΩE ). Note that this twist is actually on the entire
GL2(Af ) action (via (g�)� �→

∏

�
| det(g�)|

−1
�

), so that the
distinction between these equivariant structures also determines
the normalization of the prime-to-p Hecke operators. Below we
will continue, as in the introduction, to write simply ω for the
modular sheaf, with the understanding that we have adopted the
equivariant structure described above.

Under the natural map to X →X1(p
n), X1(p

n)e is the

image of π−1
HT([0 : 1]), and the action of GL2(Qp) on 〈x , y〉=

H 0(P1,OP1(1)) is by the standard representation
[

a b
c d

]

· x = ax + cy and

[

a b
c d

]

· y = bx + dy .

2.2. The Unaivep Operator. The operatorU naive
p at levelX1(p

n) of
refs. 1 and 2 is defined using the correspondenceC parameterizing
degree p isogenies ψ : (E1,P1)→ (E2,P2) (here we suppress
prime-to-p-level structure from the notation). Writing the two
obvious projections as p1, p2 : C →X1(p

n), U naive
p is defined

on ωk as tr ◦ p1! ◦ ψ
∗ ◦ p∗

2 . Given a geometric point (E ,P) that
is not a cusp and a nonzero differential η on E , we can compute
(U naive

p f )(E ,P , η) as follows: First, choose a basis (e1, e2) of
Tp(E ) such that e1 reduces to P mod pn . Then, for 0≤ i ≤
p − 1, write

ψi : E → Ei := E/〈ie1 + e2〉,

where ei denotes the image of ei in E [p]. Then ψ∗
i : ωEi

→ ωE

is invertible, and

(U naive
p f )(E ,P , η) =

p−1
∑

i=0

f (Ei ,ψi(P), (ψ∗
i )

−1η). [2]

We will now realize this same U naive
p as a double-coset op-

erator: Let B denote the upper triangular Borel in GL2. The
space of overconvergent modular forms of weight k at any finite
level Γ1(p

n) is naturally embedded as the B1(p
n) = Γ1(p

n) ∩
B(Qp) invariants in the B(Qp) representation

M
†
k := H 0([0 : 1], (πHT∗π

∗
HTO(k))sm),

where, here, the superscript sm denotes the subsheaf of
πHT∗π

∗
HTO(k) = πHT∗ω

k whose sections over a quasi-compact
open V are those with locally constant orbit map for the action
of the stabilizer of V in GL2(Qp) (i.e., sections fixed by some
compact open subgroup of GL2(Qp), i.e., sections coming from
finite level). For more on this construction, see ref. 5, section 3.1.

2 of 3 https://doi.org/10.1073/pnas.2208249119 pnas.org
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The spaceM †
k contains the space of classical modular forms

M cl
k = H 0(P1, (πHT∗π

∗
HTO(k))sm)

B(Qp) equivariantly by restriction. The action of

U := N (Zp)diag(p, 1)N (Zp) =

p−1
∑

i=0

[

p i
0 1

]

=:

p−1
∑

i=0

Ai

on M
†,N (Zp)
k is identified with U naive

p on M
†,B1(p

n)
k =

H 0(X1(p
n),ωk )—we explain this computation now. It suffices

to check at geometric points away from cusps, so we can compare
with the explicit formula of Eq. 2 for U naive

p . Now,

U (E , e1, e2, η) =

p−1
∑

i=0

(Ai · f ) (E , e1, e2, η)

=

p−1
∑

i=0

f (E , pe1, ie1 + e2, η),

and, by the commuting diagram

we see that f (E , pe1, ie1 + e2, η) is equal to f (Ei ,ψi(e1),
ψi(

1
p
(ie1 + e2)), ηi) for some ηi . One might guess that ηi is

(ψ∨
i )

∗η, but it is not! This would hold if we used the ωE -
equivariant structure, but, in the ωE∨ equivariant structure, we
must replace ψ∨

i with its dual ψi so that ηi = (ψ∗
i )

−1η. Thus we
recover the right-hand side of Eq. 2.

2.3. Proof of Lemma 1 and Concluding Remarks. Recall (ref. 1,
sentence preceding theorem 5.13) the normalized operator

Up :=

{

p−1U naive
p if k ≥ 1

p−kU naive
p if k ≤ 1

so U naive
p =

{

pUp if k ≥ 1

pkUp if k ≤ 1.

appearing in the statement of Lemma 1 (see also Remark 4).

Proof of Lemma 1. We first treat the case k = 1 + t ≥ 2. Then,

for any s ∈M
†
k , s/x

k is a section of OX defined on the preim-
age of a punctured neighborhood of [0 : 1] under πHT. It thus
determines a Cech cohomology class [s/x k ] in H 1(X ,OX ).
Then, ref. 5, theorem A implies that s �→ [s/x k ] induces an

injectionM †
k /M

cl
k ↪→H 1(X ,OX ); actually, in ref. 5, the results

are stated using cusp forms and compactly supported completed
cohomology, but, given the identification of H 1(X ,OX ) with
completed cohomology, one obtains the desired statement by the
same arguments. The map is B(Qp) equivariant if one twists the

action onM
†
k by

[

a b
0 c

]

�→ a−k

(the twist comes from the action on x k , of course!). We de-
duce that p−kU naive

p = p−k (pUp) = p−tUp is identified with

[N (Zp)diag(p, 1)N (Zp)], as desired.
We now treat the case k = 1 + t ≤ 0. In this case, ref. 5,

theorem A shows that s �→ [s/(xy t)] induces an embedding

M
†
k /M

cl
k ↪→H 1(X ,OX ). Actually, here one must be slightly

more careful invoking the arguments of ref. 5, which are stated
with cusp forms, in the case k = 0: Of course, M cl

k = 0 when

k < 0, but, when k = 0, we have thatM cl
0 is the locally constant

functions, whereas the cusp forms are still trivial. However, it is
elementary to see that M cl

0 is in the kernel (as s/(xy−1) = s/z
extends to a function on the complement of [0 : 1] where 1/z is
a local coordinate), and the argument of loco citato still establishes
an injection on the quotient by M cl

0 . The embedding is B(Qp)

equivariant if we twistM †
k by

[

a b
0 c

]

�→ a−1c−t ,

where, again, the twist comes from the action on xy t . We de-
duce that p−1U naive

p = p−1(pkUp) = ptUp is matched with

[N (Zp)diag(p, 1)N (Zp)], concluding the proof. �

Remark 2. Lemma 1 can also be deduced from ref. 6, theorem
1.0.1, and this has the advantage that it is stated already with com-
pleted cohomology instead of compactly supported completed
cohomology and cusp forms. We have used ref. 5 above because it
was easier to check carefully our own normalizations!

Remark 3.The vectors used for k ≤ 0 also exist for k ≥ 2, where
they induce an injection on all overconvergent modular forms.
The same argument then recovers the fact thatUp has nonnegative
slopes when k ≥ 2 (of course, it is much simpler to deduce this
from the action on q expansions!). Representation theoretically,
this vector comes from a highest weight Verma module, which,
when k ≥ 2, admits an algebraic quotient; the classical forms are
exactly those that factor through the algebraic quotient, and the
vector we used above for the k ≥ 2 case is the lower highest weight
vector generating the kernel.This perspective is explained in ref. 5.

Remark 4. The reason one is led to use different normalizations
depending on k ≤ 0 or k ≥ 2 is mostly explained by the form of
the Hodge–Tate sequence

LieE (1)→ Tp(E )⊗OY → ωE∨ .

Indeed, since we are using the double-coset operator for the
p-integral matrix diag(p, 1) acting on VpE , to obtain an op-
erator with nonnegative slopes, it is natural to use the equiv-

ariant structure from ωE∨ for k = 1 and from LieE = ω−1
E

for k =−1, and similarly for larger |k | by taking symmetric
powers ofTp(E ). The equivariant structures differ by an absolute
value of the determinant, which manifests here as different powers
of p for the double-coset operator coming from diag(p, 1).
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