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Abstract: Chord measures are newly discovered translation-invariant geometric measures of convex bodies
in R", in addition to Aleksandrov-Fenchel-Jessen’s area measures. They are constructed from chord inte-
grals of convex bodies and random lines. Prescribing the L, chord measures is called the L, chord
Minkowski problem in the L, Brunn-Minkowski theory, which includes the L, Minkowski problem as a
special case. This article solves the L, chord Minkowski problem when p > 1 and the symmetric case
of 0<p<1.
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1 Introduction

The classical Minkowski problem asks for the existence, uniqueness, and regularity of a convex body whose
surface area measure is equal to a pre-given spherical Borel measure. When the given measure has a
positive continuous density, the Minkowski problem is also known as the problem of prescribing the
Gauss curvature in differential geometry. For other important geometric measures of convex bodies, similar
Minkowski problems have been studied in convex geometry, differential geometry, and partial differential
equations. The study of Minkowski problems has motivated the study of fully nonlinear partial differential
equations, geometric curvature flows, and geometric inequalities.

The surface area measure of a convex body in Euclidean space is a Borel measure on the unit sphere,
which was introduced by Aleksandrov-Fenchel-Jessen in the 1930s. It is the differential of the volume
functional over convex bodies. Similar concepts for surface area and other quermassintegrals, called
area measures, were also introduced by them. Area measures are translation invariant. Another family of
geometric measures associated with quermassintegrals is the curvature measures of Federer. Area measures
and curvature measures are fundamental concepts in the classical Brunn-Minkowski theory.

In the 1970s, Lutwak introduced the dual Brunn-Minkowski theory [34]. The duality between projec-
tions and intersections of convex bodies and their connections with harmonic analysis were the focus in the
1990s. Significant breakthroughs were made, see, for example, [7,10,15,29,35,54], and the books of Gardner
[11] and Koldobsky [30]. However, what acts as the dual counterpart of the geometric measures in the
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Brunn-Minkowski theory was not clear until the work of Huang et al. [23] in 2016. Their discovery of dual
curvature measures gives dual concepts to Federer’s curvature measures. The dual Minkowski
problem posed by them has led to a number of articles in a short period of time, see, for example,
(6,13,14,25,26,31,45,57,58]. Dual curvature measures are differentials of the dual quermassintegrals.
Dual quermassintegrals are origin dependent and thus not translation invariant. Their translation invar-
iant analogues are chord integrals, which are basic geometric invariants in integral geometry [46,47,53].

Very recently, Lutwak et al. [38] constructed the geometric measures, which are the differentials of
chord integrals and then called chord measures. Chord measures are translation invariant-like area mea-
sures. Minkowski problems associated with chord measures were posed in [38]. These geometric problems
give new Monge-Ampere-type partial differential equations. The chord Minkowski problem includes the
classical Minkowski problem as a special case and an unsolved Christoffel-Minkowski problem as a critical
case, while the chord log-Minkowski problem includes the logarithmic Minkowski problem as an important
case. Thus, the new chord Minkowski problems greatly enrich the area of Minkowski problems. Xi et al. [38]
solved the chord Minkowski problem, except for the critical case of the Christoffel-Minkowski problem and
partially solved the symmetric case of the chord log-Minkowski problem. They also posed the more general
Ly, chord Minkowski problem, which includes the L, Minkowski problem as a special case. This article solves
the L, chord Minkowski problem when p > 1 and the symmetric case of O < p < 1. These results generalize
known results for the corresponding cases of the L, Minkowski problem.

Let K" be the collection of convex bodies (compact convex sets with nonempty interior) in R". For
K € K™, the chord integral I,(K) of K is defined as follows:

1K) = I K nepde, q=0,
;.({/)n
where |[K n ¢| denotes the length of the chord K n ¢, and the integration is with respect to the (appropriately

normalized) Haar measure on the affine Grassmannian .#" of lines in R". Chord integrals contain volume
V(K) and surface area S(K) as two important special cases:

n+1

LK) = V(K), IoK) = %S(K), LK) = V(K)?,

n
where w, is the volume enclosed by the unit sphere S"1.

It was shown in [38] that the differential of I,(K) defines a finite Borel measure Fy(K, -) on S
Precisely, for convex bodies K and L in R", we have

d

S L&) - j nWAEK,v), =0, 1)
t t=0" n-1

G-
where Fy(K, -) is called the gth chord measure of K and h;, is the support function of L. The cases of g = 0, 1
of this formula are classical, which are the variational formulas of surface area and volume. There are

Ry, ) = M= Dnig K, R, ) = SeaK, ),
nwy,
where S,,_»(K, ) is the (n — 2)th order area measure of K, and S,,_i(K, -) is the (n — 1)th order area measure
of K (i.e., the classical surface area measure of K).

The chord Minkowski problem states:

If uis a finite Borel measure on S™"1, what are the necessary and sufficient conditions for the existence of a
convex body K that solves the equation,

This is a new Minkowski problem except g = 0, 1. The case of g = 1 is the classical Minkowski problem

for surface area measure, and the case of g = 0 is the unsolved Christoffel-Minkowski problem for the
(n — 2)th area measure. When g > 0, the solution to the chord Minkowski problem was given in [38].
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The L, Minkowski problem was posed by Lutwak [36] in the early 1990s. He defined the fundamental concept
of L, surface area measure in the L, Brunn-Minkowski theory, which has led to fruitful studies in several areas,
including affine isoperimetric and Sobolev inequalities [8,19-22,39,41,55], affine surface areas and valuations
[27,32,33,44,50,51,56], and Minkowski problems [9,17,24,26,28,42]. The Minkowski problem of prescribing L,
surface area measures is the L, Minkowski problem. Many cases of the L, Minkowski problem have been solved.
However, critical cases of the problem and uniqueness for p < 1 remain open. In particular, the centro-affine
Minkowski problem [9] and the logarithmic Brunn-Minkowski conjecture [2] are highly interesting.

Denote by Kj the sub-collection of K" of convex bodies that contain the origin in their interiors, and by
¥t the sub-collection of K™ of convex bodies that are symmetric about the origin. The L, surface area
measure can be extended to a two-parameter family of geometric measures, called L, chord measures. The
(p,q)th chord measure, F, 4(K, -) of K € K7} is defined as follows:

de,q(K’ ) = hjl(_pdE}(I(’ ')’ JZES [R’ q > 0,

where hy is the support function of K and Fy(K, -) is the gth chord measure of K. When g = 1, F, 1(K, ) is the
L, surface area measure. When g = 0, F, o(K, -) is the L, (n — 2)th area measure. When p =1, F 4(K, -) is
just the gth chord measure Fy(K, -).

The L, chord Minkowski problem asks:

Let u be a finite Borel measure on S""1, p € R, and q > 0. What are the necessary and sufficient conditions
for the existence of a convex body K € K} that solves the equation:

Fpg(K, ) = ? (1.2)

When p = 1, it is the chord Minkowski problem, and the g = 1 case is the L, Minkowski problem.
When the given measure y has a density f that is an integrable nonnegative function on S"-!, equation
(1.2) becomes a new Monge-Ampére-type partial differential equation:
hp-1f
Vy-1([h], VB)’

n-1
s

det(Vijh + h6ij) =
where h is the unknown function on S"!, which is extended via homogeneity to R", while Vh is the
Euclidean gradient of h in R", the spherical Hessian of h with respect to an orthonormal frame on S"! is
(Vjh), 6; is the Kronecker delta, and Vq_l([h], Vh) is the (¢ - 1)th dual quermassintegral of the Wulff-shape
[h] of h with respect to the point Vh (see next section for the precise definition).
We first solve the symmetric case of the L, chord Minkowski problem when p, g > 0.

Theorem 1.1. Let p, q > 0. If j is an even finite Borel measure on S"! that is not concentrated on a great
subsphere, then there exists a symmetric, convex body K € K} such that

Fq K, )=u, whenp+n+q-1,

Fp,q(K, ) _

s henp =n -1.
V) H W p +4q

When g = 1, this result is a solution to the symmetric L, Minkowski problem, see [18,36,42]. When
p > 1, the symmetric condition can be dropped. We have the following solution:

Theorem 1.2. Let p > 1 and q > 0. If u is a finite Borel measure on S"~! that is not concentrated in any closed
hemisphere, then there exists a convex body K with nonnegative support function hx > 0 so that

dF,(K, )=hf 'du, whenp+n+q-1,

dr(K, )

T hf'dy, whenp=n+gq-1.

Moreover, hy > 0 if u is discrete or if p > n.

Again, when g = 1, this result is a solution to the L, Minkowski problem, see [9,28].
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2 Preliminaries

2.1 Wulff shape

Let Q ¢ S™ ! be a closed subset that is not contained in any hemisphere. For h € C(Q), the Wulff-shape [h] is
a compact convex set defined by

[h] ={x e R": x-v < h(v), VveQl

Clearly, hyy(v) < h(v). A useful fact is that, when [h] € K", the support of S,_1([h], -) must be contained in Q.
In particular, letvy,..., vy (N > n + 1) be unit vectors that are not contained in any closed hemisphere,
and let Q = {v;, ...,w}. For z = (z, ...,zy) € RN, we write

[z] = P(2) = EV]{XE[R":XW/I'SZI}.
k=1

Define P(vy, ...,vy) by
P, ...,ww) ={P(z) : z € RY such that P(z) € K™.

Denote R, = (0, co). Clearly, if z € RY, then P(z) € k™.

2.2 Chord integrals and chord measures

Let K € K™ For z € intK and g € R, the gth dual quermassintegral 17,}(K , z) of K with respect to z is

= 1
Tk, 2) = = | i
Sn—l

where py (1) = max{A > 0 : z + Au € K} is the radial function of K with respect to z. When z € 0K, 17,1(K ,Z)
is defined in the way that the integral is only over those u € S"! such that py ,(u) > 0. In another word,

VK, z) = 1 j px ,(WIdu, whenever z ¢ dK.
n :

Pk, W)>0

In this case, for " !-almost all z € 3K, we have

T, 2) = o [ etz wedu,
2n .
sm

where the parallel X-ray of K is the nonnegative function on R" x S~ defined by
Xkz,u)=|Kn(z+Ru), zeR", ueSL

When restricting to g > 0, the dual quermassintegral is the Riesz potential of the characteristic function,
that is,

VK, z) = gJ‘lx - z |7 ndx.
n
K

Note that this immediately allows an extension of Z(K , -) to R™. See [38] for an equivalent definition via
radial function. By a change-of-variable, we have

Tk, 2) = 4 j ly [7-ndy,
K-z
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and since, for g > 0, the integrand |y |9 " is locally integrable, we immediately conclude that in this case, the
dual quermassintegral 17,}(1( , z) is continuous in z.
Let K € K. The X-ray Xg(x, u) and the radial function py ,(u) have the following relation:

Xk(x, u) = pg (W) + pg ,(-u), when Kn(x+Ru)=Kn(z+Ru)+J. 2.1)
When z € 0K, then either py ,(u) = 0 or py ,(-u) = O for almost all u € S*, and thus
XK(Z’ u) = pK,z(u)a or XK(Zy Ll) = pK,z(_u)’ S BK,

for almost all u € S"1. Then, the chord integral I,(K) can be represented as follows:

1
nwy,

L&) = I IXK(X, widxdu, g > 0.

Sn—l uJ.
An elementary property of the functional I, is its homogeneity. If K € K™ and g > O, then
I,(tK) = t* 91 (K),
for t > 0. By compactness of K, it is simple to see that the chord integral I,(K) is finite whenever g > 0.
Let K € K™ and g > 0. The chord measure Fy(K, -) is a finite Borel measure on S"™! given by
F(K,n) = 2 I V,.1(K, z)dH"""(z),  for each Borel n c S"-,
Wn
vg' ()

where vg : 0K — S"1 is the Gauss map that takes boundary points of K to their corresponding outer unit
normals. Note that by convexity of K, its Gauss map vk is almost everywhere defined on 0K with respect to
the (n — 1)-dimensional Hausdorff measure. The significance of the chord measure F,(K, -) is that it comes
from differentiating, in a certain sense, the chord integral I;, see (1.1). It is simple to see that the chord
measure Fy(K, -) is absolutely continuous with respect to the surface area measure S,,_1(K, -). In particular,
foreach P € P(w, ...,vy), we have that the chord measure F;(P, -) is supported entirely on {vi, ...,vy}. It was
shown in [38, Theorem 4.3] that

I,(K) = ﬁq_l J hg(V)dF(K, v). (2.2)
snfl

When g > 0, a useful integral formula demonstrated in [38, Lemma 5.3] is

znqu,lac 2)gi(2)dH () = j jXK(z, W g(Vg(2))dH " (2)du,
K STaK

for any g € C(S™1). Therefore, for each K € K", we have

f gWAF,K, v)= 2 j IXK(Z» W g (v(2))dH " (z)du
Sn—l

nw, J.
$11 3K s
B nZ)n J. .[ Xi(py (w)w, w)a~ hy (e (w)) "y (w)"g (ax (W) dwdu.

Sn—l Sn—l

Here, ax(w) = vg(wpy(w)) is the radial Gauss map, and we have used the short-hand py = py ,-
For each p € R and K € K7, the L, chord measure F, 4(K, -) is defined as follows:

dF, (K, v) = hg@)'PAE/(K, v).

It was shown in [38] that the differential of the chord integral I, with respect to the L, Minkowski combina-
tions leads to the L, chord measure: for p # 0,
d

1
G| W= j hP()dF,,o(K, V),

Sn—l
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where K +, t - L is the L, Minkowski combination between K and L defined via Wulff shape as follows:
K+pt-L= [(h,f + thg’)%].

It is worth pointing out that there is a similar formula for the p = 0 case, which leads to the cone-chord
measure studied in [38]. Since the cone-chord measure and its Minkowski problem are not considered in the
current work, we omit this formulation.

2.3 Weak continuity of L, chord measures

We prove in this subsection the weak continuity of the L, chord measure F, 4(K, -) in K with respect to the
Hausdorff metric.

For each x € R"and u € S"!, we will write x|u* as the image point of the orthogonal projection of x onto
ut. Similarly, for each subset E ¢ R", we write

Elut = {x|u* : x € E}.

We will need the following lemma obtained in [23].

Lemma 2.1. [23, Lemma 2.2] Let K; € K be such that K; — K € K7 in the Hausdorff metric asi — oo. Then,
for H™ 1-q.e. w € S™1,

ag(w) — ag(w), asi— oo.
A generalized dominated convergence theorem will be needed to establish the weak continuity of chord

measures: Suppose fi, ¢, f, and ¢ are integrable functions in a measure space with fy — f and ¢, — ¢,

while [fi| < ¢, almost everywhere. If Iqbk - _[¢, then Ifk — If .
We first show that chord measures are weakly continuous.

Theorem 2.2. Let g > 0 and K; € K". If K; — K € K", then the chord measure Fy(K;, -) converges to Fy(K, -)
weakly.

Proof. Since the chord measure is translation invariant, we can assume without loss of generality that
K;, K € K7. Then, by (2.3), for any g € C(S*1),

.[ g(W)AF(K;, v) = % J. j Xk, (pKi(w)w, u)q‘lhKi (aKi(W))‘1pKi(w)"g(aK,.(w))dwdu.
Sn—l n Sn—l Sn—l

Let
fiw, u) = Xy, (o (whw, u)9 g, (axw)) oy, (w)"g (axw))
and
fw, u) = Xe(pg W)w, w)a-hg(ax(w)) o (W)"g (ax(w)).

On the one hand, since K; — K € K}, we have p (W) — pg(w). This and Lemma 2.1 further show that
hg(ax(w)) — hx(ax(w)) a.e. w € S*~1. Moreover, g € C(S*!) and Lemma 2.1 imply g(ag(w)) — glag(w))
a.e.w € S"1. Note that oK is line-free in direction u for almost all u € S"-1. For such a u, the projection point
(ox(W)w)|ut belongs to int(K|ut) (relative interior) for almost all w € S*~1. Then,

XK,-(p1<i(W)W, u) - Xg(py(Ww, u), a.e. we S"L

Overall, we have
fiw,u) - f(w,u), asi— oo,
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for H™ 1 x H" la.e. (w,u) € S*1x S"1,
On the other hand, since g € C(S"!) and K; — K € K, there exists a constant ¢ > 0, such that

8V < chg(v)? forall i e N,v e S"L

Let
b w, u) = X, (p WIw, u)7-1py (W)
and
d(w, u) = cXx(pr (WHw, w)i-1p (w)".
Then,

il <¢; and |[f] <.
By (2.2), we have

¢,(w, wydwdu = cn(n + g - Dwn I,

Sn—l sn—l

(K

and

cn(n + q -

d(w, wydwdu = Don; ).

Sn—l Sn—l

By the fact that I,(K;) — I,(K), applying the generalized dominated convergence theorem, we obtain

lim J I F(w, uydwdu = f J Fow, wydwdu,

i—00
Sn—l Sn—l sn—l Sn—l

which completes the proof. O
As a corollary, one immediately obtains the following weak continuity property for L, chord measures.

Corollary 2.3. Let ¢ > 0 and K; e K™". If K; — K € K",

(1) when p < 1, with the additional assumption that o € K; N K, then F, 4(K;, -) converges to Fy, 4(K, -) weakly;

(2) when p > 1, with the additional assumption that o € int(K;) n int(K), then F, ,(K;, -) converges to
F, 4K, -) weakly.

Proof. Note that
de,q(Kiy ) = hll(:pdE](Kn ')'

In the case p < 1, note that since both hg, and hx are nonnegative, we obtain from the uniform con-
vergence of hy, to hg the fact that h ,1(1,’” converges to hy ? uniformly. In the case p > 1, with the additional

assumption that both K; and K contain the origin in their respective interiors, along with the fact that
K; — K, we conclude that hg, and hg are uniformly bounded away from 0. As a consequence, we also have

the uniform convergence of hg * to hy®.
The desired weak convergence now readily follows from Theorem 2.2. O

3 Variation problems for chord measures

3.1 Variation formula

The following variational formula was shown in [38].
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Theorem 3.1. [38, Theorem 5.5] Let g > 0, and Q be a compact subset of S"™™! that is not contained in any
closed hemisphere. Suppose that g : Q — R is continuous and h; : Q — (0, 00) is a family of continuous
functions given as follows:

he = ho + tg + o(t, -),

foreacht € (-6, 6) for somed > 0. Here, o(t, -) € C(Q) and o(t, -)/t tends to O uniformly onQ ast — 0. Let K;
be the Wulff shape generated by h; and K be the Wulff shape generated by hy. Then,

4d
dt

LK) = Ig(v)dF,l(K, V). (3.1)
t=0 5
Remark 3.2. Note that the aforementioned theorem is slightly different from Theorem 5.5 in [38]. Indeed,
the domain of g in Theorem 5.5 in [38] is S"! and is changed to Q here. Despite the change, the proof,
however, works for any Q without any essential changes once we realize the fact that, for h : Q — (0, c0)
and for almost all x € d[h], we have vj,(x) € Q. For completeness, we include a detailed proof in the
Appendix.

Note that the special case of g = 1 of the variational formula (3.1) is the volume variational formula of
Aleksandrov. Taking Q to be a finite set, we immediately obtain the following corollary for the discrete case.

Corollary 3.3. Let p,q > 0,z = (z1, ...,zy) € [R’f, B=@B, ....By) € RN, and vy, ..., vy be N unit vectors that
are not contained in any closed hemisphere. For sufficiently small |t|, consider z;(t)? = zP + tf; > 0 and

N
P=[zt)]=NfxeR": x-vi<z(t) = (27 + tﬁi)%}.
i=1
Then, for q > 0, we have

N
ZBin,q(PO’ Vi), (3.2

d 1
— I (P) = =
dt t=0 e pi:l

Here, in proving (3.2), we used the fact that F,(P, -) is supported entirely on {vi, ...,vy}.

3.2 Maximization problems

The goal of this subsection is to convert the existence of the solution to the L, chord Minkowski problem to
the existence of the solution to maximization problem.

For each Q ¢ S™1, we will write C(Q) for the set of continuous functions on Q. The set C*(Q) ¢ C(Q) will
denote the subset consisting only of positive functions. Similarly, the set C;(Q) consists only of positive,
symmetric continuous functions on Q. We will write supp u for the support of a measure .

Let p, g # 0 and Q ¢ S""! be a compact subset that is not contained in any closed hemisphere. For each
non-zero finite Borel measure y on S"-1, define the functional @, ; : C*(Q) — R" by

@, ,(h) = ﬁq_lloglq([h]) _ %logjh(v)pdy(v).
Q

Theorem 3.4. Let p > 1, q > 0, and pu be a nonzero finite Borel measure on S"~! that is not concentrated in any
closed hemisphere. Suppose Q ¢ S*!is a compact subset such that supp u c Q. If the maximization problem

sup{®p 4(h) : h € C*(Q)}

has a solution hy € C*(Q), then there exists Ky € K such that
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FoqKo, )=, ifp#tn+q-1,
Fp q(KO’ ) .
——~=u, ifp=n+q-1.

V(Ko)
Proof. Let g € C(Q). Define h; = hy + tg. For sufficiently small |¢|, the family h; € C*(Q). Using the fact that
hg is a maximizer and Theorem 3.1, we have

1 d

=n+q—1dt

1d
o (IOqu([ht])) - ;E

t

log Iht(V)pdu(V)
-0 5

_ 1 _ -1
= e DD _([g(V)dl"?;([ho],V) ig(v)hg’ (V)du(v) / !hé’du-

Since g € C(Q) is arbitrary and using the fact that ho = hyp,), F;([ho], -)-almost everywhere, we have

Fp,q([hO]’ ) _ (Yl +q - 1)
Iy([hol) jﬁhg’dy

u(-) on Q. (3.3)

Note that the measure F, 4(K, -) is homogeneous of degreen + g — p — 1in K. Therefore, we may rescale [ho]
and obtain Ky € K7 such that

F, (Ko, -)=pu on Q

ifptn+q-1,and

if p = n + g - 1. Noting that both u and F, 4,(Ko, -) are concentrated on Q, we reach the desired conclu-
sion. O

Remark 3.5. In fact, it is clear from the proof that the convex body K, obtained in Theorem 3.4 is a rescaling
of [hg], that is Ko = c[ho], where

J‘Qh(l,”dy iyl
(n + g - DI([ho])

bl

ifptn+g-1LIfp=n+q-1,

Ko [ rgan Y
(n+ 4 - Dlg(ThoD

Taking Q = {v,, ...,vy}, where the v; € S"~! are not contained entirely in any closed hemisphere, from
the fact that @, ; is homogeneous of degree 0, we immediately obtain the following discrete version of the
maximization problem.

Theorem 3.6. Let p > 1, q > 0, and
N
M=) aiby
i=1

be a finite discrete measure on S"1, where a; > 0 and v; € S™\. Suppose vy, ..., vy are not contained entirely in
any closed hemisphere. If the maximization problem
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N
sup{Iq(P(z)) : Za,-zip <l,z=(z, ...,zy) € [Ri\’} (3.4)

i=1
has a solution z° € RY, then there exists a polytope P, containing the origin in its interior such that
Fp,q(POa ')=11, ifp:'én-"q_l’

Fp,q(PO) )

=u, ifp=n+gqg-1
V(Po)

Using virtually the same argument, we may obtain the symmetric version of Theorem 3.4.

Theorem 3.7. Let p, q > 0 and u be a nonzero even finite Borel measure on S™~! that is not concentrated in any
closed hemisphere. If the maximization problem

sup{®, 4(h) : h € C;(S™1)} (3.5)
has a solution hy € CS(S*1), then there exists Ko € K" such that
FpqKo, )=, ifp#n+q-1,

Fp,q(KOy )

—u, ifp-= -1
V(Ke) M, ifp=n+gq

4 The even L, chord Minkowski problem when p, g > 0

In this section, we solve the even L, chord Minkowski problem when p, g > 0.
We will use B to denote the centered unit ball in R" and we will write (-), : R — [0, co) for the function
given as

t, ift>o0,
(t)+ = {

0, otherwise,
for each t € R.

Lemma 4.1. Let p > 0 and u be a finite Borel measure that is not concentrated in any closed hemisphere. If
K ¢ K} and

| mwrane <1,
Sn—l
then there exists a positive constant c,(u) depending only on p and p, such that

K C Cp(}'l)B’
In particular,

)P = L,Tsi{!l '[ (u - v)Pdu(v) > 0. (4.1)
Sn—l

Proof. Since y is not concentrated in any closed hemisphere, the function

U I (u - v)Pdu(v)
Snfl
is strictly positive on S"! and continuous. By the compactness of "1, the constant c,(u)? defined in (4.1) is
positive.
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Denote Ry = max{|x| : x € K}. Then, there existsug € S"! such that Roug € K. Note thato € K. Thus, we
obtain

RE-G? < [ Rouo-v2du) < [ hewrdu) <1,
Sn—l Sn—l

and hence Ry < ¢,(u), which implies what we wanted by the choice of Ry. O
The following theorem is Theorem 1.1.

Theorem 4.2. Let p, q > 0. If u is an even finite Borel measure on S"! that is not concentrated on a great
subsphere, then there exists a symmetric, convex body K € K7 such that

F oK, )=p, whenp+n+gq-1, (4.2)
F, (K, -
7”";2() ) =u, whenp=n+gq-1. (4.3)

Proof. Let h; be a sequence of functions in C;(S"!) such that
D, (hy) — sup{®@y 4(h) : h € C7(S" 1)}
Denote K; = [h;]. Since @, 4(-) is 0-homogeneous, we may assume that
I hPdy = 1.
Sn—l

It follows from Lemma 4.1 and the fact hg, < h; that K; are uniformly bounded. By Blaschke’s selection
theorem, there exists a subsequence, which will still be denoted as K; (since there is no confusion), such
that

K; — Ko,

where Kj is origin-symmetric, convex, and compact.
If int K, is empty, then I,(K;) — 0, and hence @, ,(h;) — —oo, which contradicts the fact that h; is a

maximizing sequence. Thus, K, € K7, and as a result, hg = hg, € C;(S"!). Moreover,

1 1
Dp.q(ho) = ————1ogIy([ho]) - —log f ho(v)Pdu(v)
n+q-1 p
Sn—l

= lim | ————log (1) - ~-log [ hi()?du(v)
+ q - 1 p Snfl

i-oco| N

i-oo| N

> lim | —— logI,([]) - log J' hi(v)Pdu(v)
tq-1 p
S)’l*l
= lim @, ,(h).

Therefore, h is @ maximizer for the maximization problem (3.5). By Theorem 3.7, we obtain (4.2) and (4.3). O

5 The discrete L, chord Minkowski problem when p >1andg > 0

In this section, we solve the discrete L, chord Minkowski problem when p > 1 and g > 0 without the
assumption that the given measure y is even.
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The following lemma shows the non-degeneracy of the maximizer to the maximization problem (3.4).

Lemma 5.1. Let p > 1,q > 0, and
N
H= Y aiby,
i=1

be a finite discrete measure on S*1, where a; > 0 and v; € S"". Suppose v, ..., vy are not contained entirely in
any closed hemisphere. If z° = (z?, ... z§) € R is such that z? > 0 and satisfies

N
Zai(zio)p <1
i=1

and

N
1,(P(z%) = sup{Iq(P(z)) : Zaizl-” <lL,z=(z,..,2y) € [Rﬁ’} (5.1)

i=1

then z° € RY,

Proof. We argue by contradiction and assume that at least one z° = 0. We write Py = P(z°). Therefore,
0 € OP,. For simplicity, we write h; = hp,(v;) > 0. Let

J={i:h =0}

Since o € dP,, we have that J is non-empty. It is also simple to see that J # {1, ...,N}. Indeed, if that is not
the case, then P, = {0}, which implies that Iq(P(zo)) = 0 and this is a contradiction to (5.1). (Clearly, there is
some z € RY in the domain of the maximization problem (5.1) and I,(P(2)) > 0.) By the same argument, P,
must have a nonempty interior.

For each t > 0, let

ts, ifie],
zi(t) = I
(hf - at)r, ifig¢],

Sl

where

Clearly, for sufficiently small t > 0, we have z(t) = (z(t), ...,zv(t)) € RY. Note that

N N N

Yazit)P = Y ait + Y a(hf — at) = Y ahf = Y ahp < Y a(z0)P < 1.

i=1 ie] i i¢] i=1 i-1
For simplicity, write P, = P(z(t)). Note that according to Corollary 3.3, the functional I,(F) is differentiable
in t for sufficiently small ¢ > 0. Note also that I,(P;) is continuous at t = 0. Therefore, by the mean value
theorem and the fact that p > 1,

I,(P) - I,(Po) d
L T oy — L(P,
p ( ; P L, (P)
=Y hp, (W' PEy(Py, v;) — Y ahp,(W)' PEy(Py, v;)
ieJ i¢]
> Yt Fy(Po, vi) — Y ahp,(v)' PE(Po, Vi)
ieJ i¢]

for some 6 € (0, t) that depends on ¢.
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Since o € 9P, there must exist iy € J such that P, has a facet (with positive H"~-area) with v;, as its
normal. Therefore, by the definition of F;, we have F;(P,, {v;,}) > 0. By Theorem 2.2, when ¢ > 0 is suffi-
ciently small, we have

Ey(Po, viy) 2 %F‘I(PO, vi,) > 0.

By the fact that P, — P, and the choice of J, we know that for ¢ > 0 sufficiently small, there exists ¢, > 0 such
that hp,(v;) > ¢, for each i ¢ J. Combining these facts together with (2.2), we have

- (Iq(Pt) - Iq(PO)) 1-p1

. >t EE](PO’ Vi) — acg” Y hp,(WE;(Po, v)

i¢]

N
1-p1 _
> tTPE q(Po, Vio) - aCop ZhPe(vz)E](Pﬁa vl)
i=1
= tl;p%Fq(Po, Vio) —acyP(n + q — DI, (Pp)
>0,

when ¢ > 0 is sufficiently small. This implies the existence of ¢, > 0 such that I,(Py) > I,(P), or, equiva-
lently, I,(z(ty)) > Iq(P(zo)). This is in contradiction to (5.1). O

With the above lemma, we obtain the following solution to the discrete L, chord Minkowski problem
when p > 1,q > 0.

Theorem 5.2. Let p > 1, q > 0, and u be a discrete measure on S™! that is not concentrated in any closed
hemisphere. Then, there is a polytope P € K such that

FqP,)=n, whenp+n+gq-1,

Fp q(P’ )
—= "=y, whenp=n+gq-1.
V(P) H p q

Proof. Suppose
N
M=) aibuy,
i=1

where vy, ..., vy are N unit vectors not contained in any closed hemisphere, and aj, ..., ay > O.
Let z(k) = (z(k), ..., zy(k)) € RY be a maximizing sequence to (3.4), that is,

N
Zaizi(k)lf’ <1 (5.2)

i=1

and

N
I,(P(z(k))) — sup{Iq(P(z)) : Za,-zip <lLz=(z, ...,zp) € [Riv}
i=1

By (5.2) and the fact that a; > 0, it is clear that z;(k) are uniformly bounded in k and i. Therefore, we may
pick a subsequence, which we still denote by z(k) such that z(k) — z° € RN, Since zi(k) > 0, we have
zio > 0. Moreover, we have

N N
Y ai(z”)P = lim Y azi(k)P < 1
i-1 k=oois

and
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i=1

N
I(P(z%) = I}Lrilolq(P(z(lc))) = sup {Iq(P(z)) : Zaizip <lLz=(z, ...,zn) € [Ri\’}

Therefore, by Lemma 5.1, we conclude that z° ¢ [R’f . In fact, since z° maximizes (3.4), by the monotonicity
of I,, it must be the case that

N
Y az)P = 1.

i=1

Therefore, z° is a maximizer to the maximization problem (3.4). Now, we may use Theorem 3.6 to find the
desired polytope P € K75. O

A normalized version of Theorem 5.2 together with a boundness estimate will be useful in the next
section.

Corollary 5.3. Let p, q, and u be the same as in Theorem 5.2. Then, there is a polytope P, such that

Fp,q(PO’ )
—— = u(), 5.3
1) u() (5.3)
and P, satisfies
Phbc(n+q- 1)%61,(}1)3, (5.4)

where ¢,() is given in Lemma 4.1.

Proof. Following the proof of Theorem 5.2, we may find a maximizer z to the maximization problem (3.4),
and z satisfies

N
Zaizip =1.
i=1
From (3.3) in the proof of Theorem 3.4, we have that Py = (n + g — 1)r-[z] satisfies (5.3). The desired bound
(5.4) for P, follows immediately from Lemma 4.1. O

6 The L, chord Minkowski problem for general measures when
p>1landg>0

This section is focused on solving the existence of a solution to the L, chord Minkowski problem when
p > 1,q > 0, and the given measure y is not necessarily discrete or even.

Lemma 6.1. Let p > 1 and (i4;);en be a sequence of nonzero finite Borel measures that converges weakly to a
nonzero finite Borel measure u. Suppose u is not concentrated entirely in any closed hemisphere. Then, for
sufficiently large i, we have

(M) < 2¢p(p).
Here, c,() is defined by (4.1) in Lemma 4.1.

Proof. Define

fu@) = I (u - v)Pduv).

snfl
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Since y; — p weakly,
fui,w) - fu(w), Vue S

Since f;,/ P and f;/ P are support functions, point-wise convergence implies uniform convergence. Note that
fuis always positive following the fact that y is not concentrated in any closed hemisphere. Therefore, when
i is sufficiently large,

6(4) = (min £, ) VP < 2(min £,(0) P = 26,0. O

Theorem 6.2. Let p > 1 and q > 0. If u is a finite Borel measure on S™! that is not concentrated in any closed
hemisphere, then there exists a convex body K with nonnegative support function hx > 0 so that

dE,(K, )=hf'du, whenp+n+gq-1,
dF(K, ) _
%:hf(’ldy, whenp=n+gq-1.

Proof. Choose a sequence of discrete measure (y,)ieny such that y; converges to u weakly. Since y is not
concentrated in any closed hemisphere, we may choose p; so that y; is not concentrated in any closed
hemisphere either.

By Corollary 5.3, for each i, there is a polytope P; ¢ K7 such that

L(PYRp(V)P-dp(v) = dFy(P, v)
and
Pcn+gq- 1)%cp(yi)B.

By Lemma 6.1, (P,);cy is uniformly bounded. Thus, there is a subsequence of (P;) converging to a compact,
convex set K, that contains the origin (not necessarily as an interior point). We claim that K, has nonempty
interior. If this is not the case, then I(P)) — 0. This is in contradiction to P, being (rescaled versions of) the
maximizer to (5.1) (with u replaced by y;) and the fact that y; converges to p weakly.

By Theorem 2.2, the uniform convergence of support functions, and the continuity of the chord integral,
we have

LK)k, ()P 1du(v) = dE (Ko, V).

By the homogeneities of F;(K, -), I,(K), V(K), and hgx in K, we may rescale K, and obtain K € K™ with
nonnegative support function such that

dE,(K, -) = hf"'dp
if p+n+q-1,and

dE](K’ )

=h¢ld
V(K) g Of
ifp=n+q-1. O

When p > n, we may further show that the solution obtained in Theorem 6.2 contains the origin as an
interior point. We require the following lemma.

Lemma 6.3. Let g > -1. If K; € K" converges to K € K" as i — oo, then there exists a positive constant
c(n, q, K) such that for H" 1-almost all z € dK; and every i,

VK, z) = c(n, g, K) > 0.
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Proof. Recall that by convexity, for 7" !-almost all z € 9K;, there is a unique tangent plane to K; at z. As a
consequence, the set

_ _ w
H({u e S py () > 0}) = 7
for H " 1-almost all z € 9K;.

If g =0, based on the earlier observation, there is nothing to prove as V;(K,',z) is a constant

H "-1-almost everywhere.
If -1 < g < 0, then for " '-almost all z € 9K;,

Tk, 2) = L IpK.z(u)Qdu > “npgya > o,
nJ- 2n
S

where D(K;) denotes the diameter of K;. Since K; — K, one has D(K;) — D(K), and one can easily obtain the
positive constant c(n, g, K) in this case.

Let us now deal with the g > 0 case. Recall that in this case Vq(K , Z) is continuous in z. Moreover, if L is
a convex body contained in K,

VL, z) < Vi(K, 2).
Since K; — K € K™, there exist two balls B; and B, (not necessarily centered at the origin) such that
BicKicB,, VieN,
Note that
V,(Ki, z) = Vy(By, z), Vz e 3K
Since 0K; ¢ B,, we have

V(K;, z) = min V,(B,, z) > 0. O
zeB,

The following lemma is extracted from Section 4 of [28].

Lemma 6.4. [28] Let p > n. Suppose P, € K7 are polytopes, and P, —» K € K™ as i — oo. If there exists a
constant ¢ > 0 independent of i such that

| mirwass) < c,
Sn—l

then K contains the origin in its interior.

Theorem 6.5. If we further assume p > n, the convex body K obtained in Theorem 6.2 must be in K§. In
particular, we have

FqoK,)=u, whenp+n+gq-1, (6.1)

Fq.K, )

2T~ =y, whenp=n+q-1 6.2
T p=n+q (6.2)

Proof. Let P, be the convergent subsequence with limit K, that was obtained in the proof of Theorem 6.2.
By the definition of L, chord measure,

F, (P, 1) = 24 j T (P 2)(z - vi@) PAH ™ (2).
Wn
oP;
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By Lemma 6.3, there exists a positive uniform lower bound c(n, q - 1, Ky) of !7,1_1(Pi, z). Thus,

Wn

hiP(v)dSp(v) < ———*——F, ,(B, S"™).
J e T R S
s"
Since
Fy 4B -
M =y = M weakly,
Iy(P)

and I,(P) — I,(Ko) > 0, we infer that
| mirass)
Snfl

has a uniform upper bound. It follows from Lemma 6.4 that K, € K§. Now (6.1) and (6.2) follow from this
and Theorem 6.2. O

Theorem 1.2 follows from Theorems 5.2, 6.2, and 6.5.
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Appendix

The aim of this appendix is to give detailed proof of Theorem 3.1, which is a general version of Theorem 5.5
in [38]. Its proof is actually based on a careful examination of the approach in [38].

Let Q ¢ S™ ! be a compact set that is not contained in any closed hemisphere, g € C(Q), and 6 > 0. Let
h; : Q — (0, 00) be a family of continuous functions defined by

h(v) = ho(v) + tg(v) + o(t, v), te(-6,6) and v e Q,
where o(t, -) € C(Q), and o(t, -)/t — O uniformly on Q, as t — 0. Recall that the Wulff-shape [h;] of h; is
[h]] ={x e R": x-v < h(v) forall veQl (A1)
We require that [hy] has a nonempty interior throughout this section and as a consequence, the set [h;] also

has nonempty interior for sufficiently small |¢|.
The following differential formula was established in [23], for almost all u € S"*1,

dpp, (W _8 (Virg(»)) (A2)

dt |, U Vi)

where y = p, ,(u)u. We remark that even though g is only defined on Q, the right side of (A2) makes sense
for almost all u € S"1. This is because the normal vector v (x) € Q for H " 1-almost all x € d[ho].

The following is the differential formula for the extended radial function, which is a slight extension of
(A2). For a point z € R", we denote h; , to be the translation of h;,

he ,(v) = he(v) = z - v.

Lemma A.1. Let K; = [h;] be the Wulff shape defined by (A1) and K = K. If z is an interior point of K, then for
almost all u € S™1,

dpg, (W) 8(vk(z + py ,(Wu))
Kz 77 = . (A3)
dt o U vk(z + py (W)
Proof. Since
Pk, . W) = pg,_, (W),
we obtain
Ki—-z={x-z:xeR" and x-v<h(v), forall veQ}
={yeR":y-v<ho(v) -z -v+tg(v) +o(t,v), forallveQ}
= [ht,z]-
Thus,
det’Z(u) 3 dph[‘z(u)
dt o dt o
Since z is an interior point of [ho], the body [h ;] = K — z contains the origin in its interior. By (A2),
4o, W | g ()
de o U vk(y) ’
where y = z + p ,(Wu € oK. The desired formula (A3) follows. O

By using (A3), we now derive the differential formula for the X-ray function.
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Lemma A.2. Let K; = [h;] be the Wulff shape defined by (A1) and K = Ky. Ifu € S""\, then for almost all x in the
interior of K|u*,

dX,(x, u) _ 8wk(y) _ gvk(y?)) (A%)
dt o U-vk(y)  u-v(y?)
where y and y~ are the upper and lower points of 0K n (x + Ru).
Proof. Since x is an interior point of K|u*, we can pick an interior point z in K so that
Kn(x+Ru)=Kn (z+Ru).
By (2.1) and (A3), we have
dXOow | e | Ao W g(i(y)  gk(y) O
dt o dt 0 dt o Wovk(y)  u-ve(y?)

The following two lemmas from [38] are required.

Lemma A.3. [38, Lemma 5.3] Suppose K € K", q > -1, and g is a continuous function on S"~1. Then,

2n j T,(K, 2)g(vk(2))dH " 1(z) = j IXK(Z, WIg(ve(2))dH " Y(z)du.
oK

s oK
Lemma A.4. [38, Lemma 4.8] If K € K, then for allq > 0,

_ 2q . -1 n-1
R g aL,[(Z V(2P (W 1dudH - (z)

I B PN
S (n+q- Dy a{ (z - k(@) Vg-1(K, 2)dAH " Y(2).

A generalized dominated convergence theorem will be needed to establish the lemma to follow:
Suppose fi, ¢, f, and ¢ are integrable functions in a measure space with fiy — f and ¢, — ¢, while
Ifkl < ¢, almost everywhere. If j(;bk - f(;b, then .[fk - If . The following lemma is the crucial technical
lemma needed in order to establish the differential formula for chord integrals.

Lemma A.5. Suppose q > 0. Let K; = [h;] be the Wulff shape defined by (A1) and K = K. Then, there is a class
of nonnegative integrable functions ¢,(x, u) defined for u € S"~! and x € u* such that

1
‘ L0800, 0 = X, 10| < 0, (45)
Moreover, the limit function lim;_,$,(x, u) is integrable and
li , wdxdu = li , wWdxdu.
fim Snj f :(x, wdxdu Snj I Hm g(x, widxdu (A6)
u u

Proof. Since hy is positive and continuous, the origin is inside the interior of K = [hg]. Since g in (Al) is
continuous, and since o(t, -)/t — 0 uniformly on S"-1, there exist constants c, §' > 0 so that

o(t,v)

‘ gv) + — < chyg(v), forall veQ,te(=6,08).

Then,
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1 -c|thK c K; c (1 + c|t]K.
Thus,

%(XK[(X, W - X WD) < P,0x w), (A7)

where

1
o (x, w) = H(X(Hc\tl)l{(xa w)? - Xa_¢mpr(x, u)9).

Thus, (A5) holds. The homogeneity of I,(K, u), gives us

1
j¢t<x, e = (1 + DK, w) = (1 = cltDK, w)
uJ.
= |17|<(1 + ety = (1 = el DK, ).
Therefore,
jd’t(x, wdxdu = %((l + clt)™at — (1 = clt))" T Dnwal,(K),
Snfl ul
and thus,
lim I j(p[(x, wdxdu = 2c(n + q - Dnwnply(K).
t—0
Sn—l uL
On the other hand, by (A4), when x is an interior point of K|u*, we have

hx(vk(y)) hK(VK(Y)))
u-vg(y)  u-w(y) )

lim ¢,(x, u) = 2qcXk(x, u)q‘l(
t—0

where y and y~ are the two boundary points of 0K n (x + Ru). Since, for almost all u € S"™1, 9K N (x + Ru)
consists of at most two points, we obtain

hx(vk(y)) — hx(vk(y))
u-vk(y)  u-ve(y)

I j 1im b (x, wdxdu = 2qc I I Xe(x, u)q‘l( )dxdu
N

Sn—l K|ML

- 2qc f ij(y, W e (v (y)AH " (y)du.

st oK
By Lemmas A.4 and A.3, we obtain
10 = —— L [ [ Xy, 0 ey (e
(n+q - Dnw, ¥
S 1K

Therefore, we obtain

J- Itlirg ¢, (x, wdxdu = 2c(n + q — Dnwply(K).

Sn—l MJ'

Thus, both sides of equation (A6) are equal to 2c(n + g — Dnwnly(K). O

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. By Lemma A.5, there is a family of nonnegative integrable functions ¢,(x, u)
satisfying (A5) and (A6). Then, by the generalized dominated convergence theorem and Lemmas A.5,

A.2, and A.3, we have

—d LK) = L lim I jl(Xm(x, u)? — Xy(x, u)?)dxdu
dt |_o nwyt-o J J ¢
Sn— ML

- n;n | tim 2 ex, w2 = e, w) deau
Sn—l uL
g [ 80k g(vK(y»)
= Xi(x, u)? - dxd
Mn S71|‘1 K][L e (u k(y) u-wk(y) ‘
-1 j jxm, )T (ve(y))dH " (y)du
" s" oK

= j T, (K, 2)g(vk(2)dH - 1(2)
@n oK

- j gW)AE(K, v)

Sn—l

- jg(v)dE,(K, v,
Q

where y and y~ are the two boundary points of 0K n (x + Ru). Here, in the last equality, we used the fact
that F;([ho], -) is concentrated on Q. O



	1 Introduction
	2 Preliminaries
	2.1 Wulff shape
	2.2 Chord integrals and chord measures
	2.3 Weak continuity of Lp chord measures

	3 Variation problems for chord measures
	3.1 Variation formula
	3.2 Maximization problems

	4 The even Lp chord Minkowski problem when p,q&#x003E;0
	5 The discrete Lp chord Minkowski problem when p&#x003E;1 and q&#x003E;0
	6 The Lp chord Minkowski problem for general measures when p&#x003E;1 and q&#x003E;0
	References
	Appendix

