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1. Introduction

1.1. Zeta functions

1.1.1. Zeta functions of varieties over finite fields
The zeta function of a variety X{Fq is the formal power series ZXptq P 1 ` tZrrtss

defined by
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ZXptq :“
ź

xPX closed

1
1 ´ tdeg x

“

8
ÿ

j“0
|SymjXpFqq|tj .

It encodes the number of points of X over every finite extension of Fq:

d logZXptq “

8
ÿ

j“1
|XpFqj q|tj´1. (1.1.1.1)

The Grothendieck-Lefschetz fixed point formula implies that ZXptq is the power-series 
expansion at 0 of a rational function, and that the zeroes and poles are determined by 
the eigenvalues of the Frobenius acting on the étale cohomology of X (up to cancellation 
between odd and even degree). We write R1 for the set of rational functions f P Cptq

such that fp0q “ 1, and from now on consider ZXptq as an element of R1.

1.1.2. Grothendieck rings of varieties
Let K be a field. We write K0pVar{Kq for the modified Grothendieck ring of varieties 

over K — it is the free abelian group on isomorphism classes rXs of (not necessarily 
connected) varieties X{K, modulo the relations rX1 \X2s “ rX1s ̀ rX2s and rXs “ rY s

if there is a map X Ñ Y inducing a bijection on points over any algebraically closed 
field. This definition is equivalent to the classical definition of K0pVar{Kq via cut and 
paste relations in characteristic zero, but is better behaved in positive characteristic; we 
refer to [2, Section 2] for a detailed discussion. Write L :“ rA1s P K0pVar{Kq, and

MK :“ K0pVar{KqrL´1
s.

There is a natural topology on MK induced by the dimensional filtration: for every 
d P Z, we define FildMK to be the subgroup of MK generated by elements of the form 
rXsL´n where X is a variety over K and dimX ´n ď d. This gives us an increasing and 
exhaustive filtration on the ring MK . Denote the completion for this filtration by xMK .

For a quasi-projective variety X over K, consider the Kapranov zeta function

ZKap
X ptq :“

8
ÿ

j“0
rSymjXstj P 1 ` tMKrrtss.

When the field K is finite, ZKap
X ptq specializes to ZXptq via point counting, which replaces 

the class rSymjXs with the number |SymjXpKq| in the coefficients.

1.2. Arithmetic and motivic statistics

Many results in arithmetic statistics can be interpreted in terms of asymptotic prop-
erties of the number of Fq-points on a sequence of varieties Xn{Fq. Such results often 
have analogs in motivic statistics — these are asymptotic statements in xMK . A beautiful 
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example of such a correspondence between arithmetic and motivic results is given by the 
following:

Theorem. Let K be a field and let X Ă Pn
K be a smooth projective variety. Denote by Ud

the open subset of hypersurface sections in ΓpPn
K , Opdqq which intersect X transversely. 

Then:

(1) (Poonen [20]) Assume K “ Fq is finite. Then

lim
dÑ8

|UdpFqq|

|ΓpPn,OpdqqpFqq|
“ ZXpq´ dimX´1

q
´1.

(2) (Vakil-Wood [22,23]) In xMK , we have

lim
dÑ8

rUds

rΓpPn,Opdqqs
“ ZKap

X pL´ dimX´1
q

´1.

Although the two results are compellingly similar for K “ Fq, neither of the two 
implies the other: the assignment sending a variety X{Fq to the number of points |XpFqq|

extends to the point counting measure, a map of rings MFq
Ñ R, but it is not continuous 

for the dimensional topology on MFq
. The aim of this paper is to formulate a conjectural 

unification of such parallel statements in arithmetic and motivic statistics, and study 
some aspects of this conjecture.

The fundamental insight behind our conjecture is that, through the lens of the zeta 
measure (see (1.3.0.1) below), the aforementioned results of Poonen and Vakil-Wood may 
be viewed as convergence statements of the zeta functions of the varieties Ud, suitably 
renormalized, for two different, incompatible topologies on R1. Indeed, via (1.1.1.1) we 
can interpet Poonen’s theorem, applied simultaneously over all finite extensions of Fq, 
as a convergence result for the zeta functions ZUd

ptq in the coefficient topology on R1, 
induced by the product topology on the coefficients of the power series at zero. Because of 
this interpretation, we refer to this topology on R1 also as the point-counting topology. On 
the other hand, Vakil and Wood’s result, via the Weil conjectures, implies a convergence 
statement about the functions ZUd

ptq in the weight topology on R1, where a function is 
considered small if all of its poles and zeroes are at large complex numbers. The point-
counting and weight topologies are incompatible; below we introduce the Hadamard 
topology which refines both.

1.3. Rings of zeta functions

The set R1 has a ring structure given by Witt addition and multiplication: if we 
identify R1 with the group ring ZrCˆs via

fptq Ñ ´Divfpt´1
q, so, e.g., p1 ´ atq´1

ÞÑ ras
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then Witt addition and multiplication are induced by addition and multiplication on the 
group ring ZrCˆs. Alternatively, Witt addition `W is regular multiplication of rational 
functions: f `W g “ fg, and Witt multiplication ˚W is determined by

d log f “
ÿ

ajt
j and d log g “

ÿ

bjt
j

ùñ d logpf ˚W gq “
ÿ

ajbjt
j .

The assignment X ÞÑ ZXptq extends to the zeta measure, which is a map of rings

MFq
Ñ R1

a ÞÑ Zaptq.
(1.3.0.1)

1.3.1. The Hadamard topology
Under the identification R1 “ ZrCˆs, the weight topology is induced by the norm

›

›

›

ÿ

anrzns

›

›

›

8
“ sup |zn|.

The point-counting topology is induced by the family of seminorms
›

›

›

ÿ

anrzns

›

›

›

j
“

ˇ

ˇ

ˇ

ÿ

anz
j
n

ˇ

ˇ

ˇ
for all integers j ě 1.

We consider also the Hadamard topology, defined by the Hadamard norm
›

›

›

ÿ

anrzns

›

›

›

H
“

ÿ

|an||zn|.

The Hadamard topology refines both the weight and point-counting topologies. More-
over, the completion of R1 for the Hadamard norm is naturally identified with a genuine 
space of meromorphic functions (as opposed to the completion for the weight topology, 
which is a space of formal divisors, or the completion for the point-counting topology, 
which is a space of formal power series):

Definition 1.3.2. A Hadamard function is a meromorphic function on C that can be 
written as a quotient fg where f and g are entire functions of genus zero.

We write H1 for the set of Hadamard functions f such that fp0q “ 1. The Hadamard 
factorization theorem then yields

Theorem 1.3.3. The completion of R1 for || ̈ ||H is canonically identified with H1.

1.4. The meta-conjecture

Because the Hadamard topology refines both the point-counting and weight topolo-
gies, asymptotics in the Hadamard topology give a common refinement of results in 
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arithmetic and motivic statistics. Moreover, taking limits in the Hadamard topology re-
tains the essential analytic characteristics of zeta functions, because these limits can be 
interpreted as meromorphic functions. For these reasons, it is natural to try to refine 
previous results in arithmetic and motivic statistics by studying them in the Hadamard 
topology. And in fact, we conjecture that any natural asymptotic which holds in both 
the weight and point-counting topologies should also hold in the Hadamard topology:

Meta-conjecture. If an P MFq
is a “natural” sequence of classes such that the sequence 

of zeta functions Zan
ptq converges in both the point-counting and weight topology to some 

fptq P H1, then Zan
ptq Ñ fptq also in the Hadamard topology.

The condition that f P H1 is essential — without this condition there is no way to 
compare limits in the point-counting and weight topologies. Moreover, there are natural 
examples where limits exist in both topologies, but at least one of these limits is not 
expected to be a Hadamard function (cf. §1.5.6).

1.4.1. Hadamard convergence for Bertini problems
The theorems of Poonen and Vakil-Wood discussed above furnish an example where 

our meta-conjecture should apply. To see this, we must verify that the special value of 
the Kapranov zeta function appearing there is in fact a Hadamard function: We apply 
the zeta measure coefficientwise to ZKap

X psq to obtain a series with coefficients in the ring 
R1, and then evaluate at s “ ZL´mptq “

1
1´q´mt for m “ dimX ` 1. Indeed, for any 

m ą dimX, if we write

ζKap
X pmq :“ 1 ` ZXptqs ` ZSym2Xptqs2

` ¨ ¨ ¨ |s“ZL´m ptq “
ź

jě1
ZSymjXptq´mj

q,

then the infinite product on the right (an infinite sum in the Witt ring structure) con-
verges in the Hadamard topology to an invertible (for Witt multiplication) element of 
H1. Thus, in this case the meta-conjecture specializes to

Conjecture 1.4.2. Let X Ă Pn
Fq

be a smooth projective variety and let Ud Ă ΓpPn, Opdqq be 
the open subvariety of hypersurfaces intersecting X transversely. Then, in the Hadamard 
topology,

lim
dÑ8

ZUd
pq´ dimUdtq “ 1{W ζKap

X pdimX ` 1q.

Here the notation {W denotes division in the Witt ring, and the inverse special value 
appearing on the right can be shown to live in H1 as a consequence of rationality of 
ZKap
X ptq after applying the zeta measure – see Example 4.2.3. In the statements of Theo-

rem A and Theorem B below we will implicitly use the existence of inverses or quotients 
that can be justified in a similar way.

We state separately the case X “ Pn, which has a particularly simple form:
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Conjecture 1.4.3. Let Ud Ă Vd :“ ΓpPn, Opdqq be the space of smooth hypersurfaces of 
degree d in Pn. Then,

lim
dÑ8

ZUd{Fq

`

q´ dimVdt
˘

“ ZGLn`1{Fq

´

q´pn`1q
2
t
¯

in the Hadamard topology. In particular, the sequence of rational functions

ZUd{Fq
pq´ dimVdtq

ZGLn`1{Fq
pq´pn`1q2tq

converges uniformly on compact sets in C to the constant function 1.

For n “ 1, Conjecture 1.4.3 is true, because for all d ě 2

rUds

rVds
“ rGL2sL´4

P MFq
.

For n ą 1, however, already Conjecture 1.4.3 is completely open. As some partial ev-
idence, we note that Tommasi [21] has established a cohomological stabilization result 
for moduli of smooth hypersurfaces in Pn

C — cf. §1.7.1 below for more details on the 
relation between cohomological stabilization and Hadamard convergence.

Remark 1.4.4. Some of the material on Hadamard convergence developed in this work 
appeared already in the first version of [2] posted on arXiv. In particular, it was claimed 
there that Conjecture 1.4.2 could be proved in the case that dimX “ 1. No details were 
provided, and there was a mistake in the envisioned proof.

The point-counting [20] and motivic [2] Bertini theorems with Taylor coefficients fur-
nish many more examples where we expect that the meta-conjecture should apply. The 
limits appearing in these theorems are special values of (motivic) Euler products, but, 
unfortunately we are currently unable to prove that these special values are Hadamard 
functions in any level of generality!

1.5. Results for zero-cycles

Our meta-conjecture was originally motivated by the Bertini examples discussed 
above, but for now these seem to be out of reach. On the other hand, there are a num-
ber of questions about zero-cycles that have been previously studied in both arithmetic 
and motivic statistics for which we can both formulate and prove concrete instances of 
the meta-conjecture. In particular, building on [13,22,6,12,19], we treat various problems 
involving colored effective zero-cycles with prescribed incidence relations. We also give 
an application to the motivic Batyrev-Manin conjecture as in [4]. These are the main 
results of this paper, and the main evidence that our meta-conjecture is reasonable.
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1.5.1. Pattern-avoiding zero-cycles
In §4 we carry out a general study of convergence for densities of spaces of effective 

zero-cycles with prescribed allowable sets of labels. These generalize different densities 
considered previously in related contexts by Bourqui [4], Farb-Wolfson-Wood [13], and 
Vakil-Wood [22]. We establish fairly complete weight and point-counting convergence 
results, and find natural examples (and non-examples) of Hadamard convergence. For 
more details, we refer the reader to the beginning of §4; below we only highlight some 
examples.

1.5.2. Orthogonal pattern-avoiding zero-cycles
Let X{Fq be a geometrically irreducible quasi-projective variety and k ě 1 an integer. 

For �d “ pd1, . . . , dkq P Zk
ě0, we write

Sym�dX :“ Symd1X ˆ Symd2X ˆ ¨ ¨ ¨ ˆ SymdkX.

For K{Fq algebraically closed, we can view a point s P Sym�d
pXqpKq as a tuple 

ps1, . . . , skq of finitely supported functions on XpKq with values in Zě0. In particu-
lar, for each x P XpKq, we obtain a label vector �spxq :“ ps1pxq, . . . , skpxqq P Zk

ě0. If we 
fix a finite subset V Ă Zk

ě0, then we can consider the locus

Z �d
V pXq Ă Sym�dX

whose K-points for algebraically closed K are exactly those s such that, for all �v P V

and x P XpKq, �spxq ğ �v (i.e., �s avoids all of the patterns in V ).

Example 1.5.3. If V “ tpn, n, . . . , nqu, then Z �d
V pXq is the subvariety denoted Z �d

npXq in 
[13], which parameterizes tuples of effective zero cycles whose overlap has multiplicities 
bounded by n. In particular, Zpdq

tp2qu
pXq “ CdX, the configuration space of d unordered 

distinct points on X.

A set of vectors V is orthogonal (for the standard inner product) if and only if for 
each 1 ď i ď k, there is at most one vector �v P V with non-zero ith component. For 
�v “ pv1, . . . , vkq P Zk

ě0, we write |�v| “ v1 ` . . . ` vk. We say that a set of vectors V is 
non-degenerate if it does not contain a �v with |�v| ď 1 (i.e. it does not contain the zero 
vector or the unit vector ei for any i).

Theorem A. If V is orthogonal and non-degenerate, then, in the Hadamard topology on 
H1,

lim
d1,d2,...,dkÑ8

ZZ �d
V pXq

ptq{WZSym�dpXq
ptq “ 1{W

˜

ź

�vPV

ζKap
X p|�v| ¨ dimXq

¸

.

Note that all ring operations in this equation are taken in the Witt ring structure.
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Remark 1.5.4. If V contains 0 then Z �d
V pXq “ H for any �d, and if V contains ei then 

Z �d
V pXq “ H when di ‰ 0. For V not orthogonal, see Section 4.5.1, particularly Theo-

rem 4.5.8.

This theorem, and our other related results, provide a motivic lift of Theorem 1.9-2 of 
Farb-Wolfson-Wood [13], which describes the same phenomenon at the level of Hodge-
Deligne polynomials in the special case of Example 1.5.3. This confirms the expectation 
of a motivic analog stated in [13, paragraph following Theorem 1.9]. Our proof is based 
on a simple identity of generating functions, generalizing the argument given by Vakil-
Wood [22] for computing the density of CnX in SymnX. In particular, this provides a 
shorter1 proof of [13, Theorem 1.9-2].

Remark 1.5.5. Ho [18] has reinterpreted and extended the results of [13] using fac-
torization cohomology. In particular, he constructs a natural rational homotopy type 
(a commutative dga computing the cohomology) attached to the density, then in [18, 
Proposition 7.7.7] obtains a simple explicit description from which one can deduce the 
connection with zeta values after taking the trace of Frobenius. Instead taking the char-
acteristic power series of Frobenius, we recover the Hadamard function appearing above; 
thus this rational homotopy type has a meromorphic zeta function. It would be interest-
ing to understand this phenomenon more generally!

1.5.6. A non-example of Hadamard convergence
We also study the density of the k-colored configuration spaces C �dX in Sym�dX where 

�d P Zk
ě0. This density converges as �d Ñ 8 in the weight and point-counting topologies, 

and in Theorem 4.6.2 we show it converges in the Hadamard topology if k ă qdimX . 
Some condition of this form appears to be necessary: for k “ 2, q “ 2, and X “ A1, 
we have computed the limiting formal divisor to high precision, and the result strongly 
suggests that the limit is not a Hadamard function — cf. Remark 4.6.4.

1.5.7. Labeled configuration spaces
We also show Hadamard stabilization for labeled configuration spaces over unordered 

configuration spaces as studied in [19] in the motivic setting and [6] in the point-counting 
setting. This does not fit into the framework of allowable labels described above, but in-
stead admits a natural interpretation as computing the moments of a motivic random 
variable over unordered configuration space. Concretely, we show (see §2.2 for the nota-
tion):

Theorem B. Let λ be a partition and X{Fq a geometrically irreducible quasi-projective 
variety. Then, in the Hadamard topology on H1,

1 Of course, our technique does not say anything about the Leray spectral sequence analyzed in [13], and 
thus cannot establish any of the purely topological density results.
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lim
dÑ8

Z
Cλ¨‹d pXq

ptq{WZC|λ|`dpXqptq “ Z
Cλ

X

´

1
1`Ldim X

¯ptq.

Here the right-hand-side is the zeta function of a very general notion of labeled configu-
ration space, where the “space” of labels at each point is the class 1

1`Ldim X .

Remark 1.5.8. The explicit computation of the limit in Theorem B is new (though closely 
related to [19, Corollary B]), and makes precise the statement that, after passing to the 
zeta measure, the universal family over CdX is asymptotically a motivic binomial random 
variable with parameters N “ X and p “

1
1`Ldim X . Convergence in the Hadamard 

topology, without the explicit computation of the limit, can also be deduced (under a 
lifting hypothesis) from the étale homological stability results of Farb-Wolfson [12] (cf. 
also §1.7.1).

Remark 1.5.9. Following the strategy used in [19] to relate motivic stabilization of labeled 
configuration spaces and representation stability, one obtains the following consequence 
of Theorem B: given a Young diagram λ, the theory of representation stability attaches 
a natural sequence of locally constant �-adic sheaves Vλ,d on CdX for d sufficiently large. 
Writing Lλ,dptq for the L-function of Vλ,d, we find that the sequence Lλ,dptq´d dimXq

converges in the Hadamard topology.

1.6. Batyrev-Manin over function fields

Let K be a field and X a split toric variety over K, which is assumed smooth and 
projective. Let U be its open orbit. For every integer d ě 0, we denote by rU0,ds the 
quasi-projective variety parameterizing K-morphisms P 1

K Ñ X with image intersecting 
U , and of anticanonical degree d. Let ρ be the rank of the Picard group of X. We are 
interested in the motivic height zeta function

ZpT q “
ÿ

dě0
rU0,dsT d.

In the finite field case, the specialization via point counting of ZpT q has been extensively 
studied by Bourqui [3,5], in a much more general setting (for morphisms from a curve of 
arbitrary genus to not necessarily split toric varieties). In [4], Bourqui also addressed the 
motivic problem over an arbitrary K. Combining his method therein with our results, 
we show:

Theorem C.

(1) There exists an integer a ě 1 and a real number δ ą 0 such that the series

p1 ´ pLT q
a
q
ρ

˜

ÿ

dě0
rU0,dsT d

¸

(1.6.0.1)
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converges for ||T || ă ||L||´1`δ in the dimensional topology (see §4.2.1). Its value 
at L´1 is non-zero and can be described explicitly by the special value of a motivic 
Euler product.

(2) Assume now K “ Fq finite. Then the specialization of (1.6.0.1) via the zeta measure 
converges in the point counting topology. If q is larger than some explicit bound, it 
converges in the Hadamard topology.

We refer to §5 and in particular to Theorem 5.3.1 for a more precise version with 
explicit bounds and values. The result in the dimensional topology is obtained simply 
by substituting the more versatile notion of motivic Euler product from [1] for the one 
used by Bourqui in [4]. The point counting convergence was already known in greater 
generality (for curves of any genus) by [3]. The Hadamard convergence is an application 
of the results of the section on zero-cycles.

This problem is an instance of the function field Batyrev-Manin conjecture (classically, 
the Batyrev-Manin conjecture deals with counting points of bounded height on algebraic 
varieties defined over number fields). As far as the authors are aware, Theorem C is 
the first result in the literature giving a unified treatment of a case of the function-field 
Batyrev-Manin problem in the point counting and motivic setting outside of situations 
where the motivic height zeta function is rational.

1.7. Obstacles and strategies

Our results for zero-cycles are all, in the end, obtained by explicit computations and 
estimates with generating functions. By contrast, in the Bertini setting which first mo-
tivated this work, similar manipulations with generating functions do not appear useful 
— instead, to prove point-counting and weight stabilization results, one uses inclusion-
exclusion to compare values at a finite step to truncated Euler products.

The versions of inclusion-exclusion that come into play are quite different in the 
motivic and arithmetic settings, and, in particular, there does not seem to be an obvious 
way to merge the point-counting argument with the motivic argument in order to control 
the error term in the Hadamard topology. It would, however, be quite interesting if such 
an argument could be made!

1.7.1. Betti bounds and Hadamard convergence
Another angle of attack for Conjecture 1.4.2 is by proving étale cohomological stability 

and sub-exponential growth for the cohomology of Ud, as in the alternative proof of 
Hadamard convergence for labeled configuration spaces mentioned in Remark 1.5.8. This 
approach is particularly appealing in the specific case of Conjecture 1.4.3, in light of 
Tommasi’s [21] results on cohomological stability in characteristic zero.

In fact, it turns out that one does not need the full strength of cohomological stability 
for this kind of argument: in §7, we show that weight convergence combined with suitable 
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bounds on Betti numbers implies Hadamard convergence. This seems like a promising 
strategy for proving new instances of our meta-conjecture.

1.8. Organization

In §2 we recall some basic notation and results on (very) generalized configuration 
spaces, motivic Euler products, pre-λ rings, and power structures. In §3, we introduce 
the Witt ring, its various topologies, and the zeta measure. The heart of the paper is §4, 
where we prove a general convergence result on spaces of pattern-avoiding effective zero-
cycles and deduce Theorem A. We also discuss the case where the vectors in the set V
are non-orthogonal: using a Möbius function formalism, we show Hadamard convergence 
over Fq for q larger than some explicit bound, and study some interesting boundary 
cases. In §5, we apply our results from the previous section to prove Theorem C. In §6, 
we prove Theorem B, and in §7 we explain the link with cohomological stability. Finally, 
in Appendix A we give some computations related to the boundary cases for Hadamard 
convergence discussed in §4.
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2. Recollections

In this section we recall some basic definitions and results on generalized configuration 
spaces, motivic Euler products, and power structures on pre-λ rings.
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2.1. Grothendieck rings

In this paper K0pVar{Kq, MK , zMK , etc. are all built starting with the modified
Grothendieck ring of varieties (see 1.1.2 above); this is equivalent to the standard def-
inition via cut and paste relations in characteristic zero but in characteristic p gives a 
better-behaved quotient.

We also consider, for X{K a variety, the relative Grothendieck rings K0pVar{Xq, MX , 
and zMX , defined completely analogously but starting with varieties over X instead of 
SpecK.

We refer the reader to [2, Section 2] for more details on these points.

2.2. Generalized configuration spaces and motivic Euler products

We will briefly cover the basic definitions for the reader’s convenience; for further 
discussion and properties of generalized configuration spaces and motivic Euler products 
beyond what is included here, we refer the reader to [2, Sections 3.2, 6.1 and 6.2].

2.2.1. Generalized configuration spaces
Suppose given a label set S and a finite multiset λ supported on S, i.e. an element of 

ZS
ě0 that is zero on all but finitely many s P S. We write |λ| “

ř

sPS λpsq. We denote by 
λ ̈ ˚d any multiset λ1 that adds a new element of multiplicity d to λ, i.e. when λ1 “ λ ̀ d ̈ s
and λpsq “ 0 for some s P S.

For a quasi-projective variety X{K we define the λ-labeled configuration space of X
to be

CλX :“
˜˜

ź

sPS

Xλpsq

¸

zΔ
¸

{
ź

s

Σλpsq,

where Δ is the big diagonal and Σk denotes the permutation group on k elements so that 
the product group acts in the obvious way. The points of CλX in an algebraically closed 
field K are given by labellings of |λ| distinct points in XpKq by elements of S such that 
the total multiset of labels is equal to λ. For example, if λ “ pa1, a2, . . . , akq P Zk

ě0zt�0u, 
then CλX is the configuration space of a1 `a2 ` . . .`ak distinct points on X with ai of 
the points labeled by i for each 1 ď i ď k; in other words, a colored configuration space 
of X.

The construction generalizes to allow, for each s P S, a space of labels, here interpreted 
to be a variety Ys{X. One obtains a variety Cλ ppYs{XqsPSq, given by

Cλ
ppYs{XqsPSq :“

˜˜

ź

sPS

Y λpsq
s

¸

zΔ
¸

{
ź

s

Σλpsq,

with a natural map to CλX (here Δ is the inverse image of the big diagonal in the 
definition of CλX).
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2.2.2. Motivic Euler products
The results of [1] allow one to extend the construction of generalized configuration 

spaces to allow the spaces of labels Ys to be replaced with classes of labels as in a relative 
Grothendieck ring K0pVar{Xq, MX , or zMX . The result is a class Cλ

X ppasqsPSq in the 
corresponding relative Grothendieck ring over CλX (the actual definition is explained in 
2.2.4 below); when as “ rYs{Xs (i.e. the class of Ys in a relative Grothendieck ring over 
X) we have the natural identity

rCλ
ppYs{XqsPSq {CλXs “ Cλ

X ppasqsPSq .

Remark 2.2.3. We write Cλ
Xpaq if all as are taken to be equal to the same class a.

In the above, if the label set S is taken to be the non-zero elements of an abelian 
monoid M , then a multiset λ as above is called a generalized partition. In this case, it 
makes sense to consider the sum of its elements 

ř

λ P M , and for m P M we say λ $ m

or λ partitions m if 
ř

λ “ m. This setup applies in particular when M is a free abelian 
monoid, e.g. M “ Zk

ě0.
This extension is carried out so as to give a reasonable notion of an “infinite product 

over X”, or, a motivic Euler product, satisfying the natural properties one would expect 
for manipulating products. Indeed, for ai P K0pVar{Xq, one defines

ź

xPX

`

1 ` a1,xt ` a2,xt
2

` . . .
˘

:“ 1 `
ÿ

mě1

˜

ÿ

λ$m

Cλ
X ppasqsPNq

¸

tm P 1 ` tK0pVar{Kqrrtss

where the sums for each coefficient are obtained by first applying the forgetful maps

K0pVar{CλXq Ñ K0pVar{Kq.

One can replace K0pVar{Kq here with MK or zMK . We can also make a similar 
construction for an abelian monoid M as above by using the ring of power series in the 
variables tm, m P M , with tm1tm2 “ tm1`m2 . In this setting, the definition of the motivic 
Euler product becomes

ź

xPX

¨

˝1 `
ÿ

sPMzt0u

as,xts

˛

‚ :“ 1 `
ÿ

mPMzt0u

˜

ÿ

λ$m

Cλ
X

`

pasqsPMzt0u

˘

¸

tm.

Standard power series in one variable are obtained using M “ Zě0 via the identifica-
tion tm “ tm1 “ tm. More generally, for M “

À

iPI Zě0, we obtain power series on the 
variables ti, i P I. In particular, M “ Zk

ě0 gives power series on variables t1, . . . , tk, and 

because of this for m P Zk
ě0 we frequently write the product tm “

ś

1ďiďk t
mpiq
i in place 

of tm in the above.
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2.2.4. Definition
We briefly recall the definition of the classes Cλ

X ppasqsPSq used above: The first step 
is to define for an element a P K0pVar{Xq (or MX or zMX) its symmetric powers 
pSymn

Xpaqqně1, in such a way that

Symn
Xpaq P K0pVar{Symn

pXqq,

and so that for all a, b P K0pVar{Xq,

Symn
Xpa ` bq “

n
ÿ

k“0
Symk

Xpaq b Symn´k
X pbq. (2.2.4.1)

In other words, one lifts the relative Kapranov zeta function on K0pVar{Xq so that the 
coefficient of ti lives in K0pVar{SymiXq rather than K0pVar{Xq.

Then, for a partition λ and classes as, we consider

Symλ
XppasqsPSq :“

ź

s

Symλpsq

X pasq P K0

˜

Var{
ź

s

SymλpsqX

¸

.

Pulling back via the inclusion CλX Ñ
ś

s SymλpsqX gives Cλ
X ppasqsPSq. We often write 

this restriction with the subscript “˚”, or even “˚, X” if we want to emphasize that the 
diagonal was removed at the level of points of X. If as “ a for all s we also just write a
instead of pasq. So, e.g.,

Cλ
Xpaq “

´

Symλ
Xpaq

¯

˚
“

˜

ź

s

Symλpsq

X paq

¸

˚,X

. (2.2.4.2)

In particular, the variety 
ś

s SymλpsqX will be denoted SymλX.
We note that, by the definitions and [1, Proposition 3.7.0.4], for any k : S Ñ Z,

Cλ
XppLkpsqasqsPSq “ L

ř

sPS kpsqλpsqCλ
XppasqsPSq. (2.2.4.3)

2.3. Pre-λ rings and power structures

Recall (e.g., from [19]) that a pre-λ ring is a ring R equipped with a group homomor-
phism

λt : pR,`q Ñ p1 ` tRrrtss,ˆq

r ÞÑ 1 ` λ1prqt ` λ2prqt2 ` . . .

such that λ1prq “ r. We require always the further condition that λtp1q “ 1 ̀ t.
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It is equivalent, and for us usually more convenient, to give the homomorphism

σt : r ÞÑ λ´tp´rq “ 1 ` σ1prqt ` σ2prqt2 ` . . . ,

obtained by making the substitution t Ñ ´t in λtp´rq. The condition λ1prq “ r is 
equivalent to σ1prq “ r and the condition λtp1q “ 1 ̀ t is equivalent to σtp1q “ 1

1´t .
The operations λi and σi on R are conveniently packaged and extended as a pairing

Λ ˆ R Ñ R

for Λ the ring of symmetric functions – for ek the elementary symmetric functions and 
hk the complete symmetric functions we have

pek, rq “ λkprq, phk, rq “ σkprq,

and for any fixed r P R the induced map p‚, rq : Λ Ñ R is a ring homomorphism.

Example 2.3.1. If G is a finite group and R is the complex representation ring of G, then 
R is equipped with a natural pre-λ ring structure such that, for any representation in V
with corresponding class rV s P R (which is also identified with the trace of V , viewed as 
a conjugation invariant function on G),

λkprV sq “ r
Źk

V s, σkprV sq “ rSymkV s.

For any f P Λ, pf, rV sq, viewed as a conjugation-invariant function on G, is the function 
whose value on g P G is obtained by applying f to the eigenvalues of g acting on V .

Example 2.3.2. The Kapranov zeta function gives a pre-λ ring structure on K0pVar{Kq, 
MK , and zMK via

σtprXsq “ ZKap
X ptq.

Remark 2.3.3. In categories of a combinatorial nature such as varieties or sets, one has 
symmetric powers but no exterior powers. However, the original formulation of (pre-
)λ-rings takes places in categories of vector bundles, where exterior powers are natural. 
This explains why we put the emphasis on σ-operations instead of λ-operations as in 
classical presentations of this topic. In the literature, there is typically no restriction on 
λtp1q and σtp1q – without this condition, one can define a new pre-λ ring by swapping 
the σ and λ-operations, so our requirements on λtp1q and σtp1q serve to eliminate this 
confusion. Our choice is the “right one” in the sense that the operations enforced by this 
convention on Grothendieck rings of combinatorial and linear categories are compatible 
with natural functors like passing from a group action on a set to the induced permutation 
representation or from a variety to its compactly supported cohomology.
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Remark 2.3.4. A pre-λ ring R is a λ-ring if the map λt is a pre-λ ring homomorphism 
(for the Witt ring and pre-λ structure on 1 ̀ tRrrtss), i.e. if it is also multiplicative and if 
it identifies the pre-λ ring structures. If R is torsion free over Z, then in terms of Adams 
operations (see 2.3.6) this is equivalent to asking that ppm, ‚q be a ring homomorphism 
and ppm1 , ppm2 , ‚qq “ ppm1m2 , ‚q. The natural pre-λ ring structure on the Grothendieck 
ring of a symmetric monoidal category is in fact a λ-ring structure, but it is not known 
whether the pre-λ ring structure on K0pVar{Kq and its variants is a λ-ring structure.

2.3.5. Power structures on pre-λ rings
In [15,16] (see also [19]) it is explained how a pre-λ structure on a ring R extends 

naturally to a power structure, which gives a systematic way to make sense of expressions 
like

´

1 `
ÿ

a�d t�d
¯b

for a�d, b P R; the result is a new power series with coefficients in R and constant term 1, 
and we have

p1 ` tqr “ λtprq,

ˆ

1
1 ´ t

˙r

“ σtprq.

In the case of K0pVar{Kq and its variants, the power structure attached to the Kapra-
nov zeta function (viewed as a pre-λ structure as in Example 2.3.2) is closely related 
to motivic Euler products: in fact, it exactly captures the motivic Euler products with 
constant coefficients. Indeed, for classes a�d P K0pVar{Kq, we have

¨

˝1 `
ÿ

�dPZk
ě0zt�0u

a�d t�d
˛

‚

rXs

“
ź

xPX

¨

˝1 `
ÿ

�dPZk
ě0zt�0u

a�d t�d
˛

‚

where in the right to interpret the motivic Euler product we pull back the elements a�d

to K0pVar{Xq as constant classes. In particular, we obtain

ZKap
X ptq “

ˆ

1
1 ´ t

˙rXs

“
ź

xPX

1
1 ´ t

.

2.3.6. Computing simple powers
In a useful special case, we now explain a direct explicit formula for computing these 

powers (or equivalently, the motivic Euler products). This formula will be used to estab-
lish several estimates in §4.

To that end, we consider the power sum symmetric functions

pm “ xm
1 ` xm

2 ` . . . P Λ
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as well as their Möbius-inverted counterparts

p1
m “

1
m

ÿ

d|m

μpm{dqpd P Λr1{ms

studied in [19]. We note that for R a pre-λ ring,

ppm, ‚q : R Ñ R

is an additive homomorphism (these are the Adams operations). Indeed, this follows 
from the identity

ÿ

iě0
pi`1t

i
“ d log

ÿ

iě0
hit

i, (2.3.6.1)

and the fact that σt is a homomorphism. As a consequence, we also have that

pp1
m, ‚q : Rr1{ms Ñ Rr1{ms

is a homomorphism of additive groups.
As shown in [19, Lemma 2.8], we have

Lemma 2.3.7. Suppose fptq P Zrrt1, . . . , tnss with constant coefficient 1 and r P R for a 
pre-λ ring R. Then, in pR bZ Qq rrt1, . . . , tnss,

log pfpt1, t2, . . . , tkq
r
q “

ÿ

mě1
p1
mprq log fptm1 , tm2 , . . . , tmk q,

where the exponentiation on the left-hand side is for the power structure determined by 
the pre-λ structure on R and logp1 ̀ . . .q is evaluated via the formal series

logp1 ` sq “ s ´
s2

2 `
s3

3 ´ . . . .

3. The ring of Hadamard functions

3.1. The Witt ring structure on rational functions

We start by explaining the ring structure on the set R1 of complex rational functions 
f with fp0q “ 1. One can identify R1 with a Grothendieck ring: let RepZ be the
category of pairs pV, ρq where V is a finite dimensional complex vector space and ρ is a 
representation of Z on V (to give ρ is equivalent to giving the automorphism ρp1q of V ). 
The characteristic power series of a linear map induces an injective map
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K0pRepZq Ñ 1 ` tCrrtss

rpV, ρqs ÞÑ
1

detp1 ´ tρp1qq

with image R1. The induced addition on R1 is multiplication of power series, called 
Witt addition; the induced multiplication is called Witt multiplication, and the set R1
equipped with this ring structure is also known as the rational Witt ring of C.

We note that K0pRepZq is also naturally isomorphic to the group ring ZrCˆs, where 
the class ras in the group ring is matched with the class of the 1-dimensional representa-
tion with ρp1q given by multiplication by a. The induced identification of R1 with ZrCˆs

sends f P R1 to the divisor of 1
fp1{tq .

3.1.1. The big Witt ring
These ring structures extend naturally (e.g., by continuity in the coefficients) to 1 ̀

tCrrtss; the result is the big Witt ring W pCq. The subring

W pZq “ 1 ` tZrrtss Ă W pCq

also admits a natural interpretation as the Grothendieck ring K0pAlFin Z-setq of the 
almost finite cyclic sets of [9]: Here an almost finite cyclic set is a set S with an action 
of Z such that the fixed points XnZ are finite for each n and X “

Ť

n X
nZ. If we denote 

by anpSq the (finite) number of orbits of length n in S, then the identification is induced 
by

rSs ÞÑ ZSptq “

8
ź

n“1

ˆ

1
1 ´ tn

˙anpSq

.

Note that there is a commutative diagram

K0pFin Z-setq K0pAlFin Z-setq “ W pZq “ 1 ` tZrrtss

K0pRepZq “ R1 W pCq “ 1 ` tCrrtss

. (3.1.1.1)

Here the left vertical arrow sends a Z-set S to the permutation representation CrSs, and 
its image consists of the functions in R1 with zero and pole sets both given by unions of 
Galois-orbits of roots of unity, or equivalently the functions

8
ź

n“1

ˆ

1
1 ´ tn

˙an

with an P Z and equal to zero for n sufficiently large. In particular, this can be used to 
show that the two ring structures on R1 X W pZq agree.
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3.2. λ-ring structure and Adams operations

The symmetric monoidal structure on RepZ equips the Grothendieck ring K0pRepZq

with the structure of a λ-ring with σ-operations induced by symmetric powers and λ-
operations induced by exterior powers. Under the isomorphism with ZrCˆs, the σ- and 
λ-operations are determined by

σsprasq “ 1 ` σ1prasqs ` σ2prasqs2
` ¨ ¨ ¨ “ 1 ` rass ` ra2

ss2
` ¨ ¨ ¨

and

λsprasq “ 1 ` λ1prasqs ` λ2prasqs2
` ¨ ¨ ¨ “ 1 ` rass.

Thus, in K0pRepZq with the λ-ring-structure described above, (2.3.6.1) gives

ÿ

iě0
pi`1prasqsi “

σsprasq1

σsprasq
“

ras

1 ´ rass
,

and in particular, the Adams operations are given by piprasq “ ppi, rasq “ rais.
Finally, we note that symmetric powers of sets define σ-operations for a λ-ring struc-

ture on W pZq, and using (3.1.1.1) we find the two λ-ring structures agree on

W pZq X R1 Ă W pCq.

3.3. Topologies on rational functions

We describe three topologies on R1.

3.3.1. The point counting topology
There is a natural injective map

R1 ãÑ 1 ` tCrrtss

given by taking the power series expansion at zero. The point counting topology on R1
is induced by the product topology on the coefficients of

1 ` tCrrtss “ CN .

Note that R1 is dense when viewed as a subset of 1 ̀ tCrrtss so that the completion of R1
for the point counting topology is identified with 1 ̀ tCrrtss. The addition, multiplication, 
and λ-ring structure are continuous for the point counting topology, so that they extend 
to 1 ̀ tCrrtss which is thus a complete topological λ-ring; this is the big Witt ring W pCq

discussed already in 3.1.1 above.
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Instead of taking the power-series expansion of a rational function f , one could instead 
take the power-series expansion of d log f , and we would obtain the same topology. In 
fact, d log f gives a bijection

1 ` tCrrtss Ñ tCrrtss “ CN

that is an isomorphism of topological rings when CN on the right is equipped with the 
product topology and ring structure. The coefficients of d log f are also called the ghost 
coordinates on the big Witt ring.

Using this observation, we can also describe the point counting topology in terms of 
ZrCˆs “ R1. It is induced by the family of semi-norms || ̈ ||j , j “ 1, 2, . . .

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

karas

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

a

kaa
j

ˇ

ˇ

ˇ

ˇ

ˇ

.

Indeed, this follows from the above discussion and the computation

d log
˜

ź

a

p1 ´ taq
´ka

¸

“

8
ÿ

j“1

˜

ÿ

a

kaa
j

¸

tj´1.

We note that there is no natural description of the completion of R1 “ ZrCˆs for the 
point counting topology in terms of divisors on Cˆ.

3.3.2. The weight topology
In the weight topology, a basis of open neighborhoods of f P R1 is given by, for each 

r ą 0, the set of all rational functions g with the same zeroes and poles as f on the ball 
|t| ď r. In particular, a sequence converges if and only if on every bounded set the zeroes 
and poles eventually stabilize.

Viewed as the group ring ZrCˆs, a basis of open neighborhoods of zero is given by 
the set of all finite sums 

ř

aPCˆ karas supported on the closed ball of radius r around 
0 P C (here we are using that ras, as a rational function, has a pole at a´1), and a basis 
of open neighborhoods at any other point is given by translation.

The completion {ZrCˆs
w

of ZrCˆs for the weight topology can be described as the set 
of formal sums

ÿ

aPCˆ

karas

whose support is a discrete subset of C and whose set of accumulation points in C \ 8

is contained in t0u. The addition, multiplication, and λ-ring structure are all continuous 
for the weight topology, and extend to these formal sums.

We note that there is no natural description of the completion of R1 for the weight 
topology in terms of the power series expansion at 0.
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3.3.3. The Hadamard topology
The Hadamard topology is most simply described under the isomorphism R1 Ñ

ZrCˆs, where it is the topology induced by the sub-multiplicative norm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

karas

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H
“

ÿ

|ka||a|.

It is easy to see the point counting and weight topologies on R1 are not comparable (i.e., 
neither is finer than the other). However:

Lemma 3.3.4. The Hadamard topology refines both the point counting and weight topolo-
gies on R1.

Proof. Each of the semi-norms || ̈ ||j defining the point counting topology is continuous 
for the norm || ̈ ||H , and thus the Hadamard topology refines the point counting topology.

To compare with the weight topology, it suffices to observe that if f “
ř

karas is 
supported inside the closed ball of radius r, then so is any g with ||f ´ g||H ă r. l

3.4. The ring of Hadamard functions

We define the Hadamard-Witt ring W to be the completion of ZrCˆs for the norm 
|| ̈ ||H . It can be identified with the set of discretely supported divisors

ÿ

aPCˆ

karas

such that 
ř

aPCˆ |ka||a| ă 8. It is an elementary computation to check that the multi-
plication and σ (or λ) operations are continuous, so that they extend to W which is thus 
a complete topological λ-ring.

A Hadamard function is a meromorphic function f on C such that f can be written 
as a quotient f “

g
h where g and h are both entire functions of genus zero. In the next 

lemma, we extend the identification of ZrCˆs with R1 to an identification of W with 
the set H1 of Hadamard functions f such that fp0q “ 1.

Lemma 3.4.1. If 
ř

aPCˆ karas P W and

ÿ

aPCˆ

karas “
ÿ

aPCˆ

k`
a ras `

ÿ

aPCˆ

k´
a ras

is the unique decomposition with k`
a ě 0 and k´

a ď 0, then the infinite products

ź

a

ˆ

1
1 ´ ta

˙k´
a

and
ź

a

ˆ

1
1 ´ ta

˙´k`
a
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converge uniformly on compact sets to entire functions of genus zero f´ and f`. Fur-
thermore, the map

ÿ

aPCˆ

karas ÞÑ
f´

f`

induces a bijection W Ñ H1 extending the bijection ZrCˆs Ñ R1.

Proof. This is an immediate consequence of the Hadamard factorization theorem in the 
case of genus zero entire functions. l

Because the Hadamard topology refines the point counting and weight topologies, 
there are natural maps between the completions, and these maps have natural function-
theoretic interpretations:

(1) The map from the Hadamard completion to the point counting completion is given 
by taking fptq P H1 to its power series at 0.

(2) The map from the Hadamard completion to the weight completion is given by taking 
fptq P H1 to the divisor of 1

fp1{tq .

The constructions in this section are summarized by the following diagram:

R1 “ ZrCˆs

Hadamard
topology

weight
topology

point
counting
topology

W pCq H1 “ W
Taylor expansion at zero f ÞÑ´Divpfpt´1

qq

{ZrCˆs
w

3.5. The zeta measure

Zeta functions of varieties give an interesting source of elements of the ring R1. In 
fact, we have the following:

Proposition 3.5.1. The assignment X ÞÑ ZXptq induces a map of pre-λ-rings

K0pVar{Fqq Ñ R1,

where R1 is equipped with the Witt ring structure.

Proof. It suffices to prove the same with R1 replaced by 1 ` tZrrtss “ W pZq, because 
the zeta function of any variety is contained in R1 X 1 ̀ tZrrtss Ă 1 ̀ tCrrtss “ W pCq. 
Then, we claim the zeta measure is induced by the functor
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Var{Fq Ñ AlFin Z-set

sending X{Fq to the set XpFqq with the action of FrobZq .
It is clear that this induces a map of abelian groups on K0: indeed, the functor factors 

through the localization of Var{Fq at radicial surjective maps (those maps which induce 
bijections on points over algebraically closed fields), and then applying the naive K0 to 
both sides gives the desired map — here the naive K0 is the free group on isomorphism 
classes modulo turning finite disjoint unions into sums, and it is shown in [2] that the 
localization combined with naive K0 on the left recovers K0pVar{Fqq. Since products and 
symmetric powers are preserved by the functor, we find that this is furthermore a map 
of pre-λ rings.

The orbits of length n in XpFqq correspond to closed points of degree n in X, and 
thus by definition we have

ZXptq “ ZXpFqq
ptq

where the right-hand side is the assignment defined in 3.1.1 inducing

K0pAlFin Z-setq “ 1 ` tZrrtss,

and we conclude. l

Remark 3.5.2. The element L P K0pVar{Fqq gets sent to 1
1´qt , which thanks to the way 

we chose our normalizations has associated element rqs P ZrCˆs and therefore Hadamard 
norm q. Since rqs is invertible for Witt multiplication in R1 with inverse rq´1s, we also 
see that the zeta measure induces a ring morphism MFq

Ñ R1.

Remark 3.5.3. Let X{Fq be a variety. Then the different (semi-)norms introduced in 
Section 3.3 are expressed in the following way when applied to ZXpq´N tq for some 
N ě 1: For every j ě 1, ||ZXpq´N tq||j “ q´Nj |XpFqj q|. Moreover, by Deligne’s results 
on weights, we have

||ZXpq´N tq||8 “ qdimX´N ,

and

||ZXpq´N tq||H ď q´N
2 dimX

ÿ

i“0
dimQ�

Hi
cpXF̄q

,Q�q|q|
i
2 , rgcdp�, qq “ 1s

with equality if X is smooth projective, in which case compactly supported �-adic coho-
mology can also be replaced with regular �-adic cohomology.

Example 3.5.4. It is straightforward to cook up sequences of an P MFq
that seemingly 

violate our meta-conjecture, i.e. whose zeta measures converge in the point counting and 
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weight topologies to the same f P H1 but not in the Hadamard topology. For example, 
take

an “ pn!qL´2n
n

ź

i“1
pL ´ qiq P MFq

.

Then, ||Zan
||8 Ñ 0 and ||Zan

||j Ñ 0 for all j ě 1. Thus, in both the weight and point-
counting topologies, Zan

Ñ 1, which is certainly a Hadamard function! On the other 
hand,

||Zan
||H ě

n!
qn

so the sequence does not converge in the Hadamard topology.
However we maintain that this is not a natural sequence to consider. We refer the 

reader to Remark 4.6.4 for an example of a natural sequence where a different issue 
occurs — there we find a sequence that converges in both the point-counting and weight 
topologies, but not to a Hadamard function, so that the two limits cannot even be 
compared and our meta-conjecture does not apply.

3.6. The Kapranov zeta function and its special values

As explained in the introduction, special values of Kapranov’s zeta function often 
appear as limits in natural motivic statistics questions.

Let X be a quasi-projective variety over Fq, and consider the series

ZKap
X,zetapsq “ 1 ` ZXptqs ` ZSym2Xptqs2

` ¨ ¨ ¨ P 1 ` sR1rrsss, (3.6.0.1)

obtained from the usual Kapranov zeta function by applying the zeta measure.

Remark 3.6.1. Recall that a rational function f P R1 has for every i ě 1 a ghost co-
ordinate gipfq given by the coefficient of ti´1 in d log f . As can be verified either from 
the series or rational function expansion of ZKap

X,zetapsq, applying the ith ghost coordinate 
map gi to each coefficient, we obtain

gipZ
Kap
X,zetapsqq “ ZXF

qi
psq.

Thus, one way to think of the Kapranov zeta function of X{Fq is as working simultane-
ously with the Hasse-Weil zeta functions of the base changes of X to all finite extensions 
of Fq.

By Proposition 3.5.1, the zeta measure is a map of pre-λ rings, and therefore

ZKap
X,zetapsq “ σspZXptqq.
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It follows from the formula for the σ-operations on R1 that for any rational function 
f P R1, if we factorize

f “

ś

p1 ´ taiq
ś

p1 ´ tbiq

then

σspfq “

ś

p1 ´ sraisq
ś

p1 ´ srbisq
. (3.6.1.1)

In particular, combined with Deligne’s results on weights we obtain the following propo-
sition that will be crucial in §4:

Proposition 3.6.2. If X{Fq is geometrically irreducible, then

ZKap
X,zetapsq P 1 ` sR1rrsss

is “a rational function with smallest pole or zero given by a simple pole at rq´ dimX s”, 
that is,

p1 ´ rqdimX
ssqZKap

X,zetapsq “

ś

p1 ´ sraisq
ś

p1 ´ srbisq

where the products are finite and |ai|, |bi| ď qdimX´1{2.

In particular, this gives a way to make sense of special value in H1 by a simple evalu-
ation for any values of s such that the denominator is invertible in H1. The significance 
of knowing the locations of the smallest pole or zero is that it allows us to control the 
convergence of the corresponding series expansion, which is what will come up naturally 
in our applications.

4. Hadamard stabilization for effective zero-cycles

In this section we investigate Hadamard convergence for sequences of motivic densities 
arising from prescribing a set of allowable labels for effective zero cycles. After setting 
up the notation and problem, in Theorem 4.3.5 we give a general condition that guaran-
tees these densities exist. As immediate corollaries we obtain stabilization for the Hodge 
measure over C (Corollary 4.3.7) and for the weight topology on zeta functions (Corol-
lary 4.3.8). For X stably rational, these results hold already in the dimension topology on 
the Grothendieck ring. The proof of Theorem 4.3.5 is based on the generating function 
argument used by Vakil-Wood [22] in their study of motivic densities of configuration 
spaces.
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We then apply our convergence criterion to obtain Hadamard convergence in various 
more specific settings. In §4.4-4.5, we consider pattern-avoiding zero-cycles, generalizing 
spaces considered by Farb-Wolfson-Wood [13] and by Bourqui [4]. In particular, we obtain 
Hadamard convergence for the spaces considered in [13] as well as simpler proofs of some 
results of [13] (cf. §4.4.2), and we also clarify some results of [4] (cf. Remark 4.5.7).

In §4.6, we consider densities with a finite set of allowable labels. The main case of 
interest is the universal one, corresponding to configuration spaces with a fixed set of 
k labels. Here the behavior is more delicate: if qdimX ą k, then we obtain Hadamard 
convergence, but otherwise we obtain natural examples that converge in both the weight 
and point counting topology, but not to a Hadamard function.

4.1. Notation, examples, and a general density problem

We consider the monoid Zk
ě0. For a subset A Ă Zk

ě0zt0u (our set of allowable labels) 
and �d P Zk

ě0, we write X �d
A for the configuration space of points in X with labels in A

summing to �d. In other words, points in X �d
A can be thought of as finite formal sums 

ř

xPX �axx such that each �ax P A and 
ř

x �ax “ �d. Each point of X �d
A thus determines a 

partition of �d into elements of A, and there is a natural decomposition of X �d
A as a disjoint 

union of configuration spaces over such partitions:

X
�d
A “

ğ

λ$A
�d

CλX. (4.1.0.1)

Here the subscript in $A signifies that each part of λ is an element of A and the notation 
Cλ is as in §2.2.1. In terms of generating functions, by the definition of motivic Euler 
products and the decomposition (4.1.0.1), in MK we have the identity

ÿ

�dPZk
ě0

rX
�d
Ast�d “

ź

xPX

˜

1 `
ÿ

�aPA

t�a
¸

.

Example 4.1.1.

(1) Taking A “ Zk
ě0zt0u, we obtain

rX
�d
Zk

ě0zt0u
s “ rSym�dXs “ rSymd1X ˆ Symd2X ˆ ¨ ¨ ¨ ˆ SymdkXs

and

ÿ

�dPZk
ě0

rX
�d
Ast�d “

ź

xPX

˜

1 `
ÿ

�aPA

t�a
¸

“
ź

xPX

1
p1 ´ t1qp1 ´ t2q . . . p1 ´ tkq
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“ ZKap
X pt1qZKap

X pt2q ¨ ¨ ¨ZKap
X ptkq.

In general, we may think of X �d
A as a constructible subset of Sym�dX, i.e. as a param-

eter space of k-tuples of effective zero cycles on X.
(2) If A is the collection of standard basis vectors �ei, 1 ď i ď k, then

X
�d
A “ C

�d
pXq,

the colored configuration space of 
ř

di points in X with k colors and di points of 
color i. The generating function is then

ÿ

�dPZk
ě0

rX
�d
Ast�d “

ź

xPX

p1 ` t1 ` t2 ` ¨ ¨ ¨ ` tkq.

(3) Taking A to be the complement of Zk
ě0 ` pm, m, . . . , mq in Zk

ě0zt0u, we find that 
rX

�d
As equals the class of k-tuples of effective zero cycles on X that overlap in a zero 

cycle with multiplicities less than m. We then have

ÿ

�dPZk
ě0

rX
�d
Ast�d “

ź

xPX

˜

1 `
ÿ

�aPA

t�a
¸

“
ź

xPX

p1 ´ pt1t2 ¨ ¨ ¨ tkqmq

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq
.

“
ZKap
X pt1qZKap

X pt2q ¨ ¨ ¨ZKap
X ptkq

ZKap
X ppt1t2 ¨ ¨ ¨ tkqmq

.

4.1.2. A density problem
Recall that a motivic measure is a ring morphism φ : MK Ñ R valued in some ring 

R. We will often write aφ for φpaq.
If A Ă B, then X �d

A Ă X
�d
B , and for suitable motivic measures φ, it is natural to consider 

the asymptotic density

lim
dÑ8

rX
�d
Asφ

rX
�d
Bsφ

(4.1.2.1)

where here �d Ñ 8 means each entry is going to 8.
We restrict here to the case where A contains the standard basis vectors �ei, 1 ď i ď k; 

this ensures that X �d
A has dimension dimX ¨

ř �d, and includes the cases of Example 4.1.1. 
It is then natural to take B “ Zk

ě0zt0u, so that we are studying densities in the full 
motivic probability space of k-tuples of effective zero cycles. In this setup, we give in 
Theorem 4.3.5 below a condition on X, A, and φ that guarantees the limit (4.1.2.1)
exists, and, moreover identifies the limit as a special value of a power series expressed as 
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a motivic Euler product. Before establishing this criterion, we give some basic notation 
for discussing convergence of power series with coefficients in MK .

4.2. Normed motivic measures and convergence of series

4.2.1. Normed motivic measures
We call a motivic measure φ : MK Ñ R normed if R is complete for a sub-

multiplicative norm || ̈ || and ||L´1
φ || ă 1. We have in mind especially the cases:

(1) K “ Fq and φ the zeta measure to the completion of R1 for either the weight or 
Hadamard topologies.

(2) K arbitrary and φ the map MK Ñ xMK to the completion for the dimension 
topology. In this case, we fix the norm to be ||a|| “ 2dim a where we define 
dim a :“ inftd P Z, a P Fild xMKu.

(3) K “ C and φ the Hodge measure, with a norm defined similarly using the weight 
filtration on {K0pHSq.

Note that on MFq
we can also access the point-counting topology for the zeta measure 

through this setup by treating each ghost coordinate individually, i.e. by considering for 
each k the measure induced by X ÞÑ |XpFqkq| as a C-valued measure.

4.2.2. Absolute convergence and radius of convergence
The following is completely elementary, but it will be useful to spell it out clearly 

before we start manipulating values of convergent power series for normed motivic mea-
sures.

If R is complete for a norm || ̈ ||, then we say a series
ÿ

�dPZk
ě0

r�d

for r�d P R converges absolutely if the series of real numbers 
ř

||r�d|| converges, i.e. if the 
limit of partial sums converges. An absolutely convergent series converges and its limit 
is independent of reordering the terms; moreover, the Cauchy product of two absolutely 
convergent series is absolutely convergent and its limit is the product of the limits of the 
two series.

Given a power series

fptq “
ÿ

�dPZk
ě0

a�d t�d P Rrrt1, . . . , tkss,

the radius of convergence of fptq is

ρpfq “
1

lim sup�d ||a�d||1{
ř �d

P r0,`8s.
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If s1, . . . , sk P R are such that ||si|| ă ρpfq for all i, then the series obtained by formally 
substituting si for ti converges absolutely, and we write fps1, . . . , skq for its value in R.

If fptq and gptq both have radius of convergence ě ρ0, then so does the formal power 
series hptq “ fptqgptq, and hps1, . . . , skq “ fps1, . . . , skqgps1, . . . , skq for ||si|| ă ρ0. In 
particular, we highlight the following point: if fptq has invertible constant coefficient 
then it admits a formal inverse 1

f ptq P Rrrt1, . . . , tkss. If both f and 1{f have radius of 
convergence ě ρ0 and ||si|| ă ρ0, then we find

fps1, . . . , skq ¨
1
f

ps1, . . . , skq “ 1, so 1
f

ps1, . . . , skq “
1

fps1, . . . , skq
.

Example 4.2.3. Let X{Fq be a geometrically irreducible variety. From Proposition 3.6.2
and the above discussion, we deduce that, as power series in H1rrtss,

(1) ZKap
X,zetaptq and 1{ZKap

X,zetaptq have radius of convergence ě q´ dimX and converge to 
mutually inverse values for |t| ă q´ dimX .

(2) Let fpxq “ p1 ́ trqdimX sqZKap
X,zetaptq. Then fpxq and 1{fpxq have radius of convergence 

ě q´ dimX`1{2, and converge to mutually inverse values for |t| ă q´ dimX`1{2.

Indeed, given the formula for ZKap
X,zetaptq as a rational function in Proposition 3.6.2 and 

the behavior of radius of convergence of products, it suffices to observe that, for a P Cˆ, 
the formal power series with coefficients in H1

1
1 ´ rast

“ 1 ` rast ` ras
2t2 ` . . .

has radius of convergence 1
|a|

.

4.2.4. A useful lemma
We establish a useful convergence lemma for the dimensional topology. Before stating 

it, recall that a motivic Euler product is by definition a power series with coefficients 
in MK – that is, the product symbol is only a notationally convenient way of defining 
a series. In particular, when discussing convergence of a motivic Euler product, one 
is always discussing convergence of a series – there is indeed no other way that the 
convergence can be interpreted.

Lemma 4.2.5. Let 1 `
ř

iě2 aiT
i P ZrrT ss be a power series with no term of degree 1. 

Then the motivic Euler product

fptq “
ź

xPX

˜

1 `
ÿ

iě2
ait

i

¸

,

viewed as a power series with coefficients in xMK , has radius of convergence ě ||L||´
dim X

2 .

Moreover, for ||s|| ă ||L||´
dim X

2 , fpsq is an invertible element of xMK .



M. Bilu et al. / Advances in Mathematics 407 (2022) 108556 31

Proof. Because the formal inverse

1
1 `

ř

iě2 aiT
i

P ZrrT ss

also satisfies the hypotheses of theorem and

1{fptq “
ź

xPX

1
1 `

ř

iě2 aiT
i
,

the statement about invertibility of the value fpsq will follow once we have established 
the claim about the radius of convergence.

To compute the radius of convergence, we note that the term of degree n of the 
expansion of this motivic Euler product is a sum over partitions of n. Because a1 “ 0, 
the contribution of each partition pniq such that 

ř

ini “ n is bounded in dimension by

ÿ

iě2
ni dimX ď

1
2

ÿ

iě1
ini dimX “

ndimX

2 .

The result then follows immediately from the formula for the radius of convergence. l

4.3. Weak rationality and a convergence criterion

Given a power series fptq with coefficients in MK and a normed motivic measure φ, 
the φ-radius of convergence of f is the radius of convergence of the power series obtained 
by applying φ to the coefficients of f .

Definition 4.3.1. For X a geometrically irreducible K-variety, we say ZKap
X ptq is weakly 

rational for a normed motivic measure φ if the power series p1 ´ LdimXtqZKap
X ptq and 

its inverse both have φ-radius of convergence strictly larger than ||L´ dimX
φ ||.

For K “ Fq and φ the point-counting measure to C, weak rationality follows from 
Deligne’s results on weights – indeed, the smallest zero or pole of the rational function 
ZXptq is a pole of multiplicity one at q´ dimX . For our applications, what we will need 
is precisely the convergence of the series expressions obtained after removing this pole, 
and this motivates our definition of weak rationality.

We note that closely related conditions have previously been considered in the lit-
erature. In particular, weak rationality is stronger than the motivic stabilization of 
symmetric powers (MSSP) of [22] and the extension MSSP˚ of [19]. In practice, however, 
weak rationality holds whenever MSSP is known, in particular:

Proposition 4.3.2. Let X be a geometrically irreducible K-variety.

(1) If X is stably rational then ZKap
X ptq is weakly rational for the map to the completed 

Grothendieck ring xMK .
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(2) If K “ Fq then ZKap
X ptq is weakly rational for the zeta measure to H1.

(3) If K “ C then ZKap
X ptq is weakly rational for the Hodge measure to {K0pHSq.

Proof. Case (2) follows from Example 4.2.3, and case (3) follows by a similar argument 
using rationality of the Kapranov zeta function under the Hodge measure.

Case (1) is very similar to the argument for MSSP in [22, §4]: X stably rational means 
that for some n, X ˆ An is birational to AdimX`n, and since

p1 ´ LdimXˆAn

tqZKap
XˆAnptq “ p1 ´ LdimX

pLntqqZKap
X pLntq,

it suffices to assume that X is rational. If X is rational, then there are varieties Y1 and 
Y2 with dimYi ă dimX such that rXs ́ rY1s “ rAdimX s ́ rY2s. Then

ZKap
X ptq “

ZKap
Y1

ptq

ZKap
Y2

ptq
ZKap
Adim X ptq,

and since ZKap
Adim X ptq “ 1

1´Ldim Xt
is cleared by multiplying by 1 ´ LdimXt, we conclude 

weak rationality; indeed, ZKap
Yi

ptq˘1 has radius of convergence ě ||L´ dimYi ||. l

Remark 4.3.3. Essentially the same argument as in the proof of Proposition 4.3.2-(3) 
shows more generally that having a weakly rational Kapranov zeta function is invariant 
under stable birational equivalence (as is MSSP; see [22, 1.26-(i)]).

4.3.4. A convergence criterion
Adapting the strategy used to study the motivic densities of configuration spaces in 

[22], we find

Theorem 4.3.5. If ZKap
X ptq is weakly rational for φ and the power series

ř

�dPZk
ě0

rX
�d
Ast�d

ZKap
X pt1qZKap

X pt2q ¨ ¨ ¨ZKap
X ptkq

“
ź

xPX

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸

(4.3.5.1)

converges absolutely at t1 “ t2 “ ¨ ¨ ¨ “ tk “ L´ dimX
φ to a value ζ, then

lim
�dÑ8

rX
�d
Asφ

rSym�dXsφ

“ ζ.

Proof. In what follows, we write n “ dimX. By weak rationality,

p1 ´ Lnt1q ¨ ¨ ¨ p1 ´ LntkqZKap
X pt1q ¨ ¨ ¨ZKap

X ptkq
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converges absolutely at t “ pL´n
φ , . . . , L´n

φ q to an invertible element. In particular, the 

sequence of partial sums rSym�dXsφ

Ln
ř �d

φ

converges to an invertible element as �d Ñ 8.

If the quotient power series

ś

xPXp1 `
ř

�aPA t�aq

ZKap
X pt1qZKap

X pt2q ¨ ¨ ¨ZKap
X ptkq

“
ź

xPX

p1 ´ t1q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸

also converges absolutely at t “ pL´n
φ , . . . , L´n

φ q, then multiplying we find that

p1 ´ Lnt1q ¨ ¨ ¨ p1 ´ Lntkq
ź

xPX

˜

1 `
ÿ

�aPA

t�a
¸

converges absolutely at t “ pL´n
φ , . . . , L´n

φ q. In particular, the sequence of partial sums 
rX

�d
Asφ

Ln|�d|
φ

converges, and the quotient rX
�d
Asφ

rSym�dXsφ
converges to the value of

ź

xPX

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸

at t “ pL´n
φ , . . . , L´n

φ q. l

Remark 4.3.6. The “local factor” at a geometric point x of X,

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸ˇ

ˇ

ˇ

ˇ

ˇ

pL´ dim X ,...,L´ dim Xq

,

is the asymptotic density as �d Ñ 8 of the subset of Sym�dX where x has an allowable 
label. Indeed, this can be verified essentially as in the proof above, using

¨

˝

ź

txu

˜

1 `
ÿ

�aPA

t�a
¸

ź

Xztxu

1
p1 ´ t1q

. . .
1

p1 ´ tkq

˛

‚

O

ź

X

1
p1 ´ t1q

. . .
1

p1 ´ tkq

“
ź

txu

p1 ` t1q . . . p1 ` tkq

˜

1 `
ÿ

�aPA

t�a
¸

.

Here on the first line the numerator is the generating function for the subsets of Sym�dX

where x has an allowable label and the denominator is the generating function for 
Sym�dX. Thus the theorem can be thought of as establishing the asymptotic indepen-
dence of these local conditions at each point x.
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Corollary 4.3.7. For X{C irreducible,

lim
�dÑ8

rX
�d
AsHS

rSym�dXsHS
“

˜

ź

xPX

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸¸ˇ

ˇ

ˇ

ˇ

ˇ

pL´ dim X
HS ,...,L´ dim X

HS q

.

If X is stably rational, then this holds already in xMC.

Proof. By Proposition 4.3.2, the Kapranov zeta function ZKap
X ptq is always weakly ra-

tional for the Hodge measure, and is weakly rational in yMC if X is stably rational. On 
the other hand, since there are no degree 1 terms in

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸

,

we can use Lemma 4.2.5 to check that the motivic Euler product converges absolutely 
in the dimension topology on xMC and thus also for the weight topology after passing to 
the Hodge measure. l

Arguing similarly, we also obtain

Corollary 4.3.8. For X{Fq geometrically irreducible,

lim
�dÑ8

Z
X

�d
A

{WZSym�dpXq
“

˜

ź

xPX

p1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

�aPA

t�a
¸¸ˇ

ˇ

ˇ

ˇ

ˇ

prq´ dim X s,rq´ dim X s,...q

in the weight topology. If X is stably rational, this holds already in xMFq
.

4.4. Pattern-avoiding zero-cycles I

A natural generalization of the setup in Example 4.1.1-(3) is given by the notion of 
pattern-avoiding zero cycles: we fix a subset V of labels, and then take A “ ApV q to 
consist of every label not lying above V (where a label �a lies above V if there is some 
�v P V such that �a ´ �v P Zk

ě0). Thus, in this case X �d
A is the space Z �d

V pXq considered 
in section 1.5.2. In order for A to contain all basis vectors, we assume here that all the 
vectors in V have norm at least 2.

Example 4.4.1.

(1) V “ pm, m, . . . , mq recovers Example 4.1.1-(3).
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(2) Let V “ tp1, 2q, p2, 1qu. Then X �d
ApV q

parameterizes pairs of effective zero-cycles 
pC1, C2q P Symd1pXq ˆ Symd2pXq such that we can write C1 “ C 1

1 ` D and 
C2 “ C 1

2 ` D where C 1
1, C 1

2 and D have disjoint supports and D is reduced (i.e. 
all points have multiplicity at most one).

(3) Bourqui [4, Section 3] studied spaces of “intersection-avoiding” zero-cycles, which 
corresponds to requiring each vector in V to have all of its coordinates equal to 0 
or 1.

4.4.2. Orthogonal patterns
Suppose we take V to be a collection of orthogonal vectors of norm larger than one 

(generalizing Example 4.4.1-(1)). Then, a straightforward computation shows

˜

1 `
ÿ

�aPA

t�a
¸

“

˜

k
ź

i“1

1
1 ´ ti

¸

ź

�vPV

p1 ´ t�vq.

So, in this case (4.3.5.1) simplifies to

ź

�vPV

ZKap
X pt�vq

´1.

In any of the normed motivic measures we consider each term in this finite product 
converges absolutely at t “ pL´ dimX , L´ dimX , . . .q because |�v| ą 1, thus the product 
converges absolutely. Theorem 4.3.5 then gives Theorem A, and we also obtain conver-
gence in the Hodge measure for X{C, and in the dimension topology if X is stably 
rational. In particular, if V “ tpm, m, . . . , mqu as in Example 4.1.1-(3), then we obtain 
a short proof of Theorem 1.9-2 of [13] and provide the motivic lift predicted there.

Remark 4.4.3. Note that while the generating function for any A can be written as an 
infinite product of zeta functions, it is quite special that we obtain a finite product in 
this case.

4.5. Pattern-avoiding zero-cycles II

We now consider the more general case where the vectors in V are not necessarily 
orthogonal.

4.5.1. Möbius functions
It will be helpful to rewrite the power series in Theorem 4.3.5 using the notion of 

Möbius function appearing in [4, Section 3].

Definition 4.5.2. The local Möbius function μV : Zk
ě0 Ñ Z is defined recursively by the 

relation
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1ApV qYt0up�nq “
ÿ

0ď�n1ď�n

μV p�n1
q,

where the left-hand side is the characteristic function of the set ApV q Y t0u.

Remark 4.5.3. It is immediate from the definition that

• μV p0q “ 1;
• for any �n P ApV q, μV p�nq “ 0;
• for any minimal �v P V , μV p�vq “ ´1.

Lemma 4.5.4. We have

p1 ´ t1q ¨ ¨ ¨ p1 ´ tkq

¨

˝1 `
ÿ

�aPApV q

t�a
˛

‚ “
ÿ

�nPZk
ě0

μV p�nqt�n.

Proof. This follows by dividing both sides by p1 ́ t1q ̈ ¨ ¨ p1 ́ tkq, expanding the right-hand 
side and using the definition of μV . l

Example 4.5.5. In the case where V “ tpm, . . . , mqu, we get μV pm, . . . , mq “ ´1, and 
μV p�nq “ 0 for any other non-zero vector �n, so we recover Example 4.1.1-(3). More 
generally, if the vectors in V are orthogonal, one can check that we recover the expression 
in Section 4.4.2.

It is worth showing how this notion is related to the notion of Möbius function of a 
poset. For every �v P Zk

ě0, we denote by �vpiq its i-th coordinate. Define �vmax to be the 
vector given by

�vmaxpiq “ max
�vPV

�vpiq.

Define PV :“ t0u Y
Ť

�vPV t�n, �v ď �n ď �vmaxu. Then we have

Proposition 4.5.6.

(1) The restriction of the function μV to PV is equal to the Möbius function of the 
poset PV .

(2) The function μV is zero outside of the finite set PV .

Proof.

(1) Since for any �n P ApV q, μV p�nq “ 0, the two functions satisfy the same recurrence 
relation for all �n ď �vmax, so coincide on all these elements.
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(2) Let �m P Zk
ě0zPV . If �m P ApV q, then we have already observed that μV p�mq “ 0. 

Otherwise, since �m R PV , we have �m ę �vmax so there exists an index i such that 
�mpiq ą max�vPV �vpiq. Note that, identifying coefficients in Lemma 4.5.4, we get

μV p�mq “
ÿ

�m1s.t.p�m´�m1qPt0,1uk

p´1q
ř

p�m´�m1
q1ApV qYt�0u

p�m1
q.

Now, the �m1 in the sum break up naturally into pairs with the same coordinates 
outside of the ith index, and because for all terms we have �m1piq ě �mpiq ´ 1 ě

max�vPV vpiq, in each pair either both vectors or neither will lie in ApV q. Thus, the 
contributions of the two vectors in each pair cancel, and we obtain zero for the 
sum. l

Remark 4.5.7. We comment further on Example 4.4.1-(3). In this case, Bourqui [4, 
Section 3] writes Bmin Ă t0, 1uk where we write V , and the label generating func-
tion 1 `

ř

�aPApV q
t�a is what Bourqui denotes as QB; the product with the polynomial 

p1 ́ t1q ̈ ¨ ¨ p1 ́ tkq is PB , and the analogue of our Lemma 4.5.4 is Bourqui’s Lemme 3.1. 
The coefficients of (4.3.5.1) are then the values of the motivic Möbius function of [4, 
Section 3.3], and the formula after specializing to Chow motives in characteristic zero 
in [4, Theorem 3.3] follows from the identification of the motivic Euler product with a 
pre-λ power and [19, Lemma 2.8].

Because of the definition of motivic Euler products used there, Bourqui’s results are 
valid after tensoring the Grothendieck ring with Q and specializing to Chow motives. 
Our setting does not require these procedures, and can be thought of as a strengthening 
and generalization of the results of [4, Section 3], answering in particular Bourqui’s 
Question 3.5: it boils down to verifying the identity

ř

�dPZk
ě0

rX
�d
ApV q

st�d

ZKap
X pt1qZKap

X pt2q ¨ ¨ ¨ZKap
X ptkq

“
ź

xPX

˜

ÿ

�n

μV p�nqt�n
¸

,

which follows from Lemma 4.5.4 after taking motivic Euler products. As explained by 
Bourqui, a positive answer to his Question 3.5 ensures that Corollary 3.4 in [4] is valid at 
the level of the Grothendieck ring of varieties, which in turn gives a lift of his main the-
orem to the Grothendieck ring of varieties. We give more details about this in Section 5, 
where we also address Hadamard convergence.

In the remainder of this subsection we prove the following convergence theorem for 
spaces of pattern-avoiding zero-cycles:

Theorem 4.5.8. Suppose X{Fq is irreducible. Let A “ ApV q for some finite set of vectors 
V Ă Zk

ě0 of norms at least 2, and denote by e the minimum of the sums of the coordinates 
of the vectors in V . Then,
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Z
X

�d
A

{WZSym�dpXq

converges as �d Ñ 8 in the weight and point-counting topologies on ZrCˆs. If 
ř

�nPZk
ě0´t0u

|μV p�nq| ă qe dimX , then it converges in the Hadamard topology.

Example 4.5.9. Let V “ tp2, 1q, p1, 2qu as in Example 4.4.1-(2). Then Theorem 4.5.8 tells 
us that

Z
X

�d
ApV q

{WZSym�dpXq

converges in the Hadamard topology for any value of q. Indeed, in this case e “ 3 and 
the only non-zero values of μV are

μV p2, 1q “ μV p1, 2q “ ´1 and μV p2, 2q “ 1,

so the inequality becomes 3 ă q3, which is satisfied for any prime power q.

Remark 4.5.10. In general, we do not necessarily expect Hadamard convergence to hold 
for all values of q. See Remark 4.6.4 for a discussion of this phenomenon, and an example 
of Hadamard non-convergence.

To prove Theorem 4.5.8, we will apply Theorem 4.3.5, and we start by establishing 
some bounds which will be needed to check convergence of the motivic Euler product 
appearing in its hypotheses. In the following we use the notation of 2.3.6.

Lemma 4.5.11. For R a pre-λ ring, r P R and a1, . . . , ak P Z, the coefficient of u�d in

log pp1 ` a1u1 ` ¨ ¨ ¨ ` akukq
r
q ,

an element in R bZ Q, is

´
ÿ

m�d1“�d

ˆ

ř �d1

�d1

˙

p´1q
ř �d1

ř �d1
a
d1
1

1 ¨ ¨ ¨ a
d1
k

k p1
mprq. (4.5.11.1)

In particular, if RbZ Q is normed, we find that the sum of the norms of the coefficients 
of u�d for a fixed total degree d “

ř �d is bounded by

ÿ

m|d

˜

ÿ

i

|ai|

¸d{m

||p1
mprq||. (4.5.11.2)

Proof. The formula (4.5.11.1) is obtained by expanding the formula given in Lemma 2.3.7
in this case. We then obtain the estimate (4.5.11.2) by summing norms for fixed m and 
all �d in (4.5.11.1). l
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Lemma 4.5.12. Let X be an irreducible variety over Fq. Let

P pt1, . . . , tkq “ 1 `
ÿ

�ı

b�ı t�ı P Zrt1, . . . , tks

be a polynomial such that P pt1, . . . , tkq ́ 1 has only terms of degree at least e ě 2. The 
motivic Euler product

ź

xPX

P pt1, . . . , tkq

converges absolutely at t1, . . . , tk “ rq´ dimX s in the point counting topology. If 
ř

�ı |b�ı| ă
qe dimX , then it also converges absolutely in the Hadamard topology.

Proof. Since motivic Euler products commute with monomial substitutions (see [2, Sec-
tion 6.5]), and since each non-constant monomial is of degree at least e, we can reduce 
to verifying the convergence of

ź

xPX

p1 ` a1u1 ` ¨ ¨ ¨ ` anunq

for |ui| ď q´e dimX , where n is the number of non-constant monomials appearing in P , 
and a1, . . . , an are the coefficients b�i, arbitrarily relabeled. Because the coefficients are 
constant, the motivic Euler product is equivalent to the power

p1 ` a1u1 ` ¨ ¨ ¨ ` anunq
rXs

Moreover, by Proposition 3.5.1 the zeta measure is a map of pre-λ rings, so we can 
compute the image as

p1 ` a1u1 ` ¨ ¨ ¨ ` anunq
ZXpsq

and apply Lemma 4.5.11.
We first treat the Hadamard case. We extend the Hadamard norm on ZrCˆs to 

QrCˆs in the obvious way; it then suffices to show that log converges absolutely. Now, 
we consider the estimates (4.5.11.2) for

r “ rZXpsqs “ rqdimX
s ˘ rz1s ˘ ¨ ¨ ¨ ˘ rzN s,

where qdimX´1{2 ě |zi| ě 1. Using that p1
m acts additively and that

p1
mprzsq “

1
m

ÿ

d|m

μpm{dqpdprzsq “
1
m

ÿ

d|m

μpm{dqrzds,

(see Section 3.2) we obtain the estimate
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||p1
mprq||H ď qm dimX

p1 ` Nq´m{2
q ď Cqm dimX . (4.5.12.1)

Suppose Σ :“
ř

i |ai| ď qe dimX . Then, we can bound (4.5.11.2) by

C ¨ pΣdqdimX
`

ÿ

m|d,m‰1
Σd{mqm dimX

q ď C ¨ pΣdqdimX
`

ÿ

m|d,m‰1
qp de

m `mq dimX
q.

ď C ¨

´

ΣdqdimX
` dq

`

de
2 `2

˘

dimX
¯

.

In particular, if Σ ă qe dimX , we conclude the series converges absolutely for

||u1||H , . . . , ||uk||H ď q´e dimX .

For the point counting case, it suffices to show convergence for Fq-points. Then, 
p1
mprXsq is just an integer, the number of closed points of degree m on X{Fq. Thus 

for any M we can factor out the polynomial

M
ź

m“1
P ptm1 , . . . , tmk q

p1
mprXsq,

and then taking log of what remains gives a series with coefficients bounded by (4.5.11.2)
but where the sums are over m ą M . We then obtain absolute convergence by taking 
M large enough that Σ1{M ď qe dimX and estimating as above. l

Remark 4.5.13. In fact, as can be seen from the proof of Lemma 4.5.12, if ε is such that 
Σ ă qe dimX´ε, then Hadamard convergence holds for ||ui||H ď q´e dimX`η for η ă ε, 
and thus for ||ti||H ď q´ dimX`η{e. In the same manner, we can get convergence of point 
counts for |ti| ă q´ dimX`δ for some δ ą 0.

Proof of Theorem 4.5.8. The convergence in the weight topology follows from Corol-
lary 4.3.8. For Hadamard and point counting convergence, we note that by the properties 
of the Möbius function, the power series

p1 ´ t1q ¨ ¨ ¨ p1 ´ tkq

˜

1 `
ÿ

aPA

t�a
¸

“
ÿ

�n

μV p�nqt�n

is a polynomial satisfying the assumptions of Lemma 4.5.12, and the latter combined 
with Theorem 4.3.5 allows us to conclude. l

4.6. Finite sets of allowable labels

In the previous section, we showed that in the case A “ ApV q, we can prove Hadamard 
convergence of
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Z
X

�d
A

{WZSym�dpXq

for q sufficiently large, with the bound in q depending only on the sum of the absolute 
values of the values of the Möbius function of V . In some special cases, it is actually 
possible to improve this bound. The aim of this section is to give a sharp lower bound on 
q in the setting of Example 4.1.1-(2). Thus, for a fixed k we are looking at the behavior 
of Cpd1,...,dkqpXq as d1, . . . , dk Ñ 8, and the corresponding generating function is

ź

xPX

p1 ` t1 ` . . . ` tkq. (4.6.0.1)

Remark 4.6.1. For any finite set of patterns A not necessarily of the form ApV q, the 
generating function for X �d

A is obtained by monomial substitutions from (4.6.0.1) for 
k “ |A|. Similarly to the proof of Lemma 4.5.12, the bounds we obtain in the universal 
case considered here can also be used to study the case of arbitrary finite A.

Theorem 4.6.2. Suppose X{Fq is geometrically irreducible. Then,

ZC �dpXq
{WZSym�dpXq

converges as �d P Zk
ě0 goes to infinity in the weight and point-counting topologies on 

ZrCˆs. If k ă qdimX , it converges in the Hadamard topology.

Remark 4.6.3. This case is also covered by Theorem 4.5.8 by taking V to be the set of 
all vectors in Zk

ě0 with sum of coordinates equal to 2. However, the bound obtained is 
worse: it is of the form fpkq ă q2 dimX for fpkq exponential in k. For k “ 2, however, it 
gives the equivalent condition 

?
5 ă qdimX .

Remark 4.6.4. The condition for Hadamard convergence is not just an artifact of the 
proof: When X “ A1{Fq and k “ 2, we can use a computer to compute the limiting 
formal divisor in the weight topology to high precision by expanding the limiting value as 
described in Corollary 4.3.8 using the expansion of its logarithm given in Lemma 4.5.11
(note that we can identify powers and constant Euler products). The limit is of the 
form 

ř

ně0p´1qnanrq´ns, and we have verified that an ě 2n for n ď 250. Moreover, the 
computations strongly suggest that the ratios |an|{|an´1| are a decreasing sequence for 
n ě 2 with limnÑ8 |an{an´1| “ 2. If this holds, then for q “ 2, any sequence of functions 
converging in the weight topology to this formal divisor has unbounded Hadamard norms. 
It is probably possible to prove the estimate an ě 2n by expanding more carefully using 
the techniques below, but we leave this to the interested reader. In Appendix A, we give 
the first 250 terms of this formal divisor; for comparison, we also give the exact divisor 
of ZC40,40A1ptq´80q along with its Hadamard and point-counting norm for q “ 2 (this 
can be computed in a similar way by expanding out the generating series p1 ̀ t1 ` t2qrA1

s

for rCpd1,d2qpA1qs via Lemma 4.5.11).
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Note that this does not violate our meta-conjecture: limits exist for both the weight 
and point-counting topologies, but the limit in the weight topology is not a Hadamard 
function! In particular, the limit in the weight topology cannot even be compared to the
limit in the point-counting topology, because a general formal divisor does not have a 
well-defined Taylor expansion.

To prove Theorem 4.6.2, we will use the same approach as for the proof of 4.5.8. We 
start by the following variant of Lemma 4.5.11.

Lemma 4.6.5. If R is a pre-λ ring and r P R, the coefficient of t�d in

log ppp1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkqp1 ` t1 ` ¨ ¨ ¨ ` tkqq
r
q P R bZ Qrrt1, . . . , tkss

is
$

&

%

´
ř

md1“d
1`p´1q

d1

d1 p1
mprq if t�d “ tdi

´
ř

m�d1“�d

`

ř �d1

�d1

˘

p´1q
ř �d1

ř �d1 p1
mprq otherwise.

(4.6.5.1)

In particular, if R b Q is normed, we find that the sum of the norms of the coefficients 
of t�d for a fixed total degree d “

ř �d is bounded by
ÿ

m|d,m‰d

pkq
d{m

||p1
mprq||, (4.6.5.2)

Proof. The proof is the same as for Lemma 4.5.11, except that in the final summation 
one needs to note that m “ d gives zero in the first case and cannot occur in the second 
case. l

Proof of Theorem 4.6.2. Convergence in the weight topology follows from Corol-
lary 4.3.8, and convergence in the point counting topology from Lemma 4.5.12 and 
Theorem 4.3.5. For Hadamard convergence, we also apply Theorem 4.3.5, and proceed 
as in the proof of Lemma 4.5.12 to prove the required absolute convergence: it suffices 
to study convergence of the power series

pp1 ´ t1qp1 ´ t2q ¨ ¨ ¨ p1 ´ tkqp1 ` t1 ` ¨ ¨ ¨ ` tkqq
ZXpsq

using Lemma 4.6.5. The point of the latter is to exploit the factors p1 ´ t1q ̈ ¨ ¨ p1 ´ tkq

to cancel out the contribution from p1
dprq in (4.6.5.2), which otherwise would have given 

a term which would have obstructed convergence in the estimates below. Suppose k ď

qdimX . Then, using the estimate (4.5.12.1) on the Möbius-inverted power sums of ZXpsq, 
and the fact that there is no m “ d term, we may bound (4.6.5.2) by

C ¨ pkdqdimX
` dqp2`d{2q dimX

q.
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In particular, if k ă qdimX , we conclude the series converges absolutely for

||t1||H , . . . , ||tk||H ď q´ dimX .

This concludes the Hadamard case. l

Remark 4.6.6. For X{C smooth, one can see that the Betti numbers

dimHi
pCpd1,d2,...,dkqXpCq,Qq “ dimHi

pC

ř

di
hkkkkkikkkkkj

p1, 1, . . . , 1qXpCq,Qq
Sd1ˆSd2ˆ¨¨¨ˆSdk

stabilize as pd1, d2, . . . , dkq Ñ 8 using representation stability for the cohomology of 
pure configuration spaces combined with the Pieri rule.

In more detail,2 representation stability implies that for d “
ř

di " i,

Hi
pC

d
hkkkkkikkkkkj

p1, 1, . . . , 1qXpCq;Qq –
à

V pλq
‘cλ ,

where the direct sum is over partitions λ, the multiplicities cλ are constants and V pλq

is the representation of Sd whose corresponding Young diagram has shape pd ́
ř

λ, λq. 
It suffices to check that dimV pλq

Sd1ˆSd2ˆ¨¨¨ˆSdk stabilizes as pd1, . . . , dkq Ñ 8. By the 
Pieri rule, this dimension is given by the number of ways of choosing subdiagrams with 
shapes

pd1q “ λ1 ď λ2 ď ¨ ¨ ¨ ď λk “ pd ´
ÿ

λ, λq

where each λi is obtained by adding di boxes to λi´1, no two in the same column. As long 
as each di is at least the length of the first row in λ, then this is equal to the number of 
ways to build λ in k´1 steps where at each step we add at most one box in each column 
(the remaining boxes that don’t go towards building λ must go to the first row). This 
count only depends on λ and k. It would be interesting to explain the growth observed 
in Remark 4.6.4 from this perspective.

5. Rational curves on toric varieties

In this section we apply the results of Section 4 to generalize the main theorem of 
Bourqui’s paper [4], which studies moduli spaces of rational curves on split toric varieties.

2 We thank Nate Harman for explaining the following argument to us.
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5.1. Geometric setting

We now introduce the necessary notation and give a brief overview of the geometric 
context of the theory of (split) toric varieties. We refer to the classical references on toric 
varieties (e.g. [14]) for details.

Let K be a field, r ě 1 be an integer, and U “ Gr
m a split torus of dimension r defined 

over K. We denote by X ˚pUq “ HompU, Gmq its group of characters, and X˚pUq “

HompGm, Uq its group of cocharacters. Both are free Z-modules of rank r, and there is 
a natural pairing

x¨, ¨y : X ˚
pUq ˆ X˚pUq Ñ Z.

A projective and regular fan Σ of the Z-module X˚pUq defines a smooth projective 
split toric variety XΣ with open orbit U . We denote by Σp1q the set of the rays (that is, 
one-dimensional faces) of Σ. A generator ρα of such a ray α P Σp1q defines a U -invariant 
divisor Dα on XΣ, and there is a short exact sequence

0 Ñ X ˚
pUq Ñ

à

αPΣp1q

ZDα Ñ PicpXΣq Ñ 0,

where the first map is given by sending m P X˚pUq to
ÿ

α

xm, ραyDα.

From this, we in particular get the identity

rkPicpXΣq “ |Σp1q| ´ r. (5.1.0.1)

An anticanonical divisor is given by 
ř

αPΣp1q
Dα; we denote by L0 its class in the Picard 

group. The effective cone of XΣ is the image in PicpXΣq b R of the cone 
ř

α Rě0Dα, so 
that in particular L0 lies in the interior of the effective cone of XΣ.

Bourqui’s proof introduces a regular fan Δ of the Z-module PicpXΣq_ whose support 
is the dual of the effective cone of XΣ. The cones of maximal dimension of Δ have 
dimension ρ “ rkPicpXΣq. For every ray i P Δp1q we denote by mi its generator. We 
write

a “ lcmtxmi,L0y, i P Δp1qu. (5.1.0.2)

Since L0 is in the interior of the effective cone of XΣ, this is a positive integer. In this 
setting, the invariant α˚pXΣq defined in Section 4.3 of Bourqui’s paper may be expressed 
as:

α˚
pXΣq “

ÿ

δPΔ
dimpδq“rkPicpXΣq

ź

iPδp1q

1
xmi,L0y
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(see [4, Remarque 5.23]). Note that aρα˚pXΣq is a positive integer.

5.2. Möbius functions

By [4, Section 3.5], to every fan Σ there is a natural way to associate a subset BΣ of 
t0, 1uΣp1q and a Möbius function μ0

BΣ
: t0, 1uΣp1q Ñ Z. Denoting by Bmin

Σ the minimal 
elements of BΣ (which by Bourqui’s Lemme 3.8 contains only vectors of norm at least 
2), it is straightforward from the definitions that our Möbius function μBmin

Σ
: ZΣp1q

ě0 Ñ Z

from Section 4.5.1 coincides with Bourqui’s μ0
BΣ

on t0, 1uΣp1q, and is zero outside of 
t0, 1uΣp1q.

We consider the elements μΣp�eq P MK such that

ź

xPP1

˜

ÿ

�n

μ0
BΣ

p�nqt�n
¸

“
ÿ

�e

μΣp�eqt�e. (5.2.0.1)

Since the answer to Bourqui’s Question 3.5 is positive (see Remark 4.5.7), these are ana-
logues in the Grothendieck ring of varieties of the elements μχ

Σp�eq considered in Bourqui’s 
proof.

Remark 5.2.1. Similarly to [3, Proposition 1-(3)] and [4, Proposition 5.18], we can show, 
using the universal torsor formalism, that

ÿ

�n

μ0
BΣ

p�nqL´|�n|
“ p1 ´ L´1

q
rkPicpXΣq

rXΣsL´ dimpXΣq.

Thus, analogously to the arithmetic case, the value at L´1 of our motivic Euler product 
(5.2.0.1) may be thought of as a product of local densities with convergence factors.

The main idea of the proof of Theorem C will be to reduce the convergence of the 
motivic height zeta function to the convergence of series of the form

ÿ

�ePZΣp1q
ě0

μΣp�eqW�eT
|�e| (5.2.1.1)

where the W�e are elements in the completed Grothendieck ring of varieties. We briefly 
discuss here how this convergence can be checked in the different topologies in play.

5.2.2. Dimensional topology
From the proof of Lemma 4.2.5, we see that

dimμΣp�eq ă
|�e|

2 .

Thus, convergence of the series (5.2.1.1) for |T | ă L´1`η follows as soon as one has 
estimates of the form
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dimW�e ď ε|�e|

for ε such that 0 ă ε ă 1
2 . In particular, this gives us an analogue in the Grothendieck 

ring of varieties to Bourqui’s Corollaire 3.4, which is sufficient to lift Bourqui’s proof to 
the Grothendieck ring of varieties.

5.2.3. Hadamard convergence
Denote MΣ “

ř

�n‰0 |μ0
BΣ

p�nq| and let eΣ be the minimal number of non-zero coordi-
nates of a vector in BΣ. According to Lemma 4.5.12 and Remark 4.5.13, if q ą M

1{eΣ
Σ , 

there exists δ ą 0 such that the series
ÿ

�e

μΣp�eqT |�e|

converges absolutely for ||T ||H ă q´1`δ. We deduce that for ε such that 0 ă ε ă δ, if we 
have bounds

||W�e||H ă qε|�e|,

then the series (5.2.1.1) converges for ||T ||H ă q´1`δ´ε.

5.2.4. Point counting convergence
Point counting convergence is handled similarly to Hadamard convergence: if δ ą 0 is 

such that for every prime power q the series of point counts
ÿ

�e

#Fq
μΣp�eqT |�e|

converges for |T | ă q´1`δ, then it suffices to have bounds

#Fq
W�e ă qε|�e|

for some ε such that 0 ă ε ă δ.

5.3. Statement

Now that we have introduced all of the data of the problem, we can state our result 
more precisely.

Theorem 5.3.1. Let K be a field and XΣ a smooth and projective split toric variety over K
with open orbit U . For every integer d ě 0, we denote by U0,d the quasi-projective variety 
parameterizing K-morphisms P 1

K Ñ XΣ with image intersecting U and of anticanonical 
degree d. Let ρ be the rank of the Picard group of XΣ.
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(1) There exists a real number η ą 0 such that the series

p1 ´ pLT q
a
q
ρ

˜

ÿ

dě0
rU0,dsT d

¸

, (5.3.1.1)

where a is the integer defined in (5.1.0.2), converges for ||T || ă ||L||´1`η in the 
dimensional topology. Its value at L´1 is non-zero and equal to

aρα˚
pXΣqLr

p1 ´ L´1
q

´ρ
ź

xPP1

˜

1 `
ÿ

�n

μB0
Σ

p�nqT |�n|

¸ˇ

ˇ

ˇ

ˇ

ˇ

T“L´1

.

(2) Assume now K “ Fq finite. Then the convergence of (5.3.1.1) also holds in the point 
counting topology. If in the notation of 5.2.3 one has q ą M

1{eΣ
Σ , then it holds in the 

Hadamard topology.

Remark 5.3.2. The statement in [4] is for the series

p1 ´ LT q
ρ

ÿ

dě0
rU0,dsT d.

Indeed, as we will see below, the proof consists in writing the series ZpT q as a finite sum 
of terms of the form CipT qRipT q where Ci is a rational function such that p1 ́ LT qρCipT q

has no pole at L´1 and RipT q is a series which converges for ||T || ă ||L||´1`η. Thus, while 
multiplying by p1 ´ LT qρ is enough to be able to evaluate at L´1 (and thus sufficient 
for Bourqui’s purposes), to eliminate some potential other poles of the rational functions 
Ciptq and obtain convergence for all ||T || ă ||L||´1`η one needs to multiply by some 
additional factors.

5.4. Proof of the theorem

The rest of the section is devoted to a proof of Theorem 5.3.1. This requires a careful 
analysis of Bourqui’s proof, checking that the convergence statements can be adapted to 
our more general setting. Additionally to the dimensional bounds from [4], we will also 
need some estimates from [3].

Following Bourqui, we denote

Zmot
P1,U,h0

pT q “
ÿ

dě0
rU0,dsT d.

Essentially, the proof consists in writing Zmot
P1,U,h0

pT q as a finite sum of series of the 
form (5.2.1.1), and checking convergence for each of them following the discussion in 
Section 5.2.
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The first important step in Bourqui’s proof is a universal torsor argument, expressing 
each space rU0,ds in terms of certain spaces of zero-cycles on P 1. This leads to identity 
(5.4) in [4], after which, in the beginning of section 5.4, motivic Möbius inversion is 
applied. The resulting series is decomposed into a finite number of series depending on 
different parameters, and the contributions of which are studied separately:

Zmot
P1,U,h0

pT q “ pL ´ 1q
´ρ

ÿ

AĂΣp1q

p´1q
|A|

ÿ

δPΔ
ZA,δpT q (5.4.0.1)

where Δ is a fan with support the dual of the effective cone of XΣ. We do not give 
more details here, because, as Bourqui remarks in the beginning of Section 5.4, all of 
his computations not involving convergence issues are valid in the Grothendieck ring of 
varieties MK .

To study convergence, one has to distinguish between different cases. We first study 
the case A “ ∅.

For every δ, there is a further decomposition

Z∅,δ “
ÿ

JĂΣp1q

p´1q
|J|ZH,δ,JpT q. (5.4.0.2)

We are going to show, as in Bourqui’s proof, that terms Z∅,δ,JpT q where J “ ∅ and δ
is of maximal dimension (that is, dimpδq “ ρ) give the main pole.

Proposition 5.4.1.

(1) Let δ P Δ. There exists a real number η ą 0 such that the series

p1 ´ pLT q
a
q
dimpδqZ∅,δ,J pT q

converges for ||T || ă ||L||´1`η in the dimensional topology. If K is finite, its spe-
cialization via the zeta measure converges in the point counting topology. When 
q ą M

1{eΣ
Σ , it converges in the Hadamard topology.

(2) If J is nonempty and δ is of maximal dimension, the value of the series from (1) at 
L´1 is zero.

(3) The value of the series

p1 ´ pLT q
a
q
ρ

ÿ

δPΔ
dimpδq“r

Z∅,δ,∅pT q

at T “ L´1 is

aρα˚
pXΣqL|Σp1q|

ÿ

�ePZΣp1q
ě0

μΣp�eqL´|�e|,

which is a non-zero element of xMK .
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Proof. The key step in Bourqui’s argument is to decompose

Z∅,δ,J pT q “
ÿ

�e

μΣp�eqZ∅,δ,J,�epT q

and rewrite Z∅,δ,J,�epT q, as in the statement of [4, Lemme 5.26, (ii)]; it is a geometric 
series over a truncated cone denoted by Cpδp1qqJ,�e, and one separates it into a product 
of infinite and finite geometric series. What is important for us here is that through this 
procedure, we can write

Z∅,δ,J,�epT q “ L|Σp1q|´|�e|CδpT qQδ,�epT q

where CδpT q is a rational function (coming from the factors which are infinite geometric 
series) not depending on �e, but only on J and on δ, and Qδ,�epT q is a polynomial (coming 
from the finite geometric sums), of the form

Qδ,�epT q “
ÿ

y

pLT q
xy,L0y.

Here the summation is over elements y of the set denoted by CpIJ,2qJ,�e by Bourqui, 
the size of which is bounded by |�e||Σp1q| according to the proof of Lemme 3 in [3]
(see bottom of page 192). Note that Bourqui’s polynomial PI1 pT q is what we denote 
L|Σp1q|L´|�e|Qδ,�epT q.

We have

p1 ´ pLT q
a
q
dimpδqZH,δ,J pT q “ p1 ´ pLT q

a
q
dimpδqCδpT qL|Σp1q|

ÿ

�e

μΣp�eqL´|�e|Qδ,�epT q.

We see from the expression

CδpT q “
ź

iPIpδq

ˆ

1
1 ´ pLT qxmi,L0y

´ 1
˙

where Ipδq is a subset of δp1q (the set of rays of the cone δ), and from the definition of 
a, that the rational function

p1 ´ pLT q
a
q
dimpδqCδpT q

has no poles, and we therefore may turn to the analysis of the series
ÿ

�e

μΣp�eqL´|�e|Qδ,�epT q.

Let us first consider the dimensional topology. By the top of page 193 in the proof of 
Lemme 3 in [3], for y P CpIJ,2qJ,�e, we have bounds
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0 ď xy,L0y ď C|�e| (5.4.1.1)

for an explicit positive constant C, so that for η ą 0 sufficiently small and ||T || ă

||L||´1`η, the polynomial Qδ,�epT q takes values with dimension bounded by ε|e| for some 
small ε ą 0, and using the discussion in 5.2.2 we may conclude.

We now turn to the Hadamard and point counting topologies. Using (5.4.1.1) together 
with the fact that the polynomial Qδ,�epT q has polynomially many terms, for η sufficiently 
small and ||T ||H ă ||L||

´1`η
H , the values of Qδ,�epT q are bounded by qε|e| for some small 

ε ą 0. By the discussion in 5.2.3, we see that our series converges for ||T ||H ă ||L||
´1`η
H

for some η ą 0. We proceed similarly in the point counting case. This proves the first 
statement.

We now come to the second statement. From [4, Lemme 5.26,(ii)], we see that if J is 
nonempty and δ of maximal dimension, then Ipδq is a strict subset of δp1q, so that CδpT q

comprises strictly less than dimpδq factors, and so

p1 ´ pLT q
a
q
dimpδqCδpT q

has a zero at L´1. This together with the convergence proved above yields the result.
It remains to prove the last statement. Assume J is empty, and let δ be of maximal 

dimension. In this case, from [4, Lemme 5.26,(ii)], we see that Ipδq “ δp1q and that our 
polynomial Qδ,�e is in fact constant equal to 1. A quick computation then shows that the 
value of

p1 ´ pLT q
a
q
rkPicpXΣq

ÿ

δPΔ
dimpδq“rkPicpXΣq

CδpT q

at T “ L´1 equals aρα˚pXΣq. From this we deduce the value of the limit. It follows from 
Lemma 4.2.5 that the limit is non-zero. l

We now come to the case A ‰ ∅. The argument is similar: there is a decomposition

ZA,δpT q “
ÿ

JĂΣp1qzA

p´1q
|J|ZA,δ,JpT q, (5.4.1.2)

where

ZA,δ,J pT q “
ÿ

�e

μΣp�eqZA,δ,J,�epT q.

Proposition 5.4.2. Let δ be a cone of Δ, A a non-empty subset of Σp1q and J a subset 
of Σp1qzA. There exists η ą 0 such that the series

p1 ´ pLT q
a
q
dimpδqZA,δ,JpT q
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converges for ||T || ă ||L||´1`η in the dimensional topology. If k “ Fq is finite, it con-
verges in the point counting topology. If moreover q ą M

1{eΣ
Σ , then it also converges in 

the Hadamard topology. If dimpδq “ ρ, then the value of this series at L´1 is zero.

Proof. The proof proceeds similarly to the one of Proposition 5.4.1. According to [4, 
Lemme 5.28 (ii)], we may write

ZA,δ,T,�epT q “ CδpT qRδ,�epT q,

where CδpT q is a rational function which does not depend on �e, and Rδ,�epT q (denoted by 
RI1 pT q in Bourqui’s paper) is a power series with coefficients in ZrLs. As in the previous 
proposition, we again have that the rational function

p1 ´ pLT q
a
q
dimpδqCδpT q

has no poles, and has a zero at L´1 if δ is of maximal dimension. Thus, essentially the 
only difference with the previous case is that the polynomial factor Qδ,�e has been replaced 
with a non-polynomial one, and we need to work a little bit more to get sufficient bounds.

Writing Rδ,�epT q out explicitly, we see that we are interested in the convergence prop-
erties of the series

ÿ

�e

μΣp�eqL´|�e|
ÿ

phαqαPA

hαěeα

L´
ř

αPAphα´eαq
ÿ

y

pLT q
xy,L0y (5.4.2.1)

where the sum over y is taken over a finite subset of the dual of the effective cone, the 
size of which is bounded polynomially in the hα and eα, according to the middle of page 
197 in the proof of Lemme 4 in [3]. In the same reference, we also see that for y in this 
set, there is a positive constant C such that

0 ď xy,L0y ď C

˜

ÿ

αPA

phα ´ eαq ` |�e|

¸

.

Using the latter, we see that for ||T || ă ||L||´1`η the dimension of the term corre-
sponding to phαq is bounded by

´p1 ´ εq

˜

ÿ

αPA

phα ´ eαq

¸

` ε|�e|

for some small ε. From this we see that the �e-term of (5.4.2.1) converges in the dimen-
sional topology for ||T || ă ||L||´1`η and takes values with dimension bounded by ε|�e|. By 
5.2.2, we have the desired convergence of the series (5.4.2.1) in the dimensional topology.
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In the same way, the Hadamard norm of the �e-term of (5.4.2.1) is bounded by

ÿ

phαqαPA

hαěeα

q´p1´εq
ř

αPAphα´eαqqε|�e|
“

ˆ

1
1 ´ q´1`ε

˙|A|

qε|�e|

which by 5.2.3 is enough to deduce Hadamard convergence. Point counting convergence 
is handled in the same way. l

To conclude the proof of Theorem 5.3.1, we combine the decompositions in (5.4.0.1), 
(5.4.0.2) and (5.4.1.2) with Propositions 5.4.1 and 5.4.2, to show that

p1 ´ pLT q
a
q
rkPicpXΣqZmot

P1,U,h0
pT q

is a finite sum of series that converge for ||T || ă ||L||´1`η. Moreover, the only ones that 
give a non-zero contribution to the value at L´1 are those corresponding to A “ ∅, J “ ∅

and δ of maximal dimension, and their contribution is given by Proposition 5.4.1-(3). 
Using relation (5.1.0.1), we conclude that the value of our series at T “ L´1 is

aρα˚
pXΣqLr

p1 ´ L´1
q

´ρ
ÿ

�ePZΣp1q
ě0

μΣp�eqL´|�e|.

Remark 5.4.3. In fact, the proof of Lemma 4.2.5 allows us to deduce that this value is of 
the form

aρα˚
pXΣqLρ

` terms of lower dimension,

where we recall that aρα˚pXΣq is a positive integer.

6. The configuration random variable

In this section we prove the following generalization of Theorem B, which also 
strengthens and provides a more natural formulation of [19, Corollary B].

Theorem 6.0.1. Let X be a geometrically irreducible variety over a field K. If

(1) K is arbitrary, X is stably rational, and φ is the measure to zMK or
(2) K “ C and φ is the Hodge measure to {K0pHSq, or
(3) K “ Fq and φ the zeta measure to H1,

then

lim
dÑ8

rCλ¨˚
d

pXqsφ

rC |λ|`dpXqsφ
“ Cλ

X

˜

1
1 ` LdimX

φ

¸

.
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Here the element Cλ
X

´

1
1`Ldim X

φ

¯

will be made sense of by showing that the map

a ÞÑ Cλ
Xpaqφ

extends by continuity to the closure of ZrL˘1s – φpZrL˘1sq, which contains

1
1 ` LdimX

φ

“ L´ dimX
φ

1
1 ` L´ dimX

φ

“ L´ dimX
φ ´ L´2 dimX

φ ` ....

We also note that in case (1) of the theorem, the assumption that X is stably rational 
is only there to ensure ZKap

X ptq is weakly rational, and could be replaced with that 
condition.

6.1. Continuity of labeled configuration spaces

We now prove a lemma giving the continuity properties required to make reasonable 
sense of Cλ

´

1
1`Ldim X

φ

¯

and similar quantities. In the dimension topology (and thus 
also for the Hodge measure) a very strong continuity on the entire Grothendieck ring 
follows immediately from the definitions. The case of the Hadamard topology is more 
subtle because we do not know any suitable general bounds on the Hadamard norm of a 
labeled configuration space. However, if we restrict to ZrL˘1s, which is enough for our 
purposes here, a simple estimate will suffice.

Lemma 6.1.1. Suppose X is a variety over a field K.

(1) The map

MX Ñ MCλpXq, a ÞÑ Cλ
Xpaq

is continuous for the dimension topologies on both sides and thus induces a contin-
uous map

zMX Ñ {MCλpXq, a ÞÑ Cλ
Xpaq.

(2) If K “ C and φ is the Hodge measure to {K0pHSq, then composition of the arrow 
from (1) with the forgetful map {MCλpXq Ñ yMC and φ induces a continuous map

zMX Ñ {K0pHSq, a ÞÑ Cλ
Xpaqφ.

(3) If K “ Fq and φ is the zeta measure, the map

ZrL˘
s “ φpZrL˘

sq Ñ H1, a ÞÑ Cλ
Xpaqφ “ ZCλ

Xpaqptq
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extends to a continuous map

{ZrL˘1s “ φpZrL˘1sq Ñ H1, a ÞÑ Cλ
Xpaqφ

where the domain is the completion of ZrL˘1s for the induced norm, or equivalently 
the closure of φpZrL˘1sq in H1.

Proof. The first two statements are immediate from the definitions via simple dimension 
estimates. We now treat the third statement; in the proof, we denote the Hadamard norm 
by || ̈ ||.

Fix a P ZrL˘1s, and consider a perturbation a ̀ h. We write h in the slightly unusual 
expansion h “

řN
i“1 εiL

ki for εi P t˘1u and εi “ εj if ki “ kj ; for example, we expand

2L2
´ 3L´1

“ L2
` L2

´ L´1
´ L´1

´ L´1.

Note that as a consequence, we may express the Hadamard norm of h in the following 
way:

||h|| “

N
ÿ

i“1
||L||

ki .

Using the definition (2.2.4.2) of Cλ
X , the symmetric power addition formula (2.2.4.1), 

and the identity Symk
XpL�q “ Lk� valid in any relative Grothendieck ring, we find

Cλ
Xpa ` hq ´ Cλ

Xpaq “
ÿ

řN
j“0 λj“λ

λ0‰λ

˜

Symλ0
X paq

N
ź

j“1
Symλj

X pεiq

¸

˚,X

L
řN

j“1 |λj |kj

Here the sum is over tuples of partitions pλ0, . . . , λN q such that their multiplicity vectors 
sum up to the multiplicity vector of λ, and such that the partition λ0 is not equal to λ.

The key point is that, since λ and a are fixed, the terms p. . .q˚,X appearing vary over 
a finite set of classes (for all h). We can thus bound their Hadamard norms above by a 
real number M , so that we obtain

||Cλ
Xpa ` hq ´ Cλ

paq|| ď M
ÿ

řN
j“0 λj“λ

λ0‰λ

||L||
řN

j“1 |λj |kj

ď M

¨

˝

˜

1 `

N
ÿ

j“1
||L||

kj

¸|λ|

´ 1

˛

‚

“ M
´

p1 ` ||h||q
|λ|

´ 1
¯
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To go from the first to the second line, observe that if the multiplicities of λ are m1, . . . ,
mn, then

ÿ

ř

λj“λ
λ0‰λ

||L||
řN

j“1 |λj |kj “

¨

˝

n
ź

l“1

¨

˝

ÿ

řN
j“1 ajďml

||L||
ř

ajkj

˛

‚

˛

‚ ´ 1

and the l-th term inside the product is bounded above by
˜

1 `

N
ÿ

j“1
||L||

kj

¸ml

“
ÿ

řN
j“1 ajďml

ˆ

ml

a1, a2, . . . , aN , ml ´
řN

j“1 aj

˙

||L||
řN

j“1 ajkj .

This verifies continuity at a, and we conclude since a was arbitrary. l

6.2. Configuration spaces with power series labels

Let now

fpsq “ a0 ` a1s ` . . . P MX rrsss

Using property (2.2.4.1), for any generalized partition λ “ pniqi, there is a natural way 
of defining a power series

Cλ
Xpfpsqq P MCλpXqrrsss.

Explicitly, we have, denoting by pq˚,X the pullback to CλpXq,

Cλ
Xpfpsqq “

˜

ź

jě1
Symnj

X

˜

ÿ

iě0
ais

i

¸¸

˚,X

“

¨

˚

˚

˝

ź

jě1

¨

˚

˚

˝

ÿ

pni,jqi
ř

i ni,j“nj

˜

ź

i

Symni,j

X paiq

¸

s
ř

i ini,j

˛

‹

‹

‚

˛

‹

‹

‚

˚,X

“
ÿ

pni,jqi,j
ř

i ni,j“nj

˜

ź

i,j

Symni,j

X paiq

¸

˚,X

s
ř

i,j ini,j . (6.2.0.1)

Arguing similarly to our proof of Lemma 6.1.1, we find

Lemma 6.2.1. In the settings of Lemma 6.1.1, if fpsq P Zrrsss and if f converges abso-
lutely at Lr

φ, then so does Cλ
Xpfpsqq and

Cλ
XpfpLr

φqq “ Cλ
Xpfpsqq

ˇ

ˇ

s“Lr
φ
.
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In the dimension topology, the statement holds for fpsq P MX rrsss, but we will not 
use this added generality here.

Remark 6.2.2. By expanding, one can see that the coefficient of tλ in the motivic Euler 
product

ź

xPX

p1 ` fxpsqpt1 ` t2 ` ¨ ¨ ¨ qq “
ź

xPX

˜

1 `
ÿ

i,j

ai,xs
itj

¸

is exactly the image in MKrrsss of Cλ
Xpfpsqq.

6.2.3. An alternative expression for configuration spaces with power series labels
To motivate what we want to establish in this section, let us discuss quickly the 

classical set-up that we are trying to imitate. When X is a finite set and pfxpsqqxPX is a 
family of formal power series indexed by X, the expansion of the finite product

ź

xPX

p1 ` fxpsqtq (6.2.3.1)

can be written as

ÿ

ně0

¨

˝

ÿ

cPCnpXq

ź

xPc

fxpsq

˛

‚ tn,

where CnpXq is the set of configurations of n distinct points of X. In other words, 
the family pfxpsqqxPX defines a function on CnpXq given by c ÞÑ

ś

xPc fxpsq, and the 
coefficient of tn in the expansion of (6.2.3.1) is the summation of this function over 
CnpXq.

In the usual Grothendieck ring dictionary, elements of MCλpXq can be thought of as 
motivic functions defined on CλpXq, and taking the class of such an element in MK

may be thought of as summation over CλpXq. In view of Remark 6.2.2, if one replaces 
finite products with motivic Euler products, one should expect Cλ

Xpfpsqq to be equal 
in MCλpXq to a motivic Euler product relatively to CλpXq: to reproduce the fact that 
above every configuration we take the product over points of that configuration, the 
product will be over the universal configuration.

For X a variety over K and λ a partition, let cλ{CλX denote the universal configu-
ration,

cλ “ tpc, xq|x P cu Ă CλX ˆ X

Denote by jλ : cλ Ñ X the projection. Given fpsq P MX rrsss, let j˚
λf be the corre-

sponding series in Mcλ
rrsss given by pullback of coefficients along jλ.
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Proposition 6.2.4. We have the equality

Cλ
Xpfpsqq “

ź

yPcλ{CλX

pj˚
λfqypsq

in MCλpXqrrsss.

Proof. We start by expanding the right-hand side. For every i, denote bi “ j˚
λai. For 

every j ě 1, there is a projection map

πj : CλX “

˜

ź

iě1
SymniX

¸

˚,X

Ñ pSymnjXq˚,X ,

using which we introduce

cpjq

λ “ tpx, cq P cλ, x P πjpcqu.

By definition, cλ is the disjoint union of the cpjq

λ , j ě 1. We also define bpjq

i to be the 

restriction of bi to cpjq

i , so that in Mcλ
, we have

bi “
ÿ

j

b
pjq

i .

In other words, bpjq

i is the pullback of ai to cpjq

λ . We now expand

ź

yPcλ{CλX

pj˚
λfqxpsq “

ź

jě1

ź

yPcpjq
λ {CλX

´

b
pjq

0,y ` b
pjq

1,ys ` b
pjq

2,ys
2

` ¨ ¨ ¨

¯

“
ÿ

pni,jqi,j
ř

i ni,j“nj

˜

ź

i,j

Symni,j pb
pjq

i {CλXq

¸

˚

s
ř

i,j ni,ji

in MCλpXq. Note that only terms satisfying 
ř

i ni,j “ nj for every j will contribute 

since for each j, the above product over cpjq

λ relatively to CλX is finite, with nj factors. 
Using the expansion (6.2.0.1) of Cλ

Xpfpsqq, it remains to compare, for every collection of 
integers pni,jqi,j such that nj “

ř

iě0 ni,j for every j ě 1, the classes of

˜

ź

i,j

Symni,j paiq

¸

˚

and
˜

ź

i,j

Symni,j pb
pjq

i {CλXq

¸

˚

in MCλpXq. For this, observe that the projections cpjq

λ Ñ X induce the projection
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¨

˝

ź

i,j {CλX

Symni,j pcpjq

λ {CλXq

˛

‚

˚

Ñ

˜

ź

i,j

Symni,j pXq

¸

˚

,

(where the product on the left is taken relatively to CλpXq), so that

˜

ź

i,j

Symni,j pb
pjq

i {CλXq

¸

˚

P MCλX

will be the pullback of 
´

ś

i,j Symni,j paiq
¯

˚
via this map. On the other hand, this map 

is actually the identity: since for every j, we have 
ř

i,j ni,j “ j, a point pci,jqi,j P
´

ś

i,j Symni,j pXq

¯

˚
completely determines the configuration above it. l

6.3. Proof of Theorem 6.0.1

We proceed as in the proof of Theorem 4.3.5 to show that the limit can be expressed 
as the value of a certain series; the results of 6.2 will then allow us to conclude. We write 
n “ dimX. By weak rationality,

p1 ´ Lntq
ÿ

dě0
rCd

pXqstd “ p1 ´ Lntq
ź

xPX

p1 ` tq “ p1 ´ Lntq
ZKap
X ptq

ZKap
X pt2q

(6.3.0.1)

converges absolutely at t “ L´n
φ to an invertible element. In particular, the sequence of 

partial sums rCdpXqsφL
´nd
φ converges to an invertible element as d Ñ 8.

On the other hand, denoting by cλ Ñ CλpXq the universal configuration, note that 
the generating series of Cλ¨˚

d

pXq in MCλpXq has the following motivic Euler product 
decomposition

ÿ

dě0
rCλ¨˚

d

pXqstd “
ź

xPpXˆCλX´cλq{CλX

p1 ` tq.

Consider the quotient of power series with coefficients in MCλpXq

ř

dě0rCλ¨˚
d

pXqstd
ř

dě0rCdpXq ˆ CλpXqstd
“

ś

xPpXˆCλX´cλq{CλXp1 ` tq
ś

xPpXˆCλXq{CλXp1 ` tq
(6.3.0.2)

“
ź

xPcλ{CλX

1
1 ` t

.

Applying Proposition 6.2.4 and integrating over CλpXq, we obtain an identity of power 
series with coefficients in MK
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ř

dě0rCλ¨˚
d

pXqstd
ř

dě0rCdpXqstd
“ Cλ

X

ˆ

1
1 ` t

˙

. (6.3.0.3)

By Lemma 6.2.1, this power series converges absolutely at t “ L´n
φ to Cλ

X

ˆ

1
1`L´n

φ

˙

.

Multiplying the left-hand side of (6.3.0.3) by p1 ´ Lntq 
ř

dě0rCdpXqstd, which as 
observed above also converges absolutely at t “ L´n

φ , we conclude that the series

p1 ´ Lntq

˜

ÿ

dě0
rCλ¨˚

d

pXqstd

¸

also converges absolutely at t “ L´n
φ . In particular, the sequence of partial sums 

rCλ¨˚
d

pXqsL´nd converges, and we apply our usual trick to compute

lim
dÑ8

rCλ¨˚
d

pXqsφ

rC |λ|`dpXqsφ
“ L´n|λ|

φ

limdÑ8rCλ¨˚
d

pXqsφL
´nd
φ

limdÑ8rCdpXqsφL
´nd
φ

“ L´n|λ|

φ

´

p1 ´ Lntq
ř

dě0rCλ¨˚
d

pXqstd
¯

|t“L´n
φ

`

p1 ´ Lntq
ř

dě0rCdpXqstd
˘

|t“L´n
φ

“ L´n|λ|

φ

˜

ř

dě0rCλ¨˚
d

pXqstd
ř

dě0rCdpXqstd

¸ˇ

ˇ

ˇ

ˇ

ˇ

t“L´n
φ

“ L´n|λ|

φ

ˆ

Cλ
X

ˆ

1
1 ` t

˙˙ˇ

ˇ

ˇ

ˇ

t“L´n
φ

“ L´n|λ|

φ Cλ
X

˜

1
1 ` L´n

φ

¸

“ Cλ
X

˜

1
1 ` Ln

φ

¸

.

The last equality follows from an application of eq. (2.2.4.3) (which extends by continuity 
to the present setting) to move the coefficient L´n|λ|

φ into the labels.

7. Hadamard convergence and cohomological stability

It is by now well-known (cf., e.g., [11,7,12]) that for a sequence of smooth varieties 
over Fq, cohomological stability combined with suitable bounds on Betti numbers im-
plies stabilization of point-counts through the Grothendieck-Lefschetz trace formula. By 
essentially the same computation, we show in Theorem 7.0.1 below that weight stabi-
lization combined with suitable dimension bounds on the cohomology implies Hadamard 
stabilization.
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Note that cohomological stabilization implies weight stabilization (as long as the 
stabilization is as Galois representations; e.g., if the stabilization is realized by maps 
of algebraic varieties). In particular, point-counting results previously established via 
stable cohomology can be upgraded automatically to Hadamard stabilization: see Corol-
lary 7.0.3 for a precise statement. For example, this gives an alternate proof of Theorem B
for varieties admitting compactifiable lifts3 to characteristic zero by applying the étale 
representation stability and dimension bounds of Farb-Wolfson [12]. Moreover, this also 
furnishes a natural strategy that may be useful in proving further cases of our meta-
conjecture — when weight convergence to a Hadamard function is known, to establish 
Hadamard convergence it will suffice to establish bounds on the Betti numbers.

Theorem 7.0.1. Suppose Xn{Fq is a sequence of smooth varieties such that

(1) There is a Hadamard function Z8ptq such that, in the weight topology,

lim
nÑ8

ZXn
ptq´ dimXnq “ Z8ptq. (7.0.1.1)

(2) There exist real numbers C ą 0 and 1 ď λ ă
?
q such that, for any n, there exists a 

prime � coprime to q such that

dimQ�
Hi

pXn,Fq
,Q�q ď Cλi

Then (7.0.1.1) holds also in the Hadamard topology.

Remark 7.0.2. We give the proof below, but first, some comments:

(1) The flexibility of allowing � to vary with n in (2) can be useful — for example, this 
variation appears in the bounds for the Betti numbers of Hurwitz spaces established 
in [11] (there the restriction � ą n arises because at a point in the argument one 
needs the derived Sn-invariants in Z{� cohomology to be equal to the Sn-invariants).

(2) The statement strikes a balance between brevity and utility, but the same method 
applies more generally: for example, for varieties that are not smooth with suitable 
bounds on compactly supported cohomology instead of cohomology, or to directly 
deduce the stabilization of L-functions in Remark 4.6.6 from cohomological stability 
and Betti bounds for the corresponding local systems as established (under lifting 
hypotheses) in [12].

(3) Ekedahl [10] has defined a topology of polynomial growth refining the dimensional 
topology on the Grothendieck ring of varieties, and a slight modification of the proof 
of Theorem 7.0.1 shows that the zeta measure to the ring of Hadamard functions is 

3 Ho [17] has established étale homological stability for configuration spaces in positive characteristic 
without a lifting hypothesis, but for our result one would need the same for all colored configuration spaces 
as well.



M. Bilu et al. / Advances in Mathematics 407 (2022) 108556 61

continuous in this topology. The definition of Ekedahl’s topology is a bit ad hoc, and 
one of our motivations for introducing the Hadamard topology was to find a more 
natural way to express a similar constraint.

(4) It is not possible in general to obtain bounds on the Betti numbers from Hadamard 
convergence, and in fact it is easy to construct sequences of varieties that are equal 
in K0pVar{Kq but have unbounded Betti numbers: a very simple example is Xn “

pA1 ´ tn pointsuq \ tn pointsu. For a connected example, one can take Xn to be P 2

with n lines intersecting at a single point removed and then blow up at n points (if 
working over a non-algebraically closed field like Fq, one should take care to match 
up lines and points with the same fields of definition); for any n ě 1, Xn “ rP 2s ́ 1. 
The issue is that cohomology classes of the same weight can cancel if they appear 
in odd and even degrees. For a sequence of smooth projective varieties, where the 
cohomological degree determines the weight, stabilization in the weight topology 
already implies stabilization of Betti numbers.

Proof. We argue with divisors, i.e. elements of the completion of ZrCˆs. So, write Dn

for the divisor attached4 to ZXn
ptq´ dimXnq and D8 for the divisor attached to Z8ptq. 

For any divisor D, we write τmpDq for the part supported in the region |z| ě q´m{2. In 
particular, it is easy to see that

lim
mÑ8

τmpD8q “ D8

in the Hadamard topology.
On the other hand, by the definition of convergence in the weight topology, for any 

m ą 0, there exists N ą 0 such that for all n ě N ,

τmpDnq “ τmpD8q. (7.0.2.1)

Now, for any such n, taking � as in (2) and fixing an embedding Q� Ñ C, the 
Grothendieck-Lefschetz fixed point formula combined with Poincaré duality gives

Dn “

2 dimXn
ÿ

i“0
p´1q

i
rHi

pXn,Fq
,Q�q

˚
bQ�

Cs,

where the brackets denote taking the class in K0pRepZq (using the identification with 
ZrCˆs explained in Section 3.1). Then, combining (7.0.2.1) with Deligne’s [8, Théorème 
I] eigenvalue bounds which give that any eigenvalue α of Frobenius on HipXn,Fq

, Q�q
˚

satisfies |α| ď q´i{2, we obtain

4 Recall from Section 3.1 that to a meromorphic function f we assign the divisor of 1
fp1{tq , a normalization 

chosen so that the zeta function 1
1´qt of A1

Fq
corresponds to rqs.
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||Dn ´ τmpD8q||H ď q´m{2
m
ÿ

i“0
dimQ�

Hi
pXn,Fq

,Q�q

`

2 dimXn
ÿ

i“m`1
q´i{2 dimQ�

Hi
pXn,Fq

,Q�q.

Invoking the bounds in hypothesis (2), we find this sum is bounded above by

C

ˆ

λ
?
q

˙m
˜

m ` 1 `
1

1 ´
λ

?
q

¸

,

and this bound goes to zero as m Ñ 8 because λ ă
?
q. Thus, we conclude that also 

Dn Ñ D8 in the Hadamard topology, as desired. l

In particular, we obtain the following corollary, making precise the statement that 
cohomological stabilization plus Betti bounds gives Hadamard convergence:

Corollary 7.0.3. Suppose Xn{Fq is a sequence of smooth varieties and � ‰ charpFqq is a 
prime such that

(1) For each i ě 0, there is an N ě 0 such that for all n ě N the GalpFq{Fqq-
representations HipXn,Fq

, Q�q
ss are isomorphic to a fixed representation Hi

8 (here 
the superscript denotes semisimplification).

(2) There exists C ą 0 and λ ă
?
q such that, for all n and i

dimQ�
Hi

pXn,Q�q ď Cλi.

Then, ZXn
pq´ dimXntq converges in the Hadamard topology to

8
ÿ

i“0
p´1q

i
rHi,8s,

where here Hi,8 denotes the dual of Hi
8, with scalars extended to give a complex vector 

space by the choice of any embedding Q� Ñ C.

Appendix A. Computations

In Table 1 we give the first 250 terms for the divisor

lim
pd1,d2qÑ8

ZCpd1,d2qpA1
Fq

q{WZSympd1,d2qpA1
Fq

q “ lim
pd1,d2qÑ8

ZCpd1,d2qpA1
Fq

q

´

tq´pd1`d2q
¯

,

where here the limits are in the weight topology and we have used the identity
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Table 1
First 250 terms of limpd1,d2qÑ8 Z

Cpd1 ,d2qpA1
Fq

q

´

tq´pd1`d2q
¯

.

i Coefficient of rq´i
s

0 1
1 -3
2 5
3 -10
4 24
5 -55
6 118
7 -250
8 540
9 -1166
10 2475
11 -5218
12 11028
13 -23267
14 48830
15 -102167
16 213525
17 -445513
18 927444
19 -1927166
20 3999248
21 -8288404
22 17153790
23 -35457313
24 73212391
25 -151015163
26 311189028
27 -640657585
28 1317827566
29 -2708586539
30 5562810556
31 -11416477207
32 23413972647
33 -47988657094
34 98296020099
35 -201224291653
36 411703666030
37 -841899534112
38 1720748369045
39 -3515328234048
40 7178192714838
41 -14651215348621
42 29891622362909
43 -60960729520648
44 124274709833930
45 -253252619275830
46 515905274269151
47 -1050598369362088
48 2138748809597243
49 -4352556333294442
50 8855142419299783
51 -18010175104285365
52 36619803977908694
53 -74437884037740152
54 151271098981190102
55 -307330496794545563
56 624233017196670858
57 -1267601222149736713
58 2573455649992469320
59 -5223384420459129280

(continued on next page)
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Table 1 (continued)

i Coefficient of rq´i
s

60 10599650504339968588
61 -21504939006993240476
62 43620910664324846165
63 -88463413927558983487
64 179369094441716234105
65 -363620936146947211139
66 737003893336634408989
67 -1493525070407312843889
68 3026071553583774207695
69 -6130160318373268357117
70 12416305165787441941888
71 -25144482169769700475430
72 50912518513077694908444
73 -103071775867327392158564
74 208636308694120684565878
75 -422256725089154019803026
76 854478921031350689093305
77 -1728883425555349537772147
78 3497607554122553346247355
79 -7074876073480110138967125
80 14309034136324437898603161
81 -28936554185525659439497151
82 58509927574525580489119380
83 -118293195094794161305291884
84 239132486275311262352998014
85 -483356022483243207472458684
86 976891909453073575341693979
87 -1974139172168771694130837742
88 3988980483500702718090433305
89 -8059348467160056857850301254
90 16281439069254327401112771720
91 -32888298017019215826487386452
92 66427309605631891852427285538
93 -134155799021691025521771284468
94 270913472774442897719424024492
95 -547029744205693924330614993253
96 1104463220953743112679968006155
97 -2229730248996000703271900417220
98 4501060935168121797776308252779
99 -9085308660778996913683241591916
100 18336963259621884186312937330536
101 -37006564130480842135420881234823
102 74678296938835045366712451653048
103 -150686722006049417188882164883466
104 304033289328605736801837757889052
105 -613385462035346120893462386389806
106 1237407104790484830103451785458541
107 -2496083454393123235346360455263145
108 5034699273149624209432668615272245
109 -10154451234898616906382452153763994
110 20478984176727698229478103214975622
111 -41298085225883776492838324830483147
112 83276312671638650634105812715706158
113 -167912729770850527045567532995866050
114 338545314297377669135739970834099721
115 -682529641465357484326226939785869136
116 1375935937942737803716090764040548543
117 -2773622488464218826498184276726243059
118 5590740893108400697907757830485514668
119 -11268463168356409496415532461615555613
120 22710868528096610367194049445753934421
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Table 1 (continued)

i Coefficient of rq´i
s

121 -45769580932908800976831871086499330994
122 92234769856874390273795578514079010526
123 -185860598612913044801841864730269995334
124 374503005630066811126878392442709025314
125 -754569018607279234423667610817191802785
126 1520262851219368816074332126572089460056
127 -3062772964719969636087115981981018953541
128 6170035792263619351050455292566978783598
129 -12429042123060060151003262179674049196038
130 25036007215716677420539355986395133276393
131 -50427824677622751805359126326377802814807
132 101567199482982873264392954021879354129190
133 -204557360491172243478624563111868531696823
134 411960370485300375547687520519502226821470
135 -829611500542651667331806049712787706316782
136 1670603456362831206847362302632157611640072
137 -3363965724925806599011266967125981954243654
138 6773444935084913876696775096583596298183108
139 -13637908675027441436057116768747781739434355
140 27457838849409380315413796530515268407489675
141 -55279688909583876580585833350065956851424889
142 111287337512971930313744554502136783509139787
143 -224030470620565185138114187204885173045566046
144 450972288103407951076429498671472480900894500
145 -907766787667089046300297874897356031995072893
146 1827177046255434145173073629090501998350189480
147 -3677639154926299735399831830273114930706933417
148 7401844724023358326931783359492391415803949804
149 -14896814949606945772712282120059272199690249898
150 29979866434245490844583144348449344360693631079
151 -60332177366298214408691600910066186887843803897
152 121409187297844700570116626172426598599222626198
153 -244307928267034553210257870812929829060224442649
154 491594743709525111581865915372346686734405187936
155 -989146826836016362658122074912175022534944715678
156 1990207473240877597531413403273254338876802547040
157 -4004240887908066523314775718374722296383353278432
158 8056130304128719786977903098713542750921357140249
159 -16207551036094612708384128936868306743927319581255
160 32605669827995537882141376003470500998619660883838
161 -65592449277668135923145148203994025195285602114161
162 131947066627455132690094280750865960630570254544336
163 -265418368252534732163388638198968661024046332532369
164 533885006556978841673859509747827333034790892137060
165 -1073866157949160528842644873292715224609980727316442
166 2159923824107976255787679933553822112189909230569860
167 -4344229119554769725531975946302444010351029324981531
168 8737218126698544324983354343181783399234144113040996
169 -17571949987350926356148244810740733916329389383280610
170 35338915495737920749569941345730118033124022425352917
171 -71067838406403965873181708846730412674466081241594550
172 142915644912669381123934767287154566227048796839910300
173 -287391133596243553978025526428865096061369492892216231
174 577901771904942496377897298680702776641561566472346509
175 -1162042191566025096073333560418006767663163414264761452
176 2336560963156321258206594903332568731935777435716478404
177 -4698073670829204910429951149497168205623270962654074924
178 9446048030016615435964025795014143220692909203774526167
179 -18991891895201248092411829357483627878037061328499916676
180 38183364495333086204204682114930004931552019076194474230
181 -76765868701357294714795824370173618727343318391694633802

(continued on next page)
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Table 1 (continued)

i Coefficient of rq´i
s

182 154329973881712836323222680064105310721139741449888709502
183 -310256335734223324216076665641969459705588665497173883804
184 623705279202696289295066521317341717885886961875906583159
185 -1253795440938300516089142300669579826263425588827900823773
186 2520359987921702495659754659758416556389346309156935588716
187 -5066256883382087793564964993618615137251978971902397547338
188 10183584999304906134008466464344962026597976993924855770002
189 -20469307350940835151747049199320044998319334089960769299637
190 41142879284101383116184594018941378889033330476918655928999
191 -82694267690764386827363962624920969968162035653827651121126
192 166205513942814486717606830876444989743453016535327886029097
193 -334044906428413611391355165977888136830209140798816585873928
194 671357414335178326430744817824055982152630817133280117748150
195 -1349249723471416882316855584026818371620127437068003020111147
196 2711568626261232162145679308550885878804628167867689653316398
197 -5449274402470410677251482438878923505195001441752145264632550
198 10950820710870015616176840466748551469141706650750291515619432
199 -22006180491808074821226633271648780399307360717352367604021410
200 44221429731125930866818700424117906695145598103780411815103936
201 -88860978351315253312957785221314608550508787788296296518972158
202 178558157622312958198293390705731236882640973045841129901489278
203 -358788644063983246567535867359362571245002544503178214240054286
204 720921801100698726386694533287526587431214885606660302982340624
205 -1448532341524246442342248986970439190664607865886748063901262327
206 2910441593791677410571423695509416902856886245179841083766133211
207 -5847635883801003434025648107168165059200700685568114138941772899
208 11748774930279755297246537565315174630066197777734430657895529207
209 -23604551767385068594821463748108605314319647758871879636797902301
210 47423098592203576534355458696951983878051045433043063955216443887
211 -95274169946308147840780403360682157059441079565869026559277533215
212 191404251025076306444836648744474710925748794337580471279140380135
213 -384520256153027720832343588144677015994231262916517617702578354310
214 772463885412221247750959518172309275593339223655535204987540150838
215 -1551774249253673696738895239551544173613933026639442037615040708270
216 3117240924567039756245256068732453168640627865443628864456247013851
217 -6261865649063678707968392455091112497430296740097472568689378905507
218 12578496812172787574329459026104607521094908851061688080277086644833
219 -25266520517449908363513058769191519238709604487373171885812655365167
220 50752086623453499599495814541713658375763803773380355410356385019761
221 -101942248171446376404811306396751761494336671084842843723533994465034
222 204760613968597157212010029876713486804465127371302600563171124022586
223 -411273399298062141627923580121235278530544185511903002504259040064832
224 826051014634815005139464364267018370249005956581169493760770952633261
225 -1659110210148733290252072210623434146652014922787564201813714175078037
226 3332236283939183203228707149826950977481720527754055478448883897915665
227 -6692503307379732644393325590390792165758287355586962855209339873065199
228 13441066134885157374941142465150996170874001629665169604682521868959572
229 -26994247425219599704022048659260610065138046610246664866230534368138664
230 54212717456807333803446468226485466563565290356089792803625447444191968
231 -108873864845805016850142237474283157059409319666122162165797565224475771
232 218644559248718136649200739632525468463253521897267370725297356832492893
233 -439082717498431167805788938314933663970201549385476217022929944640890819
234 881752513762637047350955880772283529471535676582889977855830104064904050
235 -1770678948540417404656911704952446357822125847897764735776925045160337542
236 3555705269942297117063252158576023481330861467174302311925764323753647955
237 -7140104354903296768142592107673112682036551683319793755880528208657622002
238 14337594493516387018587442604981980152255607264327504228993603568963746649
239 -28789956891592793162580701973206192193451887385613153685521881169643775108
240 57809442325457598502624005464830403280755001880407991296344942812757465951
241 -116077927318088147658885109110973474677707297047338797617322014115670291868
242 233073911365640918583982238401098113091737014051890351051448047525110442208
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Table 1 (continued)

i Coefficient of rq´i
s

243 -467983879434681066427015485809761438819926018767785270070916286071708841159
244 939639759662761645826607434203471991500948183010290880113340609940625137998
245 -1886623297459580540003449408545708292094079321179393559084522176323337329589
246 3787933707788042453135351202393917950224275817218928913807658304446716058235
247 -7605240761445472998617207473729266666313927167438658855852176879694593013499
248 15269226468590914708207748063222774107557618777595720957055954826812698597855
249 -30655939363580606732561996894410171491023294598074730332881732843263810990419
250 61546844703480411367930079662454293248852333175511986470297385611751909013867

Table 2
The divisor Z

C‚d1 ‹d2 pA1
Fq

q

´

tq´pd1`d2q
¯

for d1 “ d2 “ 40.

i Coefficient of rq´i
s i Coefficient of rq´i

s

0 1 40 7178192706102
1 -3 41 -14651215147355
2 5 42 29891619749371
3 -10 43 -60960704596332
4 24 44 124274516700328
5 -55 45 -253251337471208
6 118 46 515897749760655
7 -250 47 -1050558448626228
8 540 48 2138554410364751
9 -1166 49 -4351677301167434
10 2475 50 8851418068846937
11 -5218 51 -17995282472068951
12 11028 52 36563266171699586
13 -23267 53 -74233098656280122
14 48830 54 150560424516434836
15 -102167 55 -304959028474877462
16 213525 56 616599979165804930
17 -445513 57 -1243838077427284749
18 927444 58 2501726843328379367
19 -1927166 59 -5013001590559463419
20 3999248 60 9998887821446433255
21 -8288404 61 -19831768033161995124
22 17153790 62 39068695645092664153
23 -35457313 63 -76346502518625937950
24 73212391 64 147772610374307278073
25 -151015163 65 -282802569405937507518
26 311189028 66 533995597251319358859
27 -640657585 67 -992196836341429077092
28 1317827566 68 1807725664871875879551
29 -2708586539 69 -3213777325101403051314
30 5562810556 70 5535545342239809752109
31 -11416477207 71 -9140023894242417884359
32 23413972647 72 14237505104399687238881
33 -47988657094 73 -20437644238323518538138
34 98296020099 74 26158394219496320597829
35 -201224291653 75 -28551600325000321382432
36 411703666030 76 25039544129795914295127
37 -841899534112 77 -16225470533207349260900
38 1720748369045 78 6777326492252181076930
39 -3515328234048 79 -1343840109164979124000

rSympd1,d2q
pA1

Fq
qs “ rSymd1pA1

Fq
qsrSymd2pA1

Fq
qs “ Ld1Ld2 “ Ld1`d2

to identify the division with renormalization of the variable t by q´pd1`d2q.
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When q “ 2, this limiting divisor does not appear to correspond to a Hadamard 
function (cf. Remark 4.6.4), but nonetheless our results show the sequence also converges 
in the point-counting topology. To further illustrate how this can occur, in Table 2 we 
give the exact formula of the divisor when d1 “ d2 “ 40. One can then compute to see 
the cancellation for point-counting: the q “ 2 Hadamard norm is 395.538829916911 but 
the q “ 2 point-counting semi-norm is 0.181319714263592.
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