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1. Introduction

1.1.

Zeta functions

1.1.1. Zeta functions of varieties over finite fields
The zeta function of a variety X /I, is the formal power series Zx (t) € 1 + tZ[[t]]
defined by
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0
Zx(t) = ]] 1tdegz Z Sym’ X (F,)[t/.

zeX closed

It encodes the number of points of X over every finite extension of [F:

dlog Zx(t) = Y |X(F)[ti . (1.1.1.1)

s

1

J

The Grothendieck-Lefschetz fixed point formula implies that Zx(t) is the power-series
expansion at 0 of a rational function, and that the zeroes and poles are determined by
the eigenvalues of the Frobenius acting on the étale cohomology of X (up to cancellation
between odd and even degree). We write R; for the set of rational functions f € C(t)
such that f(0) = 1, and from now on consider Zx (t) as an element of R;.

1.1.2. Grothendieck rings of varieties

Let K be a field. We write Ky(Var/K) for the modified Grothendieck ring of varieties
over K — it is the free abelian group on isomorphism classes [X] of (not necessarily
connected) varieties X /K, modulo the relations [X; u X5] = [X1] +[X2] and [X] = [V]
if there is a map X — Y inducing a bijection on points over any algebraically closed
field. This definition is equivalent to the classical definition of Ky(Var/K) via cut and
paste relations in characteristic zero, but is better behaved in positive characteristic; we
refer to [2, Section 2] for a detailed discussion. Write L := [A!] € Ko(Var/K), and

My = Ko(Var/K)[L™].

There is a natural topology on My induced by the dimensional filtration: for every

d € Z, we define FilyM g to be the subgroup of M g generated by elements of the form

[X]L~™ where X is a variety over K and dim X —n < d. This gives us an increasing and

exhaustive filtration on the ring M. Denote the completion for this filtration by M K-
For a quasi-projective variety X over K, consider the Kapranov zeta function

ZR () := Y [Sym? Xt/ € 1 + tMk][[t]].

KMS

0

J

When the field K is finite, Zﬁap(t) specializes to Zx (t) via point counting, which replaces
the class [Sym’ X ] with the number [Sym’ X (K)| in the coefficients.

1.2. Arithmetic and motivic statistics
Many results in arithmetic statistics can be interpreted in terms of asymptotic prop-

erties of the number of Fy-points on a sequence of varieties X,,/F,. Such results often
have analogs in motivic statistics — these are asymptotic statements in M. A beautiful
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example of such a correspondence between arithmetic and motivic results is given by the
following;:

Theorem. Let K be a field and let X < P} be a smooth projective variety. Denote by Ug
the open subset of hypersurface sections in I'(Py, O(d)) which intersect X transversely.
Then:

(1) (Poonen [20]) Assume K =T, is finite. Then

. |Ud(]Fq)| _ —dim X—1\—1
I r@Emo@nmy X

(2) (Vakil-Wood [22,23]) In My, we have

: [Ud] Kap 1 — dim X—1y—1
e oy~ 2k )

Although the two results are compellingly similar for K = F,, neither of the two
implies the other: the assignment sending a variety X /F, to the number of points | X (F,)|
extends to the point counting measure, a map of rings My, — R, but it is not continuous
for the dimensional topology on M, . The aim of this paper is to formulate a conjectural
unification of such parallel statements in arithmetic and motivic statistics, and study
some aspects of this conjecture.

The fundamental insight behind our conjecture is that, through the lens of the zeta
measure (see (1.3.0.1) below), the aforementioned results of Poonen and Vakil-Wood may
be viewed as convergence statements of the zeta functions of the varieties Uy, suitably
renormalized, for two different, incompatible topologies on R;. Indeed, via (1.1.1.1) we
can interpet Poonen’s theorem, applied simultaneously over all finite extensions of Fg,
as a convergence result for the zeta functions Zy,(¢) in the coefficient topology on Ry,
induced by the product topology on the coefficients of the power series at zero. Because of
this interpretation, we refer to this topology on R4 also as the point-counting topology. On
the other hand, Vakil and Wood’s result, via the Weil conjectures, implies a convergence
statement about the functions Zy,(t) in the weight topology on Ry, where a function is
considered small if all of its poles and zeroes are at large complex numbers. The point-
counting and weight topologies are incompatible; below we introduce the Hadamard
topology which refines both.

1.8. Rings of zeta functions

The set R; has a ring structure given by Witt addition and multiplication: if we
identify Ry with the group ring Z[C*] via

f(t) — =Divf(t™h), so, e.g., (1 —at)™! — [a]



M. Bilu et al. / Advances in Mathematics 407 (2022) 108556 5

then Witt addition and multiplication are induced by addition and multiplication on the
group ring Z[C*]. Alternatively, Witt addition +y is regular multiplication of rational
functions: f +w g = fg, and Witt multiplication #y, is determined by

dlog f = Zajt] and dlogg—th] = dlog(f *w g) Zajb it
The assignment X +— Zx (t) extends to the zeta measure, which is a map of rings

Mg, = Rq

e 2D, (1.3.0.1)

1.8.1. The Hadamard topology
Under the identification Ry = Z[C*], the weight topology is induced by the norm

Seata,

The point-counting topology is induced by the family of seminorms

HZ anl2n] ; = ‘Z anz

We consider also the Hadamard topology, defined by the Hadamard norm

Yanlzal| = lanllzal

The Hadamard topology refines both the weight and point-counting topologies. More-

= sup |zp|.

= 1.

over, the completion of R4 for the Hadamard norm is naturally identified with a genuine
space of meromorphic functions (as opposed to the completion for the weight topology,
which is a space of formal divisors, or the completion for the point-counting topology,
which is a space of formal power series):

Definition 1.3.2. A Hadamard function is a meromorphic function on C that can be

written as a quotient 5 where f and g are entire functions of genus zero.

We write H; for the set of Hadamard functions f such that f(0) = 1. The Hadamard
factorization theorem then yields

Theorem 1.3.3. The completion of Ry for || - ||g is canonically identified with H;.
1.4. The meta-conjecture

Because the Hadamard topology refines both the point-counting and weight topolo-
gies, asymptotics in the Hadamard topology give a common refinement of results in
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arithmetic and motivic statistics. Moreover, taking limits in the Hadamard topology re-
tains the essential analytic characteristics of zeta functions, because these limits can be
interpreted as meromorphic functions. For these reasons, it is natural to try to refine
previous results in arithmetic and motivic statistics by studying them in the Hadamard
topology. And in fact, we conjecture that any natural asymptotic which holds in both
the weight and point-counting topologies should also hold in the Hadamard topology:

Meta-conjecture. If a,, € My, is a “natural” sequence of classes such that the sequence
of zeta functions Z,,, (t) converges in both the point-counting and weight topology to some
f(t) € Ha, then Z,, (t) — f(t) also in the Hadamard topology.

The condition that f € H; is essential — without this condition there is no way to
compare limits in the point-counting and weight topologies. Moreover, there are natural
examples where limits exist in both topologies, but at least one of these limits is not
expected to be a Hadamard function (cf. §1.5.6).

1.4.1. Hadamard convergence for Bertini problems

The theorems of Poonen and Vakil-Wood discussed above furnish an example where
our meta-conjecture should apply. To see this, we must verify that the special value of
the Kapranov zeta function appearing there is in fact a Hadamard function: We apply
the zeta measure coeflicientwise to Z)Igap(s) to obtain a series with coefficients in the ring
R1, and then evaluate at s = Zp-m(t) = ﬁ for m = dim X + 1. Indeed, for any

I
m > dim X, if we write

)I?ap(m) =1+ ZX<t)S + ZSmeX(t)S2 + ‘s:ZL_m(t) = H ZSyij(tq_mj)7

j=1

then the infinite product on the right (an infinite sum in the Witt ring structure) con-
verges in the Hadamard topology to an invertible (for Witt multiplication) element of
H1. Thus, in this case the meta-conjecture specializes to

Conjecture 1.4.2. Let X P]I?q be a smooth projective variety and let Uy < T'(P™, O(d)) be
the open subvariety of hypersurfaces intersecting X transversely. Then, in the Hadamard

topology,

lim Zy, (¢~ Yap) = 1/ ¢R*(dim X + 1).

Here the notation /y denotes division in the Witt ring, and the inverse special value
appearing on the right can be shown to live in H; as a consequence of rationality of
Zﬁap (t) after applying the zeta measure — see Example 4.2.3. In the statements of Theo-
rem A and Theorem B below we will implicitly use the existence of inverses or quotients
that can be justified in a similar way.

We state separately the case X = P™, which has a particularly simple form:
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Conjecture 1.4.3. Let Uy < Vg := ['(P™,0(d)) be the space of smooth hypersurfaces of
degree d in P™. Then,

. —dim —(n 2
dhj)& ZUd/]Fq (q ¢ th) = ZGLnJrl/]Fq (q (n+1) t)

in the Hadamard topology. In particular, the sequence of rational functions

ZUd/IFq (q— dim th)

ZGL, R, (g~ (%)

converges uniformly on compact sets in C to the constant function 1.

For n = 1, Conjecture 1.4.3 is true, because for all d > 2

[Ua) -4

— = [GLe]L™" € Mp. .

vy ~ (Gl M,
For n > 1, however, already Conjecture 1.4.3 is completely open. As some partial ev-
idence, we note that Tommasi [21] has established a cohomological stabilization result
for moduli of smooth hypersurfaces in P — cf. §1.7.1 below for more details on the
relation between cohomological stabilization and Hadamard convergence.

Remark 1.4.4. Some of the material on Hadamard convergence developed in this work
appeared already in the first version of [2] posted on arXiv. In particular, it was claimed
there that Conjecture 1.4.2 could be proved in the case that dim X = 1. No details were
provided, and there was a mistake in the envisioned proof.

The point-counting [20] and motivic [2] Bertini theorems with Taylor coefficients fur-
nish many more examples where we expect that the meta-conjecture should apply. The
limits appearing in these theorems are special values of (motivic) Euler products, but,
unfortunately we are currently unable to prove that these special values are Hadamard
functions in any level of generality!

1.5. Results for zero-cycles

Our meta-conjecture was originally motivated by the Bertini examples discussed
above, but for now these seem to be out of reach. On the other hand, there are a num-
ber of questions about zero-cycles that have been previously studied in both arithmetic
and motivic statistics for which we can both formulate and prove concrete instances of
the meta-conjecture. In particular, building on [13,22,6,12,19], we treat various problems
involving colored effective zero-cycles with prescribed incidence relations. We also give
an application to the motivic Batyrev-Manin conjecture as in [4]. These are the main
results of this paper, and the main evidence that our meta-conjecture is reasonable.
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1.5.1. Pattern-avoiding zero-cycles

In §4 we carry out a general study of convergence for densities of spaces of effective
zero-cycles with prescribed allowable sets of labels. These generalize different densities
considered previously in related contexts by Bourqui [4], Farb-Wolfson-Wood [13], and
Vakil-Wood [22]. We establish fairly complete weight and point-counting convergence
results, and find natural examples (and non-examples) of Hadamard convergence. For
more details, we refer the reader to the beginning of §4; below we only highlight some
examples.

1.5.2. Orthogonal pattern-avoiding zero-cycles
Let X /F, be a geometrically irreducible quasi-projective variety and k£ > 1 an integer.
For d = (di,...,dy) € Z%,, we write

SmeX = Sym® X x Sym® X x -+ x Sym* X.

For K/F, algebraically closed, we can view a point s € Sme(X )(K) as a tuple
(s1,-..,8k) of finitely supported functions on X (K) with values in Zso. In particu-
lar, for each z € X (K), we obtain a label vector £4(z) := (s1(z),...,sk(z)) € Z%,. If we
fix a finite subset V < Z%, then we can consider the locus

24 (X) < Symix

whose K-points for algebraically closed K are exactly those s such that, for all v € V
and z € X(K), £s(z) # ¥ (i.e., {5 avoids all of the patterns in V).

Example 1.5.3. If V = {(n,n,...,n)}, then Zg(X) is the subvariety denoted Zg(X) in
[13], which parameterizes tuples of effective zero cycles whose overlap has multiplicities
bounded by n. In particular, Z{(é))}(X ) = 09X, the configuration space of d unordered

distinct points on X.

A set of vectors V' is orthogonal (for the standard inner product) if and only if for
each 1 < ¢ < k, there is at most one vector v € V' with non-zero ith component. For
T = (v1,...,v,) € Z%, we write |0] = v1 + ... + vy. We say that a set of vectors V is
non-degenerate if it does not contain a @ with |] < 1 (i.e. it does not contain the zero

vector or the unit vector e; for any ).

Theorem A. If V is orthogonal and non-degenerate, then, in the Hadamard topology on

Hl;

lim ZZ\{(X)(t)/WZSymd-(X)(t) =1/w <n Cgap (| .dimX)> .

dy,da,...,d—00
12 kT vevV

Note that all ring operations in this equation are taken in the Witt ring structure.
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Remark 1.5.4. If V' contains 0 then Z{‘;(X) — & for any d, and if V contains e; then
Z{‘f-(X) = ¢ when d; # 0. For V not orthogonal, see Section 4.5.1, particularly Theo-
rem 4.5.8.

This theorem, and our other related results, provide a motivic lift of Theorem 1.9-2 of
Farb-Wolfson-Wood [13], which describes the same phenomenon at the level of Hodge-
Deligne polynomials in the special case of Example 1.5.3. This confirms the expectation
of a motivic analog stated in [13, paragraph following Theorem 1.9]. Our proof is based
on a simple identity of generating functions, generalizing the argument given by Vakil-
Wood [22] for computing the density of C"X in Sym™X. In particular, this provides a
shorter' proof of [13, Theorem 1.9-2].

Remark 1.5.5. Ho [18] has reinterpreted and extended the results of [13] using fac-
torization cohomology. In particular, he constructs a natural rational homotopy type
(a commutative dga computing the cohomology) attached to the density, then in [18,
Proposition 7.7.7] obtains a simple explicit description from which one can deduce the
connection with zeta values after taking the trace of Frobenius. Instead taking the char-
acteristic power series of Frobenius, we recover the Hadamard function appearing above;
thus this rational homotopy type has a meromorphic zeta function. It would be interest-
ing to understand this phenomenon more generally!

1.5.6. A non-example of Hadamard convergence B

We also study the density of the k-colored configuration spaces CIX in Sym?X where
de Z’;O. This density converges as d — o in the weight and point-counting topologies,
and in Theorem 4.6.2 we show it converges in the Hadamard topology if k& < ¢d™X.
Some condition of this form appears to be necessary: for k = 2, ¢ = 2, and X = Al,
we have computed the limiting formal divisor to high precision, and the result strongly

suggests that the limit is not a Hadamard function — cf. Remark 4.6.4.

1.5.7. Labeled configuration spaces

We also show Hadamard stabilization for labeled configuration spaces over unordered
configuration spaces as studied in [19] in the motivic setting and [6] in the point-counting
setting. This does not fit into the framework of allowable labels described above, but in-
stead admits a natural interpretation as computing the moments of a motivic random
variable over unordered configuration space. Concretely, we show (see §2.2 for the nota-
tion):

Theorem B. Let A be a partition and X /F, a geometrically irreducible quasi-projective
variety. Then, in the Hadamard topology on H1,

L Of course, our technique does not say anything about the Leray spectral sequence analyzed in [13], and
thus cannot establish any of the purely topological density results.
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lim ZCA,*d(X)(t)/WZC\Mer(X)(t) =7 .

1
d—0 Cx ( 1+Ldim X

)(t)~

Here the right-hand-side is the zeta function of a very general notion of labeled configu-
ration space, where the “space” of labels at each point is the class 14—]11%

Remark 1.5.8. The explicit computation of the limit in Theorem B is new (though closely
related to [19, Corollary B]), and makes precise the statement that, after passing to the
zeta measure, the universal family over C%X is asymptotically a motivic binomial random
variable with parameters N = X and p = HL% Convergence in the Hadamard
topology, without the explicit computation of the limit, can also be deduced (under a
lifting hypothesis) from the étale homological stability results of Farb-Wolfson [12] (cf.
also §1.7.1).

Remark 1.5.9. Following the strategy used in [19] to relate motivic stabilization of labeled
configuration spaces and representation stability, one obtains the following consequence
of Theorem B: given a Young diagram A, the theory of representation stability attaches
a natural sequence of locally constant ¢-adic sheaves Vy 4 on C4X for d sufficiently large.
Writing Ly 4(t) for the L-function of V) 4, we find that the sequence Ly q(tg~?4imX)
converges in the Hadamard topology.

1.6. Batyrev-Manin over function fields

Let K be a field and X a split toric variety over K, which is assumed smooth and
projective. Let U be its open orbit. For every integer d > 0, we denote by [Up 4] the
quasi-projective variety parameterizing K-morphisms P} — X with image intersecting
U, and of anticanonical degree d. Let p be the rank of the Picard group of X. We are
interested in the motivic height zeta function

Z(T) = > [Uo.aT
d=0

In the finite field case, the specialization via point counting of Z(7T') has been extensively
studied by Bourqui [3,5], in a much more general setting (for morphisms from a curve of
arbitrary genus to not necessarily split toric varieties). In [4], Bourqui also addressed the
motivic problem over an arbitrary K. Combining his method therein with our results,
we show:

Theorem C.

(1) There exists an integer a =1 and a real number § > 0 such that the series

(1 —(@LT)")” <Z [Uo,d]Td> (1.6.0.1)

d=0
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converges for ||T|| < ||L||=**° in the dimensional topology (see §/.2.1). Its value
at L™ is non-zero and can be described explicitly by the special value of a motivic
FEuler product.

(2) Assume now K =T, finite. Then the specialization of (1.6.0.1) via the zeta measure
converges in the point counting topology. If q is larger than some explicit bound, it
converges in the Hadamard topology.

We refer to §5 and in particular to Theorem 5.3.1 for a more precise version with
explicit bounds and values. The result in the dimensional topology is obtained simply
by substituting the more versatile notion of motivic Euler product from [1] for the one
used by Bourqui in [4]. The point counting convergence was already known in greater
generality (for curves of any genus) by [3]. The Hadamard convergence is an application
of the results of the section on zero-cycles.

This problem is an instance of the function field Batyrev-Manin conjecture (classically,
the Batyrev-Manin conjecture deals with counting points of bounded height on algebraic
varieties defined over number fields). As far as the authors are aware, Theorem C is
the first result in the literature giving a unified treatment of a case of the function-field
Batyrev-Manin problem in the point counting and motivic setting outside of situations
where the motivic height zeta function is rational.

1.7. Obstacles and strategies

Our results for zero-cycles are all, in the end, obtained by explicit computations and
estimates with generating functions. By contrast, in the Bertini setting which first mo-
tivated this work, similar manipulations with generating functions do not appear useful
— instead, to prove point-counting and weight stabilization results, one uses inclusion-
exclusion to compare values at a finite step to truncated Euler products.

The versions of inclusion-exclusion that come into play are quite different in the
motivic and arithmetic settings, and, in particular, there does not seem to be an obvious
way to merge the point-counting argument with the motivic argument in order to control
the error term in the Hadamard topology. It would, however, be quite interesting if such
an argument could be made!

1.7.1. Betti bounds and Hadamard convergence

Another angle of attack for Conjecture 1.4.2 is by proving étale cohomological stability
and sub-exponential growth for the cohomology of Uy, as in the alternative proof of
Hadamard convergence for labeled configuration spaces mentioned in Remark 1.5.8. This
approach is particularly appealing in the specific case of Conjecture 1.4.3, in light of
Tommasi’s [21] results on cohomological stability in characteristic zero.

In fact, it turns out that one does not need the full strength of cohomological stability
for this kind of argument: in §7, we show that weight convergence combined with suitable
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bounds on Betti numbers implies Hadamard convergence. This seems like a promising
strategy for proving new instances of our meta-conjecture.

1.8. Organization

In §2 we recall some basic notation and results on (very) generalized configuration
spaces, motivic Euler products, pre-\ rings, and power structures. In §3, we introduce
the Witt ring, its various topologies, and the zeta measure. The heart of the paper is §4,
where we prove a general convergence result on spaces of pattern-avoiding effective zero-
cycles and deduce Theorem A. We also discuss the case where the vectors in the set V'
are non-orthogonal: using a Mébius function formalism, we show Hadamard convergence
over I, for ¢ larger than some explicit bound, and study some interesting boundary
cases. In §5, we apply our results from the previous section to prove Theorem C. In §6,
we prove Theorem B, and in §7 we explain the link with cohomological stability. Finally,
in Appendix A we give some computations related to the boundary cases for Hadamard
convergence discussed in §4.
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2. Recollections

In this section we recall some basic definitions and results on generalized configuration
spaces, motivic Euler products, and power structures on pre-A rings.
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2.1. Grothendieck rings

In this paper Ky(Var/K), Mk, My, ete. are all built starting with the modified
Grothendieck ring of varieties (see 1.1.2 above); this is equivalent to the standard def-
inition via cut and paste relations in characteristic zero but in characteristic p gives a
better-behaved quotient.

We also consider, for X /K a variety, the relative Grothendieck rings Ko(Var/X), Mx,
and /\//l;7 defined completely analogously but starting with varieties over X instead of
Spec K.

We refer the reader to [2, Section 2] for more details on these points.

2.2. Generalized configuration spaces and motivic Euler products

We will briefly cover the basic definitions for the reader’s convenience; for further
discussion and properties of generalized configuration spaces and motivic Euler products
beyond what is included here, we refer the reader to [2, Sections 3.2, 6.1 and 6.2].

2.2.1. Generalized configuration spaces

Suppose given a label set S and a finite multiset A supported on S, i.e. an element of
Z3, that is zero on all but finitely many s € S. We write |A\| = . _s A(s). We denote by
X-#% any multiset \’ that adds a new element of multiplicity d to A, i.e. when ' = A+d-s
and A(s) = 0 for some s € S.

For a quasi-projective variety X /K we define the A-labeled configuration space of X
to be

CX = ( (H XMS)) \A) /TTEne:

seS

where A is the big diagonal and ¥, denotes the permutation group on k elements so that
the product group acts in the obvious way. The points of C*X in an algebraically closed
field K are given by labellings of |\| distinct points in X (K) by elements of S such that
the total multiset of labels is equal to \. For example, if A = (a1, as, ..., a;) € Z5;\{0},
then C*X is the configuration space of a1+ as + ...+ ag distinct points on X with a; of
the points labeled by ¢ for each 1 <7 < k; in other words, a colored configuration space
of X.

The construction generalizes to allow, for each s € S, a space of labels, here interpreted
to be a variety Y;/X. One obtains a variety C* ((Y,/X )ses), given by

C* ((Ye/X)ses) ((ﬂYMS)\A)/HzA
seS

with a natural map to C*X (here A is the inverse image of the big diagonal in the
definition of C*X).
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2.2.2. Motivic Fuler products

The results of [1] allow one to extend the construction of generalized configuration
spaces to allow the spaces of labels Y to be replaced with classes of labels a; in a relative
Grothendieck ring Ky(Var/X), Mx, or /\/E The result is a class Cy ((as)ses) in the
corresponding relative Grothendieck ring over C*X (the actual definition is explained in
2.2.4 below); when a, = [Y;/X] (i.e. the class of Y; in a relative Grothendieck ring over
X) we have the natural identity

[C* (Ye/X)ses) /CHX] = C% ((as)ses) -
Remark 2.2.3. We write C% (a) if all as are taken to be equal to the same class a.

In the above, if the label set S is taken to be the non-zero elements of an abelian
monoid M, then a multiset A as above is called a generalized partition. In this case, it
makes sense to consider the sum of its elements >\ € M, and for m € M we say A - m
or A partitions m if >, A = m. This setup applies in particular when M is a free abelian
monoid, e.g. M = Z%,.

This extension is carried out so as to give a reasonable notion of an “infinite product
over X7, or, a motivic Fuler product, satisfying the natural properties one would expect
for manipulating products. Indeed, for a; € Ko(Var/X), one defines

H (14 arpt+as > +...) =1+ Z Z Cy ((as)seN)> t"™ e 1+ tKo(Var/K)[[t]]

rxeX m=1 (Akm

where the sums for each coefficient are obtained by first applying the forgetful maps
Ko(Var/C*X) — Ky(Var/K).

One can replace Ko(Var/K) here with Mg or M. We can also make a similar
construction for an abelian monoid M as above by using the ring of power series in the
variables t,,, m € M, with t,,,tm, = tm, +m,. In this setting, the definition of the motivic
Euler product becomes

n 1+ Z asats | =1+ Z <Z 03\( ((as)seM\{O})> b

zeX seM\{0} meM\{0} \AFm

Standard power series in one variable are obtained using M = Z via the identifica-
tion t™ = t{* = t,,. More generally, for M = @,_,
variables t;,7 € I. In particular, M = Z’;O gives power series on variables tq,...,tx, and

Z ¢, we obtain power series on the

because of this for m € Z’;O we frequently write the product t™ = ngigk t;n(i) in place
of t,, in the above.
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2.2.4. Definition

We briefly recall the definition of the classes C% ((as)ses) used above: The first step
is to define for an element a € Ky(Var/X) (or Mx or ./T/l;) its symmetric powers
(Sym’ (a))n>1, in such a way that

Sym’% (a) € Ko(Var/Sym" (X)),

and so that for all a,b € Ko(Var/X),
Sym’ (a + b) Z Sym” (a) & Sym% " (b). (2.2.4.1)

In other words, one lifts the relative Kapranov zeta function on Ky(Var/X) so that the
coefficient of t' lives in Kq(Var/Sym'X) rather than Ko(Var/X).
Then, for a partition A and classes as, we consider

Sme as)ses) HSym)‘( ) (as) € Ky (Var/HSym’\(s X)

Pulling back via the inclusion C*X — ], Sym*® X gives C% ((as)scs). We often write
this restriction with the subscript “*”, or even “x, X” if we want to emphasize that the
diagonal was removed at the level of points of X. If as = a for all s we also just write a
instead of (as). So, e.g.,

CX(a) = (Sme ) <nSym > . (2.2.4.2)
*,X

In particular, the variety | [, Sym*®) X will be denoted Sym™*X
We note that, by the definitions and [1, Proposition 3.7.0.4], for any &k : S — Z,

CX (LFay) seg) = L2ses HOMNIOX ((a4) se5). (2.2.4.3)
2.3. Pre-\ rings and power structures

Recall (e.g., from [19]) that a pre-A ring is a ring R equipped with a group homomor-
phism

At (R, +) = (1 +tR[[t]], x)
rs 14+ A (r)E+ Ao (r)t? + ...

such that A (r) = r. We require always the further condition that A\¢(1) =1 + ¢.
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It is equivalent, and for us usually more convenient, to give the homomorphism
orir > Ay(=r) =1+ oy (r)t + oo(r)t* + ...,

obtained by making the substitution ¢ — —¢ in A\;(—7r). The condition A;(r) = r is

equivalent to o1(r) = r and the condition A;(1) = 1 + ¢ is equivalent to o;(1) = 1.

The operations A; and o; on R are conveniently packaged and extended as a pairing
AxR—-R

for A the ring of symmetric functions — for e the elementary symmetric functions and
hi the complete symmetric functions we have

(er,7) = Ak(r), (hi,r) = ox(r),
and for any fixed r € R the induced map (e,7) : A — R is a ring homomorphism.

Example 2.3.1. If G is a finite group and R is the complex representation ring of G, then
R is equipped with a natural pre-) ring structure such that, for any representation in V'
with corresponding class [V] € R (which is also identified with the trace of V, viewed as
a conjugation invariant function on G),

(VD) = A" V], on([V]) = [Sym*V].

For any f € A, (f,[V]), viewed as a conjugation-invariant function on G, is the function
whose value on g € G is obtained by applying f to the eigenvalues of g acting on V.

Example 2.3.2. The Kapranov zeta function gives a pre-\ ring structure on Ky(Var/K),
Mg, and Mg via

o ([X]) = ZX™ (8).

Remark 2.3.3. In categories of a combinatorial nature such as varieties or sets, one has
symmetric powers but no exterior powers. However, the original formulation of (pre-
)A-rings takes places in categories of vector bundles, where exterior powers are natural.
This explains why we put the emphasis on o-operations instead of A-operations as in
classical presentations of this topic. In the literature, there is typically no restriction on
At(1) and o4(1) — without this condition, one can define a new pre-\ ring by swapping
the o and A-operations, so our requirements on A;(1) and o4(1) serve to eliminate this
confusion. Our choice is the “right one” in the sense that the operations enforced by this
convention on Grothendieck rings of combinatorial and linear categories are compatible
with natural functors like passing from a group action on a set to the induced permutation
representation or from a variety to its compactly supported cohomology.
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Remark 2.3.4. A pre-) ring R is a A-ring if the map ); is a pre-A ring homomorphism
(for the Witt ring and pre-) structure on 1+¢R[[t]]), i.e. if it is also multiplicative and if
it identifies the pre-A ring structures. If R is torsion free over Z, then in terms of Adams
operations (see 2.3.6) this is equivalent to asking that (p,,,e) be a ring homomorphism
and (Pm,, (Pma»®)) = (Pmyms,®)- The natural pre-A ring structure on the Grothendieck
ring of a symmetric monoidal category is in fact a A-ring structure, but it is not known
whether the pre-A ring structure on Ko(Var/K) and its variants is a A-ring structure.

2.3.5. Power structures on pre-A rings

In [15,16] (see also [19]) it is explained how a pre-A structure on a ring R extends
naturally to a power structure, which gives a systematic way to make sense of expressions
like

(1 +Zajtcf)b

for az, b € R; the result is a new power series with coefficients in R and constant term 1,
and we have

(1487 = \(r), (L) "

1-—t
In the case of Ko(Var/K) and its variants, the power structure attached to the Kapra-
nov zeta function (viewed as a pre-\ structure as in Example 2.3.2) is closely related
to motivic Euler products: in fact, it exactly captures the motivic Euler products with
constant coefficients. Indeed, for classes a ;€ Ko(Var/K), we have

[x]

1+ Y gt =]+ D agt?

deZk,\{0} zeX dezt ,\{0}

where in the right to interpret the motivic Euler product we pull back the elements a ;
to Ko(Var/X) as constant classes. In particular, we obtain

[X]
. 1 1
ZX™P(t) = (1—t> =1l 7=

2.3.6. Computing simple powers

In a useful special case, we now explain a direct explicit formula for computing these
powers (or equivalently, the motivic Euler products). This formula will be used to estab-
lish several estimates in §4.

To that end, we consider the power sum symmetric functions

Pm =] +25 +...€A
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as well as their Mobius-inverted counterparts
, 1
Pm = > u(m/d)pa € A[1/m]
d|m

studied in [19]. We note that for R a pre-\ ring,
(pm,®) :R—> R

is an additive homomorphism (these are the Adams operations). Indeed, this follows
from the identity

D ipisatt = dlog Y hit', (2.3.6.1)

=0 =0

and the fact that o; is a homomorphism. As a consequence, we also have that

(P> ®) = R[1/m] — R[1/m]

is a homomorphism of additive groups.
As shown in [19, Lemma 2.8], we have

Lemma 2.3.7. Suppose f(t) € Z[[t1,...,tn]] with constant coefficient 1 and r € R for a
pre-A ring R. Then, in (R®z Q) [[t1,.--,tn]],

log (f(t1,t2, . te)") = Y Pl (r)log f(E 25, .. 17"),

m=1

where the exponentiation on the left-hand side is for the power structure determined by
the pre-\ structure on R and log(l + ...) is evaluated via the formal series

52 83

log(1 =8— — 4+ ——....
og(l+s)=s 2+3

3. The ring of Hadamard functions
3.1. The Witt ring structure on rational functions

We start by explaining the ring structure on the set R of complex rational functions
f with f(0) = 1. One can identify Ry with a Grothendieck ring: let Repy be the
category of pairs (V, p) where V is a finite dimensional complex vector space and p is a
representation of Z on V' (to give p is equivalent to giving the automorphism p(1) of V).
The characteristic power series of a linear map induces an injective map
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Ky(Repy) — 1 +tC[[t]]

1
Vip)—» ————m——~
V-2l o=t
with image R;. The induced addition on R; is multiplication of power series, called
Witt addition; the induced multiplication is called Witt multiplication, and the set R
equipped with this ring structure is also known as the rational Witt ring of C.

We note that Ky(Repy) is also naturally isomorphic to the group ring Z[C *], where
the class [a] in the group ring is matched with the class of the 1-dimensional representa-
tion with p(1) given by multiplication by a. The induced identification of Ry with Z[C*]
sends f € Ry to the divisor of (1/t)
3.1.1. The big Witt ring

These ring structures extend naturally (e.g., by continuity in the coefficients) to 1 +
tC[[¢]]; the result is the big Witt ring W(C). The subring

W(Z) =1+ tZ[[t]] € W(C)
also admits a natural interpretation as the Grothendieck ring Ky(AlFin Z-set) of the
almost finite cyclic sets of [9]: Here an almost finite cyclic set is a set S with an action

of Z such that the fixed points X"Z are finite for each n and X = | J,, X"Z. If we denote
by a,(S) the (finite) number of orbits of length n in .S, then the identification is induced

by
)an(s)

Ky(Fin Z-set) Ky(AlFin Z-set) = W(Z) = 1 + tZ][[t]] - (3.1.1.1)

l !

Ko(Repy) = Ry W(C) =1+ tC[[t]]

a0 ]

Note that there is a commutative diagram

Here the left vertical arrow sends a Z-set S to the permutation representation C[S], and
its image consists of the functions in Ry with zero and pole sets both given by unions of
Galois-orbits of roots of unity, or equivalently the functions

1(=w)

n=1

with a, € Z and equal to zero for n sufficiently large. In particular, this can be used to
show that the two ring structures on Ry n W(Z) agree.
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3.2. A-ring structure and Adams operations

The symmetric monoidal structure on Repy equips the Grothendieck ring Ko(Repz)
with the structure of a A-ring with o-operations induced by symmetric powers and A-
operations induced by exterior powers. Under the isomorphism with Z[C *], the o- and
A-operations are determined by

os([a]) = 1+ o1([a])s + o2([a])s® + --- = 1 + [a]s + [a*]s* + - -
and
As([a]) = 14+ A ([a])s + A2([a])s® + -+ =1+ [a]s.

Thus, in Ko(Repy) with the A-ring-structure described above, (2.3.6.1) gives

e sllal) o]
Seallas' = 208 =

and in particular, the Adams operations are given by p;([a]) = (p;, [a]) = [a'].
Finally, we note that symmetric powers of sets define o-operations for a A-ring struc-
ture on W(Z), and using (3.1.1.1) we find the two A-ring structures agree on

W(Z) "Ry < W(C).
3.8. Topologies on rational functions
We describe three topologies on R.

3.3.1. The point counting topology
There is a natural injective map

Ry < 1+ tC[[]]

given by taking the power series expansion at zero. The point counting topology on Rq
is induced by the product topology on the coefficients of

1+ tC[[t]] = CN.

Note that R4 is dense when viewed as a subset of 1+¢C[[t]] so that the completion of R4
for the point counting topology is identified with 1+¢C[[¢]]. The addition, multiplication,
and A-ring structure are continuous for the point counting topology, so that they extend
to 1 +¢C[[¢t]] which is thus a complete topological A-ring; this is the big Witt ring W (C)
discussed already in 3.1.1 above.
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Instead of taking the power-series expansion of a rational function f, one could instead
take the power-series expansion of dlog f, and we would obtain the same topology. In
fact, dlog f gives a bijection

1+ tC[[t]] — tC[[t]] = CN

that is an isomorphism of topological rings when CN on the right is equipped with the
product topology and ring structure. The coefficients of dlog f are also called the ghost
coordinates on the big Witt ring.

Using this observation, we can also describe the point counting topology in terms of
Z|C*] = Ry. It is induced by the family of semi-norms || - |[;, 7 = 1,2,...

> kala]

Z koa?

J

Indeed, this follows from the above discussion and the computation

dlog (n(l —ta)k“> = i <2 kaaj> i1
j=1 \'a

a

We note that there is no natural description of the completion of Ry = Z[C*] for the
point counting topology in terms of divisors on C*.

3.3.2. The weight topology

In the weight topology, a basis of open neighborhoods of f € R is given by, for each
r > 0, the set of all rational functions g with the same zeroes and poles as f on the ball
|t| < r. In particular, a sequence converges if and only if on every bounded set the zeroes
and poles eventually stabilize.

Viewed as the group ring Z[C*], a basis of open neighborhoods of zero is given by
the set of all finite sums ), _c« kq[a] supported on the closed ball of radius r around
0 € C (here we are using that [a], as a rational function, has a pole at a~!), and a basis
of open neighborhoods at any other point is given by translation.

The completion Z[C*] of Z[C*] for the weight topology can be described as the set
of formal sums

A

aeCx*

whose support is a discrete subset of C and whose set of accumulation points in C L o0
is contained in {0}. The addition, multiplication, and A-ring structure are all continuous
for the weight topology, and extend to these formal sums.

We note that there is no natural description of the completion of R, for the weight
topology in terms of the power series expansion at 0.
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3.3.3. The Hadamard topology
The Hadamard topology is most simply described under the isomorphism R; —
Z[C*], where it is the topology induced by the sub-multiplicative norm

X kalal]| | = D lkallal:

It is easy to see the point counting and weight topologies on R are not comparable (i.e.,
neither is finer than the other). However:

Lemma 3.3.4. The Hadamard topology refines both the point counting and weight topolo-
gies on Ri.

Proof. Each of the semi-norms || - ||; defining the point counting topology is continuous

for the norm || || g, and thus the Hadamard topology refines the point counting topology.
To compare with the weight topology, it suffices to observe that if f = > k,[a] is

supported inside the closed ball of radius r, then so is any g with ||f — g||lg <7. O

3.4. The ring of Hadamard functions

We define the Hadamard-Witt ring W to be the completion of Z[C*] for the norm
[| - ||zr- It can be identified with the set of discretely supported divisors

AL

aeCx

such that » o« |kalla| < co. It is an elementary computation to check that the multi-
plication and o (or \) operations are continuous, so that they extend to W which is thus
a complete topological A-ring.

A Hadamard function is a meromorphic function f on C such that f can be written
as a quotient f = # where g and h are both entire functions of genus zero. In the next
lemma, we extend the identification of Z[C*] with R; to an identification of W with
the set H; of Hadamard functions f such that f(0) = 1.

Lemma 3.4.1. If > ¢« ko[a] € W and

D) kalal = D) kflal+ ). kg la]

aeCx aeCx aeCx

is the unique decomposition with k' > 0 and k] <0, then the infinite products

1 \F 1\ ke
U(lta) aij(lta)
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converge uniformly on compact sets to entire functions of genus zero f~ and f+. Fur-
thermore, the map

induces a bijection W — H; extending the bijection Z[C*] — R;.

Proof. This is an immediate consequence of the Hadamard factorization theorem in the
case of genus zero entire functions. []

Because the Hadamard topology refines the point counting and weight topologies,
there are natural maps between the completions, and these maps have natural function-
theoretic interpretations:

(1) The map from the Hadamard completion to the point counting completion is given
by taking f(t) € H; to its power series at 0.

(2) The map from the Hadamard completion to the weight completion is given by taking
f(t) € Hi to the divisor of ﬁ

The constructions in this section are summarized by the following diagram:

Ri = Z[C*]

point
counting
topology

Hadamard
topology

W (C) > My =W C Z[C~]

Taylor expansion at zero foDiv(f(tfl))

3.5. The zeta measure

Zeta functions of varieties give an interesting source of elements of the ring R;. In
fact, we have the following:

Proposition 3.5.1. The assignment X — Zx (t) induces a map of pre-A-rings
Ko(VaI‘/IFq) i Rl,
where R1 is equipped with the Witt ring structure.

Proof. Tt suffices to prove the same with R replaced by 1 + tZ[[t]] = W(Z), because
the zeta function of any variety is contained in Ry n 1 + tZ[[t]] < 1 + tC[[t]] = W(C).
Then, we claim the zeta measure is induced by the functor
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Var/F, — AlFin Z-set

sending X /F, to the set X (F,) with the action of FrobqZ.

It is clear that this induces a map of abelian groups on Kj: indeed, the functor factors
through the localization of Var/F, at radicial surjective maps (those maps which induce
bijections on points over algebraically closed fields), and then applying the naive Ky to
both sides gives the desired map — here the naive K is the free group on isomorphism
classes modulo turning finite disjoint unions into sums, and it is shown in [2] that the
localization combined with naive Ky on the left recovers Ko(Var/F,). Since products and
symmetric powers are preserved by the functor, we find that this is furthermore a map
of pre-A rings.

The orbits of length n in X (E) correspond to closed points of degree n in X, and
thus by definition we have

Zx(t) = Zygry ()

where the right-hand side is the assignment defined in 3.1.1 inducing
Ko(AlFin Z-set) = 1 + tZ[[t]],

and we conclude. [

Remark 3.5.2. The element L € Ky(Var/F,) gets sent to 1+qt7 which thanks to the way
we chose our normalizations has associated element [¢] € Z[C *] and therefore Hadamard
norm q. Since [g] is invertible for Witt multiplication in R; with inverse [¢~'], we also
see that the zeta measure induces a ring morphism My, — R;.

Remark 3.5.3. Let X/, be a variety. Then the different (semi-)norms introduced in
Section 3.3 are expressed in the following way when applied to Zx (¢ Vt) for some
N > 1: For every j > 1, ||Zx(¢7Nt)||; = ¢ V7| X (F,s)|- Moreover, by Deligne’s results
on weights, we have

1Zx (a0 lleo = "™ ¥,

and

2dim X

1Zx(a VDl <q Y dimg, Hi(Xg,, Qolal*, [ged(£.q) = 1]
i=0

with equality if X is smooth projective, in which case compactly supported ¢-adic coho-
mology can also be replaced with regular ¢-adic cohomology.

Example 3.5.4. It is straightforward to cook up sequences of a,, € My, that seemingly
violate our meta-conjecture, i.e. whose zeta measures converge in the point counting and
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weight topologies to the same f € H; but not in the Hadamard topology. For example,
take

n

an = (L™ [ [(L - ¢') € Mp,.

i=1

Then, ||Z,,||c — 0 and ||Z,,||; — O for all j > 1. Thus, in both the weight and point-
counting topologies, Z, — 1, which is certainly a Hadamard function! On the other
hand,

n!
| Za, || = e

so the sequence does not converge in the Hadamard topology.

However we maintain that this is not a natural sequence to consider. We refer the
reader to Remark 4.6.4 for an example of a natural sequence where a different issue
occurs — there we find a sequence that converges in both the point-counting and weight
topologies, but not to a Hadamard function, so that the two limits cannot even be
compared and our meta-conjecture does not apply.

3.6. The Kapranov zeta function and its special values

As explained in the introduction, special values of Kapranov’s zeta function often
appear as limits in natural motivic statistics questions.
Let X be a quasi-projective variety over I, and consider the series

Z%P () =14 Zx(t)s + Zsymex (£)s* + -~ € 1+ sR4[[s]], (3.6.0.1)

X,zeta

obtained from the usual Kapranov zeta function by applying the zeta measure.

Remark 3.6.1. Recall that a rational function f € R; has for every i > 1 a ghost co-
ordinate g;(f) given by the coefficient of t*~! in dlog f. As can be verified either from
the series or rational function expansion of Z)I?Zita(s), applying the ¢th ghost coordinate
map g; to each coefficient, we obtain

K
gi(ZX?Zzta(S)) = ZX]Fqi (S)

Thus, one way to think of the Kapranov zeta function of X /F, is as working simultane-
ously with the Hasse-Weil zeta functions of the base changes of X to all finite extensions
of Fy.

By Proposition 3.5.1, the zeta measure is a map of pre-\ rings, and therefore
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It follows from the formula for the o-operations on R that for any rational function
f € Ry, if we factorize

H(l — tai)

I= TT(1 = th;)

then

ou(f) = Fr—ra (3.6.1.1)

In particular, combined with Deligne’s results on weights we obtain the following propo-
sition that will be crucial in §4:

Proposition 3.6.2. If X /F, is geometrically irreducible, then

Z?‘Zita(s) €1+ sRy[[s]]

is “a rational function with smallest pole or zero given by a simple pole at [q~ 4]~

that is,

)

im ap o H(l B S[Qi])
(1= ["" 1) 235 = Ha—apD)

where the products are finite and |a;|, |b;| < q¥™X—1/2,

In particular, this gives a way to make sense of special value in H; by a simple evalu-
ation for any values of s such that the denominator is invertible in #;. The significance
of knowing the locations of the smallest pole or zero is that it allows us to control the
convergence of the corresponding series expansion, which is what will come up naturally
in our applications.

4. Hadamard stabilization for effective zero-cycles

In this section we investigate Hadamard convergence for sequences of motivic densities
arising from prescribing a set of allowable labels for effective zero cycles. After setting
up the notation and problem, in Theorem 4.3.5 we give a general condition that guaran-
tees these densities exist. As immediate corollaries we obtain stabilization for the Hodge
measure over C (Corollary 4.3.7) and for the weight topology on zeta functions (Corol-
lary 4.3.8). For X stably rational, these results hold already in the dimension topology on
the Grothendieck ring. The proof of Theorem 4.3.5 is based on the generating function
argument used by Vakil-Wood [22] in their study of motivic densities of configuration
spaces.
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We then apply our convergence criterion to obtain Hadamard convergence in various
more specific settings. In §4.4-4.5, we consider pattern-avoiding zero-cycles, generalizing
spaces considered by Farb-Wolfson-Wood [13] and by Bourqui [4]. In particular, we obtain
Hadamard convergence for the spaces considered in [13] as well as simpler proofs of some
results of [13] (cf. §4.4.2), and we also clarify some results of [4] (cf. Remark 4.5.7).

In §4.6, we consider densities with a finite set of allowable labels. The main case of
interest is the universal one, corresponding to configuration spaces with a fixed set of
dim X then we obtain Hadamard

convergence, but otherwise we obtain natural examples that converge in both the weight

k labels. Here the behavior is more delicate: if ¢
and point counting topology, but not to a Hadamard function.
4.1. Notation, examples, and a general density problem

We consider the monoid Z%. For a subset A < Z%\{0} (our set of allowable labels)
and d € Z’;O, we write Xi for the configuration space of points in X with labels in A
summing to d. In other words, points in Xf; can be thought of as finite formal sums
D rex Gzx such that each a; € A and ), d, = d. Each point of Xg thus determines a
partition of d into elements of A, and there is a natural decomposition of Xi as a disjoint
union of configuration spaces over such partitions:

xi=|] cx. (4.1.0.1)
A}—AJ

Here the subscript in 4 signifies that each part of A is an element of A and the notation
C* is as in §2.2.1. In terms of generating functions, by the definition of motivic Euler
products and the decomposition (4.1.0.1), in My we have the identity

M gt =] <1+ 3 td> .
d"ezgo reX aeA
Example 4.1.1.

(1) Taking A = Z%,\{0}, we obtain

[XZe o)) = [Sym™X] = [Sym™ X x Sym®X x - x Sym® x]

and

Mg =T (1 + 3 td>

UTEZ’;O zeX aeA

1
=11 (I=t)(1—t2)... (1 —tw)

zeX
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Kap Kap Kap
= Zx () Zx " (t2) - 27 (t)-

In general, we may think of Xff; as a constructible subset of Syde , 1.e. as a param-
eter space of k-tuples of effective zero cycles on X.
(2) If A is the collection of standard basis vectors é;,1 < i < k, then

=C (X)a

ey

X

the colored configuration space of > d; points in X with k& colors and d; points of
color i. The generating function is then

Z [Xi]tJZ H(1+t1+t2+"'+tk)-

dezk, zeX

(3) Taking A to be the complement of Z%; + (m,m,...,m) in Z%,\{0}, we find that
[X 4] equals the class of k-tuples of effective zero cycles on X that overlap in a zero
cycle with multiplicities less than m. We then have

Mg =T (1 + 3 td>

d_‘GZgD reX aeA

_ (1 — (tsta---tp)™)

_ml;[( (1—t)(1—tg)--- (1 —tg)

2™ () 2™ (t) - 2™ (1)
Z™ ((tata - ty)™)

4.1.2. A density problem

Recall that a motivic measure is a ring morphism ¢ : M — R valued in some ring
R. We will often write ag for ¢(a).

If Ac B, then X4 Xg, and for suitable motivic measures ¢, it is natural to consider
the asymptotic density

ey

X
lim [

lg
s (4.1.2.1)

]

Ty
<

where here d — oo means each entry is going to co.

We restrict here to the case where A contains the standard basis vectors €;, 1 < ¢ < k;
this ensures that X fi has dimension dim X -} a?: and includes the cases of Example 4.1.1.
It is then natural to take B = Z%\{0}, so that we are studying densities in the full
motivic probability space of k-tuples of effective zero cycles. In this setup, we give in
Theorem 4.3.5 below a condition on X, A, and ¢ that guarantees the limit (4.1.2.1)
exists, and, moreover identifies the limit as a special value of a power series expressed as
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a motivic Euler product. Before establishing this criterion, we give some basic notation
for discussing convergence of power series with coefficients in M.

4.2. Normed motivic measures and convergence of series

4.2.1. Normed motivic measures
We call a motivic measure ¢ : Mg — R normed if R is complete for a sub-
multiplicative norm || - || and ||]L;1|| < 1. We have in mind especially the cases:

(1) K = F, and ¢ the zeta measure to the completion of R, for either the weight or
Hadamard topologies.

(2) K arbitrary and ¢ the map Mg — M k to the completion for the dimension
topology. In this case, we fix the norm to be |[a|| = 2%m? where we define
dima :=inf{d€ Z,a € Fild./(/l\K}.

(3) K = C and ¢ the Hodge measure, with a norm defined similarly using the weight
filtration on K?(ES).

Note that on My, we can also access the point-counting topology for the zeta measure
through this setup by treating each ghost coordinate individually, i.e. by considering for
each k the measure induced by X — |X(IF,x)| as a C-valued measure.

4.2.2. Absolute convergence and radius of convergence
The following is completely elementary, but it will be useful to spell it out clearly
before we start manipulating values of convergent power series for normed motivic mea-

sures.
If R is complete for a norm || - ||, then we say a series
2T
dezk,

for ry€ R converges absolutely if the series of real numbers )’ ||r;{| converges, i.e. if the
limit of partial sums converges. An absolutely convergent series converges and its limit
is independent of reordering the terms; moreover, the Cauchy product of two absolutely
convergent series is absolutely convergent and its limit is the product of the limits of the
two series.

Given a power series

&)= > agt?e R[[t, ..., t]],
dezk,
the radius of convergence of f(t) is

f) = ! € [0, +o0].

* limsupg|agd|/Xd
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If 51,..., sk € R are such that ||s;|| < p(f) for all ¢, then the series obtained by formally
substituting s; for ¢; converges absolutely, and we write f(sq,...,sx) for its value in R.

If f(t) and g(t) both have radius of convergence > pg, then so does the formal power
series h(t) = f(t)g(t), and h(s1,...,sk) = f(s1,...,8%)g(s1,...,8k) for ||s;]] < po. In
particular, we highlight the following point: if f(t) has invertible constant coefficient
then it admits a formal inverse %(t) € R[[t1,...,tx]]. If both f and 1/f have radius of
convergence > po and ||s;|| < po, then we find

1 1 1
s sk) (51,0 sk) = 1, 80 (81,00, 88) =
f(Sla ;Sk) (Sla ﬂsk) ) SO (Sl’ ’Sk) f<517 .. .,Sk)

f f
Example 4.2.3. Let X /F, be a geometrically irreducible variety. From Proposition 3.6.2
and the above discussion, we deduce that, as power series in Hy[[t]],

(1) Z)Igiita(t) and 1/Z§)azita(t) have radius of convergence > ¢~ 4™ X and converge to
mutually inverse values for [t| < ¢~ 4mX,
(2) Let f(z) = (1—t[qP™X])ZX* (t). Then f(z) and 1/f(x) have radius of convergence

X,zeta
> ¢~ dimX+1/2 and converge to mutually inverse values for [t| < ¢~ dim X+1/2,

Indeed, given the formula for Z)Igipeta(t) as a rational function in Proposition 3.6.2 and
the behavior of radius of convergence of products, it suffices to observe that, for a € C*,
the formal power series with coefficients in #;

1

m:1+[a]t+[a]2t2+...

has radius of convergence r‘l!‘

4.2.4. A useful lemma

We establish a useful convergence lemma for the dimensional topology. Before stating
it, recall that a motivic Euler product is by definition a power series with coefficients
in Mg — that is, the product symbol is only a notationally convenient way of defining
a series. In particular, when discussing convergence of a motivic Euler product, one
is always discussing convergence of a series — there is indeed no other way that the
convergence can be interpreted.

Lemma 4.2.5. Let 1+ Yo, a;T" € Z[[T]] be a power series with no term of degree 1.
Then the motivic Euler product

fo=1] <1 +, aﬂ) :

zeX =2

viewed as a power series with coefficients in M, has radius of convergence > |||~
Moreover, for ||s|| < |[L||=%"%, f(s) is an invertible element of M.
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Proof. Because the formal inverse

1

TS e © 2T

also satisfies the hypotheses of theorem and

WO —

2eX 1+ Zi>2 aiTi’

the statement about invertibility of the value f(s) will follow once we have established
the claim about the radius of convergence.

To compute the radius of convergence, we note that the term of degree n of the
expansion of this motivic Euler product is a sum over partitions of n. Because a; = 0,
the contribution of each partition (n;) such that ] in; = n is bounded in dimension by

ndim X

YinidimX < %ZinidimX: 5

=2 i=1

The result then follows immediately from the formula for the radius of convergence. []
4.8. Weak rationality and a convergence criterion

Given a power series f(t) with coefficients in My and a normed motivic measure ¢,
the ¢-radius of convergence of f is the radius of convergence of the power series obtained
by applying ¢ to the coefficients of f.

Definition 4.3.1. For X a geometrically irreducible K-variety, we say Z?ap(t) is weakly
rational for a normed motivic measure ¢ if the power series (1 — Ldimxt)Z)Igap(t) and
its inverse both have ¢-radius of convergence strictly larger than ||]L;dimX 1B

For K = I, and ¢ the point-counting measure to C, weak rationality follows from
Deligne’s results on weights — indeed, the smallest zero or pole of the rational function
Zx(t) is a pole of multiplicity one at ¢~ 4™ X . For our applications, what we will need
is precisely the convergence of the series expressions obtained after removing this pole,
and this motivates our definition of weak rationality.

We note that closely related conditions have previously been considered in the lit-
erature. In particular, weak rationality is stronger than the motivic stabilization of
symmetric powers (MSSP) of [22] and the extension MSSP* of [19]. In practice, however,
weak rationality holds whenever MSSP is known, in particular:

Proposition 4.3.2. Let X be a geometrically irreducible K -variety.

(1) If X is stably rational then Zﬁap(t) is weakly rational for the map to the completed
Grothendieck ring M .
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(2) If K =F, then Z)Igap(t) is weakly rational for the zeta measure to Hi.

—_—

(3) If K = C then Z)Igap(t) is weakly rational for the Hodge measure to Ko(HS).

Proof. Case (2) follows from Example 4.2.3, and case (3) follows by a similar argument
using rationality of the Kapranov zeta function under the Hodge measure.

Case (1) is very similar to the argument for MSSP in [22, §4]: X stably rational means
that for some n, X x A™ is birational to AU X+7 and since

(1 _ LdimXXA )ZiipAn (t) _ (1 o LdimX(]Lnt))Zﬁap(]Lnt)7

it suffices to assume that X is rational. If X is rational, then there are varieties Y; and
Y, with dim Y; < dim X such that [X] — [Y1] = [AY™X] — [Y3]. Then

(©) s

ZKap
Kap _
ZX (t) - Zde(t> Adim X (t)

and since ZK?};, «(t) = {—dmx; is cleared by multiplying by 1 — Ldimx t, we conclude

O

weak rationality; indeed, Zgap( )1 has radius of convergence > ||~

Remark 4.3.3. Essentially the same argument as in the proof of Proposition 4.3.2-(3)
shows more generally that having a weakly rational Kapranov zeta function is invariant
under stable birational equivalence (as is MSSP; see [22, 1.26-(i)]).

4.8.4. A convergence criterion
Adapting the strategy used to study the motivic densities of configuration spaces in

[22], we find

Theorem 4.3.5. If Z)I?ap(t) 1s weakly rational for ¢ and the power series

ZJeZ’;O[XA] _ H 1—t1)(1—ty) - (1 —tr) (1+Zt> (4.3.5.1)

K K K
ZXap(tl)ZXap(tQ) : ap tk reX acA

converges absolutely at t1 =ty = -+ =t =L dm X 1o o value ¢, then

xd
lim [X4ls _
d—o [Sym?X],

Proof. In what follows, we write n = dim X. By weak rationality,

(1—L") - (1 — L") Z5™ (1)) - - - ZK™ (3,
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converges absolutely at t = (}L;”, . JL;") to an invertible element. In particular, the

. Sym?¢Xx
sequence of partial sums [?I:mid«]q’ converges to an invertible element as d— .
¢

If the quotient power series

HzeX (1 + ZaeA ta a
= | | 1—1ty) (I—tp) | 1+ t¢
Z?ap(tl)ziap(h) . Kap 1 Z

reX acA

also converges absolutely at t = (]L;", . ,]L;”), then multiplying we find that

(1-L ) (1-L") || (1 + ) td>

zeX acA
converges absolutely at t = (]Ll;”7 . ,]L(;”). In particular, the sequence of partial sums
T T

[X*“lgrf’ converges, and the quotient % converges to the value of
L7 [Sym¢X]e

[ =)@ —ta) - (1—t) <1+ R )

zeX aeA
at t = (L;",...,L;"). O

Remark 4.3.6. The “local factor” at a geometric point x of X,

)

(1 —t1)(1 —tg) - (1 — tg) <1+Zt5>

acA

(L—dim X T ,—dim X)

is the asymptotic density as d — oo of the subset of Syde where = has an allowable
label. Indeed, this can be verified essentially as in the proof above, using

a 1 1 1 1
g@;‘t)XQ}(l_tl)...(l_tk) /g(l_tl)...(l_tk)
=JJa+t)... A+t <1+th>.

{x} acA

Here on the first line the numerator is the generating function for the subsets of Sym’iX
where x has an allowable label and the denominator is the generating function for
Syde . Thus the theorem can be thought of as establishing the asymptotic indepen-
dence of these local conditions at each point z.
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Corollary 4.3.7. For X/C irreducible,

lim &z (n(l—tl)(l—tQ)--.(l—tk) (1—|—Ztﬁ>>

d—0 [Syde Jus zeX

(L;Isdlm X 7]L;Isdin] X)
If X is stably rational, then this holds already in M\C.

Proof. By Proposition 4.3.2, the Kapranov zeta function Z)Iﬁap(t) is always weakly ra-
tional for the Hodge measure, and is weakly rational in M¢ if X is stably rational. On
the other hand, since there are no degree 1 terms in

(1—t1)(1—to) - (1 —ty) <1+ > t“)

acA

we can use Lemma 4.2.5 to check that the motivic Euler product converges absolutely
in the dimension topology on M and thus also for the weight topology after passing to
the Hodge measure. []

Arguing similarly, we also obtain

Corollary 4.3.8. For X/F, geometrically irreducible,

ym(X)

(ﬂ(l—tl)(l—tg) (1=t <1+ Zta>>

zeX acA

lim Zng/WZS 7 =
—00

([g= dim X],[q=4im X],...)

in the weight topology. If X is stably rational, this holds already in M\Fq,
4.4. Pattern-avoiding zero-cycles I

A natural generalization of the setup in Example 4.1.1-(3) is given by the notion of
pattern-avoiding zero cycles: we fix a subset V' of labels, and then take A = A(V) to
consist of every label not lying above V' (where a label @ lies above V if there is some
7 € V such that @ — ¥ € Z%). Thus, in this case Xi is the space ZJ(X) considered
in section 1.5.2. In order for A to contain all basis vectors, we assume here that all the
vectors in V' have norm at least 2.

Example 4.4.1.

(1) V = (m,m,...,m) recovers Example 4.1.1-(3).
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(2) Let V = {(1,2),(2,1)}. Then Xi(v) parameterizes pairs of effective zero-cycles
(C1,C3) € Sym™(X) x Sym?(X) such that we can write C; = C} + D and
Cy = CL + D where Cf, C5 and D have disjoint supports and D is reduced (i.e.
all points have multiplicity at most one).

(3) Bourqui [4, Section 3] studied spaces of “intersection-avoiding” zero-cycles, which
corresponds to requiring each vector in V' to have all of its coordinates equal to 0
or 1.

4.4.2. Orthogonal patterns
Suppose we take V to be a collection of orthogonal vectors of norm larger than one
(generalizing Example 4.4.1-(1)). Then, a straightforward computation shows

<1+ Zt&) = (ﬁl—lm) [Ta—t9.

acA i=1 veV

So, in this case (4.3.5.1) simplifies to

H A (2
eV

In any of the normed motivic measures we consider each term in this finite product
converges absolutely at t = (IL~4mX T, =dimX "3 hecause |#] > 1, thus the product
converges absolutely. Theorem 4.3.5 then gives Theorem A, and we also obtain conver-
gence in the Hodge measure for X/C, and in the dimension topology if X is stably
rational. In particular, if V' = {(m,m,...,m)} as in Example 4.1.1-(3), then we obtain

a short proof of Theorem 1.9-2 of [13] and provide the motivic lift predicted there.

Remark 4.4.3. Note that while the generating function for any A can be written as an
infinite product of zeta functions, it is quite special that we obtain a finite product in
this case.

4.5. Pattern-avoiding zero-cycles 11

We now consider the more general case where the vectors in V' are not necessarily
orthogonal.

4.5.1. Mébius functions
It will be helpful to rewrite the power series in Theorem 4.3.5 using the notion of
Mébius function appearing in [4, Section 3].

Definition 4.5.2. The local Mébius function py : Z’;O — Z is defined recursively by the
relation
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Lavyoqoy () = 2 pv (@),

0<7’'<7i

where the left-hand side is the characteristic function of the set A(V') u {0}.

Remark 4.5.3. It is immediate from the definition that

o pv(0) =1
o for any i€ A(V), uy (i) = 0;
e for any minimal 7€ V, uy (0) = —1.

Lemma 4.5.4. We have

Q—t)-(I—te) [ 1+ D t7| = > (it

aeA(V) meZk,

Proof. This follows by dividing both sides by (1—t1) - - - (1—t), expanding the right-hand

side and using the definition of uy. [

Example 4.5.5. In the case where V = {(m,...,m)}, we get py(m,...,m) = —1, and

wy (i) = 0 for any other non-zero vector 7, so we recover Example 4.1.1-(3). More

generally, if the vectors in V' are orthogonal, one can check that we recover the expression

in Section 4.4.2.

It is worth showing how this notion is related to the notion of Md&bius function of a

oset. For every ¥ € Z%, we denote by #(4) its i-th coordinate. Define #ax to be the
P y >0

vector given by

Define Py := {0} U gy {7, ¥ <7 < Upax}. Then we have

Proposition 4.5.6.

(1) The restriction of the function py to Py is equal to the Mdbius function of the

poset Py .
(2) The function py is zero outside of the finite set Py .

Proof.

(1) Since for any 7 € A(V), puy (i) = 0, the two functions satisfy the same recurrence

relation for all 7@ < ¥inax, S0 coincide on all these elements.
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(2) Let m € ZE\Py. If m € A(V), then we have already observed that puy (1) = 0.
Otherwise, since m ¢ Py, we have m £ ¥ax S0 there exists an index 7 such that
m(i) > maxgey U(7). Note that, identifying coefficients in Lemma 4.5.4, we get

py (i) = Z (_1>Z(mim/)1A(V)u{6} ().

/s b (H—m’)e{0,1}k

Now, the 7’ in the sum break up naturally into pairs with the same coordinates
outside of the ith index, and because for all terms we have m/(i) > m(i) — 1 >
maxgey v(i), in each pair either both vectors or neither will lie in A(V'). Thus, the
contributions of the two vectors in each pair cancel, and we obtain zero for the
sum. [ ]

Remark 4.5.7. We comment further on Example 4.4.1-(3). In this case, Bourqui [4,
Section 3] writes Bnin < {0,1}* where we write V, and the label generating func-
tion 1 + ZaeA(v) t? is what Bourqui denotes as @ p; the product with the polynomial
(1—t1)--- (1 —tx) is Pp, and the analogue of our Lemma 4.5.4 is Bourqui’s Lemme 3.1.
The coefficients of (4.3.5.1) are then the values of the motivic M6bius function of [4,
Section 3.3], and the formula after specializing to Chow motives in characteristic zero
in [4, Theorem 3.3] follows from the identification of the motivic Euler product with a
pre-A power and [19, Lemma 2.8].

Because of the definition of motivic Euler products used there, Bourqui’s results are
valid after tensoring the Grothendieck ring with Q and specializing to Chow motives.
Our setting does not require these procedures, and can be thought of as a strengthening
and generalization of the results of [4, Section 3], answering in particular Bourqui’s
Question 3.5: it boils down to verifying the identity

Zd“ezgo [Xfalx(V)]td

Zﬁap(h)Zgap(tz) e Zﬁap(tk) = zl;[{ <Z v (70)t ) ,

7

which follows from Lemma 4.5.4 after taking motivic Euler products. As explained by
Bourqui, a positive answer to his Question 3.5 ensures that Corollary 3.4 in [4] is valid at
the level of the Grothendieck ring of varieties, which in turn gives a lift of his main the-
orem to the Grothendieck ring of varieties. We give more details about this in Section 5,
where we also address Hadamard convergence.

In the remainder of this subsection we prove the following convergence theorem for
spaces of pattern-avoiding zero-cycles:

Theorem 4.5.8. Suppose X /I, is irreducible. Let A = A(V') for some finite set of vectors
Vc Z’;O of norms at least 2, and denote by e the minimum of the sums of the coordinates
of the vectors in V. Then,
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ZXI‘f;/WZSme(X)
converges as d — oo in the weight and point-counting topologies on Z[C*]. If
Zﬁez’;o—{o} |y ()| < ¢¢ 9™ X then it converges in the Hadamard topology.

Example 4.5.9. Let V = {(2,1), (1,2)} as in Example 4.4.1-(2). Then Theorem 4.5.8 tells
us that
A

X(T

Aw)/WZSymd‘(X)

converges in the Hadamard topology for any value of ¢. Indeed, in this case e = 3 and
the only non-zero values of uy are

MV(2a 1) = MV(L2) = —1land HV(2v2) =1,
so the inequality becomes 3 < ¢3, which is satisfied for any prime power g¢.

Remark 4.5.10. In general, we do not necessarily expect Hadamard convergence to hold
for all values of q. See Remark 4.6.4 for a discussion of this phenomenon, and an example
of Hadamard non-convergence.

To prove Theorem 4.5.8, we will apply Theorem 4.3.5, and we start by establishing
some bounds which will be needed to check convergence of the motivic Euler product
appearing in its hypotheses. In the following we use the notation of 2.3.6.

Lemma 4.5.11. For R a pre-\ ring, r € R and a1, ...,a; € Z, the coefficient of u? in
log (1 +ajug + -+ agug)”),

an element in R®yz Q, is

N (_\Sd ,
_ Zﬂ(%d>(21)dﬂ/afl,,.akkp;n(r)_ (4.5.11.1)

md =d

In particular, if R®z Q is normed, we find that the sum of the norms of the coefficients
of u? for a fized total degree d = Zcfzs bounded by

d/m
2 (Z |ail> [P ()] (4.5.11.2)

mld \ ¢

Proof. The formula (4.5.11.1) is obtained by expanding the formula given in Lemma 2.3.7
in this case. We then obtain the estimate (4.5.11.2) by summing norms for fixed m and
all d'in (4.5.11.1). [
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Lemma 4.5.12. Let X be an irreducible variety over IFq. Let

P(ty, ... tx) =1+ Y brt" € Z[t, ... ;]

be a polynomial such that P(ty,...,tx) — 1 has only terms of degree at least e = 2. The
motivic Euler product

[Pt t)

zeX

— dim X]

converges absolutely at t1, ...t = [q in the point counting topology. If - |bz| <

¢ X then it also converges absolutely in the Hadamard topology.

Proof. Since motivic Euler products commute with monomial substitutions (see [2, Sec-
tion 6.5]), and since each non-constant monomial is of degree at least e, we can reduce
to verifying the convergence of

n(l—l—alm + -+ anuy)
reX

for |u;| < g ¢4mX where n is the number of non-constant monomials appearing in P,
and ai,...,a, are the coefficients by, arbitrarily relabeled. Because the coefficients are
constant, the motivic Euler product is equivalent to the power

(1+ ajuy + - + apuy,)™

Moreover, by Proposition 3.5.1 the zeta measure is a map of pre-A rings, so we can
compute the image as

(14 aguy + - + apu, ) 2x®

and apply Lemma 4.5.11.

We first treat the Hadamard case. We extend the Hadamard norm on Z[C*] to
Q[C*] in the obvious way; it then suffices to show that log converges absolutely. Now,
we consider the estimates (4.5.11.2) for

r=1[2Zx(s)] = [¢"™ ] £ [aa] £ - £ [ow],

where 1™ X=1/2 > |2;| > 1. Using that p/, acts additively and that

Hollel) = = 3 st/ dpat(=]) = = 3 tm/d) (=),

d|m d|m

(see Section 3.2) we obtain the estimate
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Pl (M) < g™ X (1 + Ng=™?%) < Ogmdim X, (4.5.12.1)
Suppose ¥ := Y, |a;| < ¢¢4™X. Then, we can bound (4.5.11.2) by

C.(EdqdimX+ Z Zd/mqmdimX) gc'(qudimX+ Z q(%er)dimX)'
m|d,m#1 m|d,m#1

<C. (EdqdimX I dq(%”) dimX) .

edim X

In particular, if ¥ < ¢ , we conclude the series converges absolutely for

el [rrs- o |ugl | < g™

For the point counting case, it suffices to show convergence for IF,-points. Then,
Pl ([X]) is just an integer, the number of closed points of degree m on X/F,. Thus
for any M we can factor out the polynomial

M ’
[T Per,... o= XD,

m=1

and then taking log of what remains gives a series with coefficients bounded by (4.5.11.2)
but where the sums are over m > M. We then obtain absolute convergence by taking
M large enough that /M < ¢¢4im X and estimating as above. []

Remark 4.5.13. In fact, as can be seen from the proof of Lemma 4.5.12, if € is such that
¥ < ¢¢4mX—¢ then Hadamard convergence holds for ||u;||g < ¢ ¢4™X*7 for n < e,
and thus for ||t;|| < ¢~ @™ X+7/¢ In the same manner, we can get convergence of point

counts for [t;| < ¢~ 9™ X+9 for some § > 0.

Proof of Theorem 4.5.8. The convergence in the weight topology follows from Corol-
lary 4.3.8. For Hadamard and point counting convergence, we note that by the properties
of the Mobius function, the power series

(1—t1)-- (1 —tg) (1 + 3] td> = py (i)t”

acA

is a polynomial satisfying the assumptions of Lemma 4.5.12, and the latter combined
with Theorem 4.3.5 allows us to conclude. []

4.6. Finite sets of allowable labels

In the previous section, we showed that in the case A = A(V'), we can prove Hadamard
convergence of
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Zin;’/W ZSym‘I(X)

for ¢ sufficiently large, with the bound in ¢ depending only on the sum of the absolute
values of the values of the Mo6bius function of V. In some special cases, it is actually
possible to improve this bound. The aim of this section is to give a sharp lower bound on
q in the setting of Example 4.1.1-(2). Thus, for a fixed k we are looking at the behavior

of C’(dl""’d’“)(X) as dy,...,dr — o, and the corresponding generating function is
[Ta+t+.. +t). (4.6.0.1)
zeX

Remark 4.6.1. For any finite set of patterns A not necessarily of the form A(V), the
generating function for Xi is obtained by monomial substitutions from (4.6.0.1) for
k = |A|. Similarly to the proof of Lemma 4.5.12, the bounds we obtain in the universal
case considered here can also be used to study the case of arbitrary finite A.

Theorem 4.6.2. Suppose X /F, is geometrically irreducible. Then,
ch‘(x)/WZsymff(X)

converges as d e Z’;O goes to infinity in the weight and point-counting topologies on
Z[C*]. If k < q¥™X it converges in the Hadamard topology.

Remark 4.6.3. This case is also covered by Theorem 4.5.8 by taking V to be the set of
all vectors in Z’;O with sum of coordinates equal to 2. However, the bound obtained is
worse: it is of the form f(k) < ¢?9™X for f(k) exponential in k. For k = 2, however, it
gives the equivalent condition /5 < ¢4im X,

Remark 4.6.4. The condition for Hadamard convergence is not just an artifact of the
proof: When X = AI/IFq and k£ = 2, we can use a computer to compute the limiting
formal divisor in the weight topology to high precision by expanding the limiting value as
described in Corollary 4.3.8 using the expansion of its logarithm given in Lemma 4.5.11
(note that we can identify powers and constant Euler products). The limit is of the
form 3, _o(=1)"a,[¢7"], and we have verified that a,, > 2" for n < 250. Moreover, the
computations strongly suggest that the ratios |a,|/|a,—1| are a decreasing sequence for
n = 2 with lim,, o |an/a,—1] = 2. If this holds, then for ¢ = 2, any sequence of functions
converging in the weight topology to this formal divisor has unbounded Hadamard norms.
It is probably possible to prove the estimate a,, = 2™ by expanding more carefully using
the techniques below, but we leave this to the interested reader. In Appendix A, we give
the first 250 terms of this formal divisor; for comparison, we also give the exact divisor
of Zcao.a041(tqg=8%) along with its Hadamard and point-counting norm for ¢ = 2 (this
can be computed in a similar way by expanding out the generating series (1+¢; + tg)[Al]
for [C(41:92)(A1)] via Lemma 4.5.11).
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Note that this does not violate our meta-conjecture: limits exist for both the weight
and point-counting topologies, but the limit in the weight topology is not a Hadamard
function! In particular, the limit in the weight topology cannot even be compared to the
limit in the point-counting topology, because a general formal divisor does not have a
well-defined Taylor expansion.

To prove Theorem 4.6.2, we will use the same approach as for the proof of 4.5.8. We
start by the following variant of Lemma 4.5.11.

Lemma 4.6.5. If R is a pre-\ ring and r € R, the coefficient of td in

log (1 —t1)(X—t2) - (L—=tp)(L+t1+ -+ + 1)) € Rz Q[[t1,. .. ]

8

— d’ . 7
= Yimd=d 1+(d’1) pﬁngT) if t4 =t{
(=n=

d (4.6.5.1)
—Zmd":i(z(;) =7 pl, (1) otherwise.

In particular, if R®Q Q is normed, we find that the sum of the norms of the coefficients
of t¢ for a fized total degree d = Zcfzs bounded by

> B ()], (4.6.5.2)

m|d,m#d

Proof. The proof is the same as for Lemma 4.5.11, except that in the final summation
one needs to note that m = d gives zero in the first case and cannot occur in the second
case. []

Proof of Theorem 4.6.2. Convergence in the weight topology follows from Corol-
lary 4.3.8, and convergence in the point counting topology from Lemma 4.5.12 and
Theorem 4.3.5. For Hadamard convergence, we also apply Theorem 4.3.5, and proceed
as in the proof of Lemma 4.5.12 to prove the required absolute convergence: it suffices
to study convergence of the power series

(1= t) (1 —ta) - (1= tg) (1 + by + - + 1)) X

using Lemma 4.6.5. The point of the latter is to exploit the factors (1 —t1)--- (1 — tg)
to cancel out the contribution from p/;(r) in (4.6.5.2), which otherwise would have given
a term which would have obstructed convergence in the estimates below. Suppose k <
q¥™ X Then, using the estimate (4.5.12.1) on the M&bius-inverted power sums of Zx(s),
and the fact that there is no m = d term, we may bound (4.6.5.2) by

C . (kdqdimX + dq(2+d/2) dimX).
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dim X

In particular, if k < ¢ , we conclude the series converges absolutely for

Newlles - el < g~ 4= X

This concludes the Hadamard case. [

Remark 4.6.6. For X /C smooth, one can see that the Betti numbers

xd;
f_Aﬁ

dimHi(c(dl’dg"”’dk)X((C), Q) = dim Hz(c(l, 1, ey 1)X((C),Q>Sd1 X8y XX Sy,

stabilize as (di,da,...,d;) — 00 using representation stability for the cohomology of
pure configuration spaces combined with the Pieri rule.
In more detail,? representation stability implies that for d = > d; » 1,

d

———
Hi(c(l, 1,..., 1)X((C); Q) = @V(/\)@c*,

where the direct sum is over partitions A, the multiplicities ¢ are constants and V(\)
is the representation of Sy whose corresponding Young diagram has shape (d — >\, ).
It suffices to check that dim V()54 XSz X XS4y stabilizes as (di,...,dy) — 0. By the
Pieri rule, this dimension is given by the number of ways of choosing subdiagrams with
shapes

(d) =M <A< < A= (d—DIAN

where each ); is obtained by adding d; boxes to A;_1, no two in the same column. As long
as each d; is at least the length of the first row in A, then this is equal to the number of
ways to build A in k£ — 1 steps where at each step we add at most one box in each column
(the remaining boxes that don’t go towards building A must go to the first row). This
count only depends on A and k. It would be interesting to explain the growth observed
in Remark 4.6.4 from this perspective.

5. Rational curves on toric varieties

In this section we apply the results of Section 4 to generalize the main theorem of
Bourqui’s paper [4], which studies moduli spaces of rational curves on split toric varieties.

2 We thank Nate Harman for explaining the following argument to us.
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5.1. Geometric setting

We now introduce the necessary notation and give a brief overview of the geometric
context of the theory of (split) toric varieties. We refer to the classical references on toric
varieties (e.g. [14]) for details.

Let K be a field, » > 1 be an integer, and U = G/, a split torus of dimension r defined
over K. We denote by X*(U) = Hom(U, G,,) its group of characters, and Xy (U) =
Hom(G,,,U) its group of cocharacters. Both are free Z-modules of rank r, and there is
a natural pairing

<'7'> : X*(U) X X*(U) — 7.

A projective and regular fan ¥ of the Z-module X, (U) defines a smooth projective
split toric variety Xy with open orbit U. We denote by (1) the set of the rays (that is,
one-dimensional faces) of ¥. A generator p, of such a ray o € ¥(1) defines a U-invariant
divisor D, on Xy, and there is a short exact sequence

0— X*(U) > @ ZDo— Pic(Xs) — 0,
aeX(1)

where the first map is given by sending m € X*(U) to

Z<m7 pa>DOé‘

«

From this, we in particular get the identity
rkPic(Xy) = |2(1)] — . (5.1.0.1)

An anticanonical divisor is given by Zaezu) Dg; we denote by L its class in the Picard
group. The effective cone of Xy is the image in Pic(Xx) ® R of the cone ) R>0D,, so
that in particular Ly lies in the interior of the effective cone of Xy.

Bourqui’s proof introduces a regular fan A of the Z-module Pic(Xy)" whose support
is the dual of the effective cone of Xs.. The cones of maximal dimension of A have
dimension p = rkPic(Xyx). For every ray i € A(1) we denote by m; its generator. We
write

a = lem{{m;, Ly), i€ A(1)}. (5.1.0.2)

Since Ly is in the interior of the effective cone of Xy, this is a positive integer. In this
setting, the invariant o*(Xy) defined in Section 4.3 of Bourqui’s paper may be expressed
as:

1
TSR M | e
SeA ies(1) (mi, Lo)
dim(§)=rkPic(Xx)
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(see [4, Remarque 5.23]). Note that a?a*(Xy) is a positive integer.
5.2. Mébius functions

By [4, Section 3.5], to every fan 3 there is a natural way to associate a subset By of
{0,1}*® and a Mébius function p%_ : {0,1}*) — Z. Denoting by B2 the minimal
elements of By, (which by Bourqui’s Lemme 3.8 contains only vectors of norm at least
2), it is straightforward from the definitions that our Mébius function u Bmin Zigl) — 7
from Section 4.5.1 coincides with Bourqui’s pf_ on {0,1}*M and is zero outside of
{0,1}>M),

We consider the elements px(€) € Mg such that

[1 (Z ﬂ%z(ﬁ)tﬁ> NCIGLE (5.2.0.1)

zelP?l 7

Since the answer to Bourqui’s Question 3.5 is positive (see Remark 4.5.7), these are ana-
logues in the Grothendieck ring of varieties of the elements 43 (€) considered in Bourqui’s
proof.

Remark 5.2.1. Similarly to 3, Proposition 1-(3)] and [4, Proposition 5.18], we can show,
using the universal torsor formalism, that

Z:U’(])SZ (’r_i)]L_lﬁl _ (1 _ ]L_l)rkPiC(XE)[XZ]]L_dim(XZ).

Thus, analogously to the arithmetic case, the value at L~ of our motivic Euler product
(5.2.0.1) may be thought of as a product of local densities with convergence factors.

The main idea of the proof of Theorem C will be to reduce the convergence of the
motivic height zeta function to the convergence of series of the form

> um(@WLT (5.2.1.1)

é'EZiél)

where the W5 are elements in the completed Grothendieck ring of varieties. We briefly
discuss here how this convergence can be checked in the different topologies in play.

5.2.2. Dimensional topology
From the proof of Lemma 4.2.5, we see that
é
dim px(€) < g
Thus, convergence of the series (5.2.1.1) for |T| < L='*" follows as soon as one has
estimates of the form
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dim W3 < €le]

1

for € such that 0 < € < 5. In particular, this gives us an analogue in the Grothendieck

ring of varieties to Bourqui’s Corollaire 3.4, which is sufficient to lift Bourqui’s proof to
the Grothendieck ring of varieties.

5.2.3. Hadamard convergence
Denote My = Y- 1%, (7)| and let ex be the minimal number of non-zero coordi-

nates of a vector in By. According to Lemma 4.5.12 and Remark 4.5.13, if ¢ > Mé/ez,
there exists 6 > 0 such that the series

S us@T"

converges absolutely for ||T||g < ¢~ **°. We deduce that for € such that 0 < € < 4, if we
have bounds

[Wellr < ¢,

then the series (5.2.1.1) converges for ||T||g < ¢~ 1+97¢.

5.2.4. Point counting convergence
Point counting convergence is handled similarly to Hadamard convergence: if § > 0 is
such that for every prime power ¢ the series of point counts

D #E, s (@)T

converges for |T| < ¢~'*9, then it suffices to have bounds
#r, Wz < 7

for some € such that 0 < e < 4.

5.3. Statement

Now that we have introduced all of the data of the problem, we can state our result
more precisely.

Theorem 5.3.1. Let K be a field and Xx, a smooth and projective split toric variety over K
with open orbit U. For every integer d > 0, we denote by Uy q the quasi-projective variety
parameterizing K-morphisms P} — X, with image intersecting U and of anticanonical
degree d. Let p be the rank of the Picard group of Xx.
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(1) There exists a real number 1> 0 such that the series
(1—(LT)*)? (Z [Uo,d]Td> , (5.3.1.1)
d=0

where a is the integer defined in (5.1.0.2), converges for ||T|| < ||L||=**" in the
dimensional topology. Its value at L™ is non-zero and equal to

@ (X)L (117 [ ] <1 +Zu3%(ﬁ)T|ﬁ|>

zeP1!

T=1-1

(2) Assume now K =T, finite. Then the convergence of (5.5.1.1) also holds in the point
counting topology. If in the notation of 5.2.3 one has q > Mé/ez, then it holds in the
Hadamard topology.

Remark 5.3.2. The statement in [4] is for the series

(1-LT)" > [Uo.alT

d=0

Indeed, as we will see below, the proof consists in writing the series Z(T') as a finite sum
of terms of the form C;(T)R;(T) where C; is a rational function such that (1—-LT)?C;(T)
has no pole at L~ and R;(T) is a series which converges for ||T'|| < ||L||~*". Thus, while
multiplying by (1 — LT)” is enough to be able to evaluate at L~! (and thus sufficient
for Bourqui’s purposes), to eliminate some potential other poles of the rational functions
C;(t) and obtain convergence for all ||T|| < ||L||~'*" one needs to multiply by some
additional factors.

5.4. Proof of the theorem

The rest of the section is devoted to a proof of Theorem 5.3.1. This requires a careful
analysis of Bourqui’s proof, checking that the convergence statements can be adapted to
our more general setting. Additionally to the dimensional bounds from [4], we will also
need some estimates from [3].

Following Bourqui, we denote

2800 (T) = 3, W0, T
d=0

Essentially, the proof consists in writing Zp©Y; ho (T) as a finite sum of series of the
form (5.2.1.1), and checking convergence for each of them following the discussion in
Section 5.2.
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The first important step in Bourqui’s proof is a universal torsor argument, expressing
each space [Up 4] in terms of certain spaces of zero-cycles on P!. This leads to identity
(5.4) in [4], after which, in the beginning of section 5.4, motivic Mdbius inversion is
applied. The resulting series is decomposed into a finite number of series depending on
different parameters, and the contributions of which are studied separately:

ZEyn(T) = (L =177 Y (=) Z45(T) (5.4.0.1)
ACE(1) seA

where A is a fan with support the dual of the effective cone of X5. We do not give
more details here, because, as Bourqui remarks in the beginning of Section 5.4, all of
his computations not involving convergence issues are valid in the Grothendieck ring of
varieties M.

To study convergence, one has to distinguish between different cases. We first study
the case A = @.

For every ¢, there is a further decomposition

Zos = Z (—]_)lJ‘Zg’&J(T). (5.4.0.2)
Jcx(1)

We are going to show, as in Bourqui’s proof, that terms Zg 5 7(T") where J = @ and §
is of maximal dimension (that is, dim(d) = p) give the main pole.

Proposition 5.4.1.

(1) Let § € A. There exists a real number n > 0 such that the series
(1 _ (LT)a)dim(é)Zg,&J(T)

converges for ||T|| < ||L||=1*" in the dimensional topology. If K is finite, its spe-
ctalization via the zeta measure converges in the point counting topology. When
q > Mé/ez, it converges in the Hadamard topology.

(2) If J is nonempty and § is of maximal dimension, the value of the series from (1) at
L= is zero.

(3) The value of the series

1—=@LD)Y Y Zoso(T)
JFAN
dim(d)=r

atT =L"1 s

a’a* (Xg)LIFD! Z ps (@)L,

é‘eZigl)

which is a non-zero element of M.
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Proof. The key step in Bourqui’s argument is to decompose

Zg.5.0(T) =, 15(6) Zo5.,2(T)

and rewrite Zg 5 52(T), as in the statement of [4, Lemme 5.26, (ii)]; it is a geometric
series over a truncated cone denoted by C(0(1))e, and one separates it into a product
of infinite and finite geometric series. What is important for us here is that through this
procedure, we can write

Zg757J7g(T) - ]L'E“”_‘é'C(;(T)Q(;,g(T)

where C5(T) is a rational function (coming from the factors which are infinite geometric
series) not depending on €, but only on J and on ¢, and Qs z(T) is a polynomial (coming
from the finite geometric sums), of the form

Qs5.e(T) = Z(]LT)<%£0>.

Yy

Here the summation is over elements y of the set denoted by C(I;2)se by Bourqui,
the size of which is bounded by |é]™M)| according to the proof of Lemme 3 in [3]
(see bottom of page 192). Note that Bourqui’s polynomial P/ (T') is what we denote
}L\E(I)\Lf\e“\Qw(T)_

We have

(1= (LT))™ D Zg55(T) = (1= LT)") ™ O C5(T)LZONY s (L 1Qs5.4(T).

We see from the expression

() =[] <W_l)

1€l (9)

where I(4) is a subset of §(1) (the set of rays of the cone ¢), and from the definition of
a, that the rational function

(1= (L)) Cs(T)
has no poles, and we therefore may turn to the analysis of the series

Zﬂz(é»)Lf‘aQa,é(T)

Let us first consider the dimensional topology. By the top of page 193 in the proof of
Lemme 3 in [3], for y € C(I;2) & we have bounds



50 M. Bilu et al. / Advances in Mathematics 407 (2022) 108556

0 <y, Loy < Cle] (5.4.1.1)

for an explicit positive constant C, so that for n > 0 sufficiently small and ||T|| <
||IL||=1*7, the polynomial Qs z(T) takes values with dimension bounded by €le| for some
small € > 0, and using the discussion in 5.2.2 we may conclude.

We now turn to the Hadamard and point counting topologies. Using (5.4.1.1) together
with the fact that the polynomial Q5 #(T") has polynomially many terms, for n sufficiently
small and ||T||z < |[L||;'*", the values of Qs#(T) are bounded by ¢! for some small
¢ > 0. By the discussion in 5.2.3, we see that our series converges for ||T||z < ||L||5" "
for some 1 > 0. We proceed similarly in the point counting case. This proves the first
statement.

We now come to the second statement. From [4, Lemme 5.26,(ii)], we see that if J is
nonempty and ¢ of maximal dimension, then I(J) is a strict subset of (1), so that Cs(T')
comprises strictly less than dim(¢) factors, and so

(1= (LT)") "G5 (T)

has a zero at L~!. This together with the convergence proved above yields the result.

It remains to prove the last statement. Assume J is empty, and let § be of maximal
dimension. In this case, from [4, Lemme 5.26,(ii)], we see that I(§) = 6(1) and that our
polynomial Qs ¢ is in fact constant equal to 1. A quick computation then shows that the
value of

(1 o (]LT)a)rkPic(Xg) Z C(;(T)

deA
dim(§)=rkPic(Xx)

at T = L~! equals a”a*(Xy). From this we deduce the value of the limit. It follows from
Lemma 4.2.5 that the limit is non-zero. []

We now come to the case A # @&. The argument is similar: there is a decomposition

Zas(T) = Z (=) Z 4 5.5(T), (5.4.1.2)
JeS(\A

where
Zas,s(T) = ZME(aZA,5,J,E(T)~
E

Proposition 5.4.2. Let § be a cone of A, A a non-empty subset of (1) and J a subset
of B(L\A. There exists n > 0 such that the series

(1 _ (]LT)a)dim(zS) ZA757J(T)
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converges for ||T|| < ||L||**" in the dimensional topology. If k = F, is finite, it con-
verges in the point counting topology. If moreover q > Mé/ez, then it also converges in
the Hadamard topology. If dim(d) = p, then the value of this series at L™ is zero.

Proof. The proof proceeds similarly to the one of Proposition 5.4.1. According to [4,
Lemme 5.28 (ii)], we may write

Zpasre(T) = Cs(T)Rs &(T),

where Cs(T) is a rational function which does not depend on €, and Rs (1) (denoted by
R (T) in Bourqui’s paper) is a power series with coefficients in Z[L]. As in the previous
proposition, we again have that the rational function

(1= (LT C5(T)

has no poles, and has a zero at L~" if § is of maximal dimension. Thus, essentially the
only difference with the previous case is that the polynomial factor )5 & has been replaced
with a non-polynomial one, and we need to work a little bit more to get sufficient bounds.

Writing Rs #(T') out explicitly, we see that we are interested in the convergence prop-
erties of the series

Dlus@LTE Y LT Haealhamea) N 1) L0) (5.4.2.1)

(ha)aca Yy

ha=eq
where the sum over y is taken over a finite subset of the dual of the effective cone, the
size of which is bounded polynomially in the h, and e, according to the middle of page
197 in the proof of Lemme 4 in [3]. In the same reference, we also see that for y in this
set, there is a positive constant C' such that

0<<y,£0><0(2(ha—ea)+|é‘|>.

a€eA

Using the latter, we see that for ||T|| < ||L||~**" the dimension of the term corre-
sponding to (h,) is bounded by

~(1-¢ (2 (ho - eo») +ele

acA

for some small e. From this we see that the é~term of (5.4.2.1) converges in the dimen-
sional topology for ||T|| < ||L||~**" and takes values with dimension bounded by ¢|é]. By
5.2.2, we have the desired convergence of the series (5.4.2.1) in the dimensional topology.
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In the same way, the Hadamard norm of the é-term of (5.4.2.1) is bounded by

(1-6) Sc s (ha—ea) elé] 1 4
2 4 e :<ﬁ> 9

(hoz)chA
ha=eq

which by 5.2.3 is enough to deduce Hadamard convergence. Point counting convergence
is handled in the same way. []

To conclude the proof of Theorem 5.3.1, we combine the decompositions in (5.4.0.1),
(5.4.0.2) and (5.4.1.2) with Propositions 5.4.1 and 5.4.2, to show that

(1= (L)) e Zgey, . (T)

is a finite sum of series that converge for ||T|| < ||L||~!*". Moreover, the only ones that
give a non-zero contribution to the value at IL.~! are those corresponding to A = @, J = &
and § of maximal dimension, and their contribution is given by Proposition 5.4.1-(3).
Using relation (5.1.0.1), we conclude that the value of our series at T = L~ is

a’o*(Xg)L"(1-L7H)™" > px(@Ll.

é‘eZigl)

Remark 5.4.3. In fact, the proof of Lemma 4.2.5 allows us to deduce that this value is of
the form

a’a*(Xx)L? + terms of lower dimension,
where we recall that a?a*(Xy) is a positive integer.
6. The configuration random variable

In this section we prove the following generalization of Theorem B, which also
strengthens and provides a more natural formulation of [19, Corollary B].

Theorem 6.0.1. Let X be a geometrically irreducible variety over a field K. If

(1) K is arbitrary, X is stably rational, and ¢ is the measure to /\//l; or

L

(2) K =C and ¢ is the Hodge measure to Ko(HS), or
(3) K =F, and ¢ the zeta measure to Hy,

then

M(X)] 1
. o _
Jn [CTFd(X)], “x |1 +LImX )
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Here the element Cj\( ( ) will be made sense of by showing that the map

1
a— Cx(a)g

extends by continuity to the closure of Z[L*1] =~ ¢(Z[L*']), which contains

1 —dim X 1 —dim X —2dim X
T v — — T v = I[J m - ]IJ o + ceee
dim X ¢ —dim X ¢ ¢
We also note that in case (1) of the theorem, the assumption that X is stably rational
is only there to ensure Z§ap(t) is weakly rational, and could be replaced with that
condition.

6.1. Continuity of labeled configuration spaces

We now prove a lemma giving the continuity properties required to make reasonable
sense of C’\( L

T+LI™ X
also for the Hodge measure) a very strong continuity on the entire Grothendieck ring

and similar quantities. In the dimension topology (and thus

follows immediately from the definitions. The case of the Hadamard topology is more
subtle because we do not know any suitable general bounds on the Hadamard norm of a
labeled configuration space. However, if we restrict to Z[IL*!], which is enough for our
purposes here, a simple estimate will suffice.

Lemma 6.1.1. Suppose X is a variety over a field K.
(1) The map
Mx = Mexxy, a— Cx(a)

is continuous for the dimension topologies on both sides and thus induces a contin-
UOUS Map

Mx — MCA(X), a — C)A((a)

—_—

(2) If K = C and ¢ is the Hodge measure to Ko(HS), then composition of the arrow
from (1) with the forgetful map Mecx(xy — Mc and ¢ induces a continuous map

Mx — Ko(HS), ar> CX(a)y.
(3) If K =F, and ¢ is the zeta measure, the map

Z[L*] = $(Z[L*]) — Hi, a = Cx(a)s = Zoy (o) (t)
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extends to a continuous map

Z[L*1] = ¢(Z[LFT]) — H1, a — Cx(a)y

where the domain is the completion of Z[L*1] for the induced norm, or equivalently
the closure of ¢(Z[LE1]) in H.

Proof. The first two statements are immediate from the definitions via simple dimension
estimates. We now treat the third statement; in the proof, we denote the Hadamard norm

by [ -]].
Fix a € Z[IL*!], and consider a perturbation a + h. We write h in the slightly unusual
expansion h = va=1 e;LF for ¢; € {1} and ¢; = €; if k; = k;; for example, we expand

o2 —3L ' =12 +L2-Lt—Lt—L L

Note that as a consequence, we may express the Hadamard norm of A in the following
way:

ki

N
1Al = >, L]
i=1

Using the definition (2.2.4.2) of C%, the symmetric power addition formula (2.2.4.1),
and the identity Sym% (LY) = L* valid in any relative Grothendieck ring, we find

N
Cx(a+h)—Cx(a) = Z (Sym;‘(‘) (a) n Symi‘(j (el)> L2i=1 Ailks
j=1

Z_;\;o Aj=A #,X
A0FA
Here the sum is over tuples of partitions (Ao, ..., Ay ) such that their multiplicity vectors

sum up to the multiplicity vector of A\, and such that the partition )y is not equal to A.

The key point is that, since A and a are fixed, the terms (...)s x appearing vary over
a finite set of classes (for all h). We can thus bound their Hadamard norms above by a
real number M, so that we obtain

ICx(a+h)—Ca)|| < M Z H]LHZ;'V:ll)‘jlkj

S A=A
Xo#A

N By
<M <1+Z||L|’w> ~1
Jj=1

= o (@ +[nD™ - 1)
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To go from the first to the second line, observe that if the multiplicities of A are my, ...,
my, then

n

Z ||]L||Z§V:1\>\j|kj: H Z ||[IL||Zaika —1

ZAA_;-S\,\ =1 \¥N, a;<m,
0

and the [-th term inside the product is bounded above by

N mi
) my N L ajkj
1+ L k; = L o1 4 i,
( j;H H ) Z <a17a2;---7aN7ml_ZN a’>|| || J

N a;<my j=1"7
This verifies continuity at a, and we conclude since a was arbitrary. []

j=1
6.2. Configuration spaces with power series labels

Let now
fls)=ap+ars+...€ Mx|[[s]]

Using property (2.2.4.1), for any generalized partition A = (n;);, there is a natural way
of defining a power series

Cx(f(5)) € Meaix)[ls]].

Explicitly, we have, denoting by ()« x the pullback to C*(X),

(n Symr;(j (Z aisi>>
=1 i>0 X

= H Z (H Sym}” (%)) szi ing

Cx(f(5))

Jj=1 (nig)i
i M ="j #,X
= ] (n Sym'y (ai)> 2. T (6.2.0.1)
(n4,5)i,5 @] #,X

)
i i g ="j

Arguing similarly to our proof of Lemma 6.1.1, we find

Lemma 6.2.1. In the settings of Lemma 6.1.1, if f(s) € Z[[s]] and if f converges abso-
lutely at L7, then so does Cx(f(s)) and

O (f(Lg)) = Cx (f(5))]_yr -

[
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In the dimension topology, the statement holds for f(s) € Mx[[s]], but we will not
use this added generality here.

Remark 6.2.2. By expanding, one can see that the coefficient of ¢* in the motivic Euler
product

[T+ )t +ta+--) =[] (1 +Zai,xsftj>

zeX zeX

is exactly the image in M [[s]] of C%(f(s)).

6.2.3. An alternative expression for configuration spaces with power series labels

To motivate what we want to establish in this section, let us discuss quickly the
classical set-up that we are trying to imitate. When X is a finite set and (f,(s))zex is a
family of formal power series indexed by X, the expansion of the finite product

[T+ f205)0) (6.2.3.1)

zeX

can be written as

2| 2 T[]

n=0 ceC"(X) TEC

where C™(X) is the set of configurations of n distinct points of X. In other words,
the family (f;(s))zex defines a function on C™(X) given by ¢ — [],.. fz(s), and the
coefficient of " in the expansion of (6.2.3.1) is the summation of this function over
C"(X).

In the usual Grothendieck ring dictionary, elements of Mca(x) can be thought of as
motivic functions defined on C*(X), and taking the class of such an element in Mg
may be thought of as summation over C*(X). In view of Remark 6.2.2, if one replaces
finite products with motivic Euler products, one should expect C%(f(s)) to be equal
in Mcx(x) to a motivic Euler product relatively to C*(X): to reproduce the fact that
above every configuration we take the product over points of that configuration, the
product will be over the universal configuration.

For X a variety over K and ) a partition, let cy/C*X denote the universal configu-
ration,

cy={(c,z)|recc C*X x X

Denote by jx : cx — X the projection. Given f(s) € Mx[[s]], let 5% f be the corre-
sponding series in M., [[s]] given by pullback of coefficients along jy.



M. Bilu et al. / Advances in Mathematics 407 (2022) 108556 57

Proposition 6.2.4. We have the equality

Cx(f(s) =[] GLHu(s)

yecy/Cr X
mn MCA (X) [[S]]

Proof. We start by expanding the right-hand side. For every i, denote b; = j¥a;. For
every j = 1, there is a projection map

T CrX = (H Sym”iX) — (Sym™ X), x,
#,X

i>1
using which we introduce

cf\j) = {(z,c) ecy, zem;(c)}.

By definition, c, is the disjoint union of the cg\]), j = 1. We also define b(J to be the

()

restriction of b; to ¢;”’, so that in M, , we have

bi=> b7
J

In other words, bl(-j ) is the pullback of a; to cg\j ). We now expand

[T Gina =TT TT (b6 +60)s+08s?+ )

yecy/Cr X jZlyEcE\j)/C)‘X

*

(n4,5)i.5 ,J
i i, j =Ny

in Mea(x). Note that only terms satisfying >;;n;; = n; for every j will contribute
since for each j, the above product over c&j ) relatively to C*X is finite, with n; factors.
Using the expansion (6.2.0.1) of C%(f(s)), it remains to compare, for every collection of

integers (n;;);; such that n; = >}, n, ; for every j > 1, the classes of

(HSym"”(aQ) and <nSym"” C*X))

in Mea(x). For this, observe that the projections cg\j) — X induce the projection
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[T symm(ef/c*x) —»Oi&mmwxo

0 jorx . i *

(where the product on the left is taken relatively to C*(X)), so that

<]‘[ Sym™ (b7 /C’"X)) € Merx
i,

*

will be the pullback of (]—L j Sym™ (ai)) via this map. On the other hand, this map
g *
is actually the identity: since for every j, we have Zu n;,; = j, a point (¢ ;)i; €

(Hl 5 Sym™ (X )) . completely determines the configuration above it. [

6.3. Proof of Theorem 6.0.1

‘We proceed as in the proof of Theorem 4.3.5 to show that the limit can be expressed
as the value of a certain series; the results of 6.2 will then allow us to conclude. We write
n = dim X. By weak rationality,

Z¥™(t)

P (6.3.0.1)

(1—L ) Y [CHX)Jtt = (1 —L") [[(1+1) = (1 —L™)

d=0 reX

converges absolutely at ¢t = L;" to an invertible element. In particular, the sequence of

partial sums [C¢(X )]@L;"d converges to an invertible element as d — oo.

On the other hand, denoting by cy — C*(X) the universal configuration, note that
the generating series of C’\'*d(X ) in Mea(x) has the following motivic Euler product
decomposition

S er xpd = I1 (1+1).

d=0 ze(X xCrX —cy)/CA X

Consider the quotient of power series with coefficients in Mcx(x)

oM (X))t xcrxX—cyy/erx L+t
Sl XN leexxorx—eporx @400

Y=ol CHUX) x CH(X)]td [Loe(xxerx)yorx (1 +1)

1
- 11

wECA/C’\X

Applying Proposition 6.2.4 and integrating over C*(X), we obtain an identity of power
series with coefficients in M g
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Zd;o[(}o\'* (X))t _ o < 1 ) (6.3.0.3)

SazolCIXNT "X\ 1+t

By Lemma 6.2.1, this power series converges absolutely at ¢ = ]L;" to Cg\( <1++>
¢

Multiplying the left-hand side of (6.3.0.3) by (1 — L") >},-,[C%(X)]t?, which as
observed above also converges absolutely at t = L;", we conclude that the series

(1 - L") <Z [CA'*d(X)]td>
d=0

also converges absolutely at ¢t = ]L;”. In particular, the sequence of partial sums

[C)"*d(X )JL="4 converges, and we apply our usual trick to compute
d . el n
IO 0y gy e[ O (Xl ™
d—o [CPFA(X)]y, 7% limgoo [C4(X)] gL, "
d
(1 =L78) B[ CON) |y
(0~ L7 S [CTN) |y e

il [ ZasolC (O]
’ ZdZO[Cd(X)]td =L "

_ 1
- L nlAl A
¢ (OX 1+t
—n|A| ~A 1
—L,"Mey [ ——
¢ X<1+E%">

_ o 1
- X <1+Lg '

The last equality follows from an application of eq. (2.2.4.3) (which extends by continuity
"M into the labels.

R R
=L,

_L-n
t=L;

to the present setting) to move the coefficient L ,
7. Hadamard convergence and cohomological stability

It is by now well-known (cf., e.g., [11,7,12]) that for a sequence of smooth varieties
over [F,, cohomological stability combined with suitable bounds on Betti numbers im-
plies stabilization of point-counts through the Grothendieck-Lefschetz trace formula. By
essentially the same computation, we show in Theorem 7.0.1 below that weight stabi-
lization combined with suitable dimension bounds on the cohomology implies Hadamard
stabilization.
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Note that cohomological stabilization implies weight stabilization (as long as the
stabilization is as Galois representations; e.g., if the stabilization is realized by maps
of algebraic varieties). In particular, point-counting results previously established via
stable cohomology can be upgraded automatically to Hadamard stabilization: see Corol-
lary 7.0.3 for a precise statement. For example, this gives an alternate proof of Theorem B
for varieties admitting compactifiable lifts® to characteristic zero by applying the étale
representation stability and dimension bounds of Farb-Wolfson [12]. Moreover, this also
furnishes a natural strategy that may be useful in proving further cases of our meta-
conjecture — when weight convergence to a Hadamard function is known, to establish
Hadamard convergence it will suffice to establish bounds on the Betti numbers.

Theorem 7.0.1. Suppose X,,/F, is a sequence of smooth varieties such that

(1) There is a Hadamard function Zy(t) such that, in the weight topology,

lim Zx, (tq~ 9mXn) = Z,.(t). (7.0.1.1)
n—0o0

(2) There exist real numbers C > 0 and 1 < X\ < /q such that, for any n, there exists a
prime £ coprime to q such that

dimg, Hi(anq,Qg) < O\
Then (7.0.1.1) holds also in the Hadamard topology.

Remark 7.0.2. We give the proof below, but first, some comments:

(1) The flexibility of allowing £ to vary with n in (2) can be useful — for example, this
variation appears in the bounds for the Betti numbers of Hurwitz spaces established
n [11] (there the restriction ¢ > n arises because at a point in the argument one
needs the derived Sj,-invariants in Z /¢ cohomology to be equal to the S,-invariants).

(2) The statement strikes a balance between brevity and utility, but the same method
applies more generally: for example, for varieties that are not smooth with suitable
bounds on compactly supported cohomology instead of cohomology, or to directly
deduce the stabilization of L-functions in Remark 4.6.6 from cohomological stability
and Betti bounds for the corresponding local systems as established (under lifting
hypotheses) in [12].

(3) Ekedahl [10] has defined a topology of polynomial growth refining the dimensional
topology on the Grothendieck ring of varieties, and a slight modification of the proof
of Theorem 7.0.1 shows that the zeta measure to the ring of Hadamard functions is

3 Ho [17] has established étale homological stability for configuration spaces in positive characteristic
without a lifting hypothesis, but for our result one would need the same for all colored configuration spaces
as well.
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continuous in this topology. The definition of Ekedahl’s topology is a bit ad hoc, and
one of our motivations for introducing the Hadamard topology was to find a more
natural way to express a similar constraint.

(4) It is not possible in general to obtain bounds on the Betti numbers from Hadamard
convergence, and in fact it is easy to construct sequences of varieties that are equal
in Ko(Var/K) but have unbounded Betti numbers: a very simple example is X,, =
(Al — {n points}) LU {n points}. For a connected example, one can take X,, to be P2
with n lines intersecting at a single point removed and then blow up at n points (if
working over a non-algebraically closed field like F,, one should take care to match
up lines and points with the same fields of definition); for any n > 1, X,, = [P?] —1.
The issue is that cohomology classes of the same weight can cancel if they appear
in odd and even degrees. For a sequence of smooth projective varieties, where the
cohomological degree determines the weight, stabilization in the weight topology
already implies stabilization of Betti numbers.

Proof. We argue with divisors, i.e. elements of the completion of Z[C*]. So, write D,,
for the divisor attached* to Zx, (tg~ 9™ %») and Dy, for the divisor attached to Zu(t).

—m/2

For any divisor D, we write 7,,(D) for the part supported in the region |z| = ¢ .In

particular, it is easy to see that

lim 7,,(Dy) = Do
m—00
in the Hadamard topology.
On the other hand, by the definition of convergence in the weight topology, for any
m > 0, there exists N > 0 such that for all n > N,

Tm(Dn) = Tm(Doo)- (7.0.2.1)

Now, for any such n, taking ¢ as in (2) and fixing an embedding Q, — C, the
Grothendieck-Lefschetz fixed point formula combined with Poincaré duality gives

2dim X,

D’I’L = Z (_1)i|:Hi(Xn,?q’Q€)* ®QZ (C]’

=0

where the brackets denote taking the class in Ko(Repy) (using the identification with
Z[C*] explained in Section 3.1). Then, combining (7.0.2.1) with Deligne’s [8, Théoréme
I] eigenvalue bounds which give that any eigenvalue o of Frobenius on H* (X, F,» Qe)*

satisfies |a| < ¢~%2, we obtain

4 Recall from Section 3.1 that to a meromorphic function f we assign the divisor of ﬁ, a normalization

chosen so that the zeta function 1%“ of A%q corresponds to [q].
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m
D0 = T (Do)l g < ¢ ™% ) dimg, H' (X, 5., Q)
i=0
2dim X, _ )
+ Y, ¢ Pdimg, H'(X, 5, Q).

i=m+1

Invoking the bounds in hypothesis (2), we find this sum is bounded above by

and this bound goes to zero as m — o0 because A < ,/q. Thus, we conclude that also
D,, = D in the Hadamard topology, as desired. []

In particular, we obtain the following corollary, making precise the statement that
cohomological stabilization plus Betti bounds gives Hadamard convergence:

Corollary 7.0.3. Suppose X,,/F, is a sequence of smooth varieties and ¢ # char(F,) is a
prime such that

(1) For each i > 0, there is an N > 0 such that for all n > N the Gal(F,/F,)-
representations Hi(XnFq,Qg)ss are isomorphic to a fized representation H', (here
the superscript denotes semisimplification).

(2) There exists C > 0 and A < \/q such that, for alln and i

dier Hi(Xn, Qg) < C).

Then, Zx, (g~ 9™ Xnt) converges in the Hadamard topology to
® .
DD [Hil,
i=0

where here H; o, denotes the dual of HY,, with scalars extended to give a complex vector
space by the choice of any embedding Q, — C.

Appendix A. Computations

In Table 1 we give the first 250 terms for the divisor

. _ . —(d1+d2)

where here the limits are in the weight topology and we have used the identity
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Table 1
First 250 terms of lim(q, 4,)—w ZC(‘led2)(Ayt_ ; (tq*(dlwlz)).
% Coefficient of [¢7]
0 1
1 -3
2 5
3 -10
4 24
5 -55
6 118
7 -250
8 540
9 -1166
10 2475
11 -5218
12 11028
13 -23267
14 48830
15 -102167
16 213525
17 -445513
18 927444
19 -1927166
20 3999248
21 -8288404
22 17153790
23 -35457313
24 73212391
25 -151015163
26 311189028
27 -640657585
28 1317827566
29 -2708586539
30 5562810556
31 -11416477207
32 23413972647
33 -47988657094
34 98296020099
35 -201224291653
36 411703666030
37 -841899534112
38 1720748369045
39 -3515328234048
40 7178192714838
41 -14651215348621
42 29891622362909
43 -60960729520648
44 124274709833930
45 -253252619275830
46 515905274269151
47 -1050598369362088
48 2138748809597243
49 -4352556333294442
50 8855142419299783
51 -18010175104285365
52 36619803977908694
53 -74437884037740152
54 151271098981190102
55 -307330496794545563
56 624233017196670858
57 -1267601222149736713
58 2573455649992469320
59 -5223384420459129280

(continued on next page)
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Table 1 (continued)

4 Coefficient of [¢7]

60 10599650504339968588

61 -21504939006993240476

62 43620910664324846165

63 -88463413927558983487

64 179369094441716234105

65 -363620936146947211139

66 737003893336634408989

67 -1493525070407312843889

68 3026071553583774207695

69 -6130160318373268357117

70 12416305165787441941888

71 -25144482169769700475430

72 50912518513077694908444

73 -103071775867327392158564

74 208636308694120684565878

75 -422256725089154019803026

76 854478921031350689093305

ud -1728883425555349537772147

78 3497607554122553346247355

79 -7074876073480110138967125

80 14309034136324437898603161

81 -28936554185525659439497151

82 58509927574525580489119380

83 -118293195094794161305291884

84 239132486275311262352998014

85 -483356022483243207472458684

86 976891909453073575341693979

87 -1974139172168771694130837742

88 3988980483500702718090433305

89 -8059348467160056857850301254

90 16281439069254327401112771720

91 -32888298017019215826487386452

92 66427309605631891852427285538

93 -134155799021691025521771284468

94 270913472774442897719424024492

95 -547029744205693924330614993253

96 1104463220953743112679968006155

97 -2229730248996000703271900417220

98 4501060935168121797776308252779

99 -9085308660778996913683241591916

100 18336963259621884186312937330536

101 -37006564130480842135420881234823
102 74678296938835045366712451653048

103 -150686722006049417188882164883466
104 304033289328605736801837757889052
105 -613385462035346120893462386389806
106 1237407104790484830103451785458541
107 -2496083454393123235346360455263145
108 5034699273149624209432668615272245
109 -10154451234898616906382452153763994
110 20478984176727698229478103214975622
111 -41298085225883776492838324830483147
112 83276312671638650634105812715706158
113 -167912729770850527045567532995866050
114 338545314297377669135739970834099721
115 -682529641465357484326226939785869136
116 1375935937942737803716090764040548543
117 -2773622488464218826498184276726243059
118 5590740893108400697907757830485514668
119 -11268463168356409496415532461615555613

120 22710868528096610367194049445753934421
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i

Coefficient of [q~*]

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

-45769580932908800976831871086499330994
92234769856874390273795578514079010526
-185860598612913044801841864730269995334
374503005630066811126878392442709025314
-754569018607279234423667610817191802785
1520262851219368816074332126572089460056
-3062772964719969636087115981981018953541
6170035792263619351050455292566978783598
-12429042123060060151003262179674049196038
25036007215716677420539355986395133276393
-50427824677622751805359126326377802814807
101567199482982873264392954021879354129190
-204557360491172243478624563111868531696823
411960370485300375547687520519502226821470
-829611500542651667331806049712787706316782
1670603456362831206847362302632157611640072
-3363965724925806599011266967125981954243654
6773444935084913876696775096583596298183108
-13637908675027441436057116768747781739434355
27457838849409380315413796530515268407489675
-55279688909583876580585833350065956851424889
111287337512971930313744554502136783509139787
-224030470620565185138114187204885173045566046
450972288103407951076429498671472480900894500
-907766787667089046300297874897356031995072893
1827177046255434145173073629090501998350189480
-3677639154926299735399831830273114930706933417
7401844724023358326931783359492391415803949804
-14896814949606945772712282120059272199690249898
29979866434245490844583144348449344360693631079
-60332177366298214408691600910066186887843803897
121409187297844700570116626172426598599222626198
-244307928267034553210257870812929829060224442649
491594743709525111581865915372346686734405187936
-989146826836016362658122074912175022534944715678
1990207473240877597531413403273254338876802547040
-4004240887908066523314775718374722296383353278432
8056130304128719786977903098713542750921357140249
-16207551036094612708384128936868306743927319581255
32605669827995537882141376003470500998619660883838
-65592449277668135923145148203994025195285602114161
131947066627455132690094280750865960630570254544336
-265418368252534732163388638198968661024046332532369
533885006556978841673859509747827333034790892137060
-1073866157949160528842644873292715224609980727316442
2159923824107976255787679933553822112189909230569860
-4344229119554769725531975946302444010351029324981531
8737218126698544324983354343181783399234144113040996
-17571949987350926356148244810740733916329389383280610
35338915495737920749569941345730118033124022425352917
-71067838406403965873181708846730412674466081241594550
142915644912669381123934767287154566227048796839910300
-287391133596243553978025526428865096061369492892216231
577901771904942496377897298680702776641561566472346509
-1162042191566025096073333560418006767663163414264761452
2336560963156321258206594903332568731935777435716478404
-4698073670829204910429951149497168205623270962654074924
9446048030016615435964025795014143220692909203774526167
-18991891895201248092411829357483627878037061328499916676
38183364495333086204204682114930004931552019076194474230
-76765868701357294714795824370173618727343318391694633802
(continued on next page)
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Table 1 (continued)

%

Coefficient of [¢~¢]

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

154329973881712836323222680064105310721139741449888709502
-310256335734223324216076665641969459705588665497173883804
623705279202696289295066521317341717885886961875906583159
-1253795440938300516089142300669579826263425588827900823773
2520359987921702495659754659758416556389346309156935588716
-5066256883382087793564964993618615137251978971902397547338
10183584999304906134008466464344962026597976993924855770002
-20469307350940835151747049199320044998319334089960769299637
41142879284101383116184594018941378889033330476918655928999
-82694267690764386827363962624920969968162035653827651121126
166205513942814486717606830876444989743453016535327886029097
-334044906428413611391355165977888136830209140798816585873928
671357414335178326430744817824055982152630817133280117748150
-1349249723471416882316855584026818371620127437068003020111147
2711568626261232162145679308550885878804628167867689653316398
-5449274402470410677251482438878923505195001441752145264632550
10950820710870015616176840466748551469141706650750291515619432
-22006180491808074821226633271648780399307360717352367604021410
44221429731125930866818700424117906695145598103780411815103936
-88860978351315253312957785221314608550508787788296296518972158
178558157622312958198293390705731236882640973045841129901489278
-358788644063983246567535867359362571245002544503178214240054286
720921801100698726386694533287526587431214885606660302982340624
-1448532341524246442342248986970439190664607865886748063901262327
2910441593791677410571423695509416902856886245179841083766133211
-5847635883801003434025648107168165059200700685568114138941772899
11748774930279755297246537565315174630066197777734430657895529207
-23604551767385068594821463748108605314319647758871879636797902301
47423098592203576534355458696951983878051045433043063955216443887
-95274169946308147840780403360682157059441079565869026559277533215
191404251025076306444836648744474710925748794337580471279140380135
-384520256153027720832343588144677015994231262916517617702578354310
772463885412221247750959518172309275593339223655535204987540150838
-1551774249253673696738895239551544173613933026639442037615040708270
3117240924567039756245256068732453168640627865443628864456247013851
-6261865649063678707968392455091112497430296740097472568689378905507
12578496812172787574329459026104607521094908851061688080277086644833
-25266520517449908363513058769191519238709604487373171885812655365167
50752086623453499599495814541713658375763803773380355410356385019761
-101942248171446376404811306396751761494336671084842843723533994465034
204760613968597157212010029876713486804465127371302600563171124022586
-411273399298062141627923580121235278530544185511903002504259040064832
826051014634815005139464364267018370249005956581169493760770952633261
-1659110210148733290252072210623434146652014922787564201813714175078037
3332236283939183203228707149826950977481720527754055478448883897915665
-6692503307379732644393325590390792165758287355586962855209339873065199
13441066134885157374941142465150996170874001629665169604682521868959572
-26994247425219599704022048659260610065138046610246664866230534368138664
54212717456807333803446468226485466563565290356089792803625447444191968
-108873864845805016850142237474283157059409319666122162165797565224475771
218644559248718136649200739632525468463253521897267370725297356832492893
-439082717498431167805788938314933663970201549385476217022929944640890819
881752513762637047350955880772283529471535676582889977855830104064904050
-1770678948540417404656911704952446357822125847897764735776925045160337542
3555705269942297117063252158576023481330861467174302311925764323753647955
-7140104354903296768142592107673112682036551683319793755880528208657622002
14337594493516387018587442604981980152255607264327504228993603568963746649
-28789956891592793162580701973206192193451887385613153685521881169643775108
57809442325457598502624005464830403280755001880407991296344942812757465951
-116077927318088147658885109110973474677707297047338797617322014115670291868
233073911365640918583982238401098113091737014051890351051448047525110442208
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Table 1 (continued)

i

Coefficient of [¢]

243 -467983879434681066427015485809761438819926018767785270070916286071708841159
244 939639759662761645826607434203471991500948183010290880113340609940625137998
245 -1886623297459580540003449408545708292094079321179393559084522176323337329589
246 3787933707788042453135351202393917950224275817218928913807658304446716058235
247 -7605240761445472998617207473729266666313927167438658855852176879694593013499
248 15269226468590914708207748063222774107557618777595720957055954826812698597855
249 -30655939363580606732561996894410171491023294598074730332881732843263810990419
250 61546844703480411367930079662454293248852333175511986470297385611751909013867
Table 2

The divisor Zc.d“d; (AL) (tq*(dﬁrd?)) for di = do = 40.

.

Coefficient of [¢7¢]

Coefficient of [¢7¢]

00O U WN KO

-1166

2475

-5218

11028

-23267

48830

-102167
213525
-445513
927444
-1927166
3999248
-8288404
17153790
-35457313
73212391
-151015163
311189028
-640657585
1317827566
-2708586539
5562810556
-11416477207
23413972647
-47988657094
98296020099
-201224291653
411703666030
-841899534112
1720748369045
-3515328234048

7178192706102
-14651215147355
29891619749371
-60960704596332
124274516700328
-253251337471208
515897749760655
-1050558448626228
2138554410364751
-4351677301167434
8851418068846937
-17995282472068951
36563266171699586
-74233098656280122
150560424516434836
-304959028474877462
616599979165804930
-1243838077427284749
2501726843328379367
-5013001590559463419
9998887821446433255
-19831768033161995124
39068695645092664153
-76346502518625937950
147772610374307278073
-282802569405937507518
533995597251319358859
-992196836341429077092
1807725664871875879551
-3213777325101403051314
5535545342239809752109
-9140023894242417884359
14237505104399687238881
-20437644238323518538138
26158394219496320597829
-28551600325000321382432
25039544129795914295127
-16225470533207349260900
6777326492252181076930
-1343840109164979124000

to identify the division with renormalization of the variable ¢ by ¢~

[Sym(“) (a%,)] = [Sym™ (A}, [Sym™ (Af,)] = LAL# = L4+

d1+dzx
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When ¢ = 2, this limiting divisor does not appear to correspond to a Hadamard
function (cf. Remark 4.6.4), but nonetheless our results show the sequence also converges
in the point-counting topology. To further illustrate how this can occur, in Table 2 we
give the exact formula of the divisor when d; = dy = 40. One can then compute to see
the cancellation for point-counting: the ¢ = 2 Hadamard norm is 395.538829916911 but
the ¢ = 2 point-counting semi-norm is 0.181319714263592.
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