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Abstract—In this paper, we study the dynamics of tem-
poral difference learning with neural network-based value
function approximation over a general state space, namely,
Neural TD learning. We consider two practically used al-
gorithms, projection-free and max-norm regularized Neural
TD learning, and establish the first convergence bounds
for these algorithms. An interesting observation from our
results is that max-norm regularization can dramatically im-
prove the performance of TD learning algorithms in terms of
sample complexity and overparameterization. The results
in this work rely on a Lyapunov drift analysis of the network
parameters as a stopped and controlled random process.
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[. INTRODUCTION

Recently, reinforcement learning (RL) algorithms have
achieved significant successes in complicated control problems
across a broad spectrum of applications including robotics
[15], [20], [40], [42], autonomous driving [21], [32], network
control [24], [48] and video gaming [26], [33], [34]. An
important component of these success stories lies in the
power and versatility provided by neural networks in function
approximation. Despite the impressive empirical success, the
convergence properties of RL algorithms with neural network
approximation are not yet fully understood due to their inher-
ent nonconvexity.

In this paper, we investigate the convergence of temporal-
difference (TD) learning algorithm equipped with a two-layer
fully-connected neural network, namely Neural TD learning,
which is an important building block of many RL algorithms.
Convergence of TD learning with linear function approxi-
mation and least-squares approximation has been established
in the literature [6], [43], [49]. On the other hand, it is
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well-known that using nonlinear approximation may lead to
divergence in TD learning [43]. Nonetheless, TD learning
with neural network approximation is widely used in practice
for policy evaluation because of its simplicity and empir-
ical effectiveness [23], [44]. Therefore, it is important to
understand and analyze the convergence properties of Neural
TD learning. Recent study of overparameterized networks in
the so-called neural tangent kernel (NTK) regime provided
important insights in explaining the empirical success of neural
networks in supervised learning [2], [3], [12], [13], [16], [17],
and thereafter reinforcement learning [8], [10], [35], [47].
Despite the theoretical insights provided by recent studies,
there is still a large gap between theory and practice. As we
will discuss later, these prior works either consider Neural
TD learning in the infinite width limit for finite state spaces,
or Neural TD learning with ¢3-projection; neither of which
is used in practice. Moreover, explicit characterization of the
sample complexity and the amount of overparameterization
required for Neural TD learning algorithms to approximate
the true value function within arbitrary accuracy has remained
elusive, which we address in this paper.

A. Main Contributions

The paper presents a non-asymptotic analysis of TD learn-
ing with two-layer neural network approximation. We elabo-
rate on some of the contributions in this paper below:

o Analysis of Neural TD learning: We analyze two prac-
tically used Neural TD learning algorithms: (i) vanilla
projection-free Neural TD and (ii) max-norm regularized
Neural TD. We prove, for the first time, that both algo-
rithms achieve any given target error within a provably
rich function class, which is dense in the space of contin-
uous functions over a compact state space. In particular,
we establish explicit bounds on the required number of
samples, step-size and network width to achieve a given
target error.

o Improved convergence bounds: We show that
projection-free and max-norm regularized Neural TD
improve the prior state-of-the-art overparameterization
bounds by factors of 1/e?> and 1/¢®, respectively,
for a given target error e. Notably, we prove that
max-norm regularized Neural TD achieves the sharpest
overparameterization and sample complexity bounds in
the literature, which theoretically supports its empirical
effectiveness.
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o Key insights on regularization: Our analysis reveals
that using regularization based on /., geometry leads to
considerably improved overparameterization and sample
complexity bounds compared to the ¢5-regularization over
a provably rich function class in the NTK regime.

o Analytical techniques: We propose a Lyapunov drift
analysis to track the evolution of neural network parame-
ters and the error simultaneously using vector martingale
concentration and stopping times. Our analysis can be of
independent interest to the analysis of other stochastic
approximation and deep RL methods with quadratic loss.

B. Comparison with Previous Results

Variants of Neural TD learning have been analyzed in
the literature. For a quantitative comparison in terms of the
required sample complexity and overparameterization bounds
to achieve a given target error, please see Table 1.

The first result on the convergence of Neural TD learning
was presented in [10]. Their work builds upon the analysis
in [3], [7], [13], [43] and requires constraining the network
parameter within a compact set through the /s-projection at
each iteration. They prove convergence to a stationary point
in a random function class Fp ,, where m is the network
width and B is a given projection radius. Consequently,
the algorithm suffers from an approximation error €, =
O(E[|V —Ix,,.V|.]) where V is the value function and
Ilx; ,, denotes the projection onto Fp, . This approximation
error is not explicitly bounded in [10], and possibly non-
vanishing even with increasing width and projection radius. It
is shown in [10], [44] that this variant of Neural TD learning
with projection, equipped with a ReLU network of width
O(1/€®) achieves an error € + ¢, after O(1/¢*) iterations.
Unlike [10], [44], our Neural TD learning algorithms converge
to the frue value function in a provably rich function class
without any approximation error. We show that the algorithms
that we consider in this paper achieve improved overparam-
eterization bounds O(1/€%) and O(1/€2?) for a given target
error €, which improve the existing results by 1/€2 to 1/¢S.

In practice, projection-free [26] and max-norm regularized
[14], [36], [39] algorithms are often adopted in training neural
networks because of their computational efficiency and expres-
sive power, which we consider in this work. In contrast, the
Neural TD with £5-projection considered in [10], [44] can be
computationally expensive for high-dimensional state-spaces
as it cannot be performed in parallel.

Projection-free Neural TD learning has also been considered
in [1], [8]; however, these works only deal with finite state-
space problems in the infinite-width regime, i.e., they do
not provide bounds on the amount of overparameterization
required. Since these results rely on the positive definiteness
of the limiting kernel, the required overparameterization is
much larger than the size of the state space which negates
the benefits of Neural TD learning over tabular TD learning.

Our work is related to the analysis of (stochastic) gradient
descent in the NTK regime. It is shown in [13], [16] that the
network parameters trained by gradient descent lie inside a
ball around their initialization. However, they require massive

overparameterization to ensure the positive definiteness of the
neural tangent kernel, which would imply finite state and
width much larger than the size of the state space in Neural
TD learning. To establish such a result for stochastic gradi-
ent descent (and with modest overparameterization) requires
additional work, and this problem has been considered for
supervised learning tasks in [17], [27]. Specifically, our work
builds on the NTK analysis in [17], but deviates from it in the
following ways: (a) unlike in classification problems where
one has access to the labels, in TD learning, we do not have
access to the target function that needs to be approximated, and
(b) our loss function is squared-error loss, which has different
characteristics than the logistic loss function with exponential
tail. These differences make the analysis significantly more
complicated.

C. Notation

For any index set Z and set of vectors {b; € R? : i € T},
we denote [b;];cr € R as the vector that is created by the
concatenation of {b; : i« € Z}. For an event £ and random
variable X, we denote E[X;&] = E[X - I¢] where I¢ is the
indicator function of the event £. A¢ denotes the complement
of a set A. For any integer n > 1, [n] = {1,2,...,n}. We
\ e |il?
and its (o-norm by ||z|o = max;cq |z;|. For any vector
r € R? and p > 0, By(z,p) denotes the ball in R? with
radius p centered at x with respect to the £>-norm.

denote ¢o-norm of a vector z € R? by ||z|s =

I[l. SYSTEM MODEL

For simplicity, we consider a Markov reward process
{(s¢,m¢) : t = 0,1,...}, where the Markov chain s; takes
on values in the state space S, and there is an associated
reward r; = r(s;) in every time-step for a reward function
r: S — [0,1]. The process {s; : t > 0} evolves according to
the transition probabilities P(s, A) = P(s;11 € Als; = s) for
any s € S, A C § and t > 0. We assume that the Markov
chain {s; : ¢ > 0} is an ergodic unichain, therefore there exists
a stationary probability distribution 7:

m(A) = tlLrgOP(st €Alsp=s), Vs€ S,ACS.

The value function associated with the Markov reward process
{(s¢,7¢) : t > 0} is defined as follows:

V(s):]E{Z'ytszO:s}, Vs €S, (D
t=1
where 7 € (0,1) is the discount factor. The Bellman operator
for this Markov reward process, denoted by 7, is defined as
follows:

TV(s)=r(s)+~ V(s)P(s,ds'), Vs €S. (2)

s’eS
The value function V is the fixed point of the Bellman
operator 7: V(s) = TV (s) for all s € S. If the state space
S is large, or countably or uncountably infinite, the direct
solution of the so-called Bellman equation is computationally
inefficient, thus approximation methods are used to evaluate
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Paper State space | Network Sample com- | Error Regularization
width plexity
Cai et al. [10] General O( 6% ) O( W ) | etem £a-projection
Wang et al. [44] General O(E%) O(W €+ €co {o-projection
Agazzi & Lu [1] Finite poly(|X]) O(log(1/€)) € poly(|X|) width
This paper (PF-NTD) General O( }6 ) o( W )| € Early stopping
This paper (MN-NTD) || General O( 6% ) o( W )| e Max-norm projection
TABLE |

THE OVERPARAMETERIZATION AND SAMPLE COMPLEXITY BOUNDS FOR NEURAL TD-LEARNING ALGORITHMS. PF-NTD DENOTES
PROJECTION-FREE, MN-NTD DENOTES MAX-NORM REGULARIZED NEURAL TD LEARNING ALGORITHM. € = E||V — IIx, , V||x DENOTES
THE APPROXIMATION ERROR OF THE RANDOM FUNCTION CLASS F B, FOR A GIVEN VALUE FUNCTION V.

V. In this paper, we study the problem of approximating
value functions using neural networks given samples from
the Markov reward process. We note that the Markov reward
process is typically obtained by applying a stationary policy
to a controlled Markov process.

For simplicity, we consider independent and identically
distributed samples from the stationary distribution 7 of the
Markov chain in this paper. Namely, at time ¢, we obtain an
observation vector (s, s;) where s; ~ m and s} ~ P(sy,-)!.
We denote F; = o({(sj,s}) : j = 0,1,...,t}) to be the
history up to (including) time ¢. The case where the samples
are generated by the Markov reward process can be handled as
in [7], [38], [47]. The analysis of MN-NTD under Markovian
sampling is provided in Appendix III.

In a broad class of reinforcement learning applications, each
state s € S is represented by a d-dimensional vector (s)
where ¢ : S — R<. For example, in [26], each state in an Atari
game is represented by the corresponding high-dimensional
raw image data, while the positions of the players on the
board are encoded as a high-dimensional state vector in [33],
[34]. For a given trajectory {s; : t > 0}, we denote the state
representations by x; = v (s;) for ¢ > 0. We denote the space
of state representations as X = {z € R? : x = 9(s),s € S},
and use V(x),r(z), 7(z), etc. to denote the quantities related
to a state 1)~ (x) € S with a slight abuse of notation. Without
loss of generality, we make the following assumption on the
state representation, which is commonly used in the neural
network literature [3], [10], [17], [27].

Assumption 1: For any state s € S, we assume ||(s)||2 <
1.

In the next subsection, we introduce the neural network ar-
chitecture that will be used to approximate the value function.

A. Neural Network Architecture for Value Function
Approximation

Throughout the paper, we consider the two-layer ReLLU
network to approximate the value function V:

1 m
Q(z; W,a) = NG Z aio(W;" 2)
=1
m 3)
- Lm ;aiﬂ{wjx > 0}W, z.

I'We use the notation ~ to denote that the variable on the left of the symbol
is drawn from a distribution to the right of the symbol.

where o(z) = max{0, z} = z:I{z > 0} is the ReLU activation
function, a; € R and W; € R? for i € [m]. We include a bias
term in W;’s, and express x as (z, c¢) for a constant ¢ € (0, 1).

Symmetric initialization: The NTK regime is established
by random initialization, and various initialization schemes are
used, as a common example a; ~ Unif{—1, 41} and W;(0) ~
N(0, 1) [17], [28]. In this paper, we consider an almost-
equivalent symmetric variant of this initialization for the sake
of simplicity, which was proposed in [4]: a; = —Q;ypm/2 ~
Unif{—1, +1} and W;(0) = Wi y,n/2(0) ~ N(0, I;) indepen-
dent and identically distributed over ¢ = 1,2,...,m/2, and
independent from each other. The additional benefit of the
symmetric initialization is that it provides Q(z; W (0),a) =
0 with probability 1 for all x € X. Without symmetric
initialization, lim,, .. Q(x; W(0), a) acts like a random noise
term, which leads to an additional approximation error [41].
We fix a; as initialized, and update W;(t) by using gradient
steps, as in [3], [13], [22]. The sigma field generated by
{a;, W;(0) : i € [m]} is denoted as Fipz.

Function class: Define the space

H = {U R = R | E[flv(wo)||3] < oo, wo NN(O,Id)}.

We assume that the value function V' lies in the following
function class.

Assumption 2: There exists a vector v € ‘H and ¥ > 0 such
that:

V(z) = E[UT(wo)qﬁ(aj;wo)], wo ~N(0,1), Vz € X, (4)

where sup,,cpa |v(w)2 < 7 and ¢(z;w) = {w 'z > 0}a.

Remark 1: 1f we replace the condition sup,,cga ||[v(w)|2 <
v in Assumption 2 by E[[lv(wo)||3] < oo, then it implies that
V' belongs to the reproducing kernel Hilbert space (RKHS)
induced by the Neural Tangent Kernel (NTK) corresponding
to the infinite width neural network given by

K(2,y) = Elp(z;wo) T ¢ (y; wo)]
= E[[{wy = > 0}[{wy y > 0}z "y,

with the inner product between functions f(-) =
E[u” (wo)¢(;wo)] and g(-) = EfoT (wo)e(;wo)] is
defined as (f,g)wrx = E[u' (wo)v(wp)] [29]. For a detailed
discussion of kernel methods and NTK analysis, see [31], [41],
respectively. The above kernel can be shown to be a universal
kernel [18] and hence the RKHS induced by the NTK is
dense in the space of continuous functions on compact set X

(&)
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[25]. Therefore, it is possible to replace Assumption 2 by the
more general assumption that V' is continuous on a compact
state space X. In this case, from [18, Theorem 4.3], we
know that one can find a function V in the RKHS associated
with the NTK, ie., V(z) = E[0" (wo)p(z;wo)], V& € X,
such that sup,, ||[o(w)]l2 < 7 for some finite ¥ which
approximates V, where U depends on the approximation error
sup, |V (z) — V(x)|. If we replace Assumption 2 by the
assumption that V' is continuous, then the results later can be
modified to reflect this approximation error.

Remark 2: We note sup,cpa |[v(w)|l2 < 7 in Assump-
tion 2 implies that E[[lv(wo)||3] < 7, thus 7 is an upper
bound on the RKHS norm of V' when it lies in the RKHS.

Remark 3: It is worth noting the difference between our
work and the projection-free TD learning work in [1], [8].
They consider a finite state space in the infinite width limit. For
finite X', choosing m = poly(|X|) guarantees that the kernel
K is strictly positive-definite [3], [13], thus in the infinite
width limit, the minimum eigenvalue of the limiting kernel
is bounded away from zero. By extending the NTK analysis
in [13], one can guarantee with further overparameterization
that the empirical kernel

Rali.y) = = SO0 > 0JI(Wi () Ty > 0},
=1

under TD learning dynamics is also positive definite, thus it
can be shown that the network parameters satisfy W;(t) €
B(W;(0), p/+/m) for some p < oo for all ¢ > 1. However,
such a massive overparameterization, i.e., m = Q(|X'|P) for
some p > 1, is not meaningful for TD learning with function
approximation, because one may use tabular TD learning
directly instead. Thus, we do not seek to make the kernel K
positive definite by massive overparameterization in this work
since we consider a general (potentially infinite) state space
X. Instead, by Assumption 2, we consider functions that can
be realized in the RKHS induced by the NTK, and quantify
the required overparameterization in terms of 7, a bound on
the RKHS norm of V.

In the next subsection, we present TD learning algorithms
to approximate the value function V' by a neural network

Q(;W,a).
IIl. NEURAL TEMPORAL DIFFERENCE LEARNING
ALGORITHMS

For a given function 1 = [u(7)]ex, we denote the
weighted ¢5-norm of any function V' as:

17, = \/ / _V@lpas).

TD learning aims to minimize mean-squared Bellman error,
which is defined as follows:

L(W,a) = |Q(W,a) = TQ(W. a)||7
2
= [ (Q@:W.0) = TQ:W.0)) (i),

for any W; € R%a; € R for i = 1,2,...,m, where
Q(W,a) = [Q(z; W, a)]zex, 7 is the stationary distribution
of the Markov chain, and 7 is the Bellman operator.

(6)

Given the initialization {(a;, W;(0))
parameter update is performed as follows:

W(t+1/2) =W(t) + aAVwQi(:),

where o > 0 is the step-size, Q:(x) = Q(z; W (t),a) is the
network output at time step ¢ > 0, and

Ay =1 +7Qu(wy) — Qu(xy),

is the Bellman error. The algorithm is summarized in Algo-
rithm 1. We consider two variants of the Neural TD learning
algorithm:

(1) Projection-free Neural TD learning (PF-NTD): The
network parameters are updated as follows:

i € [m]}. the

W(t+1)=W(t+1/2). 7

For regularization, we utilize early stopping, i.e., the number
of samples 7" is chosen as a function of the problem parameters
and target error, which we will specify in Theorem 1.

(2) Max-norm regularized Neural TD learning (MN-
NTD): For a given parameter R > 0, let the set of parameters
for max-norm regularization be defined as:

Givn = (Wi € R [ W, = Wi(0)]» < %},w € [ml. ®)

Then, the network parameters are updated as follows:
Wi(t+1) =1lg: RWi(t+1/2),Vi€ [m]. )

where IIg(+) is the projection operator onto set G.

Note that in both PF-NTD and MN-NTD, the algorithm
returns Q(z; 7 Y., W (t)) as the output. This averaging
scheme is common in first-order methods for optimization
problems without strong convexity [7], [9], [10].

Max-norm regularization was introduced in [36], [37], and
has been widely used in training neural networks [14], [39].
Note that unlike the ¢5-projection in [10], [44], max-norm
regularization in (9) can be performed in parallel for all
neurons i € [m], which makes it computationally more
feasible. Furthermore, it implies projection onto a well-chosen
subset, which leads to much sharper overparameterization and
sample complexity bounds for a given value function V' [10],
[44] as we will show in Theorem 2. Therefore, it is practically
used in training neural networks [14], [39]. For TD learning,
we will specify the choice of R as a function of the smoothness
of the value function V' for convergence in Theorem 2.

IV. MAIN RESULTS

In the following, we consider a general (possibly infinite)
state-space &', and present our main result on the performance
of Neural TD learning algorithms described in Section III.

A. Performance of Projection-Free Neural TD Learning

In the following, we present the sample complexity and
overparameterization bounds of PF-NTD. The proof of this
result is presented in Section V.

Theorem 1: Under Assumptions 1 and 2, for any (possibly
infinite) state-space X, target error € > 0 and error probability
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Algorithm 1: PF/MN-Neural TD Learning
Initialization: —a; = @4y, 2 ~ Unif{—1,+1},
Wi(0) = Wit 2(0) ~ N(0,1y), Vi € []
fort <T —1do
Observe z; = 9(s;),ry = r(s¢) and =} = (s})
where (s;,5}) ~ 7o P(sy, ")
Compute stochastic semi-gradient:
gt = (Tt +7Q:(x}) — Qt(xt))vWQt(xt)
Take a semi-gradient step:
W(t+1/2) =W(t) + ag:
if projection-free then
| Wit+1)=W(t+1/2);
end
if max-norm regularization then
‘ Wit +1) =1Ilg:  Wi(t+1/2),Vi € [m];

end
Update iterate:
W(t+1)= (1 - H%)W(t) + AW+ 1)
end

Output: Qr(7) = Q(x; W\(T —1),a) forall z € X

5 € (0,1), let A = 32

a-yes’
V1og(1/9),

£(m,d) = 44/log(2m + 1) +

16(D + (A +Lmo,0)) (7 + A))2

mo = (1—7)2e ’
and
g = (1=-7)e min{ i 1}
0= T2ne 3202(Vd + /2log(mo/0))2" 1

Then, for any width m > mg, PF-NTD with step-size o < ay

v

yields the following bound after 7" = m iterations:
_ 1
E|[Qr = VIl6r| < 7 Y ElIQ: = Ve €r] + € < 4
t<T
(10)

where Q: = [Q¢(2)]zex, V = [V(2)]zcx, and the expectation
is over the random trajectory and random initialization, and the
event Er is defined as:

A

er = { max [ Wi(t) = WiO)l2 < =t <TY 0 B,
for some Fy € F;pi, which is formally defined in (13) and
satisfies P(Ep) > 1 — 44.

Theorem 1 implies that there exists a set Ep of trajectories
which occurs with probability at least 1 — 49 such that
Algorithm 1 achieves target error ¢ under the event &p for
sufficiently large number of samples and overparameterization.
Note that Theorem 1 can be interpreted as m = O(T/§?)
where T' = poly(7/5)O(1/€%) is the number of samples since
the neural network processes one sample per iteration. With
this interpretation, we observe that regularization is obtained
by overparameterization with respect to 7', the number of
samples, akin to the classical NTK results in the literature [3],
[13], [16]. The overparameterization bound has polynomial

dependence on the number of samples and does not scale with
the size of state-space. Unlike [10], [44], our error bound does
not contain any additional approximation error terms.

We have the following remark on the main challenges in
the proof of Theorem 1.

Remark 4: In [10], projection is applied to the network
parameters W (¢) in each TD learning iteration to keep W (t)
inside a ball of a given radius around the random initialization
W(0). In the proof of Theorem 1, we propose methods
based on the use of Lyapunov drift coupled with martingale
concentration to track the evolution of ||W;(¢) — W;(0)||2 and
the approximation error ||Q; — V||; simultaneously.

B. Performance of Max-Norm Regularized Neural TD
Learning

In the following, we present the overparameterization and
sample complexity bounds for MN-NTD.

Theorem 2: Under Assumptions 1-2, for any error proba-
bility § € (0,1), let £(m, §) = 4,/log(2m + 1) + /log(1/4),
and R > v. Then, for any target error ¢ > 0, number of
iterations 1" € N, network width

. 16(7+ (R + £(m,8)) (7 + R))

(1—7v)% ’
and step-size
_ €=
(1+2R)*’
MN-NTD yields the following bound:
— (1+2R)v
E|Qr = Vlix Er| < W + 3e,

where E € F;n; holds with probability at least 1 — 4.

The proof of Theorem 2 is similar to, and simpler than the
proof of Theorem 1 because the max-norm projection strictly
controls the movement of the parameters. The proof can be
found in Appendix II.

C. Remarks

The above Theorems 1 and 2 provide, to the best of our
knowledge, the first explicit characterization of the sample
complexity and overparametrization required for PF-NTD and
MN-NTD to converge to the true value function with target
error €. Below we list some further implications.

Ly vs. Ly regularizations: Both PF-NTD and MN-NTD
yield improved bounds on m compared to the algorithms in
[10], [44] over the provably rich NTK function class (see Table
I). A key insight from our analysis is that this improvement
is mainly because both PF-NTD and MN-NTD are designed
to control max;e () [|[Wi(t) — W;(0)||2 via the choice of the
stopping time (PF-NTD) or max-norm projection (MN-NTD),
while the regularization method in [10], [44] is designed
to control |WW(¢t) — W(0)||2. Notably, NTD with max-norm
regularization achieves the sharpest overparameterization and
sample complexity bounds among all NTD variants, which
justifies the empirical success of max-norm regularization for
training ReLU networks in practice [14], [39].
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Convergence rate: Regularization of PF-NTD relies on
early stopping, whereas MN-NTD utilizes more aggressive
max-norm regularization. Without any strict control over
max;cy,) [|Wi(t) — Wi(0)|l2, PF-NTD requires considerably
smaller step-sizes for convergence. Consequently, the sample
complexity and required width for PF-NTD to achieve a target
error € are worse than MN-NTD for which larger step-sizes
can be chosen.

V. ANALYSIS OF THE NEURAL TD LEARNING
ALGORITHM

In this section, we will prove Theorem 1. Before starting the
proof, let us define a quantity that will be central throughout
the proof.

Definition 1: For X\ as given in Theorem 1, let

n=inf{>0: max [ W;(0) — Wi0) > jm} (11)

be the stopping time at which there exists ¢ € [m] such that
Wi(t) ¢ B(W;(0),\//m) for the first time.
Since the updates, g;, are random in the Neural TD Learning
Algorithm (see Algorithm 1), the stopping time 77 is random,
which constitutes the main challenge in the proof. As we will
show, for any ¢ < 7y, the drift of W(¢) can be controlled.
Therefore, we will prove that 7y > T with high probability to
prove the error bounds in Theorem 1.

Proof outline: Below, we outline the proof steps for The-
orem 1.

1) First, we will prove a drift bound for ||[W(t) — W||2
which holds for all + < 7; where W € R™9 is a weight
vector such that Vj,Qo(z)W ~ V(z) for all z € X.

2) In the second step, we will use the drift bound obtained
in the first step in conjunction with a stopped martingale
concentration argument to show that 7, > 7" occurs with
high probability, thus the drift bound holds for all { < T
under that event.

3) Finally, we will use the drift bound again to show that
the approximation error is bounded as in Theorem 1
under the high-probability event considered in Step 2.

A. Step 1: Lyapunov Drift bound for W (t)

We first prove a drift bound on the weight vector W (t),
a common step in the analysis of stochastic gradient descent
and TD learning with function approximation [7], [10], [17],
[47]. Define the point of attraction as follows:

vm
where W(0) is the initial Weight vector. Intuitively, by the
law of large numbers, lim,,, o Vi, Qo(2)W = V(z) for any
x € X under the symmetric initialization (see (32) for details).

For error probability § € (0, 1), recall that we define £(d, m) =
4y/log(m + 1) + +/log(1/4), and let

E, = { sup — Z]I{|WT

W = |W;(0)+a; ; (12)

]ie[m]

|T}

and & = Ey N{t <7} for any t < T.

The following key proposition is used to establish the drift
bound.

Proposition 1: Recall that Ay = 7, + vQ¢(x}) — Qe(xs)
is the Bellman error. Under Assumptions 1-2, we have the
following inequalities:

(D) E[A(Qu(xe) = V(w0)); &] < —(1 — )22,
() E[A(V(z1) = Vi Qo(z)W); &) < jmzt,

(3) For £(m, ¢) defined in Theorem 1:

E[A(VwQo(z:) — VWQt(xt))TW; &
< 47+ N) (A + £(m, 5))zt’ (14)

NG
where 2z = \/E[|Q; — V[|2;&] and E is the expectation over

random initialization and trajectory.
The proof of Proposition 1 is given in Appendix I. The first
inequality in Proposition 1 follows from the fact that the
Bellman operator 7 is a contraction with respect to ||.||, and
V is the fixed point of 7 [43]. The second inequality holds
since V,,Qo(z)W turns into an empirical estimate of V' with
m/2 iid samples, where the variance of each term is at most
2. The last inequality is the most challenging one as it reflects
the evolution of the network output over TD learning steps,
and it is essential to have W;(t) € B(W;(0), \//m) to prove
that part.

Now we present the main drift bound for the TD update.

Lemma 1 (Drift Bound): For any t > 0, let E;[.] =
E[.|Fi—1] with F_1 = Finir- Then, we have the following
inequalities:
E[EW(t+1) = W3t <] SE[[W() - W3t < 7]
—2a(1 — )z +a*(1 +2))?
+8o¢zt(y+ (v + )\)()\—Q—E(m,é)))’

Jm

15)

where W is as defined in (12), z; = /E[[|Q: — V[2; &].
Lemma 1 implies that for ¢ < 7, i.e., as long as W;(t) €
B(W;(0),A/v/m) for all ¢ € [m], the drift can be made
negative by sufficiently large width m and sufficiently small
step-size a.

Proof: Recall that

gt = (Tt + ’YQt(l';) — Qt(zt))VWQt(CCt) (]6)
= AV Qi(z),
is the semi-gradient, where A; = r; + vQi(x}) — Qi(xy) is

the Bellman error. Since W (t + 1) =
the following relation:

W (t) + ag:, we have

IW(t+1) =TI = [W(0) ~ W3 +2a o] (W(t) - T7)]
+a?gell3-
We can write the expected drift in the following form:
E[[W(t+1) = W3 &] = [W(t) - W3,
+2aEyfg) (W (1) — W) Ie, + ” Eqlgull3 T,
(4) (i)

a7)
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Bounding (i) in (17): In order to bound (i), we expand it
as follows. For any t < 7y:

Eilg! (W(t) = W)] = Ee[As - (Qele) — V(22))]
+Ei[Ar - (V(ze) — Vi Qo(ze)W)]
+EA: - (VwQolwr) = Vv Qi) W,
Then, we obtain the inequality in Lemma 1 by applying
Proposition 1.

Bounding (ii) in (17): The next argument follows the proof
of [10, Lemma 4.5]:

lgella = 1(re + Qe (x}) — Qe(we)) Vv Qe () |2,
< e + Qi) — Qi ()],
< 1+2££n€a§(|Qt(m)|,

<1 H2W(t) = W(0)|]2 < 1+2),

(18)

19)

where the first inequality follows since ||V Qi(z)]l2 < 1
for any t,x, the second inequality follows since r(x) €
[0,1] for all z € X, and the last inequality holds since
Qi(2)] = 1Qi(2) — Qo(a)| < [W(t) = W(0)fl2 and t < 71.
Consequently, [|g:(|3 < (1 +2))%

The result in (15) immediately follows by combining these
two bounds. ]

B. Step 2: Stopping time 71 > T with high probability
Now, we will use the drift result in Step 1 to show that
71 > T with high probability.
Lemma 2: Under Assumptions 1-2, we have:

A
T:inf{t>0:max Wi (t) — W;(0 >—}2T,
1 max [W(1) = Wi(0) ] > -
with probability at least 1 — 4.
Proof:  First, invoking Lemma 1 with the values for
T, XA and m specified in Theorem 1, we have the following
inequality for any ¢:

EE W (t+ 1) — W|3:&] < E[|[W(t) — W||3; &]
—2a(1 —9)22 + 2a(1 — 7)e® 4+ 4a(l — y)ez;, (20)

where 2, = /E[[|Q: — V||2;&]. The step-size « is chosen
sufficiently small so that, by (19), a?|g:||*> < 2a(1 — 7)€%
Claim 1: Telescoping sum of (20) over ¢t < T yields:

0<?—2a(l —7) Z(zt —€)? +4a(l — v)€eT.
t<T

Proof: [Proof of Claim 1] Recall the notation E;[.| =
E[.|Fi—1]. Let 6(t) = W(t) — W and (r be defined as:

Gr= 3 (BallB(e+ DI3Me, — I3t + DI3Es... ).

t<T

> 3 T, (Bll5( + 1)I13) = 13+ 1DI3) = ¢
t<T
for T > 1 with (o = () = 0, where the inequality holds since
Ie,., < Ig,. Note that (f is a martingale over the filtration
{F:} since each summand constitutes a martingale difference

sequence, and Ig, € F;_; is predictable and nonnegative.
Then, we have:

> (BB + V)13 - 13(0)13)Le, > ¢r — 72

t<T

+[W(T) = W3,

>0

which follows from |[W(0) — W/l < #. Since (7 > (} for
any T > 1, and ¢/ is a martingale with {; = 0, we have
E[¢{r] > E[¢/] = 0. Hence,

> (BW (+1) W3 & E[IW ()~ W|3: £1]) = 2,

and therefore the claim follows. [ ]
Applying Claim 1 and Jensen’s inequality, we have:
3—2
Y <3l = Q1)
= da(l —v)e

This bound on the total error will be the fundamental quantity
in the proof. Now, by using (21), we will show that the event
Er = {m < T} N E; occurs with low probability. For any
i€ [ml, let g;(t +1) = W;(t + 1) — W;(t). Then, we have:

IWi(m) = WiO)ll2 = | Y gs(t + 1)ll2,

t<t1
<D Gt+1) = > Bifgi(t+ D]l
t<t1 t<m1
(22)
+ 1) Eefgi(t+ D)]ll2- (23)
t<T1
Bounding (22): For any t, let
Diy=Wi(t+1) = Wi(t) = EJW;(t + 1) — Wi(1)], (24)

which forms a martingale difference sequence with respect to
the filtration F; since E¢[D;;] = 0. Let X; v = >, ., Djs.
Since D;. is a martingale difference sequence, X, is a
martingale. Thus, bounding (22) is equivalent to bounding
| X r |l2, under the event &;. In order to achieve this, we
use a concentration inequality for vector-valued martingales
[19, Theorem 2.1], which is given in the following.
Proposition 2 (Concentration for Vector Martingales):

Consider a martingale difference sequence {D; € R : ¢ > 0},
and let X7 = ), _;» Dy. If [[Dy]|2 < ¢ almost surely for all ¢,
then for any 7" and 5 > 0, we have the following inequality:

IE”(HXTII > V2 (Vd + B) ﬁ) < exp(—f%/2).  (25)

Since sup,cy |Q(z)|] < [|[W(t) — W(0)|]2 < A for all
t < 71, we have || D; ]2 < %\/%2/\) Define the stopped
martingale )A(:i,t = X min{t,7}> Which is again a martingale
with a corresponding martingale difference sequence D; ; that
satisfies | Dy |2 < || Ds.e|l2 [45]. Since

[ Xim ll2 - Le, < [ Xirll2,
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the following inequality holds:

P(|1 X, 2 > V2V + gy 2oL+ 2OVT

(&) < e P2,

vm
which follows from
20(1 + 2\)VT
{1 Xim 2 > V2(Vd + 5)(\/%} Nér

20(1 + 22)VT

C {||)~QT||2 > ﬁ(\/ﬁ—kﬁ) T

2

and
IP(‘|)?1TH2 2 \/5(\/&4_5)2‘1(1"\'/%)‘)\/T)

by Proposition 2. Therefore, by using union bound:

<e P2

T
Pl | Xi, 2 > 4(Vd+  log(Z))y/ =a(1+2)); £5)
1€[m] 1) m
<9, (20)
The step-size « is chosen to satisfy

(V2d + 24/1og(m/8)) VT - 2a(1 + 2)) < \/2.

Bounding (23): Note that we can bound (23) as follows:

||ZEtg1,t+1 Hs’\|2<z T||Qt

t<t1 t<T1

Viz, @7

for all i € [m] under & since sup, ;. [[Vw,Q:(z)[l2 <
1/4/m (see Claim 3 and Remark 5 for details). The expectation
of the RHS above is bounded as f0110WS'

chzt Vllxle ] ZEHQt Vllx; &
t<T t<T
2c
_722257
vim =

by the law of iterated expectations as the event {¢t < 7 }NE; €
Fi—1 as |W;(t) — W;(0)|| € Fi—1. Note that the RHS of the
previous inequality is upper bounded by (21). Therefore, we

have:

2a 6T6a

—E[) Qe — V= &7] <

t<T

ﬂ

Hence, we have the following:

U {1 X Elae+ Oyl > <} ey

i€[m)] t<T1 \/76
c { Z 2a)|Q; — V|lgy, 6aTe}
vm \/mo

t<t1

which implies that

6aTe ,
P(ign] {||t<zn B+ 1)l > ke <6 @8)

by Markov’s inequality. Now, using (26) and (28) in (22) and
(23), we conclude that P(£%) < 26. Since &% = & U Ef
and P(E{) < § by Claim 2, we conclude that £ holds with
probability at least 1 — 34.

|

C. Step 3: Error bound
In Step 2, we have shown that the event {73 > T} occurs
with high probability. Since & = {r; > T} N E; C & for
any t < T, we have the following inequality:
E[|Q: = Vix; &) < VE[[|Q: — VI[2; Ex]
<z = VE[|Q: — VI2; &,

for any ¢t < T. Consequently, by using (21) and Jensen’s
inequality, we have:

1 1
Ell Y Q= Vlwi&r] < = Y EllQ — Vllx: Er]
t<T t<T
1
S ? Z Zt S 3e.
t<T

In the final step, by following similar steps as [10], we use
Proposition 3 in Appendix I to show the proximity of Q
and =3 ier Qi to V,QoW, and conclude that E[||Qp —
T Zt<T Qtllx; €] < €, which implies ]E[”QT Vi &r] <
4e by triangle inequality.

VI. CONCLUSION

In this paper, we analyzed two practically used TD learning
algorithms with neural network approximation, and established
non-asymptotic bounds on the required number of samples
and network width to achieve any given target error within
a provably rich function class. By using a novel Lyapunov
drift analysis of stopped and controlled random processes,
we have shown for the first time that projection-free Neu-
ral TD learning can achieve arbitrarily small target error.
In addition, we proved that max-norm regularized Neural
TD learning achieves the state-of-the-art complexity bounds,
which theoretically supports its empirical effectiveness in
ReLU networks. One key insight from our analysis is that
{~-regularization yields improved results in the NTK regime
compared to {5-regularization. The extension of this work to
other reinforcement learning algorithms, such as Q-learning
and policy gradient methods, and different neural network
architectures, such as multi-layer and convolutional networks,
is left for future investigation. The function class that we
considered in this paper is realizable by the neural tangent
kernel. Recently, it was shown that neural networks trained
by using gradient descent methods are able to learn functions
that cannot be learned by kernel methods [46]. As such, an
important open problem is to analyze the performance of
Neural TD learning beyond the NTK regime.
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APPENDIX |
PROOFS OF SECTION V

Throughout the section, we will use the following results
extensively.

Claim 2 (Lemma 4.1 in [30]): For any § € (0,1) and m €
N, let

lo(m, 8) = v/8dlog(m + 1) + /8log(1/6).

Then, for any € > 0, m > 10, if W; ~ N(0,1,) for all
i € [m], we have:

1 & T 2 fo(m,é)
sup —E I{|W; x| <€} </—e+ ——F—,
— 7r vm

z:||z||2<1 m =

(29)

with probability at least 1 — § over the random initialization.
Claim 3: For any W € R™? and a; € {—1,1} for i € [m)],
we have:

IVw@Q(z; W,a)l|l2 < 1,
IVw,Q(a: W, a)ll2 < 1/v/m, Vi € [m],

for any x € X.
Proof: Note that for any 7 € [m] and x € X,

1

ﬁaiH{W;w > 0}z,

which implies |V, Q(z; W, a)|l2 < % < \/% since a; €
{—=1,41} for all i € [m] which is automatically satisfied by
the symmetric initialization, and ||z|2 < 1 for all z € X.
Similarly,

Vw,Q(; W, a) =

1
7
which directly implies ||V Q(z; W, a)[3 < [|z[5 <1 [ |

Claim 4 (Lemma 6.3.1 in [5]): For any V = [V (8)]ses,

ITVIx <y V],

Vi Q(a; W, a) = { al{(W, w20} .

[m]

where T is the Bellman operator.
Claim 5: For any t > 0, we have:

VE(TQu(ze) — Qel(24))?] < (L+9)|Qt = V|-

Proof: For any x € X, we have TV (z) = V(x) since
V is the fixed point of the Bellman operator 7. Therefore, we
have:

VE((TQ4(xe) — Qe(x4))?]
= VE((TQ¢(xe) — TV (1) — Qulwe) + V().

Since V(x),Qi(x) € Fy—q for any given = € X, the
expectation E; is over (x¢, x}), thus we have:

VE((TQu(xe) — TV (2e) — Qulwe) + V(24))?]
=[TQ: =TV = Q¢ + Vx.

By triangle inequality, the above inequality implies the fol-
lowing:

VE(TQu(xe) — Qe(x:)2] S I TQt = TV ||x + Qe = V|-

Since 7 is a contraction over ||| by Claim 4 with modulus
v € (0,1),

||TQt - TV”Tr < 7||Qt - VHm

which implies the result. [ ]

Remark 5: Note that for any sequence of predictable RF-
valued (kK > 1) functions h; € F;_; which does not depend
on z;, we have the following identity:

Eq[Ahy(z:)] = /X ( /X Atw(dx;))h(xt)w(dxt),
= Ee[(TQe(x1) — Qe(we)) he(we)].

We use this identity extensively in the analysis throughout this
work, mainly in conjunction with Claim 5. Some examples
for this are as follows: hi(x) = VwQ:(x) which leads to
gt = E¢[Ahi(zy)] and hi(z) = Vi, Q¢(z) which leads to
Wi(t + 1) — Wi(t) = aE¢[A¢hi(xt)], where other instances
such as h¢(x) = Qi(x) — V(x) show up in the following
analysis as well.

A. Proof of Proposition 1
Part (1) Let £(6,m) = 2/log(2m + 1) + /log(1/4)/2,

m

5= (o MW el <9 < T 100,

=1

For any t < T, let & = Ey N {t < 71}. (1) For any ¢ < 71,
we have the following inequality:

Et[At(Qt(ﬂUt) - V(xt))] < -1 =-NQ: — VH721'

Proof: The proof follows the strategy first proposed
in [43], and then used for the convergence proofs in [7],
[10], [47]. Let E¢[.] = E[.|F:—1], i.e., the expectation is over
(x4, ;). Then, we have

E A (Qe () — V(xy))]
= Ei[(TQu(x1) — Qu(2))(Qu(wr) — V()]

by taking expectation over z; first, which implies the follow-
ing:

Ee[(TQu(wr) = Qu(@) (Qilae) = V(a0))
= E[(TQu(w) = TV (@) (@) — Via)|
B[ (@) = V@) (Qiae) ~ Vi)
since TV (z) = V(x) for any = € X. Therefore, we have:

E; [(TQt(JJt) - Qt(xt)) (Qt(ﬂﬁt) - V(ﬂﬁt))]
< = [1Q: = V|3
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where n; = B [(TQ¢(w¢) =TV (24)) (Qe () =V (x¢))]. Since  if i = j, and Cov (‘Z(x), %(x)) if i # j. Under symmetric
[[-[l= defines a norm, by Cauchy-Schwarz inequality, we have:  initialization, W;(0) = Wi, /2(0) for all i € [m/2]. There-
— | (TQt(iEt) TV (xt)) (Qt(xt) _ V(xt))] i(v);e};;z/}(; .usmg the above result along with Fubini’s theorem,
<NTQe =TVllx - 1Q: = V|- ,
: : E|V-Vy QWI[
From Claim 4, we have |[7Q;—TV||x < 7||Q¢—V||», which
implies the result. ]

Part (2) For any ¢, we have:

E[A (V(2:)=Viy Qo) W);

Proof: Let V{,QoW [V%Qo(x)m scx- Then, for
any t, we have:
Et[At(v(xt)_ %QO(%)W)}
= B [(TQi(w1) — Q) (V (1) — Viy Qo) W)]
By using Cauchy-Schwarz inequality, we have:
Ee[(TQu(x1) — Qelae)) (V(2e) — Vi QO(%)W)]
< TQc = Qulla/Eel(V () — Vi Qolae) W2
Then, by using Claim 5,
1TQ¢ = Qellx < (L + Qe = V|-
By the law of iterated expectations,
E[A, (V(:Et) - V%Qo(xt)i)'gt]
< L+ ME[|Q; = Viale, |V = Vi QoW ||),

since Ig, € F;_1. Hence, by Cauchy-Schwarz inequality, we
have the following:

E[A(V(21) = Vi Qo(z)W); &]
< 2V/EQi — VIGENENV - Vi, QTI2]. (0)

In the following, we will bound \/]E [|V — V{, QoW |2]. For

any x € X, we have:
1 m
W= 2 (V) - i)
m:

where Vi(z) = {W.,"(0)x > 0}v" (W;(0))z. Recall that

V(z) = Vi Qo(z €2y

~

V(z) = E[{W;"(0)z > 0}v"(W;(0))a] = E[Vi(z)] by
Assumption 2, which implies
VhQ@W =~ 3 Vi) 5 V) ()

as m — oo almost surely for any z € X by the strong law of
large numbers since V;(x) is a bounded random variable for
all i € [m] and x € X. For any i € [m], we have:

E[V(z) - Vi(x)] = 0,

and for 4, j € [m/2], we have:

Cou(Vi(x), V() < Ello(Wa(0))]3),

£ < - VENQ -~ VIZEL

; (33)

since Var(Vi(z)) < E[|o(W1(0))|2] < 72 by Assumption
2 and ||z|]2 < 1 for all z € X by Assumption 1. The extra
factor is due to the symmetric initialization. By substituting
(33) into (30), we have:

E[Ad(V(w) = Vi Qolw)W): &

< SZVEQ - VIZEL

]
Part (3) Let
= _ v(Wi(0))
U7, = a; \/m I € [m]7
with U = [U];e[n), Which implies W = W(O) + U [17].
Note that under symmetric initialization, V- Qg ()W (0) =
Qo(z) =0 for all z € X. Then, for any ¢, we have:
E[A (VwQo(:) — Vi Qu(wy) ' T; &)
4v(A +£(m, o
< (\/m())ztv (34
and
E[At (VWQO(CEt) - VWQt(ft))TW(O)§ gt]
AXN(A + £(m, 5))
< - - 77
< NG zt, (35)

with probability at least 1 — § over the random initialization.

Proof: In order to prove (34), we have the following
bound by using Claim 5:
EAd (Vi Qol) — Vi Qu(wy) Tl
< (L4 NQ: = VIV QiU — Viy QoUllx  (36)
For any z € X, we have:
(VwQo(e) — Vw@i(x) T
T ;
= 3 (MW @) > 031w (0 > o) O
i€[m)]
Let
S, () = {z e [m] : {W,T (0)z > 0} # L{W,” () > 0}}.
(37
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For any x € X and i € S, (t), we have:
(W (0)z] < [W;T(0)z — Wi (t)a| < [[Wi(0) — Wi(t)]|2,

since i € S, (t) implies W, (0)z and W,' (t)z have different
signs. Therefore, we have the following relation:

Su(t) € {i € [m] : W (0)al < Wi(0) = Wi(t)] },
c {ieml: W] Ol <AV},
for any ¢ < 7;. With this definition, we have:
|(ViwQo(z) — Vth( ))Ti\
< = Z ie S,(t)}p <

16 [m]

S(z). (39)

4v ~
m

since v(w) < ¥ for any w € R? by Assumption 2, where
m/2

z)= S WW O] <AVmp (o)

for any « € X. By Claim 2, under E; N {t < 71}, we have:

25(z) V20(m/2,8)
- < ﬁ + T “4n
Therefore, we can bound (36) as follows:
A (Y Qo(w:) = ViwQu(wy)  Tll,
4o A+ £(m, o
< PO Do, — Vit

By taking expectation and using Cauchy-Schwarz inequality,
we obtain:

417(/\ + 4(m, 5))
\/ﬁ Zt.
The above analysis builds on and improves the classical
analysis of ReLU networks [13], [17] as it proposes uniform
bounds over all z € X.
In order to prove (35), we use Claim 5 to obtain the
following inequality:

E[A (Vi Qo()

E[A(VwQolw:) — VwQi(z,)) T <

— VwQi(x)) W(0)]

<2Q: — VI | (Viy QoW (0) — Vi QW (0) . (42)
For any z € X, we have:
(vao< ) = VwQu(x)) W(0)

T > T > T
f g]al(ﬂ{w (0)2 = 0}=T{W (H)a = 0}) W, (0)a.
Recall the definition of S,(¢) in (37). By using triangle
inequality:

|(Vw Qo) — Vi Qu(z)) W(0)|

1
< —— S Iie S, ()
2

For any « € X and i € S, (t), we have:
(WiT(0)a] < W (0)z — W' (t)z] < [[Wi(0) —

(W (0)].

Wi(®)]l2,

since i € S, (t) implies W," (0)z and W," (¢)z have different
signs. The correlation between I{i € S,(t)} and ||W;(t) —
W;(0)||2 creates the main problem in the proof, which we

resolve under the event {¢ < 71}. For ¢ < 71, we have
[IW;(0) — W;(t)|l2 < A/+/m. Thus, we have:

— VwQu(z)) W(0)] < = Z I{i € Sy

ze [m]

E\Sx(tﬂ < Es(x)v

|(VwQo(z)

IN

where S(z) is defined in (40). Using Claim 2 similar to (41),
under E; N{t < 71}, we have:

AXN(A + £(m, 5))
vm

E[A (Vi Qolwy) — VWQt(It))TU] < 2.

B. Proximity of Qr and + 3", _+ Q

In this section we will show that the output of Algorithm 1,
QT(x) ( LT Zt<T ( ) ) is close to T Zt<T Qt( )
in expectation, which will prove that Q- achieves the target
error. The idea is based on [10], and aims to use the linear
approximation V), Qo ()W ( — 1) as an auxiliary function
to show the proximity of Q7 and & >, 7 Q.

Proposition 3: Let f/IZ € R™ be a_ (random) vector of
parameters. Also, let Q(z) = Q(z;W,a) and Qo(z) =

ViyQo(z)W for any = € X, and the event A =
{maxle HW W;i(0)]]2 < ﬁ} N E;. Then, we have the
following mequallty

E[|Q — Qoll~: Al < W <

N

Consequently, we have:

oL xa

(43)

ﬂ;gT} <e

Proof: First, note that the difference of QA) and @0 can
be written as follows:

Q) — Qo(z)|
< LS U > 0} — KW 0)e > 0} [ ol

i€[m]

for any x € X. Let
S, = {z e [m] : {W,T (0)z > 0} £ I{W, z > 0}}.
Then, we have:

Q) - i € S, }[W, |

| A

ﬂ\

I{i € Sy }|[W; — W;(0)]|2-

IN

ﬂ\

" T
E
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since i € S, implies |W, 2| < [W, z — W, (0)z| < |W; —
W;(0)||2. Similarly, we have: |W," (0)x| < ||[W; — W;(0)||2.
Then, we have:

Q) ~ Qol)lLa < 215, L
AA+€(m,9))
< —Jm

Taking the expectation and using Jensen’s inequality, we have:

E[IQ — Qolles A] < y/E[I1Qr — Qoll2; A4
AA+£(m, 9))

\/ﬁ )
which concludes the proof of the first claim.

In order to prove the second claim, consider W = W (1" —
1) = £ 3,7 W(t), and note that W(T — 1) € Fr_; and
Er C A by definition. Therefore, the first part implies the
following:

IN

E[|Qr — Vi QoW (T — 1)|x; Er] <

MA+Lm.0)
m

vm

with the usual notation V[, QoW (T — 1) =
[ViyQo(x)W (T —1)]  _ - Finally, we have:

Bll 7 3 Q- VRQW T~ Dlsiér]
t<

< 7 Y EIIQ - VR QW (D)l érl

t<T

by Jensen’s inequality. For any ¢ < T, letting W= W (t), and
noting that &r C A, we have E[||Q; — V[, QoW () ||x; &) <
AQ+Em.9) by using the first part of the proposition, which

. m
implies:

A(A +€(m,6))'

Elll 3 Qe —~ Vi QoW (T — 1)) < =

t<T
45)

Using (44), (45) and triangle inequality together, we conclude
that

1 _
Ell 7 Q—Qrlxér] <e

t<T
with the choice of parameters in Theorem 1. ]

APPENDIX Il
PROOF OF THEOREM 2
The proof of Theorem 2 consists of the same steps as The-
orem 1, but it is simpler because the growth of ||[W (t) — W |2
is controlled by the max-norm constraint. In the first step, we
will prove a Lyapunov drift bound.

A. Lyapunov Drift Bound

First, note that for any R > 0 and m € N,

G = {w € R 5 [Wi(0) = w2 < ;%,Vi € ml},
is the Cartesian product of convex sets Qfm p» Which is convex.
This leads to the following result.

Lemma 3: For any t > 0 and R > v, we have the following
inequalities:
E[|W(t+1) = W|3; 1] < E[|W(t) - WI3; 1]
—2a(1 — )z + (1 + 2R)?
v+ (17+R)(R+€(m,5)))
vm ’
where W is as defined in (12), z; = \/E[||Q; — V||2; E1].
Proof: First, note that W(t+1) =Ilg,, ,W(t+1/2) by

the update rule in (9), and G,,, i is a convex set. Also, note
that R > v implies W € G, r. Therefore, we have:

W (t+1) - W3 = g, ,W(t+1/2) —Ig,, ,WII5,
< |[IW(t+1/2) - Wi,

(46)

+ 8oz (

which follows since projection is a non-expansive operation
for convex subsets. Since W(t + 1/2) = W (t) + ag, and
llgell2 < 14 2R by (19), we have:

Ed|W (t4+1) =W I3 < [[W (1)~ W 3+20E:[g] J(W (t)-W)
+a?(1+2R)%

Then, the proof follows by multiplying both sides by Ig,,

taking expectation, and using Proposition 1 with A replaced

by R since |W;(t) — W;(0)||2 < R/v/m for all i € [m] and
T1 = 00. u

B. Error Bound

Note that by the choices of step-size o and network width
m, we have:

@?(1+2R)? = a(l — v)é,

M 4 R (R4 L(m. o))
NG

Using these in Lemma 3, we have:

< el —7)/4.

E[|W(t+1) = W3 E1] < E[|W(t) = WI3; B4

—a(l—7) (zt - 6)2 +2a(1 — 7)€%

By telescoping sum over ¢t = 0,1,...,7T — 1, the above

inequality yields:

1 . _ EWO) -WIZE] .,
2z —€)” < + 2¢€”,
Tt<T( ) a(l —~)T
_2
1
2¢2.
_a(l—w)T+ €

By using Jensen’s inequality,

1 2 v
— —e) < ——— + 2%
(Tzzt E) _oz(lf'y)T—’_ ‘
t<T

The above inequality yields:

1 1
T ZE[”Qt = Vllz E1] < T Z 2t
t<T t<T
< S + 3e.
a(l—y)T

We conclude the proof by using Proposition 3.
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APPENDIX Il
ANALYSIS OF MN-NTD UNDER MARKOVIAN SAMPLING

In Theorem 2, we analyzed the performance of MN-NTD
under iid sampling, where s; ~ 7 independently for any ¢,
and s, ~ P(st,-). The convergence of TD learning under
Markovian sampling is established by using mixing time
analysis [7], [38], [47]. In the following, we provide a finite-
time analysis of MN-NTD under Markovian sampling by
directly adapting the analysis in [7], [47].

We make the following uniform mixing assumption, which
is commonly used in the analysis of Markovian sampling [7],
[47].

Assumption 3: There exist constants ¢ > 0 and p € (0,1)
such that

sup [[P(s; € -|so = s) —7(-)[l1 < ¢p", (47)
sES
for any ¢ > 0.
Under Assumption 3, there is a mixing time 7,,;, such that
Tmiz = min{t € 0: ¢p’ < W%;I)?} [7].

The performance of MN-NTD under Markovian sampling
with sg ~ 7 is as follows.

Theorem 3: Under Assumptions 1-3, for any € > 0, § €
(0,1) and R > v, MN-NTD with width

64(17 + (R4 ¢(m,6)) (v + R+ 4R(1 + ZR)))2

"= (1—7)% ’

and step-size
_ e(1-9)

C(Ra Tmi:v) ’

satisfies the following under Markovian sampling:

(R, Timiz )V

EHQT—vaﬂf;dl_w¢T

+ Ge,

where
c(R, Tmiz) = 4(1 + 2R)? + 8(1 + 2R)(1 + 10R) Tynia

and E € Fj,; holds with probability at least 1 — 4.

Proof: The proof builds on the analysis in [47]. For
y = (z,2') € X% and W € R™*4, let
g(W,y) = (r(@) +1Q( W, 0) - Q(w: W, 0) ) VQ(w: W, 0),

and

A(W,y) = (r(@) + Qs W,a) = Q(a; W, a) ) VQo(a).

Also, define
Z(W,y) = [M(W,y) = R(W)] (W = W),
where h(W) = E,wuep[h(W,y)]. Let hy(W) = h(W,y,)

and Z(W) = Z(W,y:) where y; = (¢, 2¢+1). By following

identical steps as Lemma 3, we obtain the following drift
bound under Markovian sampling:

W (t+1) = W[5 < [[W(t) — W[5+ a*(1+2R)?
+2ag" (W()(W(t) — W)
+20(ge(W (1) = (W ()T (W (t) = W) (48)
+ 2a(h(W(t)) = h(W ()T (W(t) = W) (49
+2a(h(W(t)) —g(W (1)) (W (t) — W). (50)

The terms (48)-(50) are due to Markovian sampling, and the
rest of the drift bound is identical to the iid sampling case
considered in Theorem 2.

First, by Lemma 2 in [11], we have:

(aeW (1) — B (WD) (W)~ T7)

g\Q/]Tin(1+2R)(R+€o(m,5)), (51)
and
(Row (@) ~aw () (Wi - )
< 27}%(1 +2R)(R + Lo(m. ), (52)

simultaneously under the event Fj.

Note that the term in (49) is 2aZ; (W (t)). In the following,
we will bound E[Z; (W (t)); E1] by using Lemmas 8 and 9 in
[7].

Let W, W’ € R™*? be such that

max max{||W; — W; W= < —. (53)

ma |V = Wi (0) | [V = W)} < 7=
Then, by Lemma 2 in [47], we have

|Ze(W) = Zo(W')| < [[he(W) = R (W) 2 - [[W = W |a

+ [R(W) = (W)l - W = W2

+ [[he(W) = b (W) - [[W = W2
Since Q(x; W, a) is 1-Lipschitz continuous in W for any x €
R? with ||z|l2 < 1, we have ||hy(W) — hy(W')||2 < 2||W —
W'|lo and ||R(W) — h(W')||s < 2|[W — W||o. Also, since
max{||h;(W)|2, A(W)|]2} < 1+ 2R, we obtain the following
inequality:

1ZoW) = ZuW)| < (4(R+7)+1+2R) W = W'|5. (54)

Then, as a consequence of max-norm projection, the iterates
{W(t) : t € [T]} satisfy (53), thus (54) is also satisfied. This
implies the following:

Zi(W(t+ 1)) — Z,(W(t)) < 2(4(R + o)1+ 2R)
X [W(t+1) = W(t)llz,
which implies that
Z(W(t+ 1))

since R > v and |[W(t+1) —
for any 7 > 0, we have:

EoZ,(W(t)) < EoZy(W(t — 7)) + 2a(1 + 10R)(1 + 2R)r,
(55)

< Z(W(t)) +2a(1 +10R)(1 + 2R),
W(t)|]2 < a(1 + 2R). Then,
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where the expectation is taken over the samples conditioned

on the random initialization. Recall that 7,,,;, = inf{¢t > 1 :

i < 52(1_7)
SP" = BR(1+2R)
chain.

o If t < 7pis, letting 7 = ¢, we have:

Eo[Z:(W(1))] < Eo[Z:(W(0))] + a1 + 2R)(1 + 10R) s,
= a1+ 2R)(1 + 10R) i, (56)

} is the mixing time of the underlying Markov

since (a,W(0)) is independent of the underlying Markov
chain {z; : ¢t > 0}, thus E¢[Z;(W(0))] = 0 for any ¢ by
the definition of Z;.

o Ift > 75z, We let 7 = 7,,;, in (55). Then, we have:

In order to bound EgZ; (W (t — Tyniz)), We use Lemma 9 in
[7], which implies that

|E0Z(W(t - T’rnil‘)a Z/t) - EOZ(W/(t - TTVLiJ:)a
2
€

)|
(1-7)

< 2sup |Z(W, y)| —— 0
< Swu,ly)l ( ,y)ISR(1+2R),

for statistically independent W'(t — Tyis) 4 W (t — Tmiz)

and y; 4 ye = (w4, m401), where 2 denotes equality
in distribution. For such W’(t — 7,,;,) and y;, we have
Eo[Z(W'(t — Tiniz), )| Z(W'(t = Tiniz)] = 0, which implies
that 2(1 )
€2(1 —
EOZt(W(t - Tmix)) < %a

and

EoZi(W (1)) < a(1+2R)(1+ 10R)Tni + M

Then, from (55) and (57), for any ¢ > 0, we have:
(1 -17)

4 Y
under the event F;. Now that we have established upper
bounds for (48)-(50), we have the following drift inequality:

Eol[W(t +1) = W3 < Eol|W(t) - W3
+2ao[g" (W (1) (W (t) — W)

. (57)

EoZ(W(t)) < a1 + 2R)(1 + 10R) Tyniw +

+8a;%(1 L 2R)(R + Lo(m, §))
ac*(1—7)

+20%(1 4+ 2R)(1 + 10R) Tpix + 5
+a?(1+2R)?,

under the event £y € F;,;. Note that the step-size choice
ensures the following:

ae(1—7)
5 .
The proof follows by taking expectation under the event E1,
using the bound on E[g" (W (¢))(W(t) — W); E1] by using
Proposition 1, telescoping sum over ¢t = 0,1,...,7 — 1, and

using Proposition 3, similar to the proofs of Theorems 1 and
2.

o2 (14 2R) +2(1 + 2R)(1+ 10R) i) ) <
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